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Abstract. We present a tool for reachability analysis of procedural pro-
grams whose statements consist of affine equations and inequations. The
algorithms uses finite automata to finitely represent possibly infinite sets
of both stack contents and memory valuations. We illustrate our program
on some examples and compare it to Moped, a model checker for push-
down systems.

1 Introduction

In [1] Esparza and Schwoon presented Moped, a model-checker for boolean pro-
grams. A boolean program consists of a set of (possibly recursive) procedures
acting on boolean variables. Moped translates boolean programs into symbolic
pushdown systems, a combination of pushdown systems and binary decision di-
agrams (BDDs, cf. [2]). Pushdown systems (a formalism closely related to push-
down automata) are used to model the program’s control flow. In particular, the
pushdown stack is used to store the return addresses of the procedures whose
execution has not finished yet; procedure calls push a new return address into
the stack, while return instructions pop the address at the top of the stack.
BDDs are used to succinctly represent memory transformations. For instance,
an assignment x := f(x, y), where f is a boolean function, induces a memory
transformation given by the relation {(x, y, x′, y′) | x′ = f(x, y), y′ = y}, and this
relation is encoded as a BDD. Moped’s core algorithm computes the (possibly
infinite) set of reachable configurations of a given boolean program. This possi-
bly infinite set turns out to be regular, and Moped represents it as a symbolic
finite automaton, a finite automaton whose transitions are labeled by BDDs.

In this paper we extend Moped so that it can analyze affine integer programs.
An affine integer program is a set of (possibly recursive) procedures acting on
integer variables, and such that all memory transformations are affine relations
on integers. For the succinct representation of affine relations we use a subclass
of finite automata called number decision diagrams (NDDs) [3–6]. NDDs are
capable of representing the set of solutions of an arbitrary Presburger formula
[3, 7]. We extend Moped’s core algorithm for the computation of the reachable
configurations. Since affine integer programs are Turing-powerful, the algorithm
is not guaranteed to terminate, but, when it does, it returns a finite represen-
tation of all reachable configurations in the form of a finite automaton whose
transitions are labeled by NDDs.



The paper is structured as follows. Section 2 introduces basic notations, push-
down systems and NDDs. Section 3 shows how to model procedural programs
as pushdown systems and memory transformations as NDDs. The algorithm for
calculating the reachable configurations is presented in Section 4. Section 5 gives
a short overview of our implementation and some experimental results. We close
with a discussion of future work.

2 Preliminaries

This section serves for introducing the notation used in the following and pro-
vides the basic definitions and results our work is based on. We start with our
basic notation.

2.1 Notation

Let N denote the set of natural numbers including 0, Z the set of integers, and
R the set of real numbers. We use 〈·, ·〉 to denote the euclidean scalar-product
on R

n. As usual, for Σ a set Σ∗ denotes the set
⋃

n∈N
Σn of finite words over

Σ, especially ε denotes the empty word. Further for n ∈ N we use Σ<n for the
set

⋃
k∈n Σk. For u ∈ Σ∗ let |u| denote the length of u. We refer to the single

letters of a word w ∈ Σ∗ by wi, for 1 ≤ i ≤ |u|. Let A,B,C be sets. For a
relation R ⊆ A × B and a ∈ A, b ∈ B we write aRb for (a, b) ∈ R, aR for
{b ∈ B | aRb}, and Rb for {a ∈ A | aRb}. We extend this notation for subsets
of A, respectively B, e.g. for M ⊆ A we have MR = {b ∈ B | ∃a ∈ M : aRb}.
For a second relation R′ ⊆ B × C we write R ◦ R′ or RR′ for the relational
product {(x, z) ∈ A × C | ∃y ∈ B : xRy ∧ yR′z}. Especially, if R ⊆ A × A we
write R0 := IdA := {(a, a) | a ∈ A}, Rn := RRn−1, and R∗ =

⋃
n∈N

Rn, i.e. the
reflexive, transitive closure of R.

2.2 Pushdown Systems

For modeling the control flow of a recursive program we use the concept of
pushdown systems. This approach has been used very successfully for example
in [8] and [9].

Definition 1. Pushdown system (PDS). A pushdown system (PDS) P is given
by a tuple (Q,Γ, −֒→) where Q and Γ are finite, and wlog. disjoint sets, and

−֒→ ⊆ (Q×Γ )× (Q×Γ<3). The elements of Q, respectively Γ , are called control

locations, respectively stack symbols. We call qγ −֒→ q′u a transition rule, more

exactly we call it a push rule if |u| = 2, a pop rule if u = ε, and a simple rule if
|u| = 1. We call C := Q × Γ ∗ the set of all control configurations.

We extend the relation −֒→ to C × C in the natural way, i.e. qγω −֒→ q′uω iff

qγ −֒→ q′u, especially qε −֒→ = ∅. For C ⊆ C, we write also pre∗(C) for −֒→∗ C and

post∗(C) for C −֒→∗.
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Fig. 1. An NDD representing the set of integers {(x, y) ∈ Z
2 | x ≤ y}

2.3 Number Decision Diagrams

Inspired by the work of Wolper and Boigelot ([10, 3, 4]), we use a subclass of finite
automata, called number decision diagrams (NDD), for modeling the memory
relations between two control locations of a program. Before giving a formal
definition for NDDs, we need to recall some basics about the two-complement
representation of the integers as strings over {0, 1}. For σ ∈ {0, 1}∗, let ρ(σ) = 0,

if σ = ε, otherwise ρ(σ) = 2|σ|−1 · (−σ1 +
∑|σ|

k=2 σk2−k). Obviously, for σ 6= ε

ρ(σ) = ρ(σ∗
1σ) holds. This simple fact is used for extending the two-complement

representation from Z to Z
n. For σ ∈ {0, 1} a string of length |σ| mod n = 0, we

partition σ into the bit-vectors σ[l] := (σln, . . . , σ(l+1)n−1), for 1 ≤ l ≤ |σ|
n

, and

set ρn(σ) = 2
|σ|
n

−1(−σ[1] +
∑ |σ|

n

k=2 σ[k]2
−k). For example, we have ρ−1

2 ((3, 1)) =
(00)∗1011.

Definition 2. Number decision diagram (NDD). An NDD of dimension n ∈ N

is a finite automaton A = (Z, {0, 1}, δ, I, F ) with the following restrictions. For
σ ∈ {0, 1}∗ are string accepted by A, it has to hold that (1) |u| ∈ nN, and (2)
all strings σ′ ∈ {0, 1}∗ with ρn(σ) = ρn(σ′) are accepted by A, too. (see fig. 1).
We denote with Z(A) the set of integers represented by an NDD A.

For n ∈ N, a ∈ Z
n, c ∈ Z, constructing an NDD accepting ρ−1

n ({z ∈ Z
n | 〈z, a〉 ≤

c}) is done similar to calculating weakest preconditions. We refer the reader to
[4]. Note that in order to create an NDD for an (in)equation, for example x ≤ y,
one has to fix a variable order, i.e. a total order on the variables used. This
order simply determines when an NDD reads a bit for a given variable. As in
the case of BDDs ([2]), the size of an NDD for a given linear constraint might
vary exponentially with the chosen variable order1.

3 Modeling Recursive Programs with Integer Variables

We restrict ourselves to the following class of recursive programs: (1) every state-
ment is either an assignment, an if-statement, a while-loop, a procedure call, or
a return-statement; (2) every variable has Z as domain; (3) every assignment
is an affine combination of the variables in scope, e.g x := 5∗x + 3∗y + 2; (4)

1 The standard example is the formula ∧n
i=1xi = x′

i.



main ( ) {
int x ;
m0 : i n f i n i t y (x ) ;
m1 : return ;
}

i n f i n i t y ( int i ) {
i0 : i f ( i > 0 ) {
i1 : i +=1;
i2 : i n f i n i t y ( i ) ;

}
i3 : return ;
}

qm0 −֒→ qi0m0,wb : i′ = x
qm0,wb −֒→ qm1 : x′ = i
qi0 −֒→ qi1 : i > 0 ∧ i′ = i
qi0 −֒→ qi3 : i ≤ 0 ∧ i′ = i
qi1 −֒→ qi2 : i′ = i + 1
qi2 −֒→ qi0i2,wb : i′ = i
qi2,wb −֒→ qi3 : i′ = i
qi3 −֒→ qε : i′ = i

q f
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m1 / ϑ ∩ {i | i ≤ 0}

Fig. 2. We start with A0 consisting of the single transition q
m0−−→
ϑ

f . Here, ϑ is an NDD

with Sig(ϑ) = {x′}, describing the initial values of x. In general, we won’t be able to
reach the fixed point Apost∗ when using J·K in rule (3), as we will discover with each
iteration of the saturation process a new value the procedure infinity is called with.
When using [·] instead, we can calculate Apost∗ . Because of the weight of the transition

q
m1−−→ f , we know that the program only terminates for non-positive values of x.

every condition in an if-statement or while-loop is a boolean combination of
affine (in)equations, e.g. x ≤5 ∧ y 6=3. For the sake of clarity, we further make
the following assumptions: every end of a procedure is explicitly marked by a
return-statement; every statement of the program is uniquely labeled; the pro-
gram only uses procedures; parameters are passed by reference; only variables are
passed as parameters. Finally, we make the assumption that no global variable
is passed directly as parameter in a procedure call. We need this assumption as
we model memory transformations locally. Thus, we do not know if a parameter
variable is currently used as a reference to some global variable2. It is easy to
see that this model is already Turing-powerful as a straight forward reduction
shows that two-counter machines can be simulated. Hence, reachability analysis
is in general only semi-decidable, see e.g. also [3].

We will use an extension of pushdown systems, referred to as weighted push-
down systems (wPDS) (cf. [11]), to model a given program. Here, a wPDS is
obtained from a PDS by assigning each rule a weight of a previously fixed set. In
our case, we will model the control flow of a given program as a PDS and then as-
sign each rule of this PDS an NDD which represents the memory transformation
of that statement which is modeled by the respective rule. This way, we will ob-
tain a PDS weighted by NDDs. This wPDS has exactly one control location. Its
stack alphabet consists exactly of the labels of the given program plus so-called
write-back labels. Fig. 2 gives a preview of this. Due to space limitations, we only
mention that this model allows us to incorporate safety specifications as usual

2 As we are considering only single threaded programs, this boils down to using call-
by-copy-restore, aka call-by-value-result as evaluation strategy.



by intersecting the wPDS, constructed above, with a weighted finite automaton

representing the safety properties. Here, a transition z
l
−→ z′ of such an specifi-

cation automaton, reading a program label l, additionally consists of an NDD
representing an boolean combination of affine inequations3 over the variables in
scope at l. We first turn to how memory transformations are modeled.

3.1 Modeling Memory Transformations

We use NDDs for representing the memory transformation corresponding to a
statement. Let V be the set of variables used in the program. Then we introduce
the sets of variables V ′ = {v′ | v ∈ V}, Vs = {vs | v ∈ V}, and V ′

s = {v′
s | v ∈

V}. v ∈ V is used for representing the value of the program variable v before
executing a memory transformation, while v′ ∈ V ′ represents its value after the
applying the transformation. Similarly, vs and v′

s are used for the value of v

saved on the top of the stack. Finally, we set V̂ = V ∪V ′ ∪Vs ∪V ′
s. Fix any total

ordering ≺ on V̂.
We extend an NDD with a signature consisting of those variables read and

written by the memory transformation. We assume that these signatures are
sorted increasingly with respect to ≺. Variables not ”touched” by a transforma-
tion do not need to be included in the signature. For example, the statement
x:= 2 ∗ y is translated into an NDD representing the relation x′ = 2y ∧ y′ = y

having the signature (x′, y, y′) assuming x ≺ y ≺ y′. Given an NDD Θ, we use
Sig(Θ) ⊆ V̂ to denote the set of variables induced by the signature of Θ.

3.2 Modeling Programs

Assignments Consider any assignment, e.g. l1 :x := 5∗x + 3∗y + 2; l2 :.... In or-
der to describe the memory transformation associated with this assignment, we
create a simple rule ql1 −֒→ ql2, and extend this rule by an NDD Θ representing
the relation x′ = 5x+3y +2∧ y′ = y. We extend Θ by the signature (x, y, x′, y′)
assuming x ≺ y ≺ x′ ≺ y′.

If-Statements An if-statement l1 :if( β ) { l2 :. . .} else { l3 :. . .} is translated into
to the simple rules ql1 −֒→ ql2 and ql1 −֒→ ql3. Let X be the set of variables
appearing in β. We then create two NDDs Θ, Θ′ with Sig(Θ) = Sig(Θ′) =
{x, x′ | x ∈ X} representing β∧

∧
x∈X x′ = x, and ¬β∧

∧
xX x′ = x, respectively.

Finally, we assign the rule ql1 −֒→ ql2 (ql1 −֒→ ql3) Θ (Θ′) as weight.

While-Loops We proceed similarly as in the case of if-statements.

Procedure Calls We now consider the call l1 :proc( x1, . . ., xn); l2 :... of the proce-
dure proc( p1, . . ., pn). Here, x1 to xn are variables local4 to the current procedure
whereas p1 to pn are variables local to proc. Let X = {x1, . . . , xn} and Vgob the

3 Or more generally, a Presburger formula.
4 See the assumptions made at the beginning of section 3.



set of global variables. Note, by assumption X ∩ Vgob = ∅. Then, the passing
of parameters is described by the relation (

∧n

i=1(p
′
i = xi)) ∧

∧
x∈Vloc\X x′

s = x.
Let Θcall be an NDD representing this relation with the respective signature.
The write-back of variables is described similarly by the relation

∧n

i=1(x
′
i =

pi) ∧
∧

x∈Vloc\X x′ = x′
s. Let Θwb be an NDD representing the later relation5.

Finally, we add the the pushdown rules l1 −֒−−→
Θcall

lprocl1,wb and l1,wb −֒−→
Θwb

l2 where

lproc is the label of the first statement occurring in the procedure proc and l1,wb

is a previously unused label.

Return Statements For a return statement l :return, we simply add the pop rule
ql → qε. As we are assuming that the given program uses only procedures where
parameters are passed by reference, we have to extend this rule by the following
NDD. Let X be the set of all variables local to the procedure l belongs except
those variables used as parameters. We then extend the rule ql → qε by an NDD
Θ with Sig(Θ) = X , representing the set Z

#X . This tells our extend-operation,
introduced in the next section, that we want to project all variable values which
do not need to be returned by the call-by-copy-result mechanism.

4 Reachability Analysis

For reachability analysis, we use the algorithms presented in [11]. There, wPDSs
are considered whose transitions are weighted by elements of a bounded semir-
ing. As the weights do not have to form an semiring necessarily for the algorithm
to work, we skip the definition of it, referring the reader to [11] instead. Still,
the boundedness of the semiring is used to show termination in general. In our
case, these algorithms will only allow us to approximate the set of reachable
configurations in general. For instantiating these algorithms, we need two op-
erations over NDDs, referred to as combine- and extend-operations there. The
combine-operator is used for updating, in our case, the memory configurations
encountered in the exploration process for a given control configuration. This
means, the combine-operations simply has to return an NDD representing the
union of two given NDDs. The extend-operations, here, is used for compos-
ing two NDDs representing memory relations6. With respect to our model, this
extend-operation has to preserve the values of variables not touched by a mem-
ory transformation and has to take care of projecting variables, e.g. in the case
of a return statement. We, further, need an restriction operator over NDDs and
the concept of P-automaton. We will refer to this restriction operator also as

5 The need for the variables xs and x′

s simply arises by the fact that the called pro-
cedure proc might be the current procedure. This models the process of saving the
current activation record on the stack. Note, that we do not need to save every local
variable, usually a small subset suffices, e.g. in the case of quicksort, where we only
have to remember the sorting range for the second recursive call.

6 Where memory relation refers to both transformations and configurations.



call-operator7, as it is used in the forward reachability analysis for specifying the
parameters for which a procedure should be evaluated. We give an example of
this below. The P-automata, on the other hand, are used for representing both
the set of initial configurations, from which our reachability analysis starts, and
the set of configurations reached after a finite number of iterations. With respect
to our model, we have to apply some restrictions to these P-automata, as dis-
cussed later. The next paragraph describes our extend-operator in greater detail.
We then introduce the call-operator and P-automata. Finally, we instantiate the
algorithm for forward reachability from [11]. On the basis of this algorithm, we
discuss some aspects of the choice of the restriction operator used.

Extend-Operation As we have extended the NDDs by signature describing the
variables accessed by the represented relation, we can associate each state q of
an NDD Θ with a variable var(q) ∈ Sig(Θ), and, hence, can assign to q the
rank rk(q) of its variable var(q) w.r.t. ≺8. With this at hand, we can define
the extend-operation ⊗ for two NDDS, say L and R, by the following adapted
product-automaton construction. We start with the state pair (q0

L, q0
R) where q0

L

(q0
R) the initial state of L (R). In a state (qL, qR), the variable of the state having

the lower rank determines what to be done next. With respect to x ∈ V ∪Vs, we
discern four cases:

(1) x′ ∈ Sig(L) ∧ x ∈ Sig(R) (e.g. L ≡ x′ = 5x, R ≡ y′ = x + 1 ∧ x′ = x).
(2) x′ ∈ Sig(L) ∩ Sig(R) ∧ x 6∈ Sig(R) (e.g. L ≡ x′ = 3, R ≡ x′ > 5).
(3) x′ 6∈ Sig(L) ∧ x ∈ Sig(L) ∩ Sig(R) (e.g. L ≡ y′ = x, R ≡ z′ = x).
(4) x, x′ 6∈ Sig(L) ∩ Sig(R).

We assume x′ ≺ x in the following, the other case being symmetrical. Further,
let b, b′ ∈ {0, 1}. Now, in case (1), while exploring L and R in parallel, assume
we have reached a state pair (qL, qR) with var(qL) = x′ and rk(qL) < rk(qR).

For a transition qL
b
−→ q′L, we add a transition (qL, qR)

ε
−→ (q′L, qR, [x′ = b])

remembering that L read an b for x′. As x′ ≺ x and x ∈ Sig(R), we eventually
reach a state pair (q′′L, q′′R, [x′ = b]) with var(q′′R) = x and rk(q′′R) ≤ rk(q′′L). For a

transition q′′R
b
−→ q′′′R , we add the transition (q′′L, q′′R, [x′ = b])

ε
−→ (q′′L, q′′′R )9. In case

(2), assume we have reached a state pair (qL, qR) with var(qL) = var(qR) = x′.

For any transitions qL
b′

−→ q′L and qR
b
−→ q′R, we add a transition (qL, qR)

b
−→

(q′L, q′R), i.e. we simply forget the values specified by L for x′, taking those
specified by R instead. Should we eventually reach a state pair (q′′L, q′′R) with
var(q′′L) = x and rk(q′′L) < rk(q′′R), we will simply copy the behavior of L, i.e. for

a transition q′′L
b
−→ q′′′L , we add (q′′L, q′′R)

b
−→ (q′′′L , q′′R) in the product automaton.

For case (3), when reaching a state pair (qL, qR) with var(qR) = x′ and rk(qR) <

7 This call-operator is not explicitly mentioned in [11]. Still, in the library description
of [12], it is referred to as quasi-one.

8 The rank of v ∈ V̂ is as usual #{v′ ∈ V̂ | v′ ≺ v}.
9 In the case that x′ precedes x directly w.r.t. ≺, we can merge these two states,

reducing the number of intermediate states.



rk(qL), we, again, simply copy the behavior of R. When reaching a state pair
(q′′L, q′′R) with var(q′′L) = var(q′′R) = x, we synchronize both automata by adding

a transition (q′′L, q′′R)
b
−→ (q′′′L , q′′′R ) for every pair of transitions q′′L

b
−→ q′′′L and

q′′R
b
−→ q′′′R . Finally, in case (4), we have to copy the behavior of the respective

automaton, again.
This extend-operation slightly differs from the usual approach as known from

BDDs. This allows us to dispense with explicitly encoding in the automaton
that variables not touched by the represented transformation have to be copied.
Hence, reducing the size of the NDDs representing the memory transforma-
tions10.

Call-Operator As we will see in the following, we need an operator for specifying
for which values a procedure should be evaluated. Let Θ be any NDD. We
denote with Θ|V′ the NDD resulting from projecting all states of Θ associated
with variables in Sig(Θ) \ V ′, i.e. Θ|V′ represents only those values of non-stack
variables output by Θ. Then, χ is called a call-operator, if χ(Θ) represents the
identity relation

∧
x′∈Sig(Θ)∩V′ x = x′ restricted to some superset of Z(Θ |V′).

Especially, let J·K denote the call-operator restricted to Z(Θ |V′) and [·] the
unrestricted identity. Both operators, J·K and [·], can be implemented similarly
to the extend-operations.

P-automaton For representing the initial states and reachable states, we further
need the concept of P-automata.

Definition 3. P-automaton. For a given PDS P, a P-automaton A is a tuple
(Z, Γ, δ,Q, F ) where Z is the finite set of states with P ⊆ Z where P is the set
of control locations of P and also the set of initial states of A. F ⊆ Z is called
the set of final states. δ ⊆ Z × Γ × Z is the transition relation of A.

As usual, A can be identified with a directed labeled graph with nodes Z having
an edge labeled by γ ∈ Γ from z to z′ if and only if (z, γ, z′) ∈ δ. A configuration
qω ∈ C of P is accepted by A iff there exists a path from q to a final state f ∈ F

labeled by ω in the graph introduced by A. A P-Automaton represents exactly
those configurations C(A) of C which it accepts. A set C ⊆ C of configurations is
called regular iff there exists an P-Automaton representing C. With respect to
our model, we have to restrict the set of control configurations an P-Automaton
A may represent. Let q be the single, implicit control location of the extended
PDS representing our program11. We then require that (1) C(A) ⊆ {q}(Γ \
Γwb)Γ

∗
wb and (2) that the procedure, the label ωi−1 belongs to, is called by the

statement at l, for qω ∈ C(A) and lwb = ωi (with i > 0). Wlog., we may assume
that A does not possess any ε-transitions. Then, every transition leaving the
initial state q reads labels corresponding to original statements of the program,

10 We are currently working on a second version of our NDD library, inter alia, aiming
at dispensing with all explicit copy statements.

11 More exactly, q will be the initial state of the PDS, if safety properties are incorpo-
rated in the PDS.



while all other states of A read write-back labels. We extend a transition q
l
−→ z

by an NDD ϑ with Sig(ϑ) = {v′ | v ∈ X} representing memory valuations for
the variables in X . Here, X denotes the set of variables in scope at l. Similarly,

a transition z
lwb−→ z′ is extended by an NDD representing valuations of the

variables saved on the stack before the call at l with the respective signature.

We write
l
−→
ϑ

for these extended transitions.

Forward reachability With these concepts at hand, we can instantiate the post∗-
algorithm presented in [11] resulting in the following algorithm (here, we chose
to use J·K as call-operator):

Algorithm 1. Let A0 be any such extended P-automaton satisfying the above
requisites. For i ≥ 0, Ai+1 results from Ai by either introducing new or updating

existing transitions of Ai as specified by these rules: Let q
l
−→
ϑ

z be a transition

of Ai.

(1) if ql −֒→
Θ

q′l′, update the transition q
l′

−→ z with the weight ϑ ⊗ Θ.

(2) if ql −֒−→
Θret

q′ε, update the transition q
ε
−→ z with the weight ϑ ⊗ Θ.

(3) if ql −֒−−→
Θcall

q′l′lwb, introduce, if necessary, the state (q′, l′), then update the

transitions q
l′

−→ (q′, l′)
lwb−→ z with the weights Jϑ ⊗ ΘcallK and ϑ ⊗ Θcall,

respectively.

(4) if q
ε
−→
Θ

z and z
lwb−→
ϑ

z′, update the transition q
ε
−→ z′ with ϑ ⊗ Θ.

If Ai and Ai+1 differ in any edge weight, repeat the above process.

We give a short explanation what these rules do in order to motivate the neces-
sity of the call-operator. Rules (1) and (2) correspond to intraprocedural steps
and are self-explainatory. The third rule matches a call to the procedure with

entry label l′. The transition q
l′

−→ (q′, l′) is weighted by the NDD JϑΘcallK, i.e.
in general the identity over the global variables and parameters of the called
procedure restricted to the values of these variables encountered up to now in
the exploration process. We need to use a call-operator for rule (3), as other-
wise we would have no possibility to discern between different calls to the same

procedure. The transition (q′, l′)
lwb−−−−→

ϑΘcall

z′, therefore, is used to remember the

values of the variables saved on the stack right before the call, of the global
variables and the parameters of the called procedure. Rule (4), finally, besides
reintroducing the information about the variables saved on the stack before the
call, evaluates, in general, the procedure corresponding to l′ on the values spec-
ified by ϑ. Here, our composition operator ensures that the values of the stack
variables are copied from ϑ to ϑΘ. For approximating the set of reachable config-
urations, any call-operator might be used. We have chosen to use J·K in rule (3),
as this evaluates the corresponding procedure only on those values the procedure

is eventually called with. Hence, if Ai contains a transition q
l
−→ z, we know that



starting from the configurations represented by A0, we can reach the statement
associated with l. This does not need to hold when using, e.g., [·]. In the case of
safety properties, we are mainly interested in whether any control configuration
starting with q′l′ is reachable. Therefore, J·K seems to be the natural choice. Still,
in certain cases choosing [·] instead of J·K is feasible, and may even allow to proof
non-termination (cf. fig. 2).

5 Implementation and Experimental Results

The creation, composition, and merging of NDDs is done by our own NDD li-
brary. Besides of the signatures needed by our approach, the library further
supports reference counting and removal of redundant states. The latter tech-
nique is usually used for BDDs. There, a state is redundant iff it has exactly
one successor. This means, such a state simply carries no information regarding
the decision process whether a word is to be accepted or not. We adopted this
in our NDD library for all but those states associated with the first of the sig-
nature. A drawback of removing redundant states is that one has to remember
explicitly which state is associated to which variable of the signature. As we are
mainly concerned with memory usage, we sort the states with respect to the
rank of the variable they are associated with. This allows us only to store the
information about which range of states is associated with a given variable of
the signature, limiting the memory overhead to the size of the signature which is
usual negligible compared to the size of the automaton12. As stated previously,
our scheme for composing two NDDs L and R differs slightly from the usual
approach of renaming, intersecting, and projecting, as known, e.g., from BDDs.
In our approach, renaming is done implicitly and on the fly, while exploring the
two automata being composed. Therefore, we can dispense with the intermedi-
ate automata resulting from renaming. We further try to minimize the number
of states associated to project variables. For example, considering the first case
discussed in the paragraph regarding the extend-operations, if the ranks of the
variables x, x′ ∈ V̂ only differ by one, we do not need to introduce the interme-
diate state (q′L, qR, [x′ = b]).

With this NDD library at hand, we can directly instantiate the wPDS library
by Stefan Schwoon [12] for implementing the algorithm described in sect. 4. In
the next subsection, we give some experimental results.

5.1 Experiments

We use quicksort to illustrate the usefulness of our approach. Our model of quick-
sort is based on the algorithm depicted in 3 taken from [13]. This algorithm is
faulty13 as the loop for decreasing j does not terminate, if the pivot v is the

12 Of course, sorting and storing the states in such a way might lead to an increased
cache-miss ratio. We have a second version of our tool under development currently,
taking a slightly different approach.

13 Mentioned in [13].



int a [ ] ;
qs ( int l , int r ) {

i f ( r <= l ) return ;
int i , j , v ;
i = l −1; j = r ; v = a [ r ] ;
while ( true ) {

do {++i ;} while ( a [ i ] < v ) ;
do {−− j ;} while ( a [ j ] > v ) ;
i f ( i >= j ) break ;
swap ( a [ i ] , a [ j ] ) ;

}
swap ( a [ i ] , a [ j ] ) ;
qs ( l , i −1);
qs ( i +1, r ) ;

}

setup post∗

N time memory time memory

faulty version
3 < 1s 1.3M 2s 2.4M
4 < 1s 1.7M 68s 14.4M
5 5s 2.5M 2690s 496M

corrected version
3 < 1s 1.4M 2s 2.4M
4 < 1s 1.7M 107s 24.3M
5 7s 4.4M 4202s 843M

Fig. 3. Left: Faulty version of quicksort. Right: Results for termination and correctness
of sorting.

minimum of the elements in a [] . For a fixed array size N , we can model the
array as N variables a1, . . . , aN . The condition of the loop for decreasing i then
becomes

∨N

α=1(aα = v∧α = j)14. With this at hand, we can apply our approach
and easily calculate the set of all array valuations for which this algorithm termi-
nates. For this, we have only to add a second array b[] remembering the initial
values of a [] . By definition of our extend-operation, we do not need to insert any
additional relations into the model for copying the values of b[] , as no statement
of the original algorithms accesses b[] . After the saturation process has termi-
nated, we obtain the input-output-relation of the presented algorithm restricted
to those initial values for which the algorithm terminates. Fig. 3 summarizes the
memory consumption and time spent both for the preprocessing step of creating
the extended PDS and for the reachability analysis.

6 Summary and Future Work

We have presented, to the best of our knowledge, the first tool for reachability
analysis of systems having both an infinite control-state space and an infinite
data-domain. We see the contribution of our work as an refinement of the model-
checking process, where our tool can be plugged in as an additional step after a
finite model has been verified.

Our future work will encompass several objectives. With respect to our im-
plementation, there are lots of options left to tweak the performance, and a
second version of our tool is already work-in-progress. Further, Moped has been
recently extended to support abstraction and the counter example guided ab-
straction refinement process (CEGAR) (cf. [14]). Right now, BDDs are used
within this CEGAR process. It is just natural to extend this by using NDDs

14 As this formula restricts j to values in {1, . . . , N}, the saturation process of sect. 4
always terminates.



instead. There, NDDs would allow us on the one hand to model infinite data
domains, and on the other hand we would be able to derive abstract predicates
over infinite sets. Another important and logical evolution is to implement, in the
case of intraprocedural loops, and extend, in the case of interprocedural ,,loops”,
the acceleration techniques proposed in [3] and later refined in [5].
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