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Abstract. This article extends the idea of solving parity games by strategy it-
eration to non-deterministic strategies: In a non-deterministic strategy arplay
restricts himself to some non-empty subset of possible actions at a iy
instead of limiting himself to exactly one action.

We show that a strategy-improvement algorithm by byrBjund, Sandberg,
and Vorobyov [3] can easily be adapted to the more general settingmef no
deterministic strategies. Further, we show that applying the heuristic qir@H
itable switches” (cf. [1]) leads to choosing a “locally optimal” successatagy

in the setting of non-deterministic strategies, thereby obtaining an easfygiroo
an algorithm by Schewe [13].

In contrast to [3], we present our algorithm directly for parity gameihvhllows

us to compare it to the algorithm by Jurdzinski andlgé [15]: We show that the
valuations used in both algorithm coincide on parity game arenas in which one
player can “surrender”. Thus, our algorithm can also be seen aseaaization

of the one by Jurdzinski anddge to non-deterministic strategies.

Finally, using non-deterministic strategies allows us to show that the nurber o
improvement steps is bound from above®§j.724™). For strategy-improvement
algorithms, this bound was previously only known to be attainable by usimg ra
domization (cf. [1]).

1 Introduction

A parity game arena consists of a directed gréph- (V, E) where every vertex be-
longs to exactly one of two players, called plagemnd playen. Every vertex is colored
by some natural number if, 1,...,d—1}. Starting from some initial vertex,, a play

of both players is an infinite path i@ where the owner of the current node determines
the next vertex. In a parity game, the winner of such an iipiay is then defined by
the parity of the maximal color which appears infinitely ofedong the given play.

As shown by Mostowski [11], and independently by Emerson &utth [4], there
exists a partition off” in two setsWW, and W; such that playei has a memoryless
strategy, i.e. a map; : V; — V which maps every vertex controlled by playet to
some successar, so that playei wins any play starting from some € W; by using
o; to determine his moves.

Interest in parity games arises as determining the winnidl3 is equivalent to
deciding whether a givep-calculus formula holds w.r.t. to a given Kripke structure,
i.e. determining/, is equivalent to the model checking problemumeéalculus. Further



interest is sparked as it is known that solving parity gareés UR1co-UP [8], but no
polynomial time algorithm has been found yet.

In this article we consider an approach for calculating thienimg sets which is
known as strategy iteration or strategy improvement, amdbeadescribed as follows
in the setting of games: In a first step, a way for valuatingsthategies of playeb is
fixed, thereby inducing a partial order on the strategiedafgy0. Then, one chooses
an initial strategyw : Vo — V for player0. Iteratively (i) the current strategy is valu-
ated, (ii) by means of this valuation possible improvementhe current strategy are
determined, i.e. pairéu, v) such thatr[u — v] is a strategy having a better valuation
thane, (iii) a subset of the possible improvements is selectedrmptemented yielding
a better strategy’ : V, — V. These steps are repeated until no improvements can be
found anymore.

Although this approach usually (using no randomization fllows only to give a
bound exponential ifi,| on the number of iterations needed till termination, there i
no family of games known for which this approach leads to &syplynomial number
of improvement steps. It is thus also used in practice e.goimpilers [14].

In particular, this approach has been successfully apjpliegveral different sce-
narios like Markov decision processes [6], stochastic gafBg or discounted pay-
off games [12]. Using reductions, these algorithms can bé&saoised for solving par-
ity games. In 2000 Jurdzinski anddge [15] presented the first strategy-improvement
algorithm for parity games which directly works on the givearity game without re-
quiring any reductions to some intermediate represemtatitthough the algorithm by
Jurdzinski and ¥ge did not lead to a better upper bound on the complexity cidee
ing the winner of a parity game with nodes and! colors (the algorithm in [15] has a
complexity ofO((n/d)%) whereas the upper bound©f (n/d)??) was already known
at that time [9]), it sparked a lot of interest as the stratigyrovement process w.r.t.
parity games is directly observable and not obfuscated meseduction.

In this article, we extend strategy iterationrton-deterministic strategien a non-
deterministic strategy a player is not required to fix a gnglccessor for any vertex
controlled by him instead he restricts himself to some noypty subset of all possible
successors. Using non-deterministic strategies seeneswobe natural, as it allows a
player to only “disable” those moves along which the valhmif the current strategy
decreases. Our algorithm is an extension of an algorithmjbykRind, Sandberg, and
Vorobyov [3] proposed in 2004. In particular, we borrow thiiea of giving one of
the two players the option to give up and “escape” an infiniég ine would lose by
introducing a sink. In contrast to the original algorithn{&) we present this extended
algorithm directly for parity games in order to be able to pame this algorithm directly
with the one by Jurdzinski anddge, and also in the hope that this might lead to better
insights regarding the strategy improvement process.

Strategy iteration, as described above, chooses in siepqfine subset of possible
changes in order to obtain the next (deterministic) stsatAghatural question is how
to choose this set of changes. Obviously, one would like tsh these sets in such
a way that the total number of improvements steps is as smmalbasible — we call
this “globally optimal”. As no efficient algorithm for det@ining these sets is known,
usually heuristics are used instead. One heuristic appligt# often in the case of a



binary arena is called “all profitable switches” [1]: In a &ig arena, given a strategy
o : Vo — V we can refer to the successorswok Vj by o(v) ando(v). A strategy
improvement step then amounts to deciding for every nodel;, whether to switch
from o (v) to o(v), or not. “All possible switches” refers then to the heudstf switch-
ing to o(v) of everyv € V if this switch is an improvement w.r.t. the used valuation.
Transferring this heuristic to the setting of non-deteiistio strategies the heuristic be-
comes simply to choose the set of all possible improvemehtiseogiven strategy as
the new strategy considered in the next step. We show tteasiimple heuristic leads
to the “locally optimal” improvement, i.e. the strategy whiis at least as good as
any other strategy obtainable by implementing a subseteoptissible improvements.
By applying this heuristic in every step we obtain a new, in @pinion more natural
and accessible, presentation of the algorithm by Schewgopsal in [13]: There only
valuations (referred to as “estimations” there), and daei@istic strategies are consid-
ered, whereas the strategy improvement process itselffrendonnection to [3] are
obfuscated. Further, the algorithm in [13] does not worlecliy on parity games, and
requires some unnecessary restrictions on the graph wteueot the arena, e.g. only
bipartite arenas are considered.

We then compare our algorithm using non-deterministictegiias to the one by
Jurdzinski and dge [15]. This is not possible w.r.t. the algorithm in [3] @8] as these
do not work directly on parity games. Here, we can show thavtiuation used in our
algorithm, resp. in [15] coincide, which readily allows wsdonclude that the locally
optimal improvement obtained by our algorithm is alway®ast as good as any locally
improvement obtainable by [15].

We obtain an upper bound 6f(|V|* - |E| - (% + 1)) for our algorithm which
is the same as the one obtainable when using determinissitegies [3]. So using
non-deterministic strategies comes “for free”. Of coumge.t. to the sub-exponential

bound of|V|O(\/m) obtainable for the algorithm by Jurdzinski, Paterson andckw
[7], our algorithm is not competitive. Still, we think thatioalgorithm is interesting as
strategy-iteration in practice only requires a polynomiamber of improvement steps
in general, as already mentioned above. In particular, west@w that the number
of improvement steps done by our algorithm when using thieptalfitable switches”-
heuristic, and thus by the one by Schewe [13], is bounded {y724/"0!), whereas the
best known upper bound for strategy iteration when using daterministic strategies
and no randomization in the improvement selectio®{g!"ol/|V;|) [1]. In particular,

the bound of)(1.724/Y0!) was previously known to be obtainable only be choosing the
improvements randomly [1].

Organization: Section 2 summarizes the standard definitions and resglsdiag par-
ity games. In Section 3 we extend parity games by allowinggal@to terminate infinite
plays in order to escape an infinite play he would lose. Tteéa idas first stated in [3].
We combine this with a generalization of the path profiledusdg15] in order to get
an algorithm working directly on parity games. Section 4 marizes our strategy im-
provement algorithm using non-deterministic strateg&ection 5 then compares the
algorithm presented in this article with the one by Jurddiasd Voge.



2 Preliminaries

In this section we repeat the standard definitions and oistiegarding parity games.

An arena A is given by (V, E,0), if (V. E) is a finite, directed graph, where:
V — {0,1} assigns each node an owner. We denoté/by= o~ '(i) the set of all
nodes belonging to playerc {0, 1}, and writeE; for EN'V; x V. Given some subset
V' C V we write Ay for the restriction of the arena to the nodes/’’. A play
7 € VNUV*in Ais any maximal path itd where we assume that playietetermines
the move(w (i), 7(i + 1)), if 7(¢) € V;. For(V, E) a directed graph, ande V' a node
we write sE for the set of successors af

For A = (V, E,o0) an arena, a (memorylessfrategy of playei (short: i-strategy)
(¢ € {0,1}) is any subsetr C E; satisfying¥s € V; : [sE| > 0 = |so| > 0, 1.e. a
strategy does not introduce any new dead eads.deterministic if |so| < 1 for all
s € V;. We write E, for E, = E,_; U, and A|, for (V, E,, o).

We assume that the reader is familiar with the concept obdtirs. For conve-
nience, a definition can be found in the appendix.

A parity game arenad is given by(V, E, o, ¢) where(V, E, o) is an arena with
vE # (@ forallv € V,ande : V — {0,1,...,d — 1} assigns each node a color.
The winner of a playr in a parity game arena is given byn sup,cy ¢(7 (7)) (mod 2).
Given a nodes, a strategw € E; is a winning strategy fog of playeri, if he wins
any play inA|, starting froms. Player: wins a nodes, if he has a winning strategy
for it. W; denotes the set of nodes won by playeAs we assume that every node has
at least one successor, there are only infinite plays in &ypgaime arena. Wlog., we
further assume that™!(k) # 0 for all k € {0,1,...,d — 1} as we may otherwise
reduced. A cycle spsy ... 8,1 (With 8,11 (mod n) € siE) in a parity game arend is
calledi-dominatedif the parity of its highest color is. Player: wins the nodes using
strategyc C V; x V, iff every cycle reachable fromin A|, is i-dominated.

Theorem 1. [11, 4] For any a parity game arenal we havelV, U W, = V. Playeri
possesses a deterministic strategy: V; — V' with which he win every nodec W;.

3 Escape Arenas

In this section we extend parity games by allowing play¢o escapean infinite play
which he would loose w.r.t. the parity game winning condiitio

Let A = (V, E, o) be a parity game arena. We obtain the ardna= (V,, F, ,0,)
from A by introducing a sinkL V, := V' w{_L} where only playef can choose to play
to L (F, := EUVy x {L}). The sink L itself has no out-going edges, and we assume
that player0 controls L (o, := o U {(L,0)} although this is of no real importance.
Although, this construction was first proposed in [3] we réfed ;| asescape arenan
the style of [13]. AsA4, itself is no parity game arena anymore, we have to define the
winner of such a finite play as well. For this we extend the dkfim of color profile,
which was first stated in [2], to finite plays:

For a given escape arepd, usingd colors{0,1,...,d — 1}, we define the set
P of color profilesby P := Z% U {—o00, 00} whereZ? is the set ofd-dimensional



integer vectors. We write @ for the zero-profile 0,...,0) € Z<, and use standard
addition onZ? for two profilesp, ¢’ € Z%. The idea of a profilgy € P is to count
how often a given color appears a long a finite play, whereas reps.co correspond
to infinite plays won by playet, resp. playef). More precisely, for a finite sequence
T = 8081 ...s; Of vertices, thevalue p(r) of 7 is the profile which counts how often
acolork € {0,1,...,d — 1} appears irc(sg)c(s1) ... ¢(s;). For an infinite sequence
T = 5081 ..., itsvaluep(r) is defined to bex, if 7 is won by playe w.r.t. the parity
game winning condition; otherwigg(w) := —oo. Finally, we introduce a total order
on P which tries to capture the notion of when one of two given plsybetter than the
other for playei0: For this we set (i}-oc to be the bottom element ef, (ii) co to be
the top element ok, and (jii) for all p, o’ € P\ {—o0, 00} we set:

p< =Ike{0,1,...,d—1}: k=max{k € {0,1,...,d — 1} | pr # ¢}
Ak=20Apr <@l VEk=21Apg>p)).

Informally, the definition of< says that playef) hates to loose in an infinite play,
whereas he likes it the most to win an infinite play. So, whendée can, he will try
to escape an infinite play he cannot win, therefore resulitirgyfinite play toL: here,
given two finite playsr, 7, ending in_L, player0 looks for the highest colar which
does not appear equally often along both playsidfeven, he prefers that play in which
it appears more often; if it is odd, he prefers the one in wiitieppears less often. In
particular, playef dislikes visiting odd-dominated cycle, while he likes tiisj even-
dominated ones:

Lemma 1. Assume thaf = sgs; ... s, IS @ non-empty cycle in the parity game arena
A, i.e.sg € s, EFandn > 0. x is 0-dominated, i.e. the highest color jnis even if and
only if p(x) = @.x is 1-dominated if and only iH(x) < @.

Now, for a given parity game arend let o, o7 be the optimal winning strategies
of player0, resp.1. Further, leti;, W, be the corresponding winning sets. Obviously,
both players can still use these strategied in too, as we only added additional edges.
Especially, playef can still uses{ to win W, in A, as only he has the option to move
to L. In the case of playet, by applyingo; any cycle inA, |+ reachable from a
vertexv € W; has to be odd-dominated. Hence, pla§qrefers to play in an acyclic
path fromv to L in A, |,, when starting from a vertex ii/;.

Let therefore bg the <-maximal value of any acyclic path terminatinginn A .
p is the best played can hope to achieve starting from a nade 1W; when player
1 plays optimal. We therefore define: playewins a playr, if p(7) > p, otherwise
player1 wins the play. Playetf wins a nodes € V, if he has a strategy C FE; with
which he wins any play starting fromin 4|, . As already sketched, this leads then to
the following theorem.

Theorem 2. Player: wins the node in A iff he wins itin A} .

4 Strategy Improvement

We now turn to the problem of finding optimal winning straesgby iteratively valu-
ating the strategy, and determining from this valuationspimle better strategies. The



following section can be seen as the generalization of tgerihm in [3] to non-
deterministic strategies and explicitly stated in theisgtof parity games. In fact, we
will only consider a special class of strategies for playere. such strategies which do
not introduce anyi-dominated cycles. The strategy improvement process asilige
that nol-dominated cycles are created. If there are &ujpminated cycles id |y, ,
then playen wins all the nodes in thé-attractor to these cycles. We may, thus, identify
the nodes trivially won by playelrin a preprocessing step, and remove them.

Assumption 1. The arenaA |y, has nol-dominated cycles.

Definition 1. We call a strategy C E, of player0 reasonableif there are nol-
dominated cycles it |,

Remark 1.(a) By our assumption above the strategy := V; x {_L} is reasonable, as
everyl-dominated cycle ind consists of at least one node controlled by playgb)
Let o be any strategy of play&r, andV,, the set of nodes won hy. Then, the strategy
o =N Wy xWy)U{(s,L)|seVy\W,} isreasonable withV, = W,..

We may thus assume that playeuses only reasonable strategies.

Definition 2. Let o be some reasonable strategy of plageits valuationV, : V U

{1} — P maps every node on the<-minimal valueV, (s) which playerl canguar-

anteeto achieve in any play starting fromin A | |, by using some memoryless strategy:
<

N =< . .
Vo (s) := TgEr?éEategymax{p(w) | misaplayind,|,. Am(0) = s},

where we seV, (L) := @.

Remark 2.(a) We will show later that, if we start from the reasonable sggtr|, =

Vo x {L} , then our strategy-improvement algorithm will only gernereeasonable
strategies. (Note, if4, |,, had 1-dominated cycles, then these would need to exist
solely in Aly, — but we have assumed above that we removed those in a pregirage
step.)(b) As shown above, for ali € 1/, playerl can use his optimal winning strategy
o7 from the parity game to guarantdg(s) < g < oo.

By means of the valuatioW, we can partially order reasonable strategies in the natural
way:

Definition 3. For two (reasonable) strategies,, o, of player0 we writeo, < oy, if
V.., (s) X Vs, (s) for all nodess. We writeo, < oy, if there is at least one nodesuch
thatV,, (s) < Vo, (s). Finally, o, = oy, if 0, =< o A 0y, < 0.

The following lemma addresses the calculatiogfusing a straight-forward adaption
of the Bellman-Ford algorithm:

Lemma 2. Leto C E, be areasonable strategy of play@rwe defing’, : VU{Ll} —
PbyV,(L):=g,andV,(s) = ccforall s € V, and the operatof,, : (VU{L} —
P)— (VU{L}—P)by

F,V)(L):=92
F,[V](s) := o(s) + min={V(t) | (s,t) € E1} if s € V7,
F,[V](s) = p(s) + max={V(t) | (s,t) € o} if sV,



foranyV:Vu{l} — P.
Then, the valuatio, of o is given as the limit of the sequengg[V, ] for i — oo,
and this limit is reached after at mogt| iterations.

Remark 3.(a) We assume unit cost for adding and comparing color profilase.time
needed for calculatiny,, is then simply given byO(|V| - |E]).(b) For everys € V
there has to be at least one edggt) with V, (s) = p(s) + V,(t), asV, = F,[Vs].

W.r.t. V, we can identify possiblenprovementsf o:

Definition 4. Leto C E, be a reasonable strategy of play@rThe setl,, of improve-
ments resp. the sef,, of strict improvementsf o is defined by

I, :={(s,t) € Eo | Vy(s) = p(s)+V,(t)}, resp.Sy :={(s,t) € Ey | Vo(s) < p(s)+Vs(t)}.
We call any strategy C E, adirectimprovementfo, if o C 1.

Fact 1. Leto’ be a direct improvement of. Then along every edde, v) of A, |,» we
haveV, (u) < p(u) + V,(v). In particular, we have for any finite pattys; ... s;41 in
AJ_ ‘G‘l

VU(SO) = @(50) + Vg(Sl) = @(8081) + VO—(SQ) <...= @(50 . Sl) -+ Va(5l+1)-

From this easy fact, several important properties of diraprovements follow:

Corollary 1. If o is reasonable, then arfystrategys’ C I, is reasonable, too.

Corollary 2. Leto be a reasonable strategy. For a direct improvemenf o we have
thate < ¢’. If ¢’ contains at least one strict improvementogfthen this inequality is
strict, i.e.oc < o’.

The preceding corollaries show that starting with an ihiteasonable strategy,,
e.g.o, we can generate a sequenggoy, os, ... Of reasonable strategies such that
Vo, (8) =2 Vo,.,(s) forall s € V, if we choose the strategy;,, to be some direct
improvement ofr;. Further, we know, it; ;1 uses at least one strictimprovemésntt)

of o, i.e.(s,t) € 0441 N Sy, # 0, then we have),, (s) < V,,,,(s), i.e. every possible
reasonable strategy occurs at most once along the stratgggvyement sequence. As
already shown, we have always, (s) < § < oo for all nodess € W;. The obvious
question is now, if we can reach an optimal winning strategthis procedure, i.e. is a

reasonable strategywith S, = () optimal? This is answered in the following lemma.

Lemma 3. As long as there is a node € W, with V,(s) < oo, o has at least one
strict improvement.

Due to this lemma, we know that, if a reasonable stratebgs no strict improvements,
i.e. S, = (), then we have/, (s) = oo for at least all the nodes € ;. On the other
hand, for all nodes € W; we always havé/,(s) < p. Hence, by the determinacy of
parity games, i.elV; = V' \ Wy, o has to be an optimal winning strategy for player
0, if S, = 0. By our construction such an optimal strategyvith S, = () might be
non-deterministic. The following lemma shows how one casude an optimal deter-
ministic strategy from sucha.



Lemma 4. Let o be a reasonable strategy of playerin . A,, and I, the strategy
consisting of all improvements ef Then every deterministic strategy C 1, with
Vi, (s) = p(s)+ Vr, (t) forall (s,t) € o’ satisfiesV;, = V.

Starting fromo, = {(s,L)|s € Vp}, if we improve the current strategy using at least
one strict improvement in every step, we will end up with atimpl winning strategy
for player0. As in every step the valuation increases in at least thodesat which a
strictimprovement exists, and as there are at r(ﬁ%épr 1)¢ possible values a valuation
can assign a given node, the number of improvement stepsiisiday | V] - ('—Z‘ +1)4.
The cost of every improvement step is given by the cost of #ieutation of)V,, we

thus get:

Theorem 3. Let oy be some reasonablé-strategy. By iteratively taking;; to be
some direct improvement of which uses at least one strict improvement, one obtains

an optimal winning strategy after at mgsf| - (% + 1)4 iterations. The total running
time is thusO(|V|* - |E| - (1Y + 1)4).

4.1 All Profitable Switches

In the previous subsection we have not said anything aboighwdirect improvement
should be taken in every improvement step. As no algorithmgkaown which deter-
mine for a given strategy such a direct improvement thatdted humber of improve-
ment steps is minimal (we call such a direct improvementbiglty optimal”), one
usual resorts to heuristics for choosing a direct improva(see e.g. [1]).Most often
the heuristic “all profitable switches” mentioned in thedaauction is used. In the case
of non-deterministic strategies this simply becomes @kinas successor strategy. The
interesting fact here is thd. is a “locally optimal” direct improvement for a given rea-
sonable strategy, i.e. for all strategies’ C I, we haves’ < I,. We remark that this
has already been shown implicitly by Schewe in [13]:

Theorem 4. Let o be a reasonable strategy with its set of improvements. For any
direct improvement of we haver’ < I,,.

We like to give an easy proof for this theorem. We first noteftfiewing two properties
of the operatof,:

Fact2. ()ForV,V' : VU{Ll} — P withV =< V' we haveF,[V] < F,[V'].
(i) For two O-strategiesr, C o, we haveF, [V](s) X F,,[V](s) forall s € V.

Using (i) and (ii) we get by induction
FyH Vi) = Fo [Fy, VL] 2 Fo, [Fg, VL] 2 Fy, [Fy, V1] = Fo V4],
and therefore the following lemma:

Lemma5. If o, ando,, are reasonable and, C oy, it holds thatV,,, < V,,.



Now, as the set of improvements of a given reasonable strategyis itself a (non-
deterministic) strategy, and every direct improvemenif o satisfiess’ C I, by defi-
nition, the theorem from above follows. The algorithm of &gk in [13] can therefore
be described as an optimized implementation of non-detestia strategy iteration us-
ing the “all profitable switches” heuristic.

We close this section with a remark on the calculation/pf. Schewe proposes
an algorithm for calculatiny’;, which usesV, to speed up the calculation leading to
O(|E|log|V|) operations on color-profiles instead Of |E| - |V|). For this, formu-
lated in the notation of our algorithm, he introduces edg@hts w(u, v) := (p(u) +
V,(v)) — V,(u), and calculates w.r.t. these edges an updateV; —V,. We argue
that one can use Dijkstra’s algorithm for this, as we helyéu) < p(u) + V,(v) along
all edgeq(u, v) € I,, and thusw(u, v) = @, i.e. all edge weights are non-negative.

Proposition 1. V;, can be calculated using Dijkstra’s algorithm which ne€d$V|?)
operations on color-profiles on dense graphs; for graphs sehout-degree is bound by
someb this can be improved tO(b - [V| - log |V|) by using a heap.

This gives us a running time (ﬁ(\Vﬁ(%Jrl)d), resp.O(|V|*-b-log |V|~(%+1)d).

5 Comparison with the Algorithm by Jurdzinski and V 6ge

This section compares the algorithm presented in thisdastiith the one by Jurdzinski
and \Voge [15]. We first give a short (slightly imprecise) desédptof the algorithm in
[15]: This algorithm starts in each step with sodeterministicO-strategyo. Usingo

a valuation(?, is calculated (see below for details abdpyt). Then, by means of this
valuation possible strategy improvements are determimed finally some non-empty
subset of these improvements is chosen, but only one imprenteper node at most,
such that implementing these improvements yieldg@rministicstrategy again. This
process is repeated until there are no improvements anymotethe current strategy.

The valuationf?,: We present a slightly “optimized” version of the valuatiosed in
[15]. The valuation?, (s) of a deterministid)-strategys consists of the theycle value
zo(s), thepath profilep, (s), and thepath length, (s) which are defined as follows:

— As o is deterministic, all plays it1|, are determined by playér For every node
having odd color, we can decide whether there is at leastynie in 4|, such that
this cycle is dominated by. Let Z be the set of all odd colored nodes dominating
acycle inA4|,.

Given a nodes we definez,(s) to be a node of maximal color i, which is
reachable frons in A|,; if no node inZ is reachable frons in A|,, thens has to
be won by playef), and we set,, (s) = oc.

1 1n [3] the authors propose another optimization to speed up the calcul&fidnhy restricting
the re-calculation oV, to only those nodes whené, changes. Those nodes can be easily
identified by calculating an attractor again in ti@¢| £|). Unfortunately, combining this op-
timization with the one by Schewe ([13]) does not lead to a better asymptqiér lpound.



— If z,(s) is some odd colored node, the second compopg() becomes the color
profile of a<-minimal play froms to z,(s) in A|, — with the restriction that only
nodes of color> ¢(z,(s)) are counted.

— Finally, if p,(s) is defined]/, (s) is the length of shortest play frosto z, (s) w.r.t.
po(8), If z,(s) has odd color.

Remark 4.We assume here that, is eitheroo, if s is already won usingr, or the
“worst” odd-dominated cycle into which playércan force a play starting from In
[15], the authors even try to optimize; (s) when s is already won using:. These
improvements are obviously unnecessary, as we can alwaysvesthe attractor to
these nodes from the arena in an intermediate step in ordétain a smaller arena.

Further, it is assumed in [15] that every node is uniquelyl. Therefore, in
[15] g, is defined to be theetof nodes having higher color than (s) on a “worst”
path froms to z,(s). Jurdzinski and ¥ge already mention at the end of [15] that their
algorithm also works when not assuming that every vertexiguely colored, but do
not present the adapted data structures needed in thisldasevas done in [2]: If the
same color is used for several vertices, it is sufficient iy oaunt the number of nodes
having a colotk > z,(s) along such a “worst” path fromto z,, (s) where “worst” path
simply means a<-minimal path then. Therefore, the color profiles used is #riicle
are a direct generalization of the path profiles used in [15].

In [15] an edgg(s, t) € Ey is now called a strict improvement ovey, o(s)), if £2,(t)

is strictly better than2, (o (s)), i.e. either the “worst” cycle improves, or the worst
play to it improves, or the length of a worst play becomes &r(fthe longer played
can stay away from,, the better for him”). A deterministic strategy is then a direct
improvement of a given deterministic strategyv.r.t. [15], if it differs from o only in
strict improvements.

Definition 5. For a given parity game arena = (V| E, ¢, 0), set
AL = (VU{L}L, EUVy x {L}U{(L, D)}, eUu{(L,~1)},0U{(L,0)}).

A+ results fromA, by simply adding a loop td_, and giving_L the color—1 so that
Al is a parity game arena whereis the cycle dominated by the least odd color. A
straight-forward adaption of the proof of Theorem 2 shoved fiayer0 wins a nodes

in A iff he wins it in A+,

Now, as the strategy improvement algorithm in [15] trieslayio the “best” possi-
ble cycle, an optimal strategy (obtained by the algorithrifl)always choose to play to
1 from a nodes, if s cannot be won by playé), as every othet-dominated cycle has
at leastl as maximal color. A strategy of player0 is therefore “reasonable” w.r.t. to
the algorithm by Jurdzinski andoge, if (L, L) is the onlyl-dominated cycle itd-|,.

Obviously, we now have an one-to-one correspondence betweasonable strate-
gieso in A, , and reasonable strategies A+ of player0: we simply have to remove
or add the edgé L, 1) to move fromA, to A+ and vice versa. We therefore may
identify these strategies in the following as one strategy.

This allows us to compare the improvement step of the alyoripresented in this
article with that of [15]. Indeed, as the color ofis —1 (recall that all other nodes have
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colors> 0), we havep, (s) = V,(s) for all nodes withz,,(s) = L, andV,(s) = oo, if
24 (s) # L. This proves the following proposition:

Proposition 2. Any (deterministic) direct improvement of o identified by [15] is a
subset of/,.. Therefores’ < I,.

In other words, the algorithm presented here always chdosally a direct improve-
ment ofc which is at least as good as any deterministic direct imprmre obtainable
by [15]. In the appendix, a small example can be found ilatgtg this.

5.1 Bound on the number of Improvement Steps

We finish this section by giving an upper bound on the total Inemnof improvement
steps when using the “all profitable switches”-heuristidhle case of an arena with out-
degree two, one can show that the number of improvement daysby the algorithm

in [15] is bounded bp(ﬁ‘vf’“) (cf. [1]).
When considering non-deterministic strategies the héctat profitable switches”
naturally generalizes to simply taking as successor strategy in every iteration. Here

we can show the following upper bound:

Theorem 5. Let. A, be a escape-parity-game arena where every node of plapes

at most two successor. Then the number of improvement stegga to reach an op-
timal winning strategy is bound - 1.724/Y°l when using non-deterministic strategy
iteration and the “all profitable switches”-heuristic.

Remark 5.To the best of our knowledge this is the best upper bound krfowany
deterministic strategy-improvement algorithm. In [1] engar bound is only obtained
by using randomization.

6 Conclusions

In the first part of the article, we presented an extendedores the algorithm by [3]
which (i) allows the use of non-deterministic strategies] &i) works directly on the
given parity game arena without requiring a reduction to ammgayoff game as an in-
termediate step. For (ii), we used the path profiles intredu [15], resp. a generalized
version of it called color profiles (see also [2]).

We then showed that the heuristic “all profitable switchesthe setting of non-
deterministic strategies leads to the locally best diregirovement, and therefore to
the algorithm presented in [13].We further identified the& faalculation of the valuation
proposed by Schewe as the Dijkstra algorithm.

Finally, we turned to the comparison of the algorithm présétere to the one by
Jurdzinski and \dge [15]. As our algorithm works directly on parity games antrast
to [3,13], we could show that the valuations used in both @dim for parity game
arenas with escape for playerWe finished the article by adapting results from [10]
which allowed us to show that using the “all profitable swishheuristic in the setting
of non-deterministic strategies allows to obtain an upemiol ofO(1.724!"%!) on the
total number of improvement steps. This bound also carnies t the algorithm in
[13]. This bound was previously only attainable using randation [1].
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A Example: Comparison with the Algorithm by Jurdzinski and
Voge

~ . A
L \
i
T~a , -7

a)

a) depicts an arenal- where bold arrows represent the edges Ofsirategys, and
dashed arrows represent edges not included Further, all nodes belong to player
where the numbers inside the nodes represent the colpssiows the sef,, of strict
improvements w.r.to. ¢) The heuristic applied usually for choosing a deterministic
direct improvement of is to take a maximal subset 6f, so that for every node, for
which a strict improvement exists, there is exactly onestmprovement chosen. In
this example this leads to the strategy depicted i c)he algorithm presented in this
article, on the other hand, chooses the non-determiniséitegy/, = oU.S,,, as shown

in d). e) Calculating the valuation of both,, and the strategy shown in €) shows that
both strategy are equivalent w.r.t. their valuation (se® &mma 4). This means the
strategyl,, is already optimal in difference to c).

B Missing Proofs

B.1 Preliminaries

Definition 6. Given an arenad = (V, E,0) and a target sef’ C V' of nodes, we
define the-attractor Attr;[A](T) to T in A by
AO =T
Ai—i—l = AiU{SEVHSEﬂA,‘#@}U{SEV&_HSEQAZ'}
Attro[.A](T) = UizO A7
The rankr(s) € NU {oo} of a nodes w.r.t. to Attp[A](T) is given by
min{i € N|s € A;}

where we assume thatin () = oo.
A strategyo C FE; is then ani-attractor strategy tdl’, if for every(s,t) € o the
rank decreases alon@, t) as long ass has finite, non-zero rank.

Remark 6.0bviously, playel can use any-attractor strategy to force any play starting
from a node with finite rank int@” on an acyclic path as the rank is strictly decreasing
until 7" is hit.
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B.2 Parity Game Arenas with Escape for Playel0

Lemma 1. Assume thaf = sgs; ... s, IS @ non-empty cycle in the parity game arena
A, i.e.sg € s, EFandn > 0. x is 0-dominated, i.e. the highest color jnis even if and
only if p(x) = @.x is 1-dominated if and only iH(x) < @.

Proof. Wlog. we may assume thag has the dominating color ig. As all remaining
nodes iny have at most colot(sg), the color profilep(x) is 0 for all colors> ¢(s).
Hence, the highest color in whigh(x) and @ differ isc(s). If ¢(s) is even, themp(x) >

@ by definition, otherwise(x) < @, asp(X)(s,) > 0. The other direction is shown
similarly. ad

Theorem 2. Player: wins the node in A iff he wins itin A, .

Proof. Let o be the optimal, memoryless winning strategy in the paritngal, and
W; the winning set of of playerw.r.t. o}.

First consider the casec W,. As only player0 can choose to move to, any play
min A, w.rt.of is a play inA, too. Hencer is infinite, and won by playeb w.r.t. the
parity game winning condition. Thus, has the valuec.

Assume now that € ;. Playerl can use his optimal strategy to force plager
starting froms into a play such that every cycle visitedliglominated. If playef does
not move tal, the infinite play also exists in the original parity gameraxas therefore
won by playerl, and, hence, has the valaex in the escape game. On the other hand,
in the escape parity gamé, player0 has now the option to escape any such infinite
play by opting to terminate the game by movingltoConsider therefore a finite play
T = 8081 - - - Sp L. Assume that this path is not acyclic. Thus, as we are oniyntiog
how often a given color appears along the path, we may sptito a simple pathr’
from sy to T and several cycleg,, .. ., x;. By using his winning strategy; player1
can make sure that every such cycle has an odd color as macaioal It is now easy
to see thap(y;) < @ by definition of<. Thus, we have

p(m) = p(r') + p(x1) + ... + plx) < p(n') 2%

B.3 Strategy Improvement

Lemma 2. Leto C E, be areasonable strategy of play@iWe define’, : VU{L} —
PbyV,(L):=g,andV,(s) = forall s € V, and the operatof, : (VU{L} —
P)— (VU{l}—P)by

Fo[VI(L) :
F,[V](s
F,[V](s
foranyV: Vu{Ll} — P.

Then, the valuatio, of o is given as the limit of the sequengg[V, ] fori — oo,
and this limit is reached after at mogt| iterations.

%]
o(s) +min={V(t) | (s,t) € By} if s € V7,
£

) -
) (s) +max={V(t) | (s,t) € o} ifs eV,
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Proof. For allV, V' : V.U {L} — P with V(s) < V'(s) fors € V U {L} we have
F,[V](s) 2 F,[V'](s), too, i.e.F, is monotone. Obviously, we havg, [V ]|(s) =
Vi (s) forall s € V.U {L}. Therefore,F:[V,](s) is monotonically decreasing for
7 — OQ.

As o is reasonable), (s) = —oo, and it can only be finite, if is in thel-attractor
to L in A, |,. Further, forV,(s) < oo, V,(s) has to be the value of an acyclic play
7w in A, |,. One therefore checks easily that is a fixed point ofF,; hence, by the
monotonicity ofF,,, andV, <V, we have), < F[V ] foralli € N.

Let C; be the set of nodese V U { L} such thatF: [V, ](s) = V,(s). Obviously,
we havel € C; foralli € N. As F:[V, ] is monotonically decreasing, and bounded
from below byV,, we haveC; C C;4;.

DefineB; to be the boundary af’;, i.e. the set of nodese V' \ C; with sENC; #
DASENV\C; #0.

If B; C Vj, then playei has a strategy to stay away frame C; for every node
s € V' \ C,. Itis easy to see that’[V, |(s) = oo forall s € V'\ C; in this case.

Thus, assumé3; NV, # 0. As playerl eventually needs to enté¥; in order to
reach_l, he has to use an edge from a nele V; N B; to C;. At least for this node’
we have to have’ € C;.

Hence, we have to havg; = V for somei < |V|, implying F:T1 [V, ] = Fi[V,].

O

Definition 7. We writer, C E; for the 1-strategy consisting of the edgés ¢) with
VU(S) = p(s) + Va(t)'

Corollary 1. If o is reasonable, then any direct improvemehof o is reasonable, too.

Proof. For any cyclesys; ... s; with sg € s;FE,, we have

V,(s0) = p(s0...81) + Vs(s0), .. 8= 9(s0 ... 5).

Corollary 2. Leto be a reasonable strategy.

(a) For a direct improvement’ of o we have thaV, (s) < V,.(s) forall s € V.
(b) If (s,t) € o’ is a strict improvement af, thenV, (s) < Vy(s).

Proof. (a) Lets be any node. For any play = sgs; ... s, L starting froms in A, |,
we have already shown:

Vo(s) 2 p(m) + Vo (L) = p(m) = Vor(s).
(b) As (s, t) is a strictimprovement af, we have (i), (s) < p(s)+V,(¢), (i) s € Vo,
and, hence, (i), (s) = max={p(s) + Vo (t') | (s,t’) € ¢’}. With the result from
(a) it follows that

Vo (s) < 9(8) + Vo(t) 2 9(s) + Vor (t) = Vor(s).
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Lemma 3. As long as there is a node € Wy with V,(s) < oo, o has at least one
strict improvement.

Proof. Let A be the set of nodeswith V,(t) < oo, i.e. A is the 1-attractor toL in
A |,. By assumption we havidy N A # (). Assumes € A N W,. Letw be any play
determined by, andog. As og is optimal ands € W, 7 stays inl, forever, i.e. the
play is infinite.

First, assumer does not leavel. Every timer uses an edgéu, v) which does not
existin A, |, it has to hold that: € V;. Hence, a% is not strict improvable, we have
to haveV, (u) = p(u) + V,(v) for all edges(u, v) € . On the other hand, we have
V,(u) = p(u) + V,(v) along edgesu,v) € 7,. Thus, the value of any cycle visited
by 7 is < @ — a contradiction.

Therefore, consider the case thdieavesA. This also has to happen along an edge
(u,v) withw € V. Asu € Aandv € V' \ A we haveV,(u) < co = V,(v). Hence,
(u,v) is a strict improvement. O

Lemma 4. Let o be a reasonable strategy of playerin 4,, and I, the strategy
consisting of all improvements of

Then every deterministic strategy C 1, with V;_(s) = p(s) + V. (¢) for all
(s,t) € o' satisfiesV;, = V.

Proof. By definition,o” is a direct improvement af,, hence, we havi;_ (s) < V,/(s)
for all nodess.

On the other handy’ is also a direct improvement of, aso’ C I,,. Thus, we have
V,i(s) 2 Vr, (s) foralls € V. 0

Lemma 6. (a) Foro, ando, two reasonable strategies of play@&mnwe define the strat-
egyoas by

(5,1) € 0gp & max{V,, (s), Vs, (5)} < p(s) + max{Vs,, (£), Vs, (1)}

Thenmax={V,,(s), Vs, (s)} <X Vs, (s) forall s € V, i.e. there is a strategy
such that for all other strategies we havel, (s) < V;(s) forall s € V.
(b) 1fV,(s) < Vs(s) for at least ones € V, theno has a strict improvement.

Proof. (a) We first show that,;, is indeed a strategy. Consider ang V. Then there
is at least one, s.t.(s,t,) € o, andV,_(s) = p(s) + V,, (ta), and similarly a; with
the same properties w.rd,. AssumelV, (s) = V,,(s) — the other case being similar.
By definition ofV,, we then have

Voo (to) 2 Vo, (ta) = 9(s) + Vo, (s) 2 9(5) + Vo, (5) = Vo, (),

i.e.(s,tp) € oap-
By definition, we have

max{Vs, (5), Vo, (5)} = 9(s) + max{Vs, (s), Vo, ()} ()
along every edgés, t) € o,,. For any edgés, t) € E;, we have

Vo.(s) 2 p(s) + Vo, (t) andVy, (s) = p(s) + Vo, (1)
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Hence,(x) holds along every edge of, |,,,,. Therefore, any cycle il | |,,,, has to be
0-dominated, again, i.er; is reasonable, too.

If V,,,(s) = oo, there is nothing to show. Assumg, , (s) < oo, first, and let
T = Sps1...5,-L be any acyclic play withp(7) = V,,, (s). Because ofx) we then
havemax{V,, (s), Vs, (5)} < p(7) = Vs, (5), again.

(b) If there is some node € V with V,(s) < Vs(s) = oo, we already know that
has a strict improvement as it is not optimalg won bys but not byo).

Therefore assume thi} (s') = oo impliesV, (s') = oo for all nodess’, and lets be
a node withV; (s) < oo. Letw again be an acyclic play id . |5 -, with p(7) = Vs (s),
i.e. player0 usess and player his response-strategy for o.

As o has no strict improvements, we haVe(s) = p(s) + V,(t) for all edges
(s,t) € Ep; on the other hand, along the eddest) € 7, we haveV,(s) = p(s) +
V., (t) by definition ofr,.

Hence, we geV;(s) = V,(s) = p(r) = Vs(s), if o has no strict improvements.

O

Proposition 1. V;. can be calculated using Dijkstra’s algorithm which ne€2igV'|*)
operations on color-profiles on dense graphs; for graphs sehout-degree is bound by
someb this can be improved t@(b - |V - log |V]) by using a heap.

Proof. Leto be areasonablestrategy of played, andA thel-attractor tal in A, |7, .
For all nodess € V'\ A, we haveV;_(s) = oo. We therefore have only to consider the
graph(A, E;, N A x A) in order to calculat®’;_ for the nodes im.

Recall that we have for every edge, v) in A, |7, thatV,(u) =< p(u) + Vs (v).
Define now for(u,v) € E;, N A x A the functionw by w(u,v) := (p(u) + V,(v)) —
V,(u) = @. Hence, for any path’ = tgt;...t, L in (A, E;, N A x A) we have

p(r') — ( 0)
(t ) (t )+(V¢7( ) (tl))+"'+(va(tn)7Vﬂ(tn))*va(t0)
( (to) + ( 1) — Va(to) + (p(tn) + Vo (L) = Vo(tn))
U)( O7t1) + w(tlth) +...F w(tTHJ-)

Therefore, for any € A we have that; (s), i.e. the<-minimal value player can
guarantee to achieve in a play starting frephas to be/, (s) plus the<-minimal value
d,(s) playerl can guarantee starting frosrin the edge-weighted graght, £;_ N A x
A, w).

As w(u,v) > @, we can use Dijkstra’s algorithm to firdd (s) with the restriction
that we only may add a node controlled by plageo the boundary in every step of
Dijkstra’s algorithm, if all successors of this node haweatly been evaluated. We then
haved,(s) = Vi, (s) — Vo (s). O

B.4 Comparison with the Algorithm by Jurdzinski and V 6ge

Theorem 5. Let A, be a escape-parity-game arena where every node of player
has at most two successor. Then the number of improvemestreteded to reach an
optimal winning strategy is bound By 1.724/0!.
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Proof. Assumption 2. We assume that play@rcan only choose between at most two
different successors in every state controlled by himywes V; : [vE| € {1, 2}.

Let (0, = 09) < 01 < ... < (0; = &) be the sequence of strategies produced
by the strategy-improvement algorithm presented in thislar As already shown, we
may assume that; is deterministic.

For o; let k; be the number of nodes € Vj, such that there is at least one strict
improvement ot ats, i.e.

k; = |srdS,,)| with srdS,,) := {s € V; | 3(s,t) € S, }.

(Recall thatS,, is defined to be the set of strict improvements of a givenesgsad.)

Then there are at leagt: — 1 deterministic direct improvements’ of o; with
o; <o’ ando’ \ 0; C S,,.2

We then haver; < ¢’ < 0,1 for every suchy’. Now, aso; < 0,1, we know that
every suchr’ has not been considered in a previous step)(nor will it be considered
in any following step £ i). Therefore, at leat*: — 1 new deterministic strategies can
be ruled out as candidates for optimal winning strategies.

Hence, if Sy, is the number of deterministic strategies which have at rhogides
at which there exists at least one strict improvement, weagein upper bound for the
number of improvement steps

21Vol

Sk + 1 §5k+2|VOI_k.

2k+1 _
The next lemma bounds the numlsgy, of strategiesr; having the same value fés;:

Lemma7. Let (0;)o<i<i = 01 = 09 < 01 < ... < o, = ¢ be the sequence of
reasonable deterministic strategies generated by theegyaimprovement algorithm.

For an arena A, with [sE| < 2 for all s € Vj it holds that there are mogt}°/)
strategies ino; )o<i<; With [src(S,, )| = k.

Proof. First note the following easy fact: As along any edgef) € o holds, we have
V,(s) = p(s) + V,(t) by definition of . Thus, for any strategy C Fy of player0
it holds thatS, N o = 0.

Next, leto, ando, be two reasonable strategies of plagén A, . We claim that it
holds that

(@) IfS,, No, =0, we haver, < oy.
(b) AssumethatsE| < 2forall s € Vj. If src(S,, ) C srd.S,, ), it holds thatr, < oy,

Before given the proofs to these two claims, note that (l®aaly implies that we can
have at mos(",f}')-many strategies; with k; = &/, as this is the number of disjoint
subsets of/, with &’ distinct elements.

In order to show (b), we first need to show (a): (a) L&t be the arena resulting
from A, by removing all strictimprovements of, from E, i.e. E’ = E\ S,,. Botho,
andoy, are reasonable strategies of plagen .4’ , as we only remove edges and these

2 Note that we do not claim that; ; ; is one of these strategies.
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edges are neither used bynor by ¢’. This also means that the operatdis and F,-
stay unchanged, implying that the valuationsrofreps.o’) on A, and.A’, coincide.
But aso, has no strict improvements i’ , it has to hold that,, is an optimal winning
strategy in4’, , meaning that, < o, (cf. lemma 6).

(b) SetC = S, N o,. For everys € srqC) we find atc such that(s,t¢) € C,
at? with (s,t7*) € o, (asoy is a strategy), and &7 with (s,tf”“) € S,, (as

srdS,, ) C srdS,,))-
Now, because of, N o = () for any strategyr, we may conclude that’ # t7v,

andt® # t57e forall s € srq (). Thus, as we assume tHaF| < 2, it has to hold that
o0 = t7v for all s € srqC'). We define thereforé” = {(s,t%%) | s € sroC)}, and

o =C"Uo,\C.
AsC’' C S, ,we haves, < o’. Furthero’ < 03, aso’ N Sy, = 0. O

The last lemma can be found in [10] for Markov decision preess
Aslongasl < k < @ we have

k k
Vol Vol Vol
< E <2 <2 . .
Sk_k,_o<k’ - k)~ kC

What remainsistofind a< k < ‘L;' such that

k
2 (|VO . 6) 4 9IVol—k
k

[Vol

is minimal. For this seb = > with b > 3, yielding

2 ) elv(Jl' 1+énb + 61n2.|vo‘.h—T1.

As b s strictly decreasing anéi;* is strictly increasing, we need to look for the

largesth > 3 such that

1 —1
—HanInQ-bT.

Using e.g. Newton’s method one can easily checkihat(4.6,4.7) with b ~ 4.66438.
We therefore get
3. 054l < 3.1 7241%1 < 3.1.313V

as an alternative upper bound for the number of improventepssor an arena with
out-degree twdg.
O

8 Using a more detailed analysis in the spirit of [1] one can even show aer uppind of
Oo(1.711%ol),
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