Space-efficient scheduling of stochastically generated tasks

Tomas Brazdil Javier Esparza
Stefan Kiefer Michael Luttenberger

Institut fur Informatik, Technische Universit Miinchen, Germany
{brazdil, esparza, ki efer, | uttenbe}@rmodel .in.tum de

Abstract. We study the problem of scheduling tasks for execution by a processar the tasks can stochastically
generate new tasks. Tasks can be of different types, and eachagpeflxed, known probability of generatiag
tasks for each numbet. We present results on the random variaBfe modeling the maximal space needed by
the processor to store the currently active tasks when acting underhitbeéutero. We obtain tail bounds for the
distribution of S? for both offline and online schedulers, and also bounds on the expesitesft[S].

* This work was partially supported by the DFG projédgorithms for Software Model Checking

1 Introduction

We study the problem of scheduling tasks that can stochastically generateasks. We assume that the
execution of a task can generate a set of subtasksm, ..., 74, whered > 0. Tasks can be of different
types, and each type has a fixed, known probability of generdtuptasks for each numbér Systems of
tasks can be described using a notation similar to that of stochastic gramuorarstince

x 22 xx)y x2wyy x29¢

describes a system with two types of tasks. Tasks of man generate tasks of typeX, one task of each
type, or zero tasks with probabiliti®2, 0.3, and0.5, respectively (angular brackets denote multisets). Tasks
of typeY can generate one task, of typeor Y, with probability0.7 and0.3. Tasks are executed by one
processor. The processor repeatedly selects a task from a pompicessed tasks, processes it, and puts
the generated subtasks (if any) back into the pool. The pool initially conteiegask of typeX,, and the
next task to be processed is selected bgleeduler

We are interested in the random variables modeling the time and space needetptetelyexecute a
taskr, i.e., to empty the pool of unprocessed tasks assuming that initially the pootomigins task. We
assume that processing a task takes one time unit, and storing it in the paohtaké of memory. So the
completion timas given by the total number of tasks processed, anddnapletion spacby the maximum
size reached by the pool during the computation. It is easy to see that thibutign of the completion
time is independent of the scheduler, but that of the completion space isheotompletion time has been
studied in [12], and so the bulk of the paper is devoted to studying the disbribof the completion space
for different classes of schedulers.

Our computational model is abstract, but relevant for different scendn the context of search prob-
lems, a task is a problem instance, and the scheduler is part of a brnadiddeand algorithm (see e.qg. [22]).
The processor either directly solves the instanmice (0), or extracts from it a set of sub-instancésx 0). In
the more general context of multithreaded computations, a task models g thihéett, executed for at most
one unit of time, either terminated & 0), generates a new thread € 2), or none of the twod = 1).}
The problem of scheduling multithreaded computations space-efficientigudtiprocessor machines has
been extensively studied (see e.g. [27, 6, 2, 1]). However, thgsrpatudy the worst-case performance of
certain schedulers over all possible computations generated by all lpgsigrams, when the schedulers
know nothing about the program. We initiate the study of a different probdeiredule computations when
stochastic information on the programs generating them is available (for ¢estay collecting statistics on
the behavior of the programs), and obtain stochastic performance fadMecconsider the single-processor
case, which is trivial in the setting of [27, 6, 2, 1], but hard in our settémgl leading to a rich theory.

We study the performance ohlineschedulers that know the past of the computation, but not its future.
As a measure for their performance, we also studyogitémal offlinescheduler, which has complete infor-
mation about the future of the computation. Intuitively, this scheduler h&sad¢o an oracle that knows how
the stochastic choices will be resolved. The oracle can be replaced bgtenmshat inspects the code of a
task and determines which subtasks it will generate (if any).

We consider task systems with completion probability 1, which can be furthigtedi into those with
finite and infinite expected completion time, often calldbcritical and critical. Whether a system has
completion probability 1, and if so whether it is critical or subcritical, can berdgned in polynomial
time [14]. Many of our results are related to the probability generating fumetjpgfs) associated to a task
system. The functions for the example abovefarér, y) = 0.222+0.3zy+0.5 andfy (z,y) = 0.72+0.3y,

! Notice that we do not model dependencies between threads, but esrthibelow on depth-first schedulers.

and the reader can easily guess the formal definition. The completionliligbia the least fixed point of
the system of pgfs [18].

Our first results (Section 3) concern the distribution of the completion sfétef the optimal offline
schedulep on a fixed but arbitrary task system wiffix) as pgfs (in vector form). We exhibit a surprising
connection between the probabilitiBs[S°? = k] and theNewton approximantt the least fixed point of
f(x) (the approximations to the least fixed point obtained by applying Newton’sadétin approximating
a zero of a differentiable function tf(x) — = = 0 with seed0). This connection allows us to apply recent
results on the convergence speed of Newton’s method [23, 11], letdbmyinds foPr [S°P > k], and to an
efficient algorithm for approximating[S°?]. We then study (Section 4) the distribution$ff for an online
scheduler. Using a martingale argument we obtain upper and lower bounds for thempance ofany
online scheduletr in subcritical systems. These bounds suggest a way of assigning wiighik types
reflecting how likely they are to require large space. We slight-first schedulers, in which “light” tasks
are chosen before “heavy” tasks with larger components, and obt&impaoved tail bound.

So far we have assumed that there are no dependencies betweenegisks)g a task to be executed
before another. We study in Section 4.3 the case in which a task can only asenaifter all the tasks it
has (recursively) spawned have terminated. These arsttive computations studied in [6]. The optimal
scheduler in this case is the one that completely executes the child task itefoaeent, resulting in the
familiar stack-based execution. We determine the exact asymptotic perimerobdepth-first schedulers.

We finish the paper by presenting some results on minimizing the expected compfsite (Section 5).
It is easy to see that in a subcritical system every online scheduler ltasfipected completion space. We
show that in a critical system they all have infinite expected value; that shedsler can only achieve a
finite expected value if it has information about the future (loosely speakinmist look into the code). We
also show that schedulers minimizing the expected completion space exisgbirerunbounded memory.

Related work.Space-efficient scheduling for search problems or multithreaded congmstaas been stud-
iedin[22,27,6,2,1]. However, these papers only study the wosst:they provide schedulers with a guar-
anteed space-consumption for any computation. In this paper we assursitistical information is avail-
able on the probability that a computation splits or dies.

Our paper is related to the theory win modelq21, 26] andbranching processestochastic processes
modeling the evolution of populations whose members can reproduce oBd#.[However, branching pro-
cesses have been studied as models of biological or physical systehis, @mputer science terminology,
the assumption is made that the number of processarsisundedThe maximum population in this setting
has been studied in [3, 7, 25, 28, 30, 32]. We study the 1-proceaserwhich to our knowledge has not been
previously studied. Some urn models studied in the literature exactly matchpocéssor model [20, 24],
but the random variable modeling space consumption does not seem tbdwmvstudied in the setting of
multiple types. In the single-type case, the space consumption corredpah@ésmaximum of a particular
random walk associated with the Gambler's-Ruin problem [8, 16, 31].

Recursive state machines [14] and probabilistic pushdown automatadi Becseen as instances of our
model for schedulers satisfying the following constraint: if threedpawns thread?, then B is executed
before A. For these schedulers, the completion space corresponds to the maxioralae depth or stack
height, which has not been studied so far.

2 Preliminaries

Let A be a finite set. We regard elementsMot andR# asvectorsand use boldface (like, v) to denote
vectors. The vector whose components aré a@isp.1) is denoted by (resp.1). We use angular brackets to
denote multisets and often identify multisets ovieand vectors indexed hyl. For instance, ifA = {X, Y}

andv € N4 with vx = 1 andvy = 2, thenv = (X,Y,Y). We often shorteria) to a. M5” denotes the
multisets overA containing at mos? elements.

Definition 2.1. A task systenis a tupleA = (I', —, Prob, X) whereI is a finite set oftask types— C
I' x M1§2 is a set oftransition rules Prob is a function assigning positive probabilities to transition rules
so that for everyX' € I" we have) ., Prob((X,«a)) = 1,and X, € I is theinitial type.

We write X <% o wheneverX — o and Prob((X,a)) = p. Executions of a task system are modeled as
family trees, defined as follows. Fix an arbitrary total orgeon I". A family treet is a pair(N, L) where
N C {0,1}* is a finite binary tree (i.e. a prefix-closed finite set of words d¥gn}) andL : N — ["isa
labelling such that every node € N satisfies one of the following conditions:is a leaf and.(w) — ¢, or
w has a unique child0, andL(w) satisfies.(w) — L(w0), orw has two childrenv0 andw1, andL(w0),
L(w1) satisfyL(w) — (L(w0), L(wl)) andL(w0) < L(wl). Given a nodev € N, the subtree of rooted
atw, denoted byt,,, is the family treg{ N’, L') such thatv’ € N’ iff ww’ € N andL’(w') = L(ww’) for
everyw’ € N'. If atreet has a subtreg or t1, we call this subtree ahild of ¢. (So, the ternchild can refer
to a node or a tree, but there will be no confusion.)

We define a functiorPr which, loosely speaking, assigns to a family ttees probability (see the as-
sumption below). Let = (N, L) be a family tree. Assume that the roottof labeled byX. If ¢ consists

only of the root, andX L e, thenPr[t] = p; if the root has only one child (the nod@ labeled byY’, and
x &y, thenPr[t] = p - Pr[to]; if the root has two children (the nodésand1) labeled byY” andZ, and

x & (Y, Z), thenPr[t] = p - Pr[to] - Pr[t;]. We denote byZx the set of all family trees whose root is
labeled byX, and byPr x the restriction of°r to 7x. We drop the subscript dfr x if X is understood.
Example 2.2.Figure 1 shows (a) a task system with= {X,Y, Z}; and (b) a family tree of the system
with probability Pr[¢t] = 0.25-0.1-0.75-0.6 - 0.4 - 0.9. The name and label of a node are written close to it.

e, X
°
x 22y 7y v ¥ x,zy z2(y) / \
0.75 0.9 0.6 0,Y e o 1,7
X 0 Y <0 Z 10 \
00, X @ 01,Z e e 10,Y

Fig. 1. (a) A task system. (b) A family tree.

Assumptions.Throughout the paper we assume that a task system (I',—, Prob, X)) satisfies the
following two conditions for every typeX € I': (1) X is reachablefrom X,, meaning that some tree
in 7x, contains a node labeled by, and (2)Pr[7x| = > ;. Pr[t] = 1. In other words, we assume
that (7x, Prx) is a discrete probability space wiff as set of elementary events aRdy as probability
function. This is the formal counterpart to assuming that every task is ctedpléth probability 1.

Proposition 2.3. It can be decided in polynomial time whether assumptions (1) and (Zadisfied.

Proof. The statement on assumption (1) is trivial. For assumption (2) lgirthtzability generating function
(pgf) of the task system be defined as the funcgfonR’ — R’ of A where for everyX € I’

fxw)= > pwy-vz+ Y poy+ Y p.

XY, 7) XY X0

Itis well known (see e.g. [18]) that assumption (2) holds iff the leastifp@int of f equalsl. This condition
is decidable in polynomial time [14]. The pgfwill play a crucial role in the following. O

Derivations and schedulerd.ett = (N, L) be a family tree. Astateof ¢ is a maximal subset a¥ in which
no node is a proper prefix of another node (graphically, no node isgepdescendant of another node).
The elements of a stateare calledasks If s is a state an@ € s, then thew-successor of is the uniquely
determined state’ defined as follows: ifv is a leaf of N, thens’ = s\ {w}; if w has one childv0, then
s = (s\ {w})U{w0}; if whas two childrenv0 andw1, thens’ = (s \ {w}) U {w0, wl}. We writes = s’

if s"is thew-successor of for somew. A derivation oft is a sequence; = ... = s, of states such that
s1 = {e} ands, = (0. Observe that a tree may have multiple derivationscheduleris a mappingr that
assigns to a family treeéa derivations(¢) of ¢t. If o(t) = (s1 = ... = si), then for everyl < i < k we
denote by (¢)[i] a task ofs; such thats; is theo(¢)[i]-successor of;. Intuitively, o(¢)[i] is the task ofs;
scheduled by . Notice that this definition allows for schedulers that know the tree, andwdtie tasks will
behave. In Section 4 we define and study online schedulers which only tkre past of the computation.

Example 2.4.A schedulers; may schedule the treein Figure 1 as follows{e} = {0,1} = {0,10} =

{0} = {00,01} = {01} = {}. Leto, be the scheduler which always picks the least unprocessed task w.r.t.
the lexicographical order ofD, 1}*. (This is an example of an online scheduler.) It schedtbes follows:

{e} = {0,1} = {00,01,1} = {01,1} = {1} = {10} = {}.

Time and spaceGiven X € I', we define a random variablgy, the completion time of{, that assigns to
atreet € Ty its number of nodes. If we assume that each task is executed during oneniinbefore its
generated subtasks are returned to the pool, Teworresponds indeed to the time the processor needs to
completely executX. Notice thatT'xy does not depend on a scheduler, and that our assumptions guarantee
thatTx is always finite. However, the expectatiBfi’x | may or may not be finite. A task systethis called
subcriticalif E[T’x] is finite for everyX € I'. Otherwise it is calledritical. If A is subcritical, ther£[Tx]

can be easily computed by solving a system of linear equations [12]. Ttrenrad criticality comes from

the theory of branching processes, see e.g. [18, 4]. Here we aall tiee following results:

Proposition 2.5 ([18, 14]) Let A be a task system with pgf Denote byf’(1) the Jacobian matrix of partial
derivatives off evaluated afl. If A is critical, then the spectral radius gf (1) is equal tol; otherwise it is
strictly less tharl. It can be decided in polynomial time whetheiis critical.

A state models a pool of tasks awaiting to be scheduled. We are interestediaximeal size of the pool dur-
ing the execution of a derivation. So we define thiedom widthS$, as follows. Ifo(t) = (s1 = ... = si),
thenS% (t) := max{|s1|,...,|sk|}, where|s;| is the cardinality ofs;. Sometimes we writ&’ (), meaning
S% (t) for the typeX labelling the root of. If we write S without specifying the application to any tree,
then we mearbs; .

Example 2.6.For the schedulers of Example 2.4 we h&e(t) = 2 andS?2(¢) = 3.

3 Optimal (Offline) Schedulers

Let S°P be the random variable that assigns to a family tree the minimal width of its derisatige call
S°P(t) the optimal widthof ¢. The optimal scheduler assigns to each tree a derivation with optimal width.
In the multithreading scenario, it corresponds to a scheduler that cascirtbe code of a thread and decide
whether it will spawn a new thread or not. While in most scenarios the optirhatisder is not realizable or
computationally too expensive, it provides an absolute lower bound f@phee resources. The following
proposition characterizes the optimal width of a tree in terms of the optimal width dfildren.

Proposition 3.1. Lett be a family tree. Then

min {max{S (to) + 1, S (t1)}, max{S°(to), S°(t1) + 1}} if t has two childrerty, ¢;
SP(t) = § SP(to) if t has exactly one chilé
1 if ¢ has no children.

Proof sketch (see the appendix for more detailbe only nontrivial case is wherhas two childrerny andt; .
Consider the following schedulings ferwhere: € {0, 1}: Execute first all tasks of and then all tasks of
t1_;; within both¢; andt; 1, execute tasks in optimal order. While executinghe root task of;_; remains
in the pool, and so the completion spaces($) = max{S°’(¢;) + 1, 5°P(t;—;)}. The optimal scheduler
chooses the value éfthat minimizess(z). O

Given a typeX, we are interested in the probabilities [S;’(p < k] for k > 1. Proposition 3.1 yields a
recurrence relation which at first sight seems difficult to handle. Hewesing results of [10, 9] we can
exhibit a surprising connection between these probabilities and thg. pgf

Let i denote the least fixed point ¢f and recall from Section 2 that = 1. Clearly, 1 is a zero of
f(x) — . It has recently been shown thatcan be computed by applying #(x) — Newton’s method
for approximating a zero of a differentiable function [14, 23]. Morecjsely, i = limy,_,., »¥) where

v —0 and o*) = ®) (1 - f(pW))1 (f(u<k>) _ ,,(k>>

and f'(v(®)) denotes the Jacobian matrix of partial derivativesfoévaluated av*) and I the identity
matrix. Computingu, however, is in our case uninteresting: Recall that we asdeufiEy] = 1 for every
type X, and in this case it is well-known that = 1 [18]. So, why do we need Newton's method? Because
the sequence of Newton approximants provides exactly the informationedeaking for:

Theorem 3.2. Pr[SY < k] = ug’;) for every typeX and everyk > 0.

Proof sketch (see the appendix full proofdje illustrate the proof idea on the one-type task system with
pof f(z) = pa? + ¢, whereq = 1 — p. Let 7}, and7_;, denote the sets of treeswith S°P(¢) < k and
S°P(t) = k, respectively. We showr|[7<;] = v%) for all k by induction onk. The case: = 0 is trivial.
Assume that'*) = Pr[7-;] holds for some: > 0. We provePr[7<;1] = v*+1). Notice that

vy — (k) ad
) (k) f(l—f)’(u(k) =k 4 (f(y(k)) _ V(k;)) . Zf/(l/(k)>z

Let B,ﬁfﬁl be the set of trees that have two children both of which belorif_{g and, for everyi > 0, let

B,(fjll) be the set of trees with two children, one belongin@1q, the other one tdS,(ﬁl. By Proposition 3.1

we haveT<ri1 = Uisg B,(gll We provePr [Bkﬂ} = () (f(v® — v(k) by an (inner) induction
on ¢, which completes the proof. For the base= 0, let A<, be the set of trees with two children in
T<; by induction hypothesis we hawer[A<;] = pr®v*). In a tree of A<, either (a) both children

belong to7_, and sot € B,(;El, or (b) at most one child belongs ;. By Proposition 3.1, the trees

satisfying (b) belong t@<,. In fact, a stronger property holds: a treeZaf;, either satisfies (b) or it has one
single node. Since the probability of the tree with one nodevge getPr[A<;] = Pr [312(21} +Pr{7<]—

Applying the induction hypothesis again we obt@in{B,ﬁH] = Wk L g — k) = fR)) — k),
For the induction step, let > 0. Divide B\") | into two sets, one containing the trees whose left (right)

k+1
child belongs toB") (to 7<), and the other the trees whose left (right) child belonggdtg (to Bk+1)

k+1

Using both induction hypotheses, we get that the probability of each gethisf’ (v ¥)i(f(v(F)) — (k).
SoPr [Bgfll)} = (2pv®)) . R (f (R —). Sincef(x) = pz? + ¢ we havef’(v¥)) = 2pp*),

and soPr [B,(jfll)} = f/(wEYH(F(u®) — (k) as desired. O

Example 3.3.Consider the task systeri L, (X, X), X <% 0 with paf f(z) = px® + ¢, wherep is a
parameter ang = 1 — p. The least fixed point of is 1 if p < 1/2 andq/p otherwise. So we consider
only the case < 1/2. The system is critical fop = 1/2 and subcritical fopp < 1/2. Using Newton
approximants we obtain the following recurrence relation for the distribufitimecoptimal scheduler, where
pr == Pr[SP > k| pry1 = (pp2)/(1 — 2p + 2ppy). In particular, for the critical valug = 1/2 we get
pr =21"F andE[S?] = Y, Pr[S? > k] = 2.

Theorem 3.2 allows to compute the probability mass functio§ ®f. As a Newton iteration requires
O(|I'|?) arithmetical operations, we obtain the following corollary, where by the wst model we refer
to the cost in the Blum-Shub-Smale model, in which arithmetic operations havé twpendently of the
size of the operands.

Corollary 3.4. Pr[SY = k| can be computed in tim@(k - |I"|?) in the unit cost model.

It is easy to see that Newton’s method converges quadratically forisolkcsystems (see e.g. [29]). For
critical systems, it has recently been proved that Newton’s method stilecges linearly [23, 11]. These
results lead to tail bounds fafy:

Corollary 3.5. For any task system there are real numbers > 0 and0 < d < 1 such thatr [S;’(p > k] <
c-d* for all k € N. If A is subcritical, then there are real numbets> 0 and0 < d < 1 such that
Pr[SY > k] < c-d* forall k € N.

4 Online Schedulers

From this section on we concentrate on online schedulers that only knguast®f the computation. For-
mally, a schedules is onlineif for every treet with o(t) = (s1 = ... = s) and for everyl <i < k, the
tasko(t)[i] depends only om; = ... = s; and on the restriction of the labelling functidrto | J;_, s;.

Fix an online scheduler. For every treg with o (t) = (s; = ... = s;) and for everyj > 0, let 2\ (¢)
denote the multiset of types labelling the tasksaf j < k (i.e.,z")(t) = (L(w) | w € s;)), and the empty
multiset otherwise. One can show that an online scheduleduces a partial functiod,, : (N/')* — I’
defined as follows, (¢ ... c") is defined if there is a treesuch thaio(t) = (s; = ... = s;) with
k> iande® = zD(1),....e® = 20 (t); in this cased, (¢ ... ™) = L(a(t)[i]). Intuitively, if A,
receives as input the multisets of types of the stafes ., s;, then it returns the type of the task @fpicked
up by the scheduler. The following lemma, an easy consequence of thdide$, allows us to identify an
online schedules with the functionA, .

Lemma 4.1. Letoy, 02 be online schedulers. K,, = A,,, thenPr[S7' = k] = Pr[S?2 = k] forall £ > 1.

LetX® = A, (2D, ..., 29),i.e., X is the type picked up at theth step. TherX () is randomly replaced
by new types according to the distribution on the transition rules. More ptgcir () := 20+ — z() 4
X@ thenPr[r =a | XD =X] =3, »p

X—a«

A Normal Form for Task SystemH.is convenient to introduce a normal form for task systems, which allows
us to formulate our results more succinctly and clearly. For every sctredfutbe normal form we can
find a scheduler of the original system with nearly the same properties.edigygalled compact if, loosely
speaking, it can eventually reproduce. Formally, a ti{yeés compactf there is a ruleX — (Y, Z) such
that X is reachable fromiV. A task system icompactif all its types are compact. A non-compact task
system can be compacted by iterating the following procedure: removdeslwith non-compact types on
the left hand side, and remove all occurrences of non-compact typtee oight hand side of all rules.

Proposition 4.2. Let us denote by the set of all task types removed frathby the above compacting
procedure and letl”| = ¢. If X, € I”, then there is a schedulersuch thatS? < /.

Assume thaK ¢ I". Let A’ be the compacted version df (i.e., " \ I is the set of task types af').
Every schedules’ for A’ can be transformed into a schedutefor A such that for allk

Pr[s7 > k| <Pr[s74 = k] < Pr[s7 ¥ > k-] .
(The second superscript Sfindicates the task system on which the scheduler operates.)

Notice that computing from ¢’ is easy acts likeo’ but gives preferences to the types that have been (first)
eliminated during the compacting procedure.
Further assumptionFrom now on we assume that task systems are compact.

4.1 Tail Bounds for Online Schedulers

The following main theorem gives computable lower and upper bounds kbichuniformly for all online
schedulers.

Theorem 4.3. Let A be subcritical. Let, w € (1,00)!" be vectors withf(v) < v and f(w) > w. Such
vectors exist and can be computed in polynomial time. Denotg, hy and w ., the least component af
and the greatest componentwf respectively. Then

wx, — 1 vx, — 1 .

kxoi < Pr[S% > k] < —X*—~ for all online schedulers.
+2 1 k R

Wmaz Vmin

Proof sketchChooseh > 1 andu € (0,00)! such thath¥x = vy for all X ¢ I'. Define for alli > 1 the
variablem(® = z(9) .4, where ¥’ denotes the scalar product, i.e2{Y) measures the number of tasks at time
weighted by types according . One can show thdtm(”,hmm, ... Is a supermartingale for any online
scheduler, and, using the Optional Stopping Theorem [33], tafsup; m®) > z] < (vx,—1)/(h*—1)
for all z (see the appendix for the details and [16, 31] for a similar argument @omanvalks). As each
type has at least weight,,;,,, we have that5? > k implies sup,; m® > kwin. HencePr[S7 > k| <
Pr[sup; m¥ > kumin] < (vx, —1)/(v%,, — 1). The lower bound is shown similarly. O

Theorem 4.3 stakes out the “playing field” in which all online schedulerfopa. A comparison of the
lower bound with Corollary 3.5 proves that the asymptotic performanceyodalime schedules is far away
from that of the optimal offline scheduler: the ralto[S? > k| /Pr[S°? > k] is unbounded.

Example 4.4.Consider again the task system with gfgfc) = pz? + ¢q. Forp < 1/2 the pgf has two fixed
points,1 andq/p. In particularg/p > 1, soq/p can be used to obtain both an the upper and a lower bound for
online schedulers. Since there is only one type of tasks, vectors hgverancomponent, and the maximal
and minimal components coincide; moreover, in this case the expénert of the lower bound can be

improved tok. So the upper and lower bounds coincide, and weggt? > k] = (qq/;’;;il for every online

schedulew. In particular, as one intuitively expects, all online schedulers are/aiguit?

2 For this exampléPr[S° > k] can also be computed by elementary means.

Notice that any vectoo satisfyingf(v) < v leads to an upper bound on the performance of the sched-
uler. So we can try to compute the vectoteading to the tightest bound. In Appendix E we show how to
compute, in polynomial time, astapproximation okup{ v, | f(v) < v} for the class otontinuing task

systemsA task system is continuing if for every rulg L, (Y, Z) we haveY = X or Z = X. Intuitively,
in a continuing task system a task does not change its type when it spawnstask.

4.2 Tail Bounds for Light-First Schedulers

We present a class of online schedulers for which a sharper uppedioan the one given by Theorem 4.3
can be proved. Intuitively, a good heuristic is to pick the task with the smakgsticeed completion time.
If we compute a vectoo with f(v) < v in polynomial time according to the proof of Theorem 4.3, then
the typeX,,:, for whichvx . = v, holds turns out to be the type with smallest expected completion
time. This suggests choosing the active typevith smallest component in. So we look atv as a vector of
weights, and always choose the lightest active type. For this schedailgtain two different upper bounds.
Given a vectow with f(v) < v we denote by_ a total order on/” such that whenevek' C Y then
vx <wy.If X CY,thenwe say thaX is lighter thanY". Thew-light-first scheduleis an online scheduler
that, in each step, picks a task of the lightest type available in the pool @&mgdody. Theorem 4.5 below
strengthens the upper bound of Theorem 4.3 for light-first sched#ershe second part of Theorem 4.5 we
use the notion ob-accumulating typedA type X € I' is v-accumulating if for every: > 0 the v-light-first
scheduler has a nonzero probability of reaching a state with atde¢asks of typeX in the pool.

Theorem 4.5. Let A be subcritical andy € (1, 00)! with f(v) < v. Leto be av-light-first scheduler. Let
Viminmagz = MiNx<s(y,7) max{vy, vz} (here the minimum is taken over all transition rules with two types
on the right hand side). The®,,;;;maz > vmin and forallk > 1

’UXO—l
k—1 _1'

minmax

Pr[S? > k] <

VUminU

Moreover, letvinace := min{vy | X € I', Xisv-accumulating. Thenvinace = Vminmaz» Yminace
can be computed in polynomial time, and there is an intégerch that for allk > ¢

vx, — 1
O o _1°

min - minacc

Proof sketchRecall the proof sketch of Theorem 4.3 where we usedfiat &k impliessup, m9 > kwmin,

as each type has at least weiaghy;,,. Let£ be such that no more thdrtasks of non-accumulating type can

be in the pool at the same time. Thef > k impliessup; m) > lu,in + (k — £)Uminace Which leads to

the final inequality of Theorem 4.5 in a way analogous to the proof sketthedrem 4.3. a
Intuitively, a light-first scheduler “works against” light tasks by pickingitihas soon as possible. In this

way it may be able to avoid the accumulation of some light types, so it may achigyg.c > vmin. ThiS

is illustrated in the following example.

Example 4.6.Consider the task system with two types of tasks and pgfs aszy + a1y + ag andy =

boxy+b1y—+bo, Whereas+a1+ag = 1 = ba+b1+by = 1. The system is subcritical if; by < asby —as+by.

The pgfs have a greatest fixed pointvith

vx = (1 — a9 — by —aibsy +a261)/62 and vy = (1 —b; — bg)/(ag + arby — agbl).

We havevx < vy iff as — by < asby — a1be, and so the light-first scheduler choos€seforeY if this
condition holds, and beforeX otherwise. We show that the light-first scheduler is asymptotically optimal.
Assume w.l.o.gvx < wy. ThenX is not accumulating (becausé-tasks are picked as soon as they are
created), and S0.,,;nqcc = vy . SO the upper bound for the light-weight scheduler yields a constasuch
thatPr[S° > k] < co/v%-. But the general lower bound for arbitrary online schedulers statéeshre is a
constant; such thaPr[S7 > k| > c1/v§,, so we are done.

Pr[S7 > k] <
v

4.3 Talil Bounds for Depth-first Schedulers

Space-efficient scheduling of multithreaded computations has receiwveiderable attention [27, 6, 2, 1].
The setting of these papers is slightly different from ours, becauseiseyne data dependencies among the
threads, which may cause a thread to wait for a result from anothedthrethis sense our setting is similar
to that of [22], where, in thread terminology, the threads can executpaendently. Most results of [27, 6, 2,

1] are fordepth-firstcomputations, in which, loosely speaking, if threddhas to wait for thread, thenB

is a descendant of (i.e., B was spawned byl or by a descendant of). As observed in [6, 27], the optimal
scheduler for this class of computations is the one that, whepawnsB, interrupts the execution of and
continues withB; this scheduler (which is online) produces the familiar stack-based &xecu

In this section we study the performance of this scheduler. In our settisg;diresponds to studying
depth-first scheduler#\ depth-first scheduler), is given in terms of a function that assigns to each rule
X — (Y, Z) eitherYZ or ZY, i.e., X fixes an order on the tasks of the right-hand side. Intuitively, if the
function assign¥” 7 to X, this means that models the continuation of the thread while Y models a new
thread for whose terminatiao waits. Formally, if X — « is a rule in the task system, thegX — «) = 3
where € I'* anda is the Parikh image of (i.e., a multiset of task types occurring ghsuch that the
number of occurrences of any task tyfiein 5 is the same as in).

The depth-first scheduler, keeps as an internal data structure a word ['*, a “stack”, such that the
Parikh image ofv is the multiset of the task types in the poohdf= X w' for somew’ € I'*, theno picks X.
Assume that a transition rul§ — « “fires”. Theno), replacesXw’ by fw’ whereg = \(X — «).

In the rest of the section we analyZé for a fixed depth-first schedulet. Define for all vectors:, v the
vectorsL(u) and@(u, v) such that for allX € I

L(u)x = Z puy and Q(u,v)y := Z puy Uz .
xSy xyz

Note that the sums extend over the rules after applyinglso note that’ is a linear vector function and we
view it as a matrix whose rows and columns are indexed WitRurthermore, we writ€)(-, v) andQ(u, -)
for the matrices wittQ (-, v)u = Q(u,v) = Q(u, -)v.

Our main theorem determines the exact asymptotic behavier |6 > k| for a depth-first scheduler:

Theorem 4.7. Let A be subcritical ando be any depth-first scheduler. Lgtbe the spectral radius of
(I -L—-Q(1,)7'Q(-,1). Then0 < p < 1 andPr[S? > k] € O(p*), i.e, there arec,C > 0 such
thatcp® < Pr[S° > k] < C)p” for all k.

Proof sketchThe proof idea is to computer[S$ > k] for all X € I' at the same time. To this end, we
define, for allk > 1, the vectors[k] € [0,1]7 such thats[k]x = Pr[S% > k] for all X. The following
recurrence holds fas[%]:

Lemma 4.8. Let A[k] := L + Q(1 — s[k],-). Then(I — A[k])~! exists and for alk > 1
slk+1] = Alk]s[k + 1] + Q(-, 1)s[k] = (I — A[k])~'Q(-, 1)s[k].

The upper bound of Theorem 4.7 follows by iterating Lemma 4.8. The lowamnd@s involved, and heavily
relies on the Perron-Frobenius theorem for nonnegative matricesh&appendix for a full proof. O
Note that one can approximate the spectral radius in polynomial time usingrg baerch which uses
the fact that the spectral radius of a nonnegative maitfiixs at least- if and only if Ma > ra holds for
a nonnegative, nonzero vector(see e.g. Thm. 2.1.11 of [5] and cf. [14]), a condition that can be @dueck
in polynomial time with linear programming. Observe also that Lemma 4.8 showssfthat 1] can be
computed froms[k| by solving a linear equation system. This requiéasI"|®) arithmetical operations, so
one can computBr[S? = k] in time O(k - |I'|?) in the unit-cost model, cf. Corollary 3.4.

5 Expectations

In this section we study the expected completion space, i.e., the expe@gifdirfor both offline and online
schedulers. Fix a task systeth= (I, —, Prob, X).

Optimal (Offline) Schedulers.The results of Section 3 allow to efficiently approximate the expecta-
tion E[S°P]. Recall that for any random variable with values in the natural numbers we hdugR] =
>0, Pr[R > i]. So we can (under-) approximaigR] by Zle Pr[R > ¢ for finite k. We say thak terms
computeb bits of E[S?] if B[] — YK} (1 —v{)) < 27*.

Theorem 5.1. The expectatiofit[S°?] is finite (no matter whethen\ is critical or subcritical). Moreover,
O(b) terms computé bits of E[S°P]. If the task system is subcritical, therlog, b + O(1) terms computé
bits of E[S°P]. Finally, computingk terms takes timé&(k - |I'|?) in the unit cost model.

Online SchedulersThe main result for online schedulers states that the finitenéSgS6f does not depend
on the choice of the online scheduterlt is easy to see that A is subcritical, then every online scheduler
has finite expected completion time. We show:

Theorem 5.2. If A is critical, thenE[S?] is infinite for every online scheduler.

Proof sketchFor this sketch we focus on the case whéig is reachable from every type. By Proposi-
tion 2.5 the spectral radius g¢f (1) equalsl. Then Perron-Frobenius theory guarantees the existence of a
vectoru with f/(1)u = w andux > 0 for all X. Using a martingale argument, similar to the one of

Theorem 4.3, one can show that the sequente, m?, ... with m(® := z() .4 is a martingale for ev-
ery scheduler, and, using the Optional-Stopping Theorem, HaftS? > k] > ux,/(k + 2). So we have
E[S7] = e, Pr[S7 > k] > 302 ux,/(k +2) = . 0

Since we can decide in polynomial time whether a system is subcritical or critieadan do the same to
decide on the finiteness of the expected completion time.

Depth-first SchedulersWe show how to approximatg[S?] for a given depth-first schedulerand a sub-
critical A. Again, we approximat&[S?] by Zle Pr[S? > 4] for finite k. The following theorem shows
that this is efficient. (Recall for the following statement that the 1-nfyofh of a vectorv is the sum of the
absolute values of its components, and the nppi|, of a matrixM is the maximal 1-norm of its columns.)

Theorem 5.3. Let A be subcritical, and leBB := (L+Q(1,-))*Q(-,1). Then(I — B)~! exists and[S°] —
ulk] < ||(= B)~Y|, IIs[k]|l, for all k > 1, whereu[k] := =% | sli]x, = .1, Pr[S” > i]. Hence,O(b)
terms computé bits of E[S?]. Finally, computingt terms takes timé&(k - |I'|?) in the unit cost model.

Online Schedulers minimizing expected completion spedaeconclude the section with some results about
online schedulers that minimize the expected completion space. First wetpabtbey always exist. Then
we show that, however, they require infinite memory.

Theorem 5.4. There is an online schedulersuch thaff[S?] = inf | s onling E[S™]-

An online schedules requiresfinite memoryf there is a deterministic finite state automatdrover an
alphabet® and a functiorh: N'' — X such that the value ol (cV) - - - ¢()) depends only oe” and on
the state of4 after reading(cV)) - - - h(c¥).

Theorem 5.5. For sufficiently smallp and r (it suffices to choose := 107> andp := %r), any online
scheduler that minimizes the expected completion space of the followingséskisequires infinite memory:

X‘I—/S><X7X> X‘£<Y,Z> x 2y z LUy 72

vy & z2) y<Zy U

6 Conclusions

We have initiated the study of scheduling tasks that can stochastically teeatrar tasks. We have provided
strong results on the performance of both online and offline schedolaitsef case of one processor and task
systems with completion probability 1. While we profited from the theory of brengcprocesses, the theory
considers (in computer science terms) systems with an unbounded nurpbecedgsors, and therefore many
guestions had not been addressed before or even posed.

References

K. Agrawal, C.E. Leiserson, Y. He, and W.J. Hsu. Adaptive watgaling with parallelism feedbacRCM TOCS26(3), 2008.

N.S. Arora, R.D. Blumofe, and C.G. Plaxton. Thread schedubngiultiprogrammed microprocessomheory of Computing

Systems34:115-144, 2001.

K.B. Athreya. On the maximum sequence of a critical branchingga®énnals of Probability 16:502-507, 1988.

K.B. Athreya and P.E. NeBranching ProcessesSpringer, 1972.

A. Berman and R.J. Plemmorfdonnegative matrices in the mathematical scienéesdemic Press, 1979.

R.D. Blumofe and C.E. Leiserson. Scheduling multithreaded coriguseby work stealingJournal of the ACM46(5):720—

748, 1999.

K.A. Borovkov and V.A. Vatutin. On distribution tails and expectationsnafxima in critical branching processekurnal of

Applied Probability 33(3):614-622, 1996.

8. J.L. Coolidge. The gambler’s ruiknnals of Mathemati¢s.0(4):181-192, 1909.
9. J. Esparza, S. Kiefer, and M. Luttenberger. An extension of N8toethod tav-continuous semirings. IBLT'07, LNCS

4588, pages 157-168. Springer, 2007.

10. J. Esparza, S. Kiefer, and M. Luttenberger. On fixed pointt&msaover commutative semirings. 8TACS'07LNCS 4397,
pages 296-307. Springer, 2007.

11. J. Esparza, S. Kiefer, and M. Luttenberger. Convergencshibigs of Newton’s method for monotone polynomial equations.
In STACS 2008ages 289-300, 2008.

12. J. Esparza, A. Ktera, and R. Mayr. Quantitative analysis of probabilistic pushdown attor&Expectations and variances. In
LICS 2005 pages 117-126. IEEE Computer Society, 2005.

13. J. Esparza, A. Kiera, and R. Mayr. Model checking probabilistic pushdown automatd.I@S 2004 pages 12-21. IEEE
Computer Society, 2004.

14. K. Etessamiand M. Yannakakis. Recursive markov chaindyastic grammars, and monotone systems of nonlinear equations.
Journal of the ACM56(1):1-66, 2009. Earlier version appeared in STACS'05, pp-38D.

15. R. Fagin, A.R. Karlin, J. Kleinberg, P. Raghavan, S. Rajagop&aRubinfeld, M. Sudan, and A. Tomkins. Random walks
with “back buttons”.Annals of Applied Probabilityl11(3):810-862, 2001.

16. W. Feller.An introduction to probability theory and its applicatign®lume I. John Wiley & Sons, 1968.

17. M. Gitschel, L. Loasz, and A. SchrijverGeometric Algorithms and Combinatorial OptimizatidBpringer, second edition,
1993.

18. T.E. Harris.The Theory of Branching Process&pringer, 1963.

19. R.A. Horn and C.A. JohnsoMatrix Analysis Cambridge University Press, 1985.

20. S. Janson. Functional limit theorems for multitype branching psesesnd generalizedRa urns. Stochastic Processes and
their Applications 110:177-245, 2004.

21. N.L. Johnson and S. Kotklrn Models and Their ApplicatianJohn Wiley & Sons, 1977.

22. R.M. Karp and Y. Zhang. Randomized parallel algorithms for tsack search and branch-and-bound computationrnal of
the ACM 40(3):765-789, 1993.

23. S. Kiefer, M. Luttenberger, and J. Esparza. On the conveegehblewton’s method for monotone systems of polynomial
equations. ISTOC 2007pages 217-226. ACM, 2007.

24. S. Kotz, H. Mahmoud, and P. Robert. On generalizagi@Purn modelsStatistics & Probability Letters49:163-173, 2000.

25. T. Lindvall. On the maximum of a branching proceSsandinavian Journal of Statistic3:209—214, 1976.

26. H. MahmoudPolya Urn Models CRC Press, 2008.

27. G.J. Narlikar and G.E. Belloch. Space-efficient scheduling stiedeparallelismACM TOPLAS$21(1):138-173, 1999.

28. 0. Nerman. On the maximal generation size of a non-critical galetsem process.Scandinavian Journal of Statistics
4(3):131-135, 1977.

29. J.M. Ortega and W.C. Rheinboldterative solution of nonlinear equations in several variabldsademic Press, 1970.

30. A.G. Pakes. A limit theorem for the maxima of the para-critical simpd@thing processAdvances in Applied Probability
30:740-756, 1998.

31. F. SpitzerPrinciples of Random WalkSpringer, 1976.

32. A. Spataru. A maximum sequence in a critical multitype branching procésstnal of Applied Probability28(4):893—-897,
1991.

33. D. Williams. Probability with Martingales Cambridge University Press, 1995.

N =

o0k w

N

A Proofs of Section 2

A.1 Proof of Proposition 2.5

Proposition 2.5 ([18, 14]).Let A be a task system with pgf Denote byf’(1) the Jacobian matrix of partial
derivatives off evaluated atl. If A is critical, then the spectral radius gf (1) is equal tol; otherwise it is
strictly less tharl. It can be decided in polynomial time wheth#ris critical.

Proof. One can show (see e.g. [13]) tH&{l'x| is the X-component of the least nonnegative fixed point of
f'(1)x + 1, i.e., theX-component of the (componentwise) least veatar [0, co]” with x = f/(1)x + 1.
This least fixed point is given by :° (f(1))"1, a series that may or may not converge. It is a standard fact
(see e.g. [19]) that the series convergep(ff’(1)) < 1 holds for the spectral radiyg f/(1)) of f/'(1).

Assume first thatA is subcritical. Then the above series must converge, so wedfiglgl)) < 1 in this
case. Now assume that is critical. Then the above series must diverge, so we payg1)) > 1. On the
other hand, in [11, 14] it is shown that f/(1)) < 1. (More precisely, it is shown there thatf'(y)) < 1
holds fory that are strictly less than the least fixed pointfofBy continuity of eigenvaluesi(f'(y)) < 1
also holds for the least fixed point gfwhich is1 according to the proof of Proposition 2.3.) Hence we have
p(f'(1)) = 1.

In order to decide on the criticality, it thus suffices to decide whether thetrheadius off’(1) is > 1.
This condition holds ifff’(1)z > z holds for a nonnegative, nonzero vecio(see e.g. Thm. 2.1.11 of [5]
and cf. [14]). This can be checked in polynomial time with linear programming. a

B Proofs of Section 3

B.1 Proof of Proposition 3.1

Proposition 3.1. Lett be a family tree. Then

win { max{57 (o) + 1,5 (1)},
SOP(t) = max{S%(to), S (t1) + 1}

S°P(to) if ¢ has exactly one chiley

1 if ¢ has no children.

} if ¢ has two childrerty, t1

Proof. Recall the proof sketch from the main body of the paper. We detail therengiwhy one of the two
given scheduling strategies is optimal, i.e., we argue why the scheduletcawe space by interleaving the
schedulings foty andt;.

Consider an optimal scheduling ©fW.l.0.g. the task, terminates first. Then at least otyetask sticks
around during the whole derivation ¢f. So this scheduling needs space of at |e#%t(¢y) + 1. Obvi-
ously, any scheduling af needs space of at leaSt?(¢;). So the optimal scheduler needs space of at least
max{S° (to) + 1, 5°P(¢1)}. But this lower bound is matched by the scheduling strategy given in the main
body of the paper. a

B.2 Proof of Theorem 3.2

Theorem 3.2. Pr[SY < k| = Vg];) for every typeX and everyk > 0.

Proof. Let us inductively define the functichon trees as follows.

0 if £ has no children

{(tp) +1 if t has one child

0(t) == < L(to) + 1 if t has two children and°? (tg) > S°P(t1)
£(t1) +1 if t has two children and P (ty) < S°(t1)
0 if ¢t has two children and'°? (tg) = S°P(t1) .

With Proposition 3.1/(¢) is the length of a longest path from the root to a descendant with the S&tne
value.
We proceed by induction oh. The base cask = 0 is trivial. Let k¥ > 0 and lett be anX-tree with

S°P(t) = k + 1. We have to shoWr [SY =k + 1] = A(k“) where

Alk+1) — i F(w®)y (f(,,ac)) _ ,,(k)) '
=0

We show the following stronger claim:

Pr[SP(t) =k+1, ((t) =i] = (f’(u<k>)i <f(u(k)) - y<k>))X .

We proceed by an (inner) induction énFor the induction base= 0 we first dispense with the cage= 0.
We have
Pr[S{(t) =1, £(t) = 0] = Pr[t has no childreh

because if has one child thefi(t) > 1 and if¢ has two children, thes'{? (t) > 2. With the definition off
we obtain

Pr[S;’(p()_l et ZP Fx(0 fX(V(O))—Vg?)'

Now we complete the induction base- 0 with the caseé: > 1. We have
Pr[SY(t) =k +1, £(t) = 0] = Pr[t has two children S (ty) = S (t1) = k| (1)

because it has one child, thed(t) > 1, and if¢ has no children, the§{’ (t) = 1. Further we have by
Proposition 3.1

Pr[SPt) <k]= > p-(Pr[Sy(to) < k] Pr[SP(t1) < K]
XY, Z)
—Pr[P(tg) =] Pr [Sgp(tl) = k:]) 2)
+ Z p - Pr[SyF(to) < k]

+Zp.

X0
Combining these equations we obtain

Pr[SP(t)=k+1, £(t)=0] = Z p-Pr[S{(to) = k| Pr[SY(t1) =k] (by (1))
XY, 7)

= Y p-Pr[S{P(to) < k| Pr[SP(t1) <k] (by(2)

XY, Z)
+ZpPrSOpto<k Zp
xSy Xre
— Pr[SY ()<k;}
=) p- i) (ind. hyp. onk)
X Y,2)
+ Z p- VY + Z p
Xy X
_,,g’;)
= fx(w®) =¥ (def. of f)

For the induction step, lét> 0. Then by Proposition 3.1 and the definition/of

Pr[SY(t) =k+1, ((t) =i+1]
= Y p-(Pr[SF(to) < K| Pr[SP(t) =k +1, £(tr) =]

)

=

XD
+Pr[SyP(to) = k+ 1, L(to) = i| Pr[SF (t1) < k])
+ > pePr[SP(te) = k+1, (ty) =]
X—Y
= Y (P (P (s - u))
XY, Z

P

(v,2)

+ (f’(u(k))i <f(u(k)) - V(k))>Y u(Zk)) (ind. hyp. onk,)
"3 e (et -)),
- Z fxy ©) (£ ey (Fe™) —v®)) (def. of f)

YelI’

= PR F D) (Fe®) - 1)
_ <f/(yck>)i+1 (ﬂ,,(k)) _ ,,(k)))x

B.3 Proof of Corollary 3.5

Corollary 3.5. For any task system there are real numbers > 0 and0 < d < 1 suchthaPr[S¥ > k] <
c-dF forall k € N. If Ais subcritical, then there are real numbets> 0 and0 < d < 1 such that
Pr[S¥ > k] <c-d* forall k € N.

Proof. By Theorem 3.2 we haver[S°? > k| =1 — u(k V1o ug’;(z So the corollary can be understood

as a statement on the convergence speed of Newton s method for selwinfi(x). The fact that Newton’s
method started &t converges td (the least fixed point of) is shown in [14].

For the subcritical case, observe that the mafrix f'(1) is nonsingular because otherwisavould
be an eigenvalue of’(1) which would, together with Proposition 2.5, contradict the assumption that the
task system is subcritical. For nonsingular systems, it is a standarddact . [29]) that Newton’s method
converges quadratically. A3r[S? > k] <1 — ug(), the statement follows.

For the general case (subcritical or critical) Newton’s method for solrirg f () has been extensively
studied in [23, 11] and it follows from there that there ig,ac (0, o) such thatl — ug?) < ¢p - 27K/(27)
wheren = |I'|, implying the statement. O

C Proofs of Section 4

Lemma C.1. Leto be an online scheduler. For every family trethe firsti > 1 states ot (¢) are uniquely
determined by (M (1), ..., 2 (t). In particular, the function/,, is well-defined.

Proof. We proceed by induction ah The casé = 1 is trivial. Let us considee (), ..., 20+ (t), and let
d=(s1 = - = s; = s;+1) be a prefix of the derivatioa(¢). By induction,s; = --- = s; is completely
determined by=(1(¢), ..., z()(¢). By the definition of online schedules,(t)[i] is completely determined
by s; = --- = s; andz(D(2),..., 2z (t). Finally, there is a unique transition rulgo (t)[i]) — a where
a =200 (t) — 20(t) + (L(o(t)[i])). But thens; 1 is also uniquely determined.

Lemma C.2. Letc() ... ¢ e (NI')* such that for every < j < i the valued, (cV) - - - c\9)) is defined.
ThenPr [/\ 20 = c(ﬂ} [1/=} Prob(As(c™ --- V) — ;) where for everyl < j < i we have
o = Ut —) 4 (Ay(eM) - - @),

Proof. Let us denote byR the set of all family treessuch that\/) (t) = ¢\/) for 1 < j < i. By Lemma C.1,
there is a derivatiod = s; = --- = s; and a function : U;:l s; — I" such that for every = (N, L) € R

we have thatl is a prefix ofo(t) and! coincides with/ on the subtredgjézl s;. Let us denote by® the

treeUé:1 sj. Note thatt® is a subtree of every tree & rooted ine. Let us denote by the set of all inner
nodes oft®. For everyv € Z, we denote byhild(v) := (l(va) | a € {0,1},va € t*) the multiset of labels
of children of the node in ¢5. Let us denote by the set of all leaves of. It follows directly from the
definition of Pr, that for allt € R we have

=[] Prob(L(v) = child(v)) - [] Pr[t

veL vEL

However, it follows directly from definitions that for everyc 7 there is precisely oné < j < ¢ such that
o(t)[j] = v, and thenL(v) = A,(cV) - - - c¥)) andchild(v) = a;. Therefore,

H Prob(A c(l) c(J) — H Prit

veL
Finally,
i—1 i—1 ‘
Z Pr[t] = H Prob(Ay(cV) - b)) H Z Prt H Prob(Ay(cV) - ey — aj)
teER j=1 veLl t/ ETL(“) 7j=1

Proof of Lemma 4.1

Lemma 4.1. Let oy, 02 be online schedulers. l,, = A,,, thenPr[S7" = k] = Pr[S?2 = k] for every
k>1.

Proof. We denote byzf\i) the variablez(®) evaluated with respect to a given schedulet et us denote by
Agey the set of alle® .. c® e (NI)* such thatd,, (cV) ---cW)) = A,,(c) .- cl9)) is defined for all
1<j <i—1,ande® = 0. By Lemma C.2, for everg() ... cl) € A, we have

However, therPr[S?! = k] = Pr[S?2 = k] because the values 6 andS?2 are determined by the values

of zf,ll), szl), . andz%), szz), ..., and for all family tree$ we have that a prefix oéf,ll) (1), zg) (t),...and

a prefix sz((,lz) (1), z((,? (t),...areinAgy.

C.1 Proof of Proposition 4.2

Proposition 4.2. Let us denote by” the set of all task types removed fratnby the above compacting
procedure and lefl”'| = ¢. If X, € I, then there is a schedulersuch thatS? < /.

Assume thaK ¢ I"'. Let A’ be the compacted version df (i.e., I" \ I is the set of task types df’).
Every schedules’ for A’ can be transformed into a schedulefor A such that for allk

Pr[s7 > k| <Pr[s74 = k] < Pr[s7¥ 2 k-] .

(The second superscript Sfindicates the task system on which the scheduler operates.)

Proof. Let A, be a non-compact task system with a non-compact types, and letAg be the (possibly
non-compact) task system obtained frakp by removing all rules with non-compact types on the left hand
side and all occurrences of non-compact types on the right handfatlewes, i.e.,4 is obtained fromA;

by performing the first iteration of the compacting procedure. dgebe a scheduler fordg. Construct a
scheduler; for A; as follows:

The scheduler; acts exactly likesy until one or twol’,,,-tasks are created at which point the
width of the derivation may be increased by at mhstheno; picks al’,,,-task, sayr . Since the
I, on-types are non-compact; can complete; without further increasing the width. After; has
been finished, there may be anotligg,, -task left, sayr, that was created at the time whenwas
created. If there is suchm, theno; completess, in the same way it has completed After r; (and
possiblyrs) have been completed; resumes to act likey.

It follows from this construction that the incorporation of the non-compgmt I,,,, increases the width of
a derivation by at most.

A straightforward induction on this construction shows for the statemenegiribposition:
Pr| sy < k| <Pr[S3* <k forall X e I\ 1.

If Xy, € I”, then the above construction also works. (It extends a scheduleatimgeon a possibly
empty task system, but this poses no problems.) So, again by induction, vire @btdnedules for A with
S% < tforall X e I

It remains to show the inequalitlyr [S;’("A/ > k:} < Pr [S}’(’A > k:} but this is clear becausd’ is
obtained from deleting rules and types frafrando is obtained by extending'. a

C.2 Proof of Theorem 4.3

We split the proof in several lemmata. With regard to the computation of a suitablerw we first prove
the following lemma.

Lemma C.3. Letu € [1,00)!" denote the vector of expected completion times,i.e.= E[Ty] for all
Y € I'. Thenu exists and is the unique solution®f= f'(1)z + 1. LetQ(u,) denote the “quadratic
part” of f(u),i.e.,(Q(u,u))y = 2y Py Uz forall X,Y,Z € I'. Lets := 1/qmqs > 0 Where
dmaz 1S the largest component ¢f(u, w). Then for allr > 0 we havef (1 + ru) < 1 + ruiff r <s.

Using this lemma a suitable can be found as follows: First computeby solvingz = f/(1)x + 1.
This yieldsQ(u, w), and, consequently, With regard to the upper bound of the theorem we are interested
in av which is as large as possible, so pigk=1 4 su (orv :=1 + %su to be on the safe side). All steps
can be performed in polynomial time.

Proof of the lemmaThe fact thatu = f'(1)u + 1 exists and is the vector of expected completion times
follows from the remarks made at the beginning of the proof of PropositionRecall that the pgf is a
vector of polynomials of degree 2 with positive coefficients. So it can lienras

f(@) = Qx,@) + La +c
whereQ(z,) is the quadratic part of (z). A straightforward calculation shows for allc R andz € R’

fA+rx)=fQ)+rf Dz +r’Q(x,) (Taylor expansion)
=1+4rf'(1)x+r2Q(x, x) (asf(1)=1).
Foru = f/(1)u + 1 it follows
FA4ru)=1+r(u—1)+r’Q(u,u),

so we havef (1 + ru) < 1+ ru iff rQ(u,u) < 1. The statement follows. 0
Next we show how a suitable can be found.
Lemma C.4. One can compute in polynomial time a vectorc (1, 00)!" with f(w) > w.
Proof. Using the Taylor expansion ¢f(1 + rx) as in the previous lemma, we obtagfiil + rx) > 1 + rx
iff

rQ(z, @) > (I - f'(1))=. ®3)

We will choosew := 1 + rz, so we need to find suitableandz such that (3) holds. Defing € {0,1}"
such thatyy = 1 if the X-component of(x, x) is not constant zero (or, equivalently, if there is a rule

x & (Y, Z) for someY,Z € I'). Otherwise, i.e., iff y(z) has degred, setyy = 0. Definex :=
f'(1)*y = (I — f/(1))"'y. By the compactness of the task system, all types can reach aXtypith
yx = L. It follows that f'(1)*y is positive in all components. Hence,,;;, > 0 wherez,,;, is the smallest
component ofc.

Observe thatl — f'(1))x = y, so (3) holds at least for the componeiiswith y = 0. Let ¢ denote
the smallest nonzero coefficient $f Equation (3) holds also for the componeniswith y = 1 if we set
r > 1/(c- Zmin). The statement follows. O

To complete the proof of Theorem 4.3 it remains to show the claimed bounés[8f > k.
Theorem 4.3. Let A be subcritical. Letv, w € (1,00)! be vectors withf (v) < v and f(w) > w. Such

vectors exist and can be computed in polynomial time. Denotg, py and w ., the least component af
and the greatest component®f respectively. Then

wx, — 1 vx, — 1 .
kXoi <Pr[S? > k| < —X0 " " for all online schedulers.
max min

Proof. Leth > 1 andu € (0,00)! such thath®™ = vy forall Y € I'. Definem® := z() .y where %’
denotes the scalar product. Not that") = wx,.

Let us considef > 1. Lety = ¢V, --- | ¢ be a sequence of elementshdf with ¢! £ 0, and letT,,
be the set of all family treessatisfyingz(?) (t) = ¢U) for everyl < j < i. Note thatm(? (t) # 0. Observe
thatm () is constant ovet,, we denote byn(")(T,) its value overT,.

An easy computation reveals that for:= A, (y) we have

i)e i Q)
E[h’““ u | Ty} —E[[][17 |1, | =E|[[v} |Ty| = fv(v) <vy =™ (asf(v) < v).
zel zel’
(4)
Consequently, we have
E[hm(i+l) | Ty} _ E[hz(i+l)-u | Ty} (def. Ofm(i—l-l))
= E[h(z(mrr“)—(/la(y)))'u | Ty} (def. ofr(®)
~ . Deu (Ao (y)u
g] B[O 7] B[e) W=or,
E[h | Ty] E[h | Ty} E[h | Ty} (Const. ot
— hm(i)(Ty) .]E[hr(i)ou ‘ Ty} CpTuY (def. ofm(z))
< (1) (Equation (4))

As this is true for all online schedulessand alsdE [m(+Y | m(®) = 0] = 0 we have
E[hm(i“) | hm(l),...,hm(i)} <

i.e., the sequendemm, hm(2), ...Is a supermartingale.

Define the stopping time, := inf{i > 1 | m® € {0} U [k, o0)}. Note thatm(™) < k + 2umae,
and hence that(™®) € {0} U [k, k + 2umq.]. We wish to apply Doob’s Optional-Stopping Theorem [33]
(sometimes called Optional-Sampling Theorem) to inferm[aitm”’“)} <E [hm(l)} = vx,. To this end we

define the sequenda®, m2), ... by settingm(? := m® for i < 7, andm® := m(™) for i > 7. The
sequenceé™” p™® s amartingale as™", ™™ ... is a martingale. To apply the Optional-Stopping
Theorem we also need to make sure qmﬁt“’“) - hm(”\ is bounded by a constant, which is the case as
m® € [0, k 4+ 2umq,] for all i. Define the stopping time, := inf{i > 1 | m() e {0} U [k, c0)}. Doob’s
Optional-Stopping Theorem now yields

B[] =E[pm] <E[p"V] =E[0m"] = hxo vy,
Let, as an abbreviatiopy, := Pr[m(™) > k]. Then we have
vxo Z B[200 (1= p) +BE =1y + 1E

which gives

Letting |z(")\ denote the sum of the components:6f, andw.,,;,, the smallest component of, we have

’UXO—l

mz’n_l

So we have shown the upper bound.
For the lower bound we redefifeandu such thath*y = wy for all Y € I" which allows to show in
an analogous way that

(i+1) (1) (@) ()
E[hm | }zhm ,

i.e., the sequence™", h™? .. is now a submartingale. The Optional-Stopping Theorem now yields
E {hm“’”} > w,. Further we now have

wx, < E[hm(m)} < hO . (1 o pk) + hk+2u'm,az pE = 1— e+ hk:-l-?umaz - Pk

which gives
Pk > %
and thus
Pr(S7 > k] = Pr [sup 2] > ""] - [S“Pm(“ > Ko = Dhanor 2 i
i i maxr

C.3 Proof of Theorem 4.5
We first prove the following proposition.

Proposition C.5. The set ofy-accumulating types can be computed in polynomial time.

Proof. We start with some notations. By* we denote the reflexive and transitive closure=ef We use
“+” for multiset union. We say thak can generatea multiseta, denoted byX == «, if some multiset
containinga can be derived fronX , i.e., if X =* o + 3 for some multise3. We writeY =%y aif Y

can generater using only.X-bounded rules, i.e., rules — (such thatZ < X, andY :'>lf « to denote

that the light-first scheduler can generateFinally, we denote by>* (o>*) the restriction ofx to types
Y > X (Y > X).

We prove the following characterizatioX is v-accumulating iff there i&” such thatX, = Y and
Y =%y X + Y. This immediately leads to a polynomial algorithm.

(=): AssumeX is v-accumulating. ThetXy =, n - X holds for infinitely manyn > 1. We claim
that there exists a typd such thatiV == n - X for infinitely manyn > 1. For the claim, take the
longest suffixes of the witnesses & = n - X that only use rules(-bounded rules, and let,, be their
corresponding initial multisets. These suffixes are then witnesses,fet> y n - X. By the maximality of
the suffixes, eithety,, = X, holds for infinitely manyn > 1, ora,, = agx does. In the first case, we take
W := X,. Inthe second case, I1&}, — (,, be the rule applied to obtaim,. Then

XO:>>1} (an_ﬁn)+zn:>lf (an—ﬁn)+ﬁn:.>X1’LX

whereX < Z,. Since the stepa, — f,) + Z, =y (on — Bn) + By is light-first and X < Z,,, we have
(atn, — Bn) = (an — B2)>%, and so there are infinitely mamy> 1 such that3, =% x n - X. Since|3,| < 2
for all n, the typel exists, and the claim is proved.

Consider now a witness ¥/ =%y n - X for somen > 2F + 1, wherek is the number of types. The
corresponding tree has depth at Iefast 1, and so it contains a path in which some typ@appears twice.
This easily leads t&” = x X + Y for some type¥” such thatX, = Y.

(«): We start with some simple properties of the relatien$ and:>}}.

(1) Y = x o anda = =¥, thenY’ = .
Consider a family tree having a (prefix of a) derivation that witne3se$:> x a. So all ancestors of the
nodes corresponding toare labeled by symbols that are X . It follows that a light-first scheduler may
select all ancestors of thenodes before selecting anynode. Henc&” = «.

2 If X = Y andY :.>lf 3, thenX :.>lf 0.
X == Y implies X =>}} Y + « for somea, andY == § impliesY :>}} 6 + (1 for somegs;. As
X =Y +ao it suffices to find a derivation witnessing+ « = () that reaches a multiset of the form
B + ~ for somey. Such a derivation is obtained by interleaving the witnesserf@:ls}} B+ b1 =y 0
anda =7 0.

Assume now thaiy, = Y andY ==y X + Y hold. ThenY = x n - X for everyn > 1. Now (1)
yieldsY == n- X, and (2) leads td&, =, n - X, also for everyn > 1. SoX is v-accumulating. O

Now we complete the proof of Theorem 4.5.

Theorem 4.5. Let A be subcritical andv € (1, 00)! with f(v) < v. Leto be av-light-first scheduler. Let
Uminmaz ‘= MiNx<s(y,7) max{vy, vz} (here the minimum is taken over all transition rules with two types
on the right hand side). The®,,; ;e > vmin and forallk > 1

o VX, —1
Pr[S7 > k] <) -

VUminU minmax

Moreover, letv ninace := min{vx | X € I, Xisv-accumulating. Thenv,,inace > Yminmaz, Uminace
can be computed in polynomial time, and there is an intégerch that for allk > ¢

’UXO—l
14 vk—é _1'

min - minacc

Pr[S? > k] <
v

Proof. The inequalityv,,inmaz = VUmin IS trivial. For the inequalitw inace > Yminmaz, 1€t Li := {Y €

I' | vy < vminmaz} b€ the set of types that are strictly lighter thap; ... We claim that, in each step
there is at most one task @fi-type. More formally, ife(Z?) denotes the vector witlag/“) =1forY € Li
andeg,”) = 0forY ¢ Li, then we have:(«e(lY) < 1 for all i. This can be shown by a straightforward
induction on the derivation length: at each step the taskidf/pe (if present) is selected and replaced by at
most two tasks. By definition af,,,;»mq2, @t most one of the new tasks hastype. Hence, the types ibi

are not accumulating. It follow8,,;nacc = Vminmaz -

The rest of the proof is obtained by a small modification of the proof of fdraat.3: it suffices to show
that, in Equation (5), we can replaé@s,,,;,, by wmin + (k — 1) Uminmaz @nd bylw,,in + (K — O)Wminace
for some integel. (The valueSuinmaz aNd uminace are defined in the obvious way, i.e., using the
from the proof of Theorem 4.3 we havg‘minmez — .00 @Nd h¥minace — g, 000...) SO we heed to
show for the light-first scheduler that |2(9| > k implies bothm® > win + (k — Dminmaee and
m) > LUmin + (k - Z)uminacc-

For the first implication, recall that:(= z() «u. We have argued above that) «e(l) < 1. This
impliesm® > wpin + (k — 1) Uminmaz-

For the second implication, lét be an integer such thaﬁ}) < /' for all 7 and for all non-accumulating
typesY. Let/ := |I'| - /. Then in each step, there are at mottsks of non-accumulating type. This implies
m(l) > Ly + (k - E)uminacc- U

C.4 Proof of Theorem 4.7

In the following we letM™* := I+ M+ MM +- - - for any square matri®/. If M converges, then, by basic
matrix facts, it equal$l — M)~!. Also by basic matrix facts (see e.g. [19}),* converges iff the spectral
radius ofM is less than one.

We first prove Lemma 4.8.

Lemma 4.8. Let A[k] := L + Q(1 — s[k],-). Then(I — A[k])~! exists and for alk > 1
slk+1] = A[Kls[k + 1] + Q(-, 1)s[k] = (I — A[k])"'Q(-, 1)s[K] .
Proof. The following equation follows from the definition of a depth-first schedule

Pr(S% > k+1]= Y pPr[Sy > k+1]
Xy
+ p (Pr[Sy > k| + Pr[Sy. < k] - Pr[S% > k +1])
X<y z
Using the definitions this immediately implies the equality
slk + 1] = Alk|s[k + 1] + Q(-, 1)s[k] .

For the second equality of the proposition, note tfidl) = L + Q(1,-) + Q(-,1). As the task system

is subcritical, the spectral radius ¢f(1) is, by Proposition 2.5, less than one. So the spectral radius of
Alk) < L+ Q(1,-) < f'(1) is less than one as well. Hence, by standard matrix facts [19] theAith
converges and equalg — A[k])~!. The second equality follows. O

For the proof of Theorem 4.7 we will need the following auxiliary lemma.

Lemma C.6. Let A be a nonnegative square matrix with spectral radius less than ongekBtcn be a
sequence with,, > ¢,11 > 0 converging to0. Then there exists am; and a nonnegative matrik’ such
that for alln > ny

(11— en)A)* > (I — e, K)A™ .

Proof. We can assume, < 1. Let M = (I — A)~!A. Then by a simple computation

((1 — en)A)* = (I + enM)ilA*)

Choosen; large enough so that(e,, M) < 1. Then(e, M)* exists and so

(I 4 enM) ™" =1 — (€M) + (€, M)? — (€, M)? 4+ — - -
>1— (e,M)(enM)*
>1— e, M(ep, M)*

ChooseK = M (e,, M)* and the claim follows. O

We also need the following lemma.

Lemma C.7. Given a depth-first scheduler and using the notation from the main bodyegbaper, let
B:=(I—-L—-Q(1,-)7'Q(-,1). Then the spectral radius @ is less than one.

Proof. Observe thaf’'(1) = L + Q(1,-) + Q(-,1). As (4, X) is subcritical, Proposition 2.5 implies that
the spectral radius of’(1) is less than one. Then it follows that the spectral radiuB @ less than one as
well, using the theory of M-matrices and regular splittings, see [5], Tine@&.€.3 part k. a

Now we prove Theorem 4.7.

Theorem 4.7. Let A be subcritical ands be any depth-first scheduler. Lgtbe the spectral radius of
(I -L—-Q(1,)7'Q(-,1). Thend < p < 1 andPr[S? > k] € O(p"), i.e, there arec,C' > 0 such that
cpt < Pr[S7 > k] < Cpk for all k.

Proof. Let B := (L + Q(1,-))" Q(-,1) andp the spectral radius aB. We havep < 1 by Lemma C.7. To
showp > 0, it suffices (by Perron-Frobenius theory [5]) to show that all romswof B are (strictly) positive.
For this, letY” € I" be the index of an arbitrary row. Then by compactness of the task sy!;mm,are types
Xo,...,X; (0<i<n-—1)suchthatt = X; andX; SN Xic1,..., X4 SEN Xp andX, L2 ZW for some
Z, W € I'. Itis straightforward to show by induction arthat the(Y, Z)-entry of L'Q(-, 1) is positive. It
follows that the(Y, Z)-entry of B is positive, s > 1.

For the upper bound, observe that with Lemma 4.8 we have

slk+1] = (L + Q1 — s[k],-))" Q(-, 1)s[k] < Bs[k]. (6)

By a simple induction it followss[k + i] < B’s[k]. As the absolute values of the eigenvaluesBofire
bounded by we get||s[k + i]|| < Cyp* for someC; > 0, which implies the claimed upper bound.

For the lower bound, observe that there is a real nuriberr < 1 such that for all typed” € I, the
probability thatX reaches is at least-. So it suffices to find any” € I" such that there is & > 0 with
Pr[Sg > k] > ¢ p* for all .

Recall thatp is the spectral radius aB. It is a corollary (Corollary 2.1.6 of [5]) of Perron-Frobenius
theory thatB has a principal submatri®8’ which is irreducible and also has spectral ragiusVe write I';
for the subset of” such thatB’ is obtained fromB by deleting all rows and columns that are not indexed
by I';. Also by Perron-Frobenius theor, has an eigenvectar’ € (0, 00)! with B'u’ = pu’ so thatu' is
positive in all components. Define € [0, 00)” as the vector withuy = u}. > 0forY € I anduy = 0 for
Y & I'1. Hence we hav@u > pu. By the already proven upper bound there issa 0 such thats[k] < tpk
for all k. We abbreviatey, := tp* so thats[k] < e1.

Now we show that there is a natural numldeand a real numbed > 0 with ¢,.d < 1 such that for
allz >0

sk +1i) > p (H(l - €k+j1d)) u. (7)

j=1

Asuy = 0forY ¢ I it suffices to shows[k + i] > p' (H;zl(l — ek+j_1d)) u where by the notation

v > w We meamwy > wy forall Y € I';. We proceed by induction ahnand determine the constants on
the fly. For the induction baseé & 0) observe that, as[k] is positive by compactness of the task system,
we can enforce|k| > wu by scaling dowru by multiplying it with a small constant. This does not affect the
stated properties ai. For the step, let > 0. We have

slk+i+1] = (L+ Q1 —slk+i],-))" Q(, 1)slk +] (by (6))
> ((1 =) (L +Q(1,))" Q(, 1)s[k + 1] (ass[k + 4] < €441)
> (1= epg) (L +Q(1,))" Q- 1)pf (H(l - ekﬂ-ld)) u (ind. hypothesis)
j=1
S for a large k an
> (I — e, K)Bp' H(l — €ptj—1d) | uw (some matrixK by
Jj=1 Lemma C.6
> (H(l — ek+j1d)) (pu — €4 K Bu) (asBu > pu)
j=1
i : for a larged with
zT P (11(1 - €k+j1d)> (PU - Ek—i-ipdu) (KB’U, ST pdu >
]:
A i+1
=] = ehyjad) | w
j=1
This proves (7). So, denoting hy,,;, > 0 the smallest nonzero componentgfwe have
[+t
slk+ily > o' [[J(1 - er4j-1d) | wmin ~ forallY € Iy and alli > 0.
j=1

Thus the proof is completed]T[j?’ik(l — €;d) > 0. To see that this inequality holds, observe thate;d =
1 —tp/d > 1 — % is true for almost allj and thaf{ [>°,(1 —) = £ > 0. This completes the proof. O
j J j

D Proofs of Section 5
D.1 Proof of Theorem 5.1
Theorem 5.1. The expectatiofit[S°?] is finite (no matter whetheA is critical or subcritical). Moreover,

O(b) terms computé bits of E[S°P]. If the task system is subcritical, thedog, b + O(1) terms computé
bits of E[S°P]. Finally, computingk terms takes timé&(k - |I'|?) in the unit cost model.

Proof. Note that the second statement implies the first oneefiet= 1 — ug?o Then we havél[SP] —
S - ug?o) = 3", el It follows from [11] that there is &, € (0, 00) such that for ali € N we have
e < ¢ - 279/(2") wheren = |I'|. Using this inequality we get

Z e < o Z 9—i/(n2") < o - 9—Fk/(n2")
1=k i=k

with ca = ¢1/(1 — 271/(2"). Choosingk = [(b + log, c2)n2"] we obtaind_>°,) < 27° which proves
the second statement.

For the third statement (about subcritical systems) recall from Coroll&ryhat there are > 0 and
0 < d < 1suchthat® < ¢.d? foralli € N. So

1-d

0o o)
i=k

oo

e(i)SZc-d%gc- d2k+i: c 'd2k.
i=k =0

By choosing a natural numbérwith k& > — log,(— log, d) 4 log, b + 1 we obtain for allb > log 1% that

<. 42" < 2= which proves the third statement.

1-d
The final statement follows from Corollary 3.4. O

D.2 Proof of Theorem 5.2

Theorem 5.2. If A is critical, thenE[S?] is infinite for every online scheduler.

Proof. The proof follows the lines of the proof of Theorem 4.3. L&tbe critical. By Proposition 2.5 we
havep(f/(1)) = 1 for the spectral radius of’'(1).

Let us fix an online scheduler. First we proveE[S?] = oo for the case in whickX is reachable from
every typeX € [I'. Later we will show how to drop this assumption. X, is reachable from every, it
follows that /(1) is an irreducible matrix. Then Perron-Frobenius theory [5] guaratheesxistence of an
eigenvectoru € RY of /(1) which is positive in all components, i.ef/(1)u = u anduyx > 0 for all
X e I'. W.l.o.g. we can choose such that its largest componentlisLet againm(?) := z(®) «w. Note that
m) = uy, > 0andm® < |2()| where|z(?)| denotes the sum of the components:6. Also note that
m(returns a weighted sum of the componentz 6. Loosely speaking, we will show that its expectation
remains constant.

Let us considef > 1. Lety = ¢V, --- | ¢ be a sequence of elementshdf with ¢ # 0, and letT,
be the set of all family treessatisfyingz) () = cU) for everyl < j < i. Note thatm(9 (t) # 0. Observe
thatm(is constant ovef,, we denote byn(") (T;,) its value overT,.

An easy computation reveals that for evéfyc I" we have

E|:ng() ’ Ty:| = Z p- #X(Ct) = f//lo(y)7X(1>
Ao (y) 0

which gives
E[T(i) | Ty} = (1) (8

(Wheref’AU(y)(l) denotes the row vector indexed Wy (y)). Consequently, we have:

E[m) | 7, =E[e6) | T,] -u (def. of m(™+1)

- (E [z(i) | Ty} +E [r@ | Ty} _E [<X<i>> | TyD cu (def. ofr(®)

= (B2011) + £l @) — (A7)) - (by (8))
= m () + s,) (Dt — (Ao(y)) +u (def. ofm9(T,))
= m'(Ty) (@sf/()u = u)
Also clearlyE [m(+) | m() = 0] = 0, and hence we have
E[mw) | mu)’m,m(z’)} — @
i.e., the sequenceM), m®, .. is a martingale.

Define the stopping time, := inf{i > 1 | m?) € {0} U[k, o0)}. Note thatn(™) < k+2asu < 1, and
hence thatn(™) € {0} U [k, k + 2]. We wish to apply Doob’s Optional-Stopping Theorem [33] (sometimes

called Optional-Sampling Theorem) to infer tffm(™)] = E[m()] = ux,. To this end we define the
sequencen, m @) ... by settingm® := m® fori < 7, andmd := m(™) for i > 7,. The sequence
m®, m® .. is a martingale as:(Y), m? ... is a martingale. To apply the Optional-Stopping Theorem

we also need to make sure thai*+1) — ;)| is bounded by a constant, which is the cas@és € [0, k+2]
for all . Doob’s Optional-Stopping Theorem now yields

E[mm)} - E[m(f’v)} - E[m“)} — uy, .
Recall that this is> 0. Sincem (™) € {0} U [k, k + 2],
wx, = E[m™] <0 Pr[m™ =0 + (k+2) - Pr[m™ > k] = (k+2) - Pr[m™) >]

which gives

So we have

7

Pr[S° > k] =Pr [qu 120)] > k] > Pr [Sup m® > kz} =Pr [m(T’“) > k} > YXo

Hence,

ZPrS">k >Zk“f2—

which completes the proof for the case whmoals reachable from all types.

Now we show thatE[S?] = oo also holds whenX, is not reachable from all types. Recall that
p(f'(1)) = 1. Itis a corollary (Corollary 2.1.6 of [5]) of Perron-Frobenius thetimat '(1) has a prin-
cipal submatrixB which is irreducible and has spectral radif®3) = 1. Let I C I" denote the set of types
such thatB is obtained fromf’(1) by deleting all rows and columns not indexed BY Consider the task
systemA’ which is the original task system restricted/ta More concretely/A’ has typed™ and transition

rules as follows: A ruleX < o is in A’ iff X € I" and there is am € M2 such thatX < a is in the
original task system and! is obtained fromy by deleting the types that are notiiti. Letg : RI" — R!" de-
note the pgf forA’. From the construction of’ it is straightforward to see th@ = ¢’(1). Pick an arbitrary
X € I" as the initial type ofA’. As B = ¢/(1) is irreducible, X is reachable from all types ifh”. Hence,
the first part of the proof applies and we obtain thatAih we haveE[S%] = oo for all online schedulers.
As A’ was obtained by erasing types and rules from the original task systemagyig@see that, also in the
original task system, we haw&5$ | = oo for all online schedulers. As X is reachable fronX), it follows
E[S?] = oo for all online schedulers. O

D.3 Proof of Theorem 5.3

Theorem 5 3 Let A be subcritical, and letB := (L + Q(1,-))*Q(-,1). Then(l — B) 1 exists and
E[S?] — ulk] < ||[(I — B)7Y|, |Is[K]||; for all & > 1, whereu[k] := zf L slilxo zl | Pr[S7 >).
HenceO(b) terms computé bits of E[S?]. Finally, computingt terms takes tlmé)(k |'3) in the unit cost
model.

Proof. By Lemma C.7 the spectral radius &f is less than one. So by standard matrix facts (see [19])
B* = (I — B)~! exists. Recall from Lemma 4.8 thaitk + j + 1] = A[k + j]*Q(-, 1)s[k + j] for all j > 0.

As Alk+7]*Q(-,1) < B, we obtains[k + j] < B’s[k] by a simple induction. Define the “error vecta¥[k]

by

S[kly :=E[S¢] — > slily forally eT.
i=1
Then we have
Skl = > sli] <> s[k+j <> Blslk] = B*s[k]
i=k+1 §=0 =0

which yields
E[S7] — ulk] = 8[k]x, < |8[K]ll, < IB*Il, Is[K]ll, < B*|l, - €'

where the last step is by Theorem 4.7. Recall fhat 1. Let D > 1 such thatD > || B*|, - C’. In order
to show thatO(b) terms computé bits of E[S?], we have to find & such thatDp* < 27° for all b.

ChoosingK := [TOZ’%D—‘ we have in fact
P

Dpft < pD.27b. Db <27,

The final statement about the time in the unit-cost model follows from the commeni®e end of
Section 4.3. O

D.4 Proofs of Theorem 5.4 and Theorem 5.5

In this subsection we give formal proofs for Theorem 5.4, respdgtiMeeorem 5.5.

For this we first introduce an alternative semantics of task systems whichiisakapt to the original one
with respect to the expected completion space (see Lemma D.2 below). Iifommeamove from the set of
family trees to the set of derivations (i.e. sequences of multisets) assigiedaonily trees by a given online
scheduler. The new semantics considerably simplifies proofs conceh@rexpected completion space for
online schedulers.

Let A = (I',—, Prob, Xo) be a task system. We denote Bythe setN’’, and callC the set ofcon-
figurations In this section we use the multisets overand vectors oN!" interchangeably in the canonical
way. A multiset scheduler takes a non-empty sequeng® . .. ¢(™ of configurations and chooses from the
current (= last) configuration() the next task type which is gomg to be processed, more preciséya
functionk : C* — I" such that for everw € C* andc € C\ {0} we havec,(,,) > 0. By scheduling a task of
type(wc), we obtain with probabilityProb((x(we), a)) a seta € M52 of new tasks, which yields the new
configurationc’ := (¢ — (k(wc))) + . We may think of this as moving on frome to wec’ with probability
Prob((k(we), «)). We abbreviate this witwe ~, wec’, and setP(we ~, wec') := Prob((k(we), «))
with ¢’ as defined above.

Let Path, be the set of alpathsw = ¢ ...¢(™ e CT such that for evenyl < i < n we
have cV) ... c® ~s. ¢ ...c+D), Givenc € C, we denote byMPath,(c) the set of all maximal
paths initiated inc, i.e. ¢ = candc™ = 0. Givenw = ¢V ...c™ € MPath.(c), we define
Pr,.[w] = U]ﬂ;llp(c(l) cooe® s e el

We writewe®) ~* wel) ... e if for every 1 < j < i we havewe® - - - ¢l ~s, we) ... U+, We
denote by | the restriction ofs to thosew that satisfy(Y) ~~* w for someY € I'. In other wordsx| is a
partial function such that for eveny satisfying(Y’) ~~% w for someY € I" we havex | (w) = k(w).

Lemma D.1. For everyc € C\ {0} we have}_, c ypau, () Pre[w] = 1, and hencg MPath,(c), Pr,) is a
discrete probability space.

Proof. First, consider the case that= (X) for someX € I'. One can easily show that for every multiset

schedulek the partial functionz| is equal toA, for a suitable online schedulet However, then for every

c...c¢) ¢ MPath,.((X)) there is a unique family tree € 7x (and vice versa) such tha@tr[t] =

Pr,,[cV) ... @] andzV)(t) = ¢V for 1 < j < i (here every:\Y) is evaluated with respect t).
Consequently,

> Pr.[w] = > Pry,fw]= Y Prft]=1

weMPathy ((X)) weMPath, ((X)) teTx

Consider now an arbitrarg € C \ {0}. Finally, starting inc, every computation according to an arbitrary
multiset schedulek can be considered as a parallel compositiofcOEomputations initiated in individual
elements ofc. Hence, the probability of reachin@from c is equal to the probability of reachirgfrom
every symbol inc, which is one. O

Given a multiset schedulerandc € C, we define theandom widthS% on MPath,(c) as follows: Given
w = cW...c®) € MPath,(c), we defineSt(w) = max{|cM],...,|c?} (here eachc?| is the size of
the multisetc(®)).

Lemma D.2. For every online scheduler there is a multiset schedulersuch thatE[S?] = E {SfXOJ . For

every multiset schedulerthere is an online schedulersuch thatE {S” } = E[S7].

(Xo)
Proof. Let o be an online scheduler. It follows directly from definition thy = «| for some multiset
schedulers. Also by Lemma C.2, for every family treewe havePr[t] = Pr. [z (t)--- 2 (¢)] where

n is the least number satisfying™ (t) = 0. Becauses” (1) = Sy, (2()(t)--- 2(")(¢)), we obtain that

E[S°] = E[Sfxw]- On the other hand, every multiset schedulesatisfiess| = A, for a suitable online
schedulew, which implies the second half of the lemma. O

Let us denote bysS,,.,, the set of all multiset schedulers. Givene S,,,,, n > 1, ande € C, we define
Se™ = max{S%, n}. We defineval(n, ¢) = inf.es,,, E[Se"]. We say thak is optimal in[n, c] if E[S¢"] =
val(n, c).

mu

Lemma D.3. val(n, ¢) = minges,,, Yo, ce (€ ~x cc') - val(max{n,[c[},c)

Proof. Given a multiset scheduler, we denote by: a multiset scheduler defined Bfw) = x(cw). For
everyw = cDe® ... ™ € MPath,(c) we have

Sn,n ('UJ) — S'E/vmax{n’lcl}(c(Q) . C(n))

c(1) c(2)

andPr[w] = P(cM ~, cWe®@) - Pry[¢@ .. c™]. It follows that

E[S5"] = 3 Pr, [Cu)...cm)} L gEn (M L)
c)...c(n) e MPath(c)
= 3 Ple~yce?) 3 Prx [c@) . ..c<n>} . nggax{n,lcl}@@))
e~ ec(?) c(@)...c(n) e MPathz (c(@)
— Z P(c ~y cc(2)) . E[Sf(’;lax{n’lcl}]
cw,{cc<2)

Y Pl ed)]3] -
cwncc@)

. 2 . A,max{n,|c|}
ng}r}“ (2(2) P(C e CC()) ')‘Elg{w £ {SC(Z) }>

cw(:cc
Indeed, the inequality- is obvious. For the opposite, observe that given a scheduterm the right hand
side and schedulers,) for everyc® such thate ~. cc®), we may construct a scheduleron the left
hand side that chooses the first step according ta ttreachingec?) and then behaves as.2 (thus
R(c® M) = A 2 (c? - ™). This gives

> Ple~yec?) 'E[Skggax{n,\cl}} = Y Plewcec?) .E[Sié)z; ,max{n,|c|}}

(&
CWKCC(Z) c«»—>< 00(2)

Hencepal(n, ¢) = infyes,,, E[Se™] = minges,,, D o P(c~, cc?)-val(max{n, |c|},c?). O

CrpC

We are now ready to prove Theorem 5.4.

Theorem 5.4. There is an online schedulersuch thatf[S°] = inf, | s onling ELS"]-

Proof. We prove that for every, > 1 there is a multiset schedulefn] which is optimal in[n, ¢| for every
c € C. Then we obtain the desired result from the special case ferl because by Lemma D.2 there is an
online schedules such that

o K[l . . -
E[S7] = E[SQ[(M = val(1, (Xo)) = Algrwa[s?Xoﬂ = inf E[$7]

Givenw = ¢ ...) € T, we writewd(w) = max{|cV|,...,|c?|}. For everyn > 1 we definex|n]
as follows: Giverw € C*, we definex[n](w) to minimizethe following number

Z P(w ~ [we) - val(max{n,wd(w)}, c)

W [WE
Givenn,m > 1, c € C, andc - - - ¢Y) € MPath,(c), we define
wlnln e (1) A6) if 1 <
SZ[”m]”(w) _ Se (c) ifi < m
0 otherwise.

K
G,

Clearly, for everyn > 1 we haveR [sﬂ;ﬁ}”} <E {S

theorem,limmﬁooE[S’c‘%’”} = E[Sﬁ[n]’”} . We prove thaft [S’j[’ﬂn}”} < wal(n, c) for all m > 1, which

:}l]fl} <E [Sg["]’"} , and by the monotone convergence

givesE [SZ”[”]’”] < wal(n,c). The casen = 1 is trivial. Form > 1 we have by Lemma D.3 and induction
hypothesis

val(n,c) = min Z P(c ~ ec) - val(max{n,|cl|},)

GSTHAL
c~yec!
= Z P(c ~ 4 €c') - val(max{n, |c|},c)
CWH[TL]CC’
> P(c ~opp €) - B| gpimaximleilmaxin.lel}
CWK[n]CC/
=[Sz

We turn to the proof of Theorem 5.5. We start by recalling the result:

Theorem 5.5. For sufficiently smalp and (it suffices to choose, e.g.;= 10~ andp := %7"), any online
scheduler that minimizes the expected completion space of the task system

X<—>1/8 (X, X) Xﬁ(Y,Z) X<3—/4>(2) Z S (U, U) 7270
P 1-p 1
Y = (Z,7) Y——10 U—=10

requires infinite memory.

Note that the values := 107° andp := % are not unique. In the course of the proof we provide a
series of inequalities involving andr so that whenever these inequelities are satisfied, the example works
as expected.

To simplify notation in the following, we identify any word € I™* with the multiset which counts how
often a letter ofl” appears iny, e.g. the word” XY is one representation of the multigef, Y, Y").

The proof of Theorem 5.5 relies mainly on the following crucial proposition:

Proposition D.4.

1. Ifkisoptimalin[n +2,YZX"], thenk(YZX") =Y
2. If kisoptimalin[n + 3,YZX"], thenk(YZX") = Z

Let us first explain the intuition behind this proposition, and how from thisiltéheorem 5.5 follows.
Assume that we want to minimize the expected completion space startiigg X" when the maximum
in the history is either + 2, or n + 3. What type we have to choose Yz X™? First, choosingX is not
minimizing (in both cases), because this would increase the number of taskswdthhigher probability
than choosing eithey’, or Z. Now the difference betweeri andZ is that the former generat8gasks (via
ZZ) with a very small probability, while the latter generates at n2otsks but with higher probability. It
follows that if the maximum in the history is + 2, the better choice i¥", because although both and Z
may exceed: + 2, theY exceeds with smaller probability. On the other hand, if the maximum in the history
is n 4 3, then the better choice 8, because it never exceeds- 3 before getting toX" (as opposite td").
Before giving a surprisingly non-trivial proof of Proposition D.4, letahow how this proposition implies
non-existence of a finite memaory online scheduler that minimizes the expectgdetimn space.

Proof. (of Theorem 5.5.) First, let us define a notion of finite memory multiset schedk say that a
multiset schedule is finite memoryf there is a finite state automatohover an alphabel’ and a function
h:Ct — X such that for everg() ... c(" ¢ ¢+ the value ofs(cV) - - - ¢(™) depends only on the state of
A after readingi(c(V)) - - - h(c™) and onc™. It follows from the proof of Lemma D.2 that if is a finite

memory online scheduler that minimizes the expected completion spacel thiga finite memory multiset
scheduler that minimizes the expected completion space. Hence, it suffiskeviahat there is no finite
memory multiset scheduler that minimizes the expected completion space.

To obtain a contradiction, let us assume that a finite memory multiset scheduler that minimizes
the expected completion space. Given a path- - - ¢ € Path, we denote byr(c(V) - .. c®) the word
h(cM) ... h(c™). For everyn > 1 we denote byw, the pathX - X2... X"*+3 . x"+2... X There are
two numbersn < m such that the automatad enters the same state after reading either of the words
h(wy,) andh(w,,). Let us consider the pathg, = w, - X? - X3... X™TL. Y ZX™ andw!, = w,, - X? -
X3...Xm+l .y ZX™, The automaton enters the same staddter reading either of the wordgw!,) and
h(w!,). Hencex(w!,) = k(w],). However, ifx minimizes the completion space, then, by Proposition D.4,
we havers(w],) =Y andx(w!),) = Z, a contradiction. This proves Theorem 5.5. O

It remains to prove Proposition D.4.
For the rest of this proof we denate= % To prove Proposition D.4 we make use of the following three
technical lemmas (Lemma D.5, Lemma D.6, and Lemma D.7 below):

Lemma D.5. There are numberk, ¢ > 0 such that for every, > 1 and everyi > 0 we have

1 valln+i+1,X") <wval(n+1i,X") + k
2. val(n +i,X™) < val(n +i+1,X") —

[More concretely, we may chooge= 1, and/(:= (3)1 - 9]

Proof.

ad 1. For every multiset schedulerwe haveE {Sf(’ﬁ““] <]E[S;’}Z” + 1} = E[S}?Z“] + 1. Hence, it
suffices to defing = 1.

ad 2. Letx be a multiset scheduler which is optimalfim+ ¢ + 1, X"|. Let x,, be a scheduler that behaves
similarly asx except that in configurations of size at mest 2, x,, prefers eithely” or Z to X. Clearly,
E[ng;’"“} = E[S” ”“} andE[S’“”’"““} = IE{S" ”*’“] Now using an arbitrary scheduler a

configuration of the formX"~* is reachable frond&™ with the probability(1 — 2s)* via a pathwg,. of
the formXx"”X"~1... X"~4 Letus denotel, the set of all paths aPath,., that start withw,.., reach an
empty pool of tasks, and after,.. never reach a configuration of the fof¥, Z }* X"™ wherem > n—4.
It is easy to see that for every € A, we haveS?," ' (w) = n + i and S5 T (w) = n+ i + 1,
which implies that

B[S < Pra,] (B[S¥ | Au] = 1)+ (1= PrADE[ST" 4 | MPathy, (X")\ A
= B[S - Pr(4,)

—E [S“ ”““} — Pr[Ay]

Thus every scheduley, which is optimal injn + 7, X", satisfiesE {SA ”*‘} <E [S“ ”“H} — Pr[4,)]

and henceal(n+i, X™) < val(n+i+1, X")—Pr[A,]. We prove thaPr[4,] > (1-2s)*(1—1%) > 0
(hence, it suffices to define:= (1 — 25)*(1 — 2)).

Let us denote by, the probability that using.,, we reach the empty pool of tasks frakf*~* and at
the same time never reach a configuration of the f¢tmz}* X™ wherem > n — 4. We prove that
hy, > 1—12- > 0 using basic results of the theory of random walks, and olitajd,,| = Pr[wgec|-hpn >

(1—2s)*(1 —).

Let us define a sequence of random variadesZs, - - - such that for every patly € MPath,., (X" 2)
the valueZ;(w) is the number ofX-tasks in thei-th moment whenX is chosen to move (i.e. by the
definition of x,,, thei-th moment when the current configuration is of the fakif? for somem). It is
easy to see thafy, Z,, ... is a random walk on the s&" of non-negative whole numbers where the
probability of going fromk > 0to k + 1 is s and the probability of going frome > 0tok — 1is1 — s.

It can be easily shown that the probability of reachinffom n — 2 while avoidingn — 3 is equal to
17(1;% However, this is precisely the probability, and hencé, > 1 — £ > 0.

—s

O
In the rest of this section we writegn, «) instead ofval(m, «).
Lemma D.6. Lete,d > 0 such thatrc + (1 — r)d = 1 andr < ;&5 Then fori > 2 we have
re(n+i+ 1, X"+ 1 —r)dn+i,X") <s(n+i+1, X"+ (1 —s)(n+i, X"
Proof. DenotingL = re(n+i+ 1, X") 4+ (1 — r)d(n + i, X™) we have
L=res(n+i+1, X" +res(n+i+1,YZX") +re(l —2s)(n+i+1, X"
+ (1 =r)ds(n+4, X"+ 1 —r)ds(n+i, YZX")+ 1 —r)d(1l —2s)(n+i, X"
=res(n+i+ 1L, X") frestn+i+1, X") +re(l—2s)(n+i+1, X" (i >2)
+(1=r)ds(n+i, X"+ A —r)ds(n+i, X")+ (1 —r)d(1 —2s)(n+14, X" ")
=res(n+i+ 1L, X" fre(1—s)(n+i+1, X"
+ (1 =r)ds(n+i, X"+ (1 —r)d(l —s)(n+i, X"")
<res(n+i, X" +resk +re(1 —s)(n+4, X") +re(1 — s)k (Lemma D.5)
+(1=r)ds(n+i+1, X" — (1 —r)dst+ (1 —r)d(l —s)(n+i, X" ")
Now because we have choser- % andr so thatr < % we obtain
e 1
resk 4+ re(l — s)k = rek < 6= idsﬁ < (1—r)dst
and thus
L<stre+(1—r)d)(n+i+1, X"+ 1 —s)(rc+ (1 —r)d)(n+i, X"
=s(n+i+1, X"+ (1-s)(n+i, X"
O

ForW € {X,Y, Z}, we write
. = inf E [sg"}
AMa)=W
LemmaD.7.
1. ifxisoptimalin[n + 2, ZZX"|, thenk(ZZX") = Z
2. ifkisoptimalinin+3,ZZZX"|, thenk(ZZZX") = Z

Proof.

ad 1. We have

ILNyogzxn =8n+3,ZZX")+ s(n+3,YZZZX")+ (1-2s)(n+2,2ZX" ")

n

and
If+2 goxn =r(n+3, X"+ (1 —r)(n+2,X")

However, we have choserso thatr < ;&-, and hence < 2 for ¢ = d = 1. Thus by Lemma D.6
IZ 9 2zxn < s(n+3, X" ™) + (1 —s)(n+2, X") < IXy zzxn
ad 2. We have

IXis gzgxn =s(n+ 4, ZZZX")+ s(n+4,YZZZZX" 1)+ (1 —2s)(n+3,2ZZX")

n

and
17 s g02xn =7(n+4,X") + (1 —71)(n+3,X")

We have chosen so thatr < 16k’ and hence < 5~ —de i forc=d = 1. Thus by LemmaD.6

If+3,ZZZXn <s(n+4, X"+ (1-s)(n+3,X"1) < I nt3.227Xn

We are now in the position to prove Proposition D.4.
Proof. (of Proposition D.4.)
ad 1. We have

LXoyzxn =sn+3,YZX" ")+ s(n+3,YZYZX")+ (1—2s)(n+2,YZX")

n

and

Iioyzxn =r(n+3,X")+(1—-r)(n+2,YX")

=r(n+3,X")+Q—-r)pn+2,ZZX")+ (1 —-r)1—p)(n+2,X")
=r(n+3,X")+ (1 —-r)pr(n+3,X") (Lemma D.T)

+1-rpAl—-—r)(n+2,X")+ (1 —-7r)(1—-p)(n+2,X")

=r(l+(1-mp)(n+3,X")+(1—-r)(1—pr)(in+2,X")

Now observe that setting = 1 + (1 — r)p andd = (1 — pr) givesrc + (1 — r)d = 1. Also a

stralghtforward computation reveals that we have chosea thatr < lgwk Hence, by Lemma D.6,

I7_z+2,YZX" < In+2,YZX"
Finally, we have chosemsuch that

T 4
2 rk+0—rl+1r20

<

(9)

p =
which gives us

Dioyzxn =p(n+3,ZZZX") + (1 —p)(n+2,ZX")

n

=prin+4,X")+pl—-r)(n+3,X")+ (1 —p)(n+2,X") (Lemma D.7)

=pr(n+4,X") +p(l-7r)(n+3,X")
+1-rQ=-pr)n+2,X")+(1—-p)—(1—=7r)(1—pr)(n+2,X")
<pr(n+3,X")+prk+p(l—r)(n+3,X") (Lemma D.5)
+(1=-r)1=pr)(n+2,X")+((1—p)— (1 —=7r)(1=pr)(n+3,X")
—((1=p) = (A =r)(A —pr))
<lp+A=-p)—A=r)d=pr)n+3,X")+ (1 -r)A-pr)n+2,X") (Eq.(9))
=r(1+ 1 —-r)p)(n+3,X")+ 1 —-r)1—pr)(n+2,X")
= I oy zxn
Hence,l} oy zxn <17 Sy ZX" < I oyzxn ands(Y ZX™) = Y if xis optimal in[n+2,Y ZX"].
ad 2. We have
I}z/—i-?),YZX" =p(n+3,2Z2ZX")+ (1 —-p)(n+3,ZX")
=prin+4,X")+pQ1—-r)(n+3,X")+ (1 —-p)(n+3,X") (Lemma D.7)
=pr(n+4,X")+ (1 —pr)(n+3,X")
and
L syzxn = (n+3,X")

which impliesI7 sy, xn < 1Y, 5y 7xn- AlSO

isyzxn = (n+3,X")
=s(n+3, X" +s(n+3,YZX")+ (1 -2s)(n+3, X"
=s(n+3, X"+ (1-s)(n+3,X"1
and
IXsyzxn =s(n+3,YZX" ™) +s(n+3,YZYZX" ')+ (1 —2s)(n+3,X")
=sp(n+4,ZZZX") + 5(1 — p)(n + 3, X") (1)
+s(n+3,YZYZX")+ (1—2s)(n+3,X"1)
> sp(n + 4,X”+1) +s(1—p)(n+ 3,X”+1) +(1—=s)(n+3, X”_l)
> sp(n + 3, X") + spl + s(1 — p)(n + 3, X" 1) (Lemma D.6)
+(1=s)(n+3,X"")
=s(n+3, X"+ (1—5)(n+3,X"1) + spl

Hencel? o3y zxn < In+3 v zxn and thuss(YZX") = Zif xis optimal in[n + 3,Y ZX™].

E Optimizing the Bound for Continuing Task Systems

It follows from Theorem 4.3 that, for large the best bound is obtained by maximizing;,,. Now we show

for continuing task systems that thest(i.e., the largesty,,;, can be approximated in polynomial time.
More formally, define the “optimalv,, by v’ = sup{d € R| 3w € [0,00)" : d1 <v > f(v)}.
opt

We show that one can compute, in polynomial time,eaapproximation ofv, . , i.e., a numbew with
|d — v°P" | < e. As we consider continuing task systems we can, fovak I, write fy as fy (x) =

mn

xy - gy (x) + cy wheregy () is linear. Note thaty (1) 4+ ¢y = 1. We can show the following theorem
whose proof closely follows a proof of [15]:

Theorem E.1. Given a continuing task system whose coefficients are givét@asationals, one can com-
pute ane-approximation oﬁ;fﬁn in time poly(|I"|, b, log %) in the usual (Turing) model by solving the fol-

lowing system: maximizésubject to) < d < vy > fy(v)
Proof. The proof follows a proof of [15]. We claim that the following systems (403 (11) are equivalent:

maximized subjectto 0 < d < vy > fy(v) (10)
0 S d S Vy

maximized subject to SYU: L= av(v) (11)
(YoV CY) positive semidefinit

\/Cy Sy

For the equivalence of (10) and (11) note that the condition on the maltré&geg positive semidefinite is
equivalent tovy - sy > cy. Substitutingsy = 1 — gy (v) yieldsvy - (1 — gy (v)) > ¢y which is, using
fy(v) =vy - gy (v) + cy, equivalent tavy > fy-(v). So (10) and (11) are in fact equivalent.

We solve the convex program (10) approximately using the ellipsoid algofitiimFollowing [15], the
ellipsoid algorithm can solve a convex programming problem given (a) aratpn oracle describing the
convex space, (b) a poimtinside the convex space, (c) radiand R such that the ball of radiusaroundv
is inside the convex body, and the ball of radiRisontains the convex body. The running time is polynomial
in the dimension of the space andlirg %.

The fact that (10) describes a convex program follows from thelfiatit is equivalent to the semidefinite
program (11). A separation oracle can also be obtained due to thisaéenge. For the radiuB, note that
all feasible pointse satisfyxzy - ¢y (x) + ¢y < xy forallY € I', implying gy () < 1. Also note that for
everyZ € I' thereis & € I" such thayy (x) depends omx 2, so for allZ € I" and all feasible vectors
we havevy < 1/api, Wherea,,;, > 2-b denotes the smallest nonzero coefficient of the task system. So
we can choos® := |I'] - 2°.

It remains to describe a feasible vector> 1 and aj > 2-P°WI/'b) syuch that every point with
|z —v||,, < ¢ is feasible. (Note thatl poses no problem: it can be choseniasFor that we use the
vectoru from Lemma C.3, i.e.u satisfiesu = f'(1)u + 1. By a computation that is similar to the one in
the proof of Lemma C.3 we have+ ru — f(1 + ru) = r(1 — rQ(u, u)). So we have forall” € I

1+ruy — fy(1+7ru) =7r(1 — ruygy(u))
Letting u,,,, denote the largest componentwive havegy (u) < u,,,., and consequently:

>r(l—ru?,,)

max

By restrictingr to 1/(4u?,,,) <r < 1/(2u?,,,) we haveru?,,. < 1/2 and so:
1
> /2>
ST
By settingd := 1/(16u2,,,):
=26

Summarizing we have + ru — f(1 +ru) > 201.
Let x be any vector with + ru > > 1 + ru — 261. Then we have:

x— f(x)>1+ru—201— f(x) (@asz > 1+ ru —241)

>1+4ru—261— f(1+ru) (asx <1+ ru)
>201-201=0 (by the computation above)

Soif we set := 1 +ru —d1, then allz with |z — v|| < J are feasible. Furthermoré= 1/(16u2,,,) >
2-PO(I'b) hecausau is the solution of the linear equation system= f'(1)x + 1. This completes the

proof. a

