
Space-efficient scheduling of stochastically generated tasks⋆

Tomá̌s Bŕazdil Javier Esparza
Stefan Kiefer Michael Luttenberger

Institut für Informatik, Technische Universität München, Germany
{brazdil,esparza,kiefer,luttenbe}@model.in.tum.de

Abstract. We study the problem of scheduling tasks for execution by a processor when the tasks can stochastically
generate new tasks. Tasks can be of different types, and each type has a fixed, known probability of generatingd
tasks for each numberd. We present results on the random variableSσ modeling the maximal space needed by
the processor to store the currently active tasks when acting under the schedulerσ. We obtain tail bounds for the
distribution ofSσ for both offline and online schedulers, and also bounds on the expectedvalueE[Sσ].

⋆ This work was partially supported by the DFG projectAlgorithms for Software Model Checking.

1 Introduction

We study the problem of scheduling tasks that can stochastically generate new tasks. We assume that the
execution of a taskτ can generate a set of subtasksτ1, τ2, . . . , τd, whered ≥ 0. Tasks can be of different
types, and each type has a fixed, known probability of generatingd subtasks for each numberd. Systems of
tasks can be described using a notation similar to that of stochastic grammars. For instance

X
0.2−֒→ 〈X, X〉 X

0.3−֒→ 〈X, Y 〉 X
0.5−֒→ ∅

Y
0.7−֒→ 〈X〉 Y

0.3−֒→ 〈Y 〉

describes a system with two types of tasks. Tasks of typeX can generate2 tasks of typeX, one task of each
type, or zero tasks with probabilities0.2, 0.3, and0.5, respectively (angular brackets denote multisets). Tasks
of typeY can generate one task, of typeX or Y , with probability0.7 and0.3. Tasks are executed by one
processor. The processor repeatedly selects a task from a pool of unprocessed tasks, processes it, and puts
the generated subtasks (if any) back into the pool. The pool initially containsone task of typeX0, and the
next task to be processed is selected by ascheduler.

We are interested in the random variables modeling the time and space needed tocompletelyexecute a
taskτ , i.e., to empty the pool of unprocessed tasks assuming that initially the pool onlycontains taskτ . We
assume that processing a task takes one time unit, and storing it in the pool takes a unit of memory. So the
completion timeis given by the total number of tasks processed, and thecompletion spaceby the maximum
size reached by the pool during the computation. It is easy to see that the distribution of the completion
time is independent of the scheduler, but that of the completion space is not. The completion time has been
studied in [12], and so the bulk of the paper is devoted to studying the distribution of the completion space
for different classes of schedulers.

Our computational model is abstract, but relevant for different scenarios. In the context of search prob-
lems, a task is a problem instance, and the scheduler is part of a branch-and-bound algorithm (see e.g. [22]).
The processor either directly solves the instance (d = 0), or extracts from it a set of sub-instances (d > 0). In
the more general context of multithreaded computations, a task models a thread, which, executed for at most
one unit of time, either terminates (d = 0), generates a new thread (d = 2), or none of the two (d = 1).1

The problem of scheduling multithreaded computations space-efficiently onmultiprocessor machines has
been extensively studied (see e.g. [27, 6, 2, 1]). However, these papers study the worst-case performance of
certain schedulers over all possible computations generated by all possible programs, when the schedulers
know nothing about the program. We initiate the study of a different problem:schedule computations when
stochastic information on the programs generating them is available (for instance, by collecting statistics on
the behavior of the programs), and obtain stochastic performance bounds. We consider the single-processor
case, which is trivial in the setting of [27, 6, 2, 1], but hard in our setting,and leading to a rich theory.

We study the performance ofonlineschedulers that know the past of the computation, but not its future.
As a measure for their performance, we also study theoptimal offlinescheduler, which has complete infor-
mation about the future of the computation. Intuitively, this scheduler has access to an oracle that knows how
the stochastic choices will be resolved. The oracle can be replaced by a machine that inspects the code of a
task and determines which subtasks it will generate (if any).

We consider task systems with completion probability 1, which can be further divided into those with
finite and infinite expected completion time, often calledsubcritical and critical. Whether a system has
completion probability 1, and if so whether it is critical or subcritical, can be determined in polynomial
time [14]. Many of our results are related to the probability generating functions (pgfs) associated to a task
system. The functions for the example above arefX(x, y) = 0.2x2+0.3xy+0.5 andfY (x, y) = 0.7x+0.3y,

1 Notice that we do not model dependencies between threads, but see thepoint below on depth-first schedulers.

and the reader can easily guess the formal definition. The completion probability is the least fixed point of
the system of pgfs [18].

Our first results (Section 3) concern the distribution of the completion spaceSop of the optimal offline
schedulerop on a fixed but arbitrary task system withf(x) as pgfs (in vector form). We exhibit a surprising
connection between the probabilitiesPr[Sop = k] and theNewton approximantsto the least fixed point of
f(x) (the approximations to the least fixed point obtained by applying Newton’s method for approximating
a zero of a differentiable function tof(x) − x = 0 with seed0). This connection allows us to apply recent
results on the convergence speed of Newton’s method [23, 11], leadingto bounds forPr[Sop ≥ k], and to an
efficient algorithm for approximatingE[Sop]. We then study (Section 4) the distribution ofSσ for an online
schedulerσ. Using a martingale argument we obtain upper and lower bounds for the performance ofany
online schedulerσ in subcritical systems. These bounds suggest a way of assigning weightsto task types
reflecting how likely they are to require large space. We studylight-first schedulers, in which “light” tasks
are chosen before “heavy” tasks with larger components, and obtain animproved tail bound.

So far we have assumed that there are no dependencies between tasks,requiring a task to be executed
before another. We study in Section 4.3 the case in which a task can only terminate after all the tasks it
has (recursively) spawned have terminated. These are thestrict computations studied in [6]. The optimal
scheduler in this case is the one that completely executes the child task beforeits parent, resulting in the
familiar stack-based execution. We determine the exact asymptotic performance of depth-first schedulers.

We finish the paper by presenting some results on minimizing the expected completion space (Section 5).
It is easy to see that in a subcritical system every online scheduler has finite expected completion space. We
show that in a critical system they all have infinite expected value; that is, a scheduler can only achieve a
finite expected value if it has information about the future (loosely speaking, it must look into the code). We
also show that schedulers minimizing the expected completion space exist but require unbounded memory.

Related work.Space-efficient scheduling for search problems or multithreaded computations has been stud-
ied in [22, 27, 6, 2, 1]. However, these papers only study the worst-case: they provide schedulers with a guar-
anteed space-consumption for any computation. In this paper we assume that statistical information is avail-
able on the probability that a computation splits or dies.

Our paper is related to the theory ofurn models[21, 26] andbranching processes, stochastic processes
modeling the evolution of populations whose members can reproduce or die [18, 4]. However, branching pro-
cesses have been studied as models of biological or physical systems, and, in computer science terminology,
the assumption is made that the number of processors isunbounded. The maximum population in this setting
has been studied in [3, 7, 25, 28, 30, 32]. We study the 1-processor case, which to our knowledge has not been
previously studied. Some urn models studied in the literature exactly match our 1-processor model [20, 24],
but the random variable modeling space consumption does not seem to havebeen studied in the setting of
multiple types. In the single-type case, the space consumption correspondsto the maximum of a particular
random walk associated with the Gambler’s-Ruin problem [8, 16, 31].

Recursive state machines [14] and probabilistic pushdown automata [13] can be seen as instances of our
model for schedulers satisfying the following constraint: if threadA spawns threadB, thenB is executed
beforeA. For these schedulers, the completion space corresponds to the maximal recursion depth or stack
height, which has not been studied so far.

2 Preliminaries

Let A be a finite set. We regard elements ofN
A andR

A asvectorsand use boldface (likeu, v) to denote
vectors. The vector whose components are all0 (resp.1) is denoted by0 (resp.1). We use angular brackets to
denote multisets and often identify multisets overA and vectors indexed byA. For instance, ifA = {X, Y }

andv ∈ N
A with vX = 1 andvY = 2, thenv = 〈X, Y, Y 〉. We often shorten〈a〉 to a. M≤2

A denotes the
multisets overA containing at most2 elements.

Definition 2.1. A task systemis a tuple∆ = (Γ, −֒→,Prob, X0) whereΓ is a finite set oftask types, −֒→ ⊆
Γ × M≤2

Γ is a set oftransition rules, Prob is a function assigning positive probabilities to transition rules
so that for everyX ∈ Γ we have

∑
X −֒→α Prob((X, α)) = 1, andX0 ∈ Γ is theinitial type.

We writeX
p−֒→ α wheneverX −֒→ α andProb((X, α)) = p. Executions of a task system are modeled as

family trees, defined as follows. Fix an arbitrary total order� on Γ . A family treet is a pair(N, L) where
N ⊆ {0, 1}∗ is a finite binary tree (i.e. a prefix-closed finite set of words over{0, 1}) andL : N −֒→ Γ is a
labelling such that every nodew ∈ N satisfies one of the following conditions:w is a leaf andL(w) −֒→ ε, or
w has a unique childw0, andL(w) satisfiesL(w) −֒→ L(w0), or w has two childrenw0 andw1, andL(w0),
L(w1) satisfyL(w) −֒→ 〈L(w0), L(w1)〉 andL(w0) � L(w1). Given a nodew ∈ N , the subtree oft rooted
at w, denoted bytw, is the family tree(N ′, L′) such thatw′ ∈ N ′ iff ww′ ∈ N andL′(w′) = L(ww′) for
everyw′ ∈ N ′. If a treet has a subtreet0 or t1, we call this subtree achild of t. (So, the termchild can refer
to a node or a tree, but there will be no confusion.)

We define a functionPr which, loosely speaking, assigns to a family treet its probability (see the as-
sumption below). Lett = (N, L) be a family tree. Assume that the root oft is labeled byX. If t consists

only of the root, andX
p−֒→ ε, thenPr[t] = p; if the root has only one child (the node0) labeled byY , and

X
p−֒→ Y , thenPr[t] = p · Pr[t0]; if the root has two children (the nodes0 and1) labeled byY andZ, and

X
p−֒→ 〈Y, Z〉, thenPr[t] = p · Pr[t0] · Pr[t1]. We denote byTX the set of all family trees whose root is

labeled byX, and byPrX the restriction ofPr to TX . We drop the subscript ofPrX if X is understood.
Example 2.2.Figure 1 shows (a) a task system withΓ = {X, Y, Z}; and (b) a family treet of the system
with probabilityPr[t] = 0.25 · 0.1 · 0.75 · 0.6 · 0.4 · 0.9. The name and label of a node are written close to it.

(a)

X
0.25
−֒−→ 〈Y, Z〉 Y

0.1
−֒−→ 〈X, Z〉 Z

0.4
−֒−→ 〈Y 〉

X
0.75
−֒−→ ∅ Y

0.9
−֒−→ ∅ Z

0.6
−֒−→ ∅

(b)

ε, X

0, Y 1, Z

00, X 01, Z 10, Y

Fig. 1. (a) A task system. (b) A family tree.

Assumptions.Throughout the paper we assume that a task system∆ = (Γ, −֒→,Prob, X0) satisfies the
following two conditions for every typeX ∈ Γ : (1) X is reachablefrom X0, meaning that some tree
in TX0 contains a node labeled byX, and (2)Pr[TX] =

∑
t∈TX

Pr[t] = 1. In other words, we assume
that (TX , PrX) is a discrete probability space withTX as set of elementary events andPrX as probability
function. This is the formal counterpart to assuming that every task is completed with probability 1.

Proposition 2.3. It can be decided in polynomial time whether assumptions (1) and (2) aresatisfied.

Proof. The statement on assumption (1) is trivial. For assumption (2) let theprobability generating function
(pgf) of the task system be defined as the functionf : R

Γ → R
Γ of ∆ where for everyX ∈ Γ

fX(v) =
∑

X
p−֒→〈Y,Z〉

p · vY · vZ +
∑

X
p−֒→〈Y 〉

p · vY +
∑

X
p−֒→∅

p .

It is well known (see e.g. [18]) that assumption (2) holds iff the least fixed point off equals1. This condition
is decidable in polynomial time [14]. The pgff will play a crucial role in the following. ⊓⊔

Derivations and schedulers.Let t = (N, L) be a family tree. Astateof t is a maximal subset ofN in which
no node is a proper prefix of another node (graphically, no node is a proper descendant of another node).
The elements of a states are calledtasks. If s is a state andw ∈ s, then thew-successor ofs is the uniquely
determined states′ defined as follows: ifw is a leaf ofN , thens′ = s \ {w}; if w has one childw0, then
s′ = (s \ {w})∪ {w0}; if w has two childrenw0 andw1, thens′ = (s \ {w})∪ {w0, w1}. We writes ⇒ s′

if s′ is thew-successor ofs for somew. A derivation oft is a sequences1 ⇒ . . . ⇒ sk of states such that
s1 = {ǫ} andsk = ∅. Observe that a tree may have multiple derivations. Ascheduleris a mappingσ that
assigns to a family treet a derivationσ(t) of t. If σ(t) = (s1 ⇒ . . . ⇒ sk), then for every1 ≤ i < k we
denote byσ(t)[i] a task ofsi such thatsi+1 is theσ(t)[i]-successor ofsi. Intuitively, σ(t)[i] is the task ofsi

scheduled byσ. Notice that this definition allows for schedulers that know the tree, and so how the tasks will
behave. In Section 4 we define and study online schedulers which only know the past of the computation.

Example 2.4.A schedulerσ1 may schedule the treet in Figure 1 as follows:{ε} ⇒ {0, 1} ⇒ {0, 10} ⇒
{0} ⇒ {00, 01} ⇒ {01} ⇒ {}. Letσ2 be the scheduler which always picks the least unprocessed task w.r.t.
the lexicographical order on{0, 1}∗. (This is an example of an online scheduler.) It schedulest as follows:
{ε} ⇒ {0, 1} ⇒ {00, 01, 1} ⇒ {01, 1} ⇒ {1} ⇒ {10} ⇒ {}.

Time and space.GivenX ∈ Γ , we define a random variableTX , thecompletion time ofX, that assigns to
a treet ∈ TX its number of nodes. If we assume that each task is executed during one time unit before its
generated subtasks are returned to the pool, thenTX corresponds indeed to the time the processor needs to
completely executeX. Notice thatTX does not depend on a scheduler, and that our assumptions guarantee
thatTX is always finite. However, the expectationE[TX] may or may not be finite. A task system∆ is called
subcritical if E[TX] is finite for everyX ∈ Γ . Otherwise it is calledcritical. If ∆ is subcritical, thenE[TX]
can be easily computed by solving a system of linear equations [12]. The notion of criticality comes from
the theory of branching processes, see e.g. [18, 4]. Here we only recall the following results:

Proposition 2.5 ([18, 14]).Let∆ be a task system with pgff . Denote byf ′(1) the Jacobian matrix of partial
derivatives off evaluated at1. If ∆ is critical, then the spectral radius off ′(1) is equal to1; otherwise it is
strictly less than1. It can be decided in polynomial time whether∆ is critical.

A state models a pool of tasks awaiting to be scheduled. We are interested in themaximal size of the pool dur-
ing the execution of a derivation. So we define therandom widthSσ

X as follows. Ifσ(t) = (s1 ⇒ . . . ⇒ sk),
thenSσ

X(t) := max{|s1|, . . . , |sk|}, where|si| is the cardinality ofsi. Sometimes we writeSσ(t), meaning
Sσ

X(t) for the typeX labelling the root oft. If we write Sσ without specifying the application to any tree,
then we meanSσ

X0
.

Example 2.6.For the schedulers of Example 2.4 we haveSσ1(t) = 2 andSσ2(t) = 3.

3 Optimal (Offline) Schedulers

Let Sop be the random variable that assigns to a family tree the minimal width of its derivations. We call
Sop(t) the optimal widthof t. The optimal scheduler assigns to each tree a derivation with optimal width.
In the multithreading scenario, it corresponds to a scheduler that can inspect the code of a thread and decide
whether it will spawn a new thread or not. While in most scenarios the optimal scheduler is not realizable or
computationally too expensive, it provides an absolute lower bound for thespace resources. The following
proposition characterizes the optimal width of a tree in terms of the optimal width ofits children.

Proposition 3.1. Let t be a family tree. Then

Sop(t) =






min {max{Sop(t0) + 1, Sop(t1)}, max{Sop(t0), S
op(t1) + 1}} if t has two childrent0, t1

Sop(t0) if t has exactly one childt0
1 if t has no children.

Proof sketch (see the appendix for more details).The only nontrivial case is whent has two childrent0 andt1.
Consider the following schedulings fort, wherei ∈ {0, 1}: Execute first all tasks ofti and then all tasks of
t1−i; within bothti andti−1, execute tasks in optimal order. While executingti, the root task oft1−i remains
in the pool, and so the completion space iss(i) = max{Sop(ti) + 1, Sop(t1−i)}. The optimal scheduler
chooses the value ofi that minimizess(i). ⊓⊔

Given a typeX, we are interested in the probabilitiesPr
[
Sop

X ≤ k
]

for k ≥ 1. Proposition 3.1 yields a
recurrence relation which at first sight seems difficult to handle. However, using results of [10, 9] we can
exhibit a surprising connection between these probabilities and the pgff .

Let µ denote the least fixed point off and recall from Section 2 thatµ = 1. Clearly,1 is a zero of
f(x) − x. It has recently been shown thatµ can be computed by applying tof(x) − x Newton’s method
for approximating a zero of a differentiable function [14, 23]. More precisely,µ = limk→∞ ν(k) where

ν(0) = 0 and ν(k+1) = ν(k) + (I − f ′(ν(k)))−1
(
f(ν(k)) − ν(k)

)

andf ′(ν(k)) denotes the Jacobian matrix of partial derivatives off evaluated atν(k) and I the identity
matrix. Computingµ, however, is in our case uninteresting: Recall that we assumePr[TX] = 1 for every
typeX, and in this case it is well-known thatµ = 1 [18]. So, why do we need Newton’s method? Because
the sequence of Newton approximants provides exactly the information we are looking for:

Theorem 3.2. Pr
[
Sop

X ≤ k
]

= ν
(k)
X for every typeX and everyk ≥ 0.

Proof sketch (see the appendix full proofs).We illustrate the proof idea on the one-type task system with
pgf f(x) = px2 + q, whereq = 1 − p. Let T≤k andT=k denote the sets of treest with Sop(t) ≤ k and
Sop(t) = k, respectively. We showPr[T≤k] = ν(k) for all k by induction onk. The casek = 0 is trivial.
Assume thatν(k) = Pr[T≤k] holds for somek ≥ 0. We provePr[T≤k+1] = ν(k+1). Notice that

ν(k+1) := ν(k) +
f(ν(k)) − ν(k)

1 − f ′(ν(k)
= ν(k) + (f(ν(k)) − ν(k)) ·

∞∑

i=0

f ′(ν(k))i .

Let B(0)
k+1 be the set of trees that have two children both of which belong toT=k, and, for everyi ≥ 0, let

B(i+1)
k+1 be the set of trees with two children, one belonging toT≤k, the other one toB(i)

k+1. By Proposition 3.1

we haveT≤k+1 =
⋃

i≥0 B
(i)
k+1. We provePr

[
B(i)

k+1

]
= f ′(ν(k))i (f(ν(k) − ν(k)) by an (inner) induction

on i, which completes the proof. For the basei = 0, let A≤k be the set of trees with two children in
T≤k; by induction hypothesis we havePr[A≤k] = pν(k)ν(k). In a tree ofA≤k either (a) both children

belong toT=k, and sot ∈ B(0)
k+1, or (b) at most one child belongs toT=k. By Proposition 3.1, the trees

satisfying (b) belong toT≤k. In fact, a stronger property holds: a tree ofT≤k either satisfies (b) or it has one

single node. Since the probability of the tree with one node isq, we getPr[A≤k] = Pr
[
B(0)

k+1

]
+Pr[T≤k]−q.

Applying the induction hypothesis again we obtainPr
[
B(0)

k+1

]
= pν(k)ν(k) + q − ν(k) = f(ν(k)) − ν(k).

For the induction step, leti > 0. Divide B(i)
k+1 into two sets, one containing the trees whose left (right)

child belongs toB(i)
k+1 (to T≤k), and the other the trees whose left (right) child belongs toT≤k (to B(i)

k+1).

Using both induction hypotheses, we get that the probability of each set ispν(k)f ′(ν(k))i(f(ν(k)) − ν(k)).

SoPr
[
B(i+1)

k+1

]
= (2pν(k)) · f ′(ν(k))i(f(ν(k)) − ν(k)). Sincef(x) = px2 + q we havef ′(ν(k)) = 2pν(k),

and soPr
[
B(i+1)

k+1

]
= f ′(ν(k))i+1(f(ν(k) − ν(k)) as desired. ⊓⊔

Example 3.3.Consider the task systemX
p−֒→ 〈X, X〉, X

q−֒→ ∅ with pgf f(x) = px2 + q, wherep is a
parameter andq = 1 − p. The least fixed point off is 1 if p ≤ 1/2 andq/p otherwise. So we consider
only the casep ≤ 1/2. The system is critical forp = 1/2 and subcritical forp < 1/2. Using Newton
approximants we obtain the following recurrence relation for the distribution of the optimal scheduler, where
pk := Pr[Sop ≥ k]: pk+1 = (pp2

k)/(1 − 2p + 2ppk). In particular, for the critical valuep = 1/2 we get
pk = 21−k andE[Sop] =

∑
i≥1 Pr[Sop ≥ k] = 2.

Theorem 3.2 allows to compute the probability mass function ofSop . As a Newton iteration requires
O(|Γ |3) arithmetical operations, we obtain the following corollary, where by the unit cost model we refer
to the cost in the Blum-Shub-Smale model, in which arithmetic operations have cost1 independently of the
size of the operands.

Corollary 3.4. Pr
[
Sop

X = k
]

can be computed in timeO(k · |Γ |3) in the unit cost model.

It is easy to see that Newton’s method converges quadratically for subcritical systems (see e.g. [29]). For
critical systems, it has recently been proved that Newton’s method still converges linearly [23, 11]. These
results lead to tail bounds forSop

X :

Corollary 3.5. For any task system∆ there are real numbersc > 0 and0 < d < 1 such thatPr
[
Sop

X ≥ k
]
≤

c · dk for all k ∈ N. If ∆ is subcritical, then there are real numbersc > 0 and 0 < d < 1 such that
Pr
[
Sop

X ≥ k
]
≤ c · d2k

for all k ∈ N.

4 Online Schedulers

From this section on we concentrate on online schedulers that only know thepast of the computation. For-
mally, a schedulerσ is online if for every treet with σ(t) = (s1 ⇒ . . . ⇒ sk) and for every1 ≤ i < k, the
taskσ(t)[i] depends only ons1 ⇒ . . . ⇒ si and on the restriction of the labelling functionL to

⋃i
j=1 sj .

Fix an online schedulerσ. For every treet with σ(t) = (s1 ⇒ . . . ⇒ sk) and for everyj ≥ 0, let z(j)(t)
denote the multiset of types labelling the tasks ofsj if j ≤ k (i.e.,z(j)(t) = 〈L(w) | w ∈ sj〉), and the empty
multiset otherwise. One can show that an online schedulerσ induces a partial functionΛσ : (NΓ)∗ → Γ
defined as follows:Λσ(c(1) . . . c(i)) is defined if there is a treet such thatσ(t) = (s1 ⇒ . . . ⇒ sk) with
k ≥ i andc(1) = z(1)(t), . . . , c(i) = z(i)(t); in this caseΛσ(c(1) . . . c(i)) = L(σ(t)[i]). Intuitively, if Λσ

receives as input the multisets of types of the statess1, . . . , si, then it returns the type of the task ofsi picked
up by the scheduler. The following lemma, an easy consequence of the definitions, allows us to identify an
online schedulerσ with the functionΛσ.

Lemma 4.1. Letσ1, σ2 be online schedulers. IfΛσ1 = Λσ2 , thenPr[Sσ1 = k] = Pr[Sσ2 = k] for all k ≥ 1.

LetX(i) = Λσ(z(1), . . . ,z(i)), i.e.,X(i) is the type picked up at thei-th step. ThenX(i) is randomly replaced
by new types according to the distribution on the transition rules. More precisely, if r(i) := z(i+1) − z(i) +
X(i), thenPr

[
r(i) = α | X(i) = X

]
=
∑

X
p−֒→α

p.

A Normal Form for Task Systems.It is convenient to introduce a normal form for task systems, which allows
us to formulate our results more succinctly and clearly. For every scheduler of the normal form we can
find a scheduler of the original system with nearly the same properties. A type is called compact if, loosely
speaking, it can eventually reproduce. Formally, a typeW is compactif there is a ruleX −֒→ 〈Y, Z〉 such
that X is reachable fromW . A task system iscompactif all its types are compact. A non-compact task
system can be compacted by iterating the following procedure: remove all rules with non-compact types on
the left hand side, and remove all occurrences of non-compact types on the right hand side of all rules.

Proposition 4.2. Let us denote byΓ ′ the set of all task types removed from∆ by the above compacting
procedure and let|Γ ′| = ℓ. If X0 ∈ Γ ′, then there is a schedulerσ such thatSσ ≤ ℓ.

Assume thatX0 6∈ Γ ′. Let∆′ be the compacted version of∆ (i.e.,Γ \ Γ ′ is the set of task types of∆′).
Every schedulerσ′ for ∆′ can be transformed into a schedulerσ for ∆ such that for allk

Pr
[
Sσ′,∆′ ≥ k

]
≤ Pr

[
Sσ,∆ ≥ k

]
≤ Pr

[
Sσ′,∆′ ≥ k − ℓ

]
.

(The second superscript ofS indicates the task system on which the scheduler operates.)

Notice that computingσ from σ′ is easy:σ acts likeσ′ but gives preferences to the types that have been (first)
eliminated during the compacting procedure.
Further assumption: From now on we assume that task systems are compact.

4.1 Tail Bounds for Online Schedulers

The following main theorem gives computable lower and upper bounds whichhold uniformly for all online
schedulersσ.

Theorem 4.3. Let ∆ be subcritical. Letv, w ∈ (1,∞)Γ be vectors withf(v) ≤ v andf(w) ≥ w. Such
vectors exist and can be computed in polynomial time. Denote byvmin andwmax the least component ofv
and the greatest component ofw, respectively. Then

wX0 − 1

wk+2
max − 1

≤ Pr[Sσ ≥ k] ≤ vX0 − 1

vk
min − 1

for all online schedulersσ.

Proof sketch.Chooseh > 1 andu ∈ (0,∞)Γ such thathuX = vX for all X ∈ Γ . Define for alli ≥ 1 the
variablem(i) = z(i) u where “” denotes the scalar product, i.e.,m(i) measures the number of tasks at timei

weighted by types according tou. One can show thathm(1)
, hm(2)

, . . . is a supermartingale for any online
schedulerσ, and, using the Optional Stopping Theorem [33], thatPr

[
supi m

(i) ≥ x
]
≤ (vX0 − 1)/(hx − 1)

for all x (see the appendix for the details and [16, 31] for a similar argument on random walks). As each
type has at least weightumin, we have thatSσ ≥ k implies supi m

(i) ≥ kumin. HencePr[Sσ ≥ k] ≤
Pr
[
supi m

(i) ≥ kumin

]
≤ (vX0 − 1)/(vk

min − 1). The lower bound is shown similarly. ⊓⊔
Theorem 4.3 stakes out the “playing field” in which all online schedulers perform. A comparison of the

lower bound with Corollary 3.5 proves that the asymptotic performance of any online schedulerσ is far away
from that of the optimal offline scheduler: the ratioPr[Sσ ≥ k] /Pr[Sop ≥ k] is unbounded.

Example 4.4.Consider again the task system with pgff(x) = px2 + q. Forp < 1/2 the pgf has two fixed
points,1 andq/p. In particular,q/p > 1, soq/p can be used to obtain both an the upper and a lower bound for
online schedulers. Since there is only one type of tasks, vectors have only one component, and the maximal
and minimal components coincide; moreover, in this case the exponentk + 2 of the lower bound can be
improved tok. So the upper and lower bounds coincide, and we getPr[Sσ ≥ k] = q/p−1

(q/p)k−1
for every online

schedulerσ. In particular, as one intuitively expects, all online schedulers are equivalent.2

2 For this examplePr[Sσ ≥ k] can also be computed by elementary means.

Notice that any vectorv satisfyingf(v) ≤ v leads to an upper bound on the performance of the sched-
uler. So we can try to compute the vectorv leading to the tightest bound. In Appendix E we show how to
compute, in polynomial time, anǫ-approximation ofsup{vmin | f(v) ≤ v} for the class ofcontinuing task

systems. A task system is continuing if for every ruleX
p−֒→ 〈Y, Z〉 we haveY = X or Z = X. Intuitively,

in a continuing task system a task does not change its type when it spawns a new task.

4.2 Tail Bounds for Light-First Schedulers

We present a class of online schedulers for which a sharper upper bound than the one given by Theorem 4.3
can be proved. Intuitively, a good heuristic is to pick the task with the smallest expected completion time.
If we compute a vectorv with f(v) ≤ v in polynomial time according to the proof of Theorem 4.3, then
the typeXmin for which vXmin

= vmin holds turns out to be the type with smallest expected completion
time. This suggests choosing the active typeX with smallest component inv. So we look atv as a vector of
weights, and always choose the lightest active type. For this scheduler we obtain two different upper bounds.

Given a vectorv with f(v) ≤ v we denote by⊑ a total order onΓ such that wheneverX ⊑ Y then
vX ≤ vY . If X ⊑ Y , then we say thatX is lighter thanY . Thev-light-first scheduleris an online scheduler
that, in each step, picks a task of the lightest type available in the pool according to v. Theorem 4.5 below
strengthens the upper bound of Theorem 4.3 for light-first schedulers. For the second part of Theorem 4.5 we
use the notion ofv-accumulating types. A typeX ∈ Γ is v-accumulating if for everyk ≥ 0 thev-light-first
scheduler has a nonzero probability of reaching a state with at leastk tasks of typeX in the pool.

Theorem 4.5. Let∆ be subcritical andv ∈ (1,∞)Γ with f(v) ≤ v. Letσ be av-light-first scheduler. Let
vminmax := minX −֒→〈Y,Z〉 max{vY , vZ} (here the minimum is taken over all transition rules with two types
on the right hand side). Thenvminmax ≥ vmin and for allk ≥ 1

Pr[Sσ ≥ k] ≤ vX0 − 1

vminvk−1
minmax − 1

.

Moreover, letvminacc := min{vX | X ∈ Γ, X is v-accumulating}. Thenvminacc ≥ vminmax, vminacc

can be computed in polynomial time, and there is an integerℓ such that for allk ≥ ℓ

Pr[Sσ ≥ k] ≤ vX0 − 1

vℓ
minvk−ℓ

minacc − 1
.

Proof sketch.Recall the proof sketch of Theorem 4.3 where we used thatSσ ≥ k impliessupi m
(i) ≥ kumin,

as each type has at least weightumin. Let ℓ be such that no more thanℓ tasks of non-accumulating type can
be in the pool at the same time. ThenSσ ≥ k impliessupi m

(i) ≥ ℓumin + (k − ℓ)uminacc which leads to
the final inequality of Theorem 4.5 in a way analogous to the proof sketch ofTheorem 4.3. ⊓⊔

Intuitively, a light-first scheduler “works against” light tasks by picking them as soon as possible. In this
way it may be able to avoid the accumulation of some light types, so it may achievevminacc > vmin. This
is illustrated in the following example.
Example 4.6.Consider the task system with two types of tasks and pgfsx = a2xy + a1y + a0 andy =
b2xy+b1y+b0, wherea2+a1+a0 = 1 = b2+b1+b0 = 1. The system is subcritical ifa1b2 < a2b1−a2+b0.
The pgfs have a greatest fixed pointv with

vX = (1 − a2 − b1 − a1b2 + a2b1)/b2 and vY = (1 − b1 − b2)/(a2 + a1b2 − a2b1) .

We havevX ≤ vY iff a2 − b2 ≤ a2b1 − a1b2, and so the light-first scheduler choosesX beforeY if this
condition holds, andY beforeX otherwise. We show that the light-first scheduler is asymptotically optimal.
Assume w.l.o.g.vX ≤ vY . ThenX is not accumulating (becauseX-tasks are picked as soon as they are
created), and sovminacc = vY . So the upper bound for the light-weight scheduler yields a constantc2 such
thatPr[Sσ ≥ k] ≤ c2/vk

Y . But the general lower bound for arbitrary online schedulers states that there is a
constantc1 such thatPr[Sσ ≥ k] ≥ c1/vk

Y , so we are done.

4.3 Tail Bounds for Depth-first Schedulers

Space-efficient scheduling of multithreaded computations has received considerable attention [27, 6, 2, 1].
The setting of these papers is slightly different from ours, because theyassume data dependencies among the
threads, which may cause a thread to wait for a result from another thread. In this sense our setting is similar
to that of [22], where, in thread terminology, the threads can execute independently. Most results of [27, 6, 2,
1] are fordepth-firstcomputations, in which, loosely speaking, if threadA has to wait for threadB, thenB
is a descendant ofA (i.e.,B was spawned byA or by a descendant ofA). As observed in [6, 27], the optimal
scheduler for this class of computations is the one that, whenA spawnsB, interrupts the execution ofA and
continues withB; this scheduler (which is online) produces the familiar stack-based execution.

In this section we study the performance of this scheduler. In our setting, this corresponds to studying
depth-first schedulers. A depth-first schedulerσλ is given in terms of a functionλ that assigns to each rule
X −֒→ 〈Y, Z〉 eitherY Z or Z Y , i.e.,λ fixes an order on the tasks of the right-hand side. Intuitively, if the
function assignsY Z to X, this means thatZ models the continuation of the threadX, whileY models a new
thread for whose terminationZ waits. Formally, ifX −֒→ α is a rule in the task system, thenλ(X −֒→ α) = β
whereβ ∈ Γ ∗ andα is the Parikh image ofβ (i.e., a multiset of task types occurring inβ such that the
number of occurrences of any task typeX in β is the same as inα).

The depth-first schedulerσλ keeps as an internal data structure a wordw ∈ Γ ∗, a “stack”, such that the
Parikh image ofw is the multiset of the task types in the pool. Ifw = Xw′ for somew′ ∈ Γ ∗, thenσ picksX.
Assume that a transition ruleX −֒→ α “fires”. Thenσλ replacesXw′ by βw′ whereβ = λ(X −֒→ α).

In the rest of the section we analyzeSσ for a fixed depth-first schedulerσ. Define for all vectorsu, v the
vectorsL(u) andQ(u, v) such that for allX ∈ Γ

L(u)X :=
∑

X
p−֒→Y

puY and Q(u, v)X :=
∑

X
p−֒→Y Z

puY uZ .

Note that the sums extend over the rules after applyingλ. Also note thatL is a linear vector function and we
view it as a matrix whose rows and columns are indexed withΓ . Furthermore, we writeQ(·, v) andQ(u, ·)
for the matrices withQ(·, v)u = Q(u, v) = Q(u, ·)v.
Our main theorem determines the exact asymptotic behavior ofPr[Sσ ≥ k] for a depth-first schedulerσ:

Theorem 4.7. Let ∆ be subcritical andσ be any depth-first scheduler. Letρ be the spectral radius of
(I − L − Q(1, ·))−1Q(·,1). Then0 < ρ < 1 and Pr[Sσ ≥ k] ∈ Θ(ρk), i.e, there arec, C > 0 such
that cρk ≤ Pr[Sσ ≥ k] ≤ Cρk for all k.

Proof sketch.The proof idea is to computePr[Sσ
X ≥ k] for all X ∈ Γ at the same time. To this end, we

define, for allk ≥ 1, the vectors[k] ∈ [0, 1]Γ such thats[k]X = Pr[Sσ
X ≥ k] for all X. The following

recurrence holds fors[k]:

Lemma 4.8. LetA[k] := L + Q(1 − s[k], ·). Then(I − A[k])−1 exists and for allk ≥ 1

s[k + 1] = A[k]s[k + 1] + Q(·,1)s[k] = (I − A[k])−1Q(·,1)s[k] .

The upper bound of Theorem 4.7 follows by iterating Lemma 4.8. The lower bound is involved, and heavily
relies on the Perron-Frobenius theorem for nonnegative matrices. Seethe appendix for a full proof. ⊓⊔

Note that one can approximate the spectral radius in polynomial time using a binary search which uses
the fact that the spectral radius of a nonnegative matrixM is at leastr if and only if Mx ≥ rx holds for
a nonnegative, nonzero vectorx (see e.g. Thm. 2.1.11 of [5] and cf. [14]), a condition that can be checked
in polynomial time with linear programming. Observe also that Lemma 4.8 shows thats[k + 1] can be
computed froms[k] by solving a linear equation system. This requiresO(|Γ |3) arithmetical operations, so
one can computePr[Sσ = k] in timeO(k · |Γ |3) in the unit-cost model, cf. Corollary 3.4.

5 Expectations

In this section we study the expected completion space, i.e., the expectationE[Sσ] for both offline and online
schedulers. Fix a task system∆ = (Γ, −֒→,Prob, X0).

Optimal (Offline) Schedulers.The results of Section 3 allow to efficiently approximate the expecta-
tion E[Sop]. Recall that for any random variableR with values in the natural numbers we haveE[R] =∑∞

i=1 Pr[R ≥ i]. So we can (under-) approximateE[R] by
∑k

i=1 Pr[R ≥ i] for finite k. We say thatk terms

computeb bits ofE[Sop] if E[Sop] −∑k−1
i=0 (1 − ν

(i)
X0

) ≤ 2−b.

Theorem 5.1. The expectationE[Sop] is finite (no matter whether∆ is critical or subcritical). Moreover,
O(b) terms computeb bits ofE[Sop]. If the task system∆ is subcritical, thenlog2 b +O(1) terms computeb
bits ofE[Sop]. Finally, computingk terms takes timeO(k · |Γ |3) in the unit cost model.

Online Schedulers.The main result for online schedulers states that the finiteness ofE[Sσ] does not depend
on the choice of the online schedulerσ. It is easy to see that if∆ is subcritical, then every online scheduler
has finite expected completion time. We show:

Theorem 5.2. If ∆ is critical, thenE[Sσ] is infinite for every online schedulerσ.

Proof sketch.For this sketch we focus on the case whereX0 is reachable from every type. By Proposi-
tion 2.5 the spectral radius off ′(1) equals1. Then Perron-Frobenius theory guarantees the existence of a
vectoru with f ′(1)u = u anduX > 0 for all X. Using a martingale argument, similar to the one of
Theorem 4.3, one can show that the sequencem(1), m(2), . . . with m(i) := z(i) u is a martingale for ev-
ery schedulerσ, and, using the Optional-Stopping Theorem, thatPr[Sσ ≥ k] ≥ uX0/(k + 2). So we have
E[Sσ] =

∑∞
k=1 Pr[Sσ ≥ k] ≥∑∞

k=1 uX0/(k + 2) = ∞. ⊓⊔
Since we can decide in polynomial time whether a system is subcritical or critical,we can do the same to
decide on the finiteness of the expected completion time.

Depth-first Schedulers.We show how to approximateE[Sσ] for a given depth-first schedulerσ and a sub-
critical ∆. Again, we approximateE[Sσ] by

∑k
i=1 Pr[Sσ ≥ i] for finite k. The following theorem shows

that this is efficient. (Recall for the following statement that the 1-norm‖v‖1 of a vectorv is the sum of the
absolute values of its components, and the norm‖M‖1of a matrixM is the maximal 1-norm of its columns.)

Theorem 5.3. Let∆ be subcritical, and letB := (L+Q(1, ·))∗Q(·,1). Then(I−B)−1 exists andE[Sσ]−
u[k] ≤

∥∥(I − B)−1
∥∥

1
‖s[k]‖1 for all k ≥ 1, whereu[k] :=

∑k
i=1 s[i]X0 =

∑k
i=1 Pr[Sσ ≥ i]. Hence,O(b)

terms computeb bits ofE[Sσ]. Finally, computingk terms takes timeO(k · |Γ |3) in the unit cost model.

Online Schedulers minimizing expected completion space.We conclude the section with some results about
online schedulers that minimize the expected completion space. First we provethat they always exist. Then
we show that, however, they require infinite memory.

Theorem 5.4. There is an online schedulerσ such thatE[Sσ] = inf{π|π is online} E[Sπ].

An online schedulerσ requiresfinite memoryif there is a deterministic finite state automatonA over an
alphabetΣ and a functionh : N

Γ → Σ such that the value ofΛσ(c(1) · · · c(i)) depends only onc(i) and on
the state ofA after readingh(c(1)) · · ·h(c(i)).

Theorem 5.5. For sufficiently smallp and r (it suffices to chooser := 10−5 and p := 1
2r), any online

scheduler that minimizes the expected completion space of the following task system requires infinite memory:

X
1/8−֒−→ 〈X, X〉 X

1/8−֒−→ 〈Y, Z〉 X
3/4−֒−→ ∅ Z

r−֒→ 〈U, U〉 Z
1−r−֒−→ ∅

Y
p−֒→ 〈Z, Z〉 Y

1−p−֒−→ ∅ U
1−֒→ ∅

6 Conclusions

We have initiated the study of scheduling tasks that can stochastically generate other tasks. We have provided
strong results on the performance of both online and offline schedulers for the case of one processor and task
systems with completion probability 1. While we profited from the theory of branching processes, the theory
considers (in computer science terms) systems with an unbounded number ofprocessors, and therefore many
questions had not been addressed before or even posed.

References

1. K. Agrawal, C.E. Leiserson, Y. He, and W.J. Hsu. Adaptive work-stealing with parallelism feedback.ACM TOCS, 26(3), 2008.
2. N.S. Arora, R.D. Blumofe, and C.G. Plaxton. Thread scheduling for multiprogrammed microprocessors.Theory of Computing

Systems, 34:115–144, 2001.
3. K.B. Athreya. On the maximum sequence of a critical branching process.Annals of Probability, 16:502–507, 1988.
4. K.B. Athreya and P.E. Ney.Branching Processes. Springer, 1972.
5. A. Berman and R.J. Plemmons.Nonnegative matrices in the mathematical sciences. Academic Press, 1979.
6. R.D. Blumofe and C.E. Leiserson. Scheduling multithreaded computations by work stealing.Journal of the ACM, 46(5):720–

748, 1999.
7. K.A. Borovkov and V.A. Vatutin. On distribution tails and expectations ofmaxima in critical branching processes.Journal of

Applied Probability, 33(3):614–622, 1996.
8. J.L. Coolidge. The gambler’s ruin.Annals of Mathematics, 10(4):181–192, 1909.
9. J. Esparza, S. Kiefer, and M. Luttenberger. An extension of Newton’s method toω-continuous semirings. InDLT’07, LNCS

4588, pages 157–168. Springer, 2007.
10. J. Esparza, S. Kiefer, and M. Luttenberger. On fixed point equations over commutative semirings. InSTACS’07, LNCS 4397,

pages 296–307. Springer, 2007.
11. J. Esparza, S. Kiefer, and M. Luttenberger. Convergence thresholds of Newton’s method for monotone polynomial equations.

In STACS 2008, pages 289–300, 2008.
12. J. Esparza, A. Kǔcera, and R. Mayr. Quantitative analysis of probabilistic pushdown automata: Expectations and variances. In

LICS 2005, pages 117–126. IEEE Computer Society, 2005.
13. J. Esparza, A. Kǔcera, and R. Mayr. Model checking probabilistic pushdown automata. In LICS 2004, pages 12–21. IEEE

Computer Society, 2004.
14. K. Etessami and M. Yannakakis. Recursive markov chains, stochastic grammars, and monotone systems of nonlinear equations.

Journal of the ACM, 56(1):1–66, 2009. Earlier version appeared in STACS’05, pp. 340–352.
15. R. Fagin, A.R. Karlin, J. Kleinberg, P. Raghavan, S. Rajagopalan, R. Rubinfeld, M. Sudan, and A. Tomkins. Random walks

with “back buttons”.Annals of Applied Probability, 11(3):810–862, 2001.
16. W. Feller.An introduction to probability theory and its applications, volume I. John Wiley & Sons, 1968.
17. M. Gr̈otschel, L. Lov́asz, and A. Schrijver.Geometric Algorithms and Combinatorial Optimization. Springer, second edition,

1993.
18. T.E. Harris.The Theory of Branching Processes. Springer, 1963.
19. R.A. Horn and C.A. Johnson.Matrix Analysis. Cambridge University Press, 1985.
20. S. Janson. Functional limit theorems for multitype branching processes and generalized Pólya urns.Stochastic Processes and

their Applications, 110:177–245, 2004.
21. N.L. Johnson and S. Kotz.Urn Models and Their Application. John Wiley & Sons, 1977.
22. R.M. Karp and Y. Zhang. Randomized parallel algorithms for backtrack search and branch-and-bound computation.Journal of

the ACM, 40(3):765–789, 1993.
23. S. Kiefer, M. Luttenberger, and J. Esparza. On the convergence of Newton’s method for monotone systems of polynomial

equations. InSTOC 2007, pages 217–226. ACM, 2007.
24. S. Kotz, H. Mahmoud, and P. Robert. On generalized Pólya urn models.Statistics & Probability Letters, 49:163–173, 2000.
25. T. Lindvall. On the maximum of a branching process.Scandinavian Journal of Statistics, 3:209–214, 1976.
26. H. Mahmoud.Pólya Urn Models. CRC Press, 2008.
27. G.J. Narlikar and G.E. Belloch. Space-efficient scheduling of nested parallelism.ACM TOPLAS, 21(1):138–173, 1999.
28. O. Nerman. On the maximal generation size of a non-critical galton-watson process.Scandinavian Journal of Statistics,

4(3):131–135, 1977.
29. J.M. Ortega and W.C. Rheinboldt.Iterative solution of nonlinear equations in several variables. Academic Press, 1970.
30. A.G. Pakes. A limit theorem for the maxima of the para-critical simple branching process.Advances in Applied Probability,

30:740–756, 1998.
31. F. Spitzer.Principles of Random Walk. Springer, 1976.
32. A. Sp̆ataru. A maximum sequence in a critical multitype branching process.Journal of Applied Probability, 28(4):893–897,

1991.
33. D. Williams.Probability with Martingales. Cambridge University Press, 1995.

A Proofs of Section 2

A.1 Proof of Proposition 2.5

Proposition 2.5 ([18, 14]).Let∆ be a task system with pgff . Denote byf ′(1) the Jacobian matrix of partial
derivatives off evaluated at1. If ∆ is critical, then the spectral radius off ′(1) is equal to1; otherwise it is
strictly less than1. It can be decided in polynomial time whether∆ is critical.

Proof. One can show (see e.g. [13]) thatE[TX] is theX-component of the least nonnegative fixed point of
f ′(1)x + 1, i.e., theX-component of the (componentwise) least vectorx ∈ [0,∞]Γ with x = f ′(1)x + 1.
This least fixed point is given by

∑∞
i=0(f

′(1))i
1, a series that may or may not converge. It is a standard fact

(see e.g. [19]) that the series converges iffρ(f ′(1)) < 1 holds for the spectral radiusρ(f ′(1)) of f ′(1).
Assume first that∆ is subcritical. Then the above series must converge, so we haveρ(f ′(1)) < 1 in this

case. Now assume that∆ is critical. Then the above series must diverge, so we haveρ(f ′(1)) ≥ 1. On the
other hand, in [11, 14] it is shown thatρ(f ′(1)) ≤ 1. (More precisely, it is shown there thatρ(f ′(y)) < 1
holds fory that are strictly less than the least fixed point off . By continuity of eigenvalues,ρ(f ′(y)) ≤ 1
also holds for the least fixed point off which is1 according to the proof of Proposition 2.3.) Hence we have
ρ(f ′(1)) = 1.

In order to decide on the criticality, it thus suffices to decide whether the spectral radius off ′(1) is ≥ 1.
This condition holds ifff ′(1)x ≥ x holds for a nonnegative, nonzero vectorx (see e.g. Thm. 2.1.11 of [5]
and cf. [14]). This can be checked in polynomial time with linear programming. ⊓⊔

B Proofs of Section 3

B.1 Proof of Proposition 3.1

Proposition 3.1. Let t be a family tree. Then

Sop(t) =






min

{
max{Sop(t0) + 1, Sop(t1)},
max{Sop(t0), S

op(t1) + 1}

}
if t has two childrent0, t1

Sop(t0) if t has exactly one childt0
1 if t has no children.

Proof. Recall the proof sketch from the main body of the paper. We detail the argument why one of the two
given scheduling strategies is optimal, i.e., we argue why the scheduler cannot save space by interleaving the
schedulings fort0 andt1.

Consider an optimal scheduling oft. W.l.o.g. the taskt0 terminates first. Then at least onet1-task sticks
around during the whole derivation oft0. So this scheduling needs space of at leastSop(t0) + 1. Obvi-
ously, any scheduling oft needs space of at leastSop(t1). So the optimal scheduler needs space of at least
max{Sop(t0) + 1, Sop(t1)}. But this lower bound is matched by the scheduling strategy given in the main
body of the paper. ⊓⊔

B.2 Proof of Theorem 3.2

Theorem 3.2. Pr
[
Sop

X ≤ k
]

= ν
(k)
X for every typeX and everyk ≥ 0.

Proof. Let us inductively define the functionℓ on trees as follows.

ℓ(t) :=






0 if t has no children

ℓ(t0) + 1 if t has one child

ℓ(t0) + 1 if t has two children andSop(t0) > Sop(t1)

ℓ(t1) + 1 if t has two children andSop(t0) < Sop(t1)

0 if t has two children andSop(t0) = Sop(t1) .

With Proposition 3.1,ℓ(t) is the length of a longest path from the root to a descendant with the sameSop-
value.

We proceed by induction onk. The base casek = 0 is trivial. Let k ≥ 0 and lett be anX-tree with
Sop(t) = k + 1. We have to showPr

[
Sop

X = k + 1
]

= ∆
(k+1)
X where

∆(k+1) =

∞∑

i=0

f ′(ν(k))i
(
f(ν(k)) − ν(k)

)
.

We show the following stronger claim:

Pr
[
Sop

X (t) = k + 1, ℓ(t) = i
]

=
(
f ′(ν(k))i

(
f(ν(k)) − ν(k)

))

X
.

We proceed by an (inner) induction oni. For the induction basei = 0 we first dispense with the casek = 0.
We have

Pr
[
Sop

X (t) = 1, ℓ(t) = 0
]

= Pr[t has no children]

because ift has one child thenℓ(t) ≥ 1 and if t has two children, thenSop
X (t) ≥ 2. With the definition off

we obtain
Pr
[
Sop

X (t) = 1, ℓ(t) = 0
]

=
∑

X
p−֒→ǫ

p = fX(0) = fX(ν(0)) − ν
(0)
X .

Now we complete the induction basei = 0 with the casek ≥ 1. We have

Pr
[
Sop

X (t) = k + 1, ℓ(t) = 0
]

= Pr[t has two children, Sop(t0) = Sop(t1) = k] (1)

because ift has one child, thenℓ(t) ≥ 1, and if t has no children, thenSop
X (t) = 1. Further we have by

Proposition 3.1

Pr
[
Sop

X (t) ≤ k
]

=
∑

X
p−֒→〈Y,Z〉

p ·
(
Pr
[
Sop

Y (t0) ≤ k
]
Pr
[
Sop

Z (t1) ≤ k
]

−Pr
[
Sop

Y (t0) = k
]
Pr
[
Sop

Z (t1) = k
])

(2)

+
∑

X
p−֒→Y

p · Pr
[
Sop

Y (t0) ≤ k
]

+
∑

X
p−֒→∅

p .

Combining these equations we obtain

Pr
[
Sop

X (t) = k + 1, ℓ(t) = 0
]

=
∑

X
p−֒→〈Y,Z〉

p · Pr
[
Sop

Y (t0) = k
]
Pr
[
Sop

Z (t1) = k
]

(by (1))

=
∑

X
p−֒→〈Y,Z〉

p · Pr
[
Sop

Y (t0) ≤ k
]
Pr
[
Sop

Z (t1) ≤ k
]

(by (2))

+
∑

X
p−֒→Y

p · Pr
[
Sop

Y (t0) ≤ k
]
+
∑

X
p−֒→ǫ

p

− Pr
[
Sop

X (t) ≤ k
]

=
∑

X
p−֒→〈Y,Z〉

p · ν(k)
Y ν

(k)
Z (ind. hyp. onk)

+
∑

X
p−֒→Y

p · ν(k)
Y +

∑

X
p−֒→ǫ

p

− ν
(k)
X

= fX(ν(k)) − ν
(k)
X (def. off)

For the induction step, leti ≥ 0. Then by Proposition 3.1 and the definition ofℓ

Pr
[
Sop

X (t) = k + 1, ℓ(t) = i + 1
]

=
∑

X
p−֒→〈Y,Z〉

p ·
(
Pr
[
Sop

Y (t0) ≤ k
]
Pr
[
Sop

Z (t1) = k + 1, ℓ(t1) = i
]

+ Pr
[
Sop

Y (t0) = k + 1, ℓ(t0) = i
]
Pr
[
Sop

Z (t1) ≤ k
])

+
∑

X
p−֒→Y

p · Pr
[
Sop

Y (t0) = k + 1, ℓ(t0) = i
]

=
∑

X
p−֒→〈Y,Z〉

p ·
(
ν

(k)
Y

(
f ′(ν(k))i

(
f(ν(k)) − ν(k)

))

Z

+
(
f ′(ν(k))i

(
f(ν(k)) − ν(k)

))

Y
ν

(k)
Z

)
(ind. hyp. onk, i)

+
∑

X
p−֒→Y

p ·
(
f ′(ν(k))i

(
f(ν(k)) − ν(k)

))

Y

=
∑

Y ∈Γ

f ′
XY (ν(k))

(
f ′(ν(k))i

(
f(ν(k)) − ν(k)

))

Y
(def. off)

= f ′
X(ν(k))f ′(ν(k))i

(
f(ν(k)) − ν(k)

)

=
(
f ′(ν(k))i+1

(
f(ν(k)) − ν(k)

))

X
.

⊓⊔

B.3 Proof of Corollary 3.5

Corollary 3.5. For any task system∆ there are real numbersc > 0 and0 < d < 1 such thatPr
[
Sop

X ≥ k
]
≤

c · dk for all k ∈ N. If ∆ is subcritical, then there are real numbersc > 0 and 0 < d < 1 such that
Pr
[
Sop

X ≥ k
]
≤ c · d2k

for all k ∈ N.

Proof. By Theorem 3.2 we havePr[Sop ≥ k] = 1− ν
(k−1)
X0

≤ 1− ν
(k)
X0

. So the corollary can be understood
as a statement on the convergence speed of Newton’s method for solvingx = f(x). The fact that Newton’s
method started at0 converges to1 (the least fixed point off) is shown in [14].

For the subcritical case, observe that the matrixI − f ′(1) is nonsingular because otherwise1 would
be an eigenvalue off ′(1) which would, together with Proposition 2.5, contradict the assumption that the
task system is subcritical. For nonsingular systems, it is a standard fact (see e.g. [29]) that Newton’s method
converges quadratically. AsPr[Sop ≥ k] ≤ 1 − ν

(k)
X0

, the statement follows.
For the general case (subcritical or critical) Newton’s method for solvingx = f(x) has been extensively

studied in [23, 11] and it follows from there that there is ac1 ∈ (0,∞) such that1 − ν
(k)
X ≤ c1 · 2−k/(n2n)

wheren = |Γ |, implying the statement. ⊓⊔

C Proofs of Section 4

Lemma C.1. Letσ be an online scheduler. For every family treet the firsti ≥ 1 states ofσ(t) are uniquely
determined byz(1)(t), . . . ,z(i)(t). In particular, the functionΛσ is well-defined.

Proof. We proceed by induction oni. The casei = 1 is trivial. Let us considerz(1)(t), . . . ,z(i+1)(t), and let
d = (s1 ⇒ · · · ⇒ si ⇒ si+1) be a prefix of the derivationσ(t). By induction,s1 ⇒ · · · ⇒ si is completely
determined byz(1)(t), . . . ,z(i)(t). By the definition of online scheduler,σ(t)[i] is completely determined
by s1 ⇒ · · · ⇒ si andz(1)(t), . . . ,z(i)(t). Finally, there is a unique transition ruleL(σ(t)[i]) −֒→ α where
α = z(i+1)(t) − z(i)(t) + 〈L(σ(t)[i])〉. But thensi+1 is also uniquely determined.

Lemma C.2. Let c(1) · · · c(i) ∈ (NΓ)+ such that for every1 ≤ j < i the valueΛσ(c(1) · · · c(j)) is defined.

ThenPr
[∧i

j=1 z(j) = c(j)
]

=
∏i−1

j=1 Prob(Λσ(c(1) · · · c(j)) −֒→ αj) where for every1 ≤ j < i we have

αj = c(j+1) − c(j) + 〈Λσ(c(1) · · · c(j))〉.

Proof. Let us denote byR the set of all family treest such thatz(j)(t) = c(j) for 1 ≤ j ≤ i. By Lemma C.1,
there is a derivationd = s1 ⇒ · · · ⇒ si and a functionl :

⋃i
j=1 sj → Γ such that for everyt = (N, L) ∈ R

we have thatd is a prefix ofσ(t) and l coincides withl on the subtree
⋃i

j=1 sj . Let us denote byts the

tree
⋃i

j=1 sj . Note thatts is a subtree of every tree ofR rooted inǫ. Let us denote byI the set of all inner
nodes ofts. For everyv ∈ I, we denote bychild(v) := 〈l(va) | a ∈ {0, 1}, va ∈ ts〉 the multiset of labels
of children of the nodev in ts. Let us denote byL the set of all leaves ofts. It follows directly from the
definition ofPr, that for allt ∈ R we have

Pr[t] =
∏

v∈I

Prob(L(v) −֒→ child(v)) ·
∏

v∈L

Pr[tv]

However, it follows directly from definitions that for everyv ∈ I there is precisely one1 ≤ j < i such that
σ(t)[j] = v, and thenL(v) = Λσ(c(1) · · · c(j)) andchild(v) = αj . Therefore,

Pr[t] =
i−1∏

j=1

Prob(Λσ(c(1) · · · c(j)) −֒→ αj) ·
∏

v∈L

Pr[tv]

Finally,

∑

t∈R

Pr[t] =
i−1∏

j=1

Prob(Λσ(c(1) · · · c(j)) −֒→ αj) ·
∏

v∈L

∑

t′∈TL(v)

Pr
[
t′
]

=
i−1∏

j=1

Prob(Λσ(c(1) · · · c(j)) −֒→ αj)

Proof of Lemma 4.1

Lemma 4.1. Let σ1, σ2 be online schedulers. IfΛσ1 = Λσ2 , thenPr[Sσ1 = k] = Pr[Sσ2 = k] for every
k ≥ 1.

Proof. We denote byz(i)
λ the variablez(i) evaluated with respect to a given schedulerλ. Let us denote by

Adef the set of allc(1) · · · c(i) ∈ (NΓ)+ such thatΛσ1(c
(1) · · · c(j)) = Λσ2(c

(1) · · · c(j)) is defined for all
1 ≤ j ≤ i − 1, andc(i) = 0. By Lemma C.2, for everyc(1) · · · c(i) ∈ Adef we have

Pr




i∧

j=1

z(j)
σ1

= c(j)



 =
i−1∏

j=1

Prob(Λσ1(c
(1) · · · c(j)) −֒→ αj)

=
i−1∏

j=1

Prob(Λσ2(c
(1) · · · c(j)) −֒→ αj)

= Pr




i∧

j=1

z(i)
σ2

= c(j)





However, thenPr[Sσ1 = k] = Pr[Sσ2 = k] because the values ofSσ1 andSσ2 are determined by the values

of z
(1)
σ1 , z

(2)
σ1 , . . . andz

(1)
σ2 , z

(2)
σ2 , . . ., and for all family treest we have that a prefix ofz(1)

σ1 (t), z
(2)
σ1 (t), . . . and

a prefix ofz(1)
σ2 (t), z

(2)
σ2 (t), . . . are inAdef .

C.1 Proof of Proposition 4.2

Proposition 4.2. Let us denote byΓ ′ the set of all task types removed from∆ by the above compacting
procedure and let|Γ ′| = ℓ. If X0 ∈ Γ ′, then there is a schedulerσ such thatSσ ≤ ℓ.

Assume thatX0 6∈ Γ ′. Let∆′ be the compacted version of∆ (i.e.,Γ \ Γ ′ is the set of task types of∆′).
Every schedulerσ′ for ∆′ can be transformed into a schedulerσ for ∆ such that for allk

Pr
[
Sσ′,∆′ ≥ k

]
≤ Pr

[
Sσ,∆ ≥ k

]
≤ Pr

[
Sσ′,∆′ ≥ k − ℓ

]
.

(The second superscript ofS indicates the task system on which the scheduler operates.)

Proof. Let ∆1 be a non-compact task system with a non-compact typesΓnon , and let∆0 be the (possibly
non-compact) task system obtained from∆1 by removing all rules with non-compact types on the left hand
side and all occurrences of non-compact types on the right hand side of all rules, i.e.,∆0 is obtained from∆1

by performing the first iteration of the compacting procedure. Letσ0 be a scheduler for∆0. Construct a
schedulerσ1 for ∆1 as follows:

The schedulerσ1 acts exactly likeσ0 until one or twoΓnon -tasks are created at which point the
width of the derivation may be increased by at most1. Thenσ1 picks aΓnon -task, sayτ1. Since the
Γnon -types are non-compact,σ1 can completeτ1 without further increasing the width. Afterτ1 has
been finished, there may be anotherΓnon -task left, sayτ2, that was created at the time whenτ1 was
created. If there is such aτ2, thenσ1 completesτ2 in the same way it has completedτ1. After τ1 (and
possiblyτ2) have been completed,σ1 resumes to act likeσ0.

It follows from this construction that the incorporation of the non-compacttypeΓnon increases the width of
a derivation by at most1.

A straightforward induction on this construction shows for the statement of the proposition:

Pr
[
Sσ′,∆′

X ≤ k
]
≤ Pr

[
Sσ,∆

X ≤ k + ℓ
]

for all X ∈ Γ \ Γ ′.

If X0 ∈ Γ ′, then the above construction also works. (It extends a scheduler operating on a possibly
empty task system, but this poses no problems.) So, again by induction, we obtain a schedulerσ for ∆ with
Sσ,∆

X ≤ ℓ for all X ∈ Γ ′.

It remains to show the inequalityPr
[
Sσ′,∆′

X ≥ k
]
≤ Pr

[
Sσ,∆

X ≥ k
]
, but this is clear because∆′ is

obtained from deleting rules and types from∆ andσ is obtained by extendingσ′. ⊓⊔

C.2 Proof of Theorem 4.3

We split the proof in several lemmata. With regard to the computation of a suitable vectorv we first prove
the following lemma.

Lemma C.3. Let u ∈ [1,∞)Γ denote the vector of expected completion times, i.e.,uY = E[TY] for all
Y ∈ Γ . Thenu exists and is the unique solution ofx = f ′(1)x + 1. Let Q(u, u) denote the “quadratic
part” of f(u), i.e.,(Q(u, u))X =

∑
X

p−֒→Y Z
p · uY · uZ for all X, Y, Z ∈ Γ . Lets := 1/qmax > 0 where

qmax is the largest component ofQ(u, u). Then for allr ≥ 0 we havef(1 + ru) ≤ 1 + ru iff r ≤ s.

Using this lemma a suitablev can be found as follows: First computeu by solvingx = f ′(1)x + 1.
This yieldsQ(u, u), and, consequently,s. With regard to the upper bound of the theorem we are interested
in av which is as large as possible, so pickv := 1 + su (or v := 1 + 1

2su to be on the safe side). All steps
can be performed in polynomial time.

Proof of the lemma.The fact thatu = f ′(1)u + 1 exists and is the vector of expected completion times
follows from the remarks made at the beginning of the proof of Proposition 2.5. Recall that the pgff is a
vector of polynomials of degree 2 with positive coefficients. So it can be written as

f(x) = Q(x, x) + Lx + c

whereQ(x, x) is the quadratic part off(x). A straightforward calculation shows for allr ∈ R andx ∈ R
Γ

f(1 + rx) = f(1) + rf ′(1)x + r2Q(x, x) (Taylor expansion)

= 1 + rf ′(1)x + r2Q(x, x) (asf(1) = 1) .

Foru = f ′(1)u + 1 it follows

f(1 + ru) = 1 + r(u − 1) + r2Q(u, u) ,

so we havef(1 + ru) ≤ 1 + ru iff rQ(u, u) ≤ 1. The statement follows. ⊓⊔
Next we show how a suitablew can be found.

Lemma C.4. One can compute in polynomial time a vectorw ∈ (1,∞)Γ with f(w) ≥ w.

Proof. Using the Taylor expansion off(1 + rx) as in the previous lemma, we obtainf(1 + rx) ≥ 1 + rx
iff

rQ(x, x) ≥ (I − f ′(1))x . (3)

We will choosew := 1 + rx, so we need to find suitabler andx such that (3) holds. Definey ∈ {0, 1}Γ

such thatyX = 1 if the X-component ofQ(x, x) is not constant zero (or, equivalently, if there is a rule

X
p−֒→ 〈Y, Z〉 for someY, Z ∈ Γ). Otherwise, i.e., iffX(x) has degree1, setyX = 0. Definex :=

f ′(1)∗y = (I − f ′(1))−1y. By the compactness of the task system, all types can reach a typeX with
yX = 1. It follows thatf ′(1)∗y is positive in all components. Hence,xmin > 0 wherexmin is the smallest
component ofx.

Observe that(I − f ′(1))x = y, so (3) holds at least for the componentsX with yX = 0. Let c denote
the smallest nonzero coefficient off . Equation (3) holds also for the componentsX with yX = 1 if we set
r > 1/(c · xmin). The statement follows. ⊓⊔

To complete the proof of Theorem 4.3 it remains to show the claimed bounds onPr[Sσ ≥ k].

Theorem 4.3. Let ∆ be subcritical. Letv, w ∈ (1,∞)Γ be vectors withf(v) ≤ v andf(w) ≥ w. Such
vectors exist and can be computed in polynomial time. Denote byvmin andwmax the least component ofv
and the greatest component ofw, respectively. Then

wX0 − 1

wk+2
max − 1

≤ Pr[Sσ ≥ k] ≤ vX0 − 1

vk
min − 1

for all online schedulersσ.

Proof. Let h > 1 andu ∈ (0,∞)Γ such thathuY = vY for all Y ∈ Γ . Definem(i) := z(i) u where “”
denotes the scalar product. Not thatm(1) = uX0 .

Let us consideri ≥ 1. Let y = c(1), · · · , c(i) be a sequence of elements ofN
Γ with c(i) 6= 0, and letTy

be the set of all family treest satisfyingz(j)(t) = c(j) for every1 ≤ j ≤ i. Note thatm(i)(t) 6= 0. Observe
thatm(i) is constant overTy, we denote bym(i)(Ty) its value overTy.

An easy computation reveals that forY := Λσ(y) we have

E

[
hr

(i)
u | Ty

]
= E

[
∏

Z∈Γ

huZ ·r
(i)
Z | Ty

]
= E

[
∏

Z∈Γ

v
r
(i)
Z

Z | Ty

]
= fY (v) ≤ vY = huY (asf(v) ≤ v) .

(4)

Consequently, we have

E

[
hm(i+1) | Ty

]
= E

[
hz

(i+1)
u | Ty

]
(def. ofm(i+1))

= E

[
h(z(i)+r

(i)−〈Λσ(y)〉) u | Ty

]
(def. ofr(i))

= E

[
hz

(i)
u | Ty

]
· E
[
hr

(i) | Ty

]
· E
[
h−〈Λσ(y)〉 u | Ty

] (
hz

(i)
u, h−〈Λσ(y)〉 u

const. onTy

)

= hm(i)(Ty) · E
[
hr

(i)
u | Ty

]
· h−uY (def. ofm(i)) .

≤ hm(i)(Ty) (Equation (4))

As this is true for all online schedulersσ and alsoE
[
m(i+1) | m(i) = 0

]
= 0 we have

E

[
hm(i+1) | hm(1)

, . . . , hm(i)
]
≤ hm(i)

,

i.e., the sequencehm(1)
, hm(2)

, . . . is a supermartingale.
Define the stopping timeτk := inf{i ≥ 1 | m(i) ∈ {0} ∪ [k,∞)}. Note thatm(τk) ≤ k + 2umax,

and hence thatm(τk) ∈ {0} ∪ [k, k + 2umax]. We wish to apply Doob’s Optional-Stopping Theorem [33]

(sometimes called Optional-Sampling Theorem) to infer thatE

[
hm(τk)

]
≤ E

[
hm(1)

]
= vX0 . To this end we

define the sequencêm(1), m̂(2), . . . by settingm̂(i) := m(i) for i ≤ τk andm̂(i) := m(τk) for i ≥ τk. The
sequencehm̂(1)

, hm̂(2)
, . . . is a martingale ashm(1)

, hm(2)
, . . . is a martingale. To apply the Optional-Stopping

Theorem we also need to make sure that|hm̂(i+1) − hm̂(i) | is bounded by a constant, which is the case as
m̂(i) ∈ [0, k + 2umax] for all i. Define the stopping timeτk := inf{i ≥ 1 | m(i) ∈ {0} ∪ [k,∞)}. Doob’s
Optional-Stopping Theorem now yields

E

[
hm(τk)

]
= E

[
hm̂(τk)

]
≤ E

[
hm̂(1)

]
= E

[
hm(1)

]
= huX0 = vX0 .

Let, as an abbreviation,pk := Pr
[
m(τk) ≥ k

]
. Then we have

vX0 ≥ E

[
hm(τk)

]
≥ h0 · (1 − pk) + hk · pk = 1 − pk + hk · pk

which gives

pk ≤ vX0 − 1

hk − 1
.

Letting |z(i)| denote the sum of the components ofz(i), andumin the smallest component ofu, we have

Pr[Sσ ≥ k] = Pr

[
sup

i
|z(i)| ≥ k

]
≤ Pr

[
sup

i
m(i) ≥ kumin

]
= pkumin

≤ vX0 − 1

vmin − 1
. (5)

So we have shown the upper bound.
For the lower bound we redefineh andu such thathuY = wY for all Y ∈ Γ which allows to show in

an analogous way that

E

[
hm(i+1) | hm(1)

, . . . , hm(i)
]
≥ hm(i)

,

i.e., the sequencehm(1)
, hm(2)

, . . . is now a submartingale. The Optional-Stopping Theorem now yields

E

[
hm(τk)

]
≥ wX0 . Further we now have

wX0 ≤ E

[
hm(τk)

]
≤ h0 · (1 − pk) + hk+2umax · pk = 1 − pk + hk+2umax · pk

which gives

pk ≥ wX0 − 1

hk+2umax − 1

and thus

Pr[Sσ ≥ k] = Pr

[
sup

i
|z(i)| ≥ k

]
≥ Pr

[
sup

i
m(i) ≥ kumax

]
= pkumax

≥ wX0 − 1

wk+2
max − 1

.

⊓⊔

C.3 Proof of Theorem 4.5

We first prove the following proposition.

Proposition C.5. The set ofv-accumulating types can be computed in polynomial time.

Proof. We start with some notations. By⇒∗ we denote the reflexive and transitive closure of⇒. We use
“+” for multiset union. We say thatX can generatea multisetα, denoted byX •=⇒ α, if some multiset
containingα can be derived fromX , i.e., if X ⇒∗ α + β for some multisetβ. We writeY •=⇒X α if Y
can generateα using onlyX-bounded rules, i.e., rulesZ →֒ β such thatZ ≤ X, andY •=⇒lf α to denote

that the light-first scheduler can generateα. Finally, we denote byα≥X (α>X) the restriction ofα to types
Y ≥ X (Y > X).

We prove the following characterization:X is v-accumulating iff there isY such thatX0
•=⇒ Y and

Y •=⇒Y X + Y . This immediately leads to a polynomial algorithm.
(⇒): AssumeX is v-accumulating. ThenX0

•=⇒lf n · X holds for infinitely manyn ≥ 1. We claim
that there exists a typeW such thatW •=⇒X n · X for infinitely manyn ≥ 1. For the claim, take the
longest suffixes of the witnesses forX0

•=⇒lf n · X that only use rulesX-bounded rules, and letαn be their
corresponding initial multisets. These suffixes are then witnesses forαn

•=⇒X n · X. By the maximality of
the suffixes, eitherαn = X0 holds for infinitely manyn ≥ 1, or αn = α≥X

n does. In the first case, we take
W := X0. In the second case, letZn →֒ βn be the rule applied to obtainαn. Then

X0 ⇒∗
lf (αn − βn) + Zn ⇒lf (αn − βn) + βn

•=⇒X n · X

whereX < Zn. Since the step(αn − βn) + Zn ⇒lf (αn − βn) + βn is light-first andX < Zn, we have
(αn − βn) = (αn − βn)>X , and so there are infinitely manyn ≥ 1 such thatβn

•=⇒X n ·X. Since|βn| ≤ 2
for all n, the typeW exists, and the claim is proved.

Consider now a witness ofW •=⇒X n · X for somen ≥ 2k + 1, wherek is the number of types. The
corresponding tree has depth at leastk + 1, and so it contains a path in which some typeY appears twice.
This easily leads toY •=⇒X X + Y for some typeY such thatX0

•=⇒ Y .
(⇐): We start with some simple properties of the relations⇒∗

X and⇒∗
lf .

(1) If Y •=⇒X α andα = α≥X , thenY •=⇒lf α.
Consider a family tree having a (prefix of a) derivation that witnessesY •=⇒X α. So all ancestors of the
nodes corresponding toα are labeled by symbols that are≤ X. It follows that a light-first scheduler may
select all ancestors of theα-nodes before selecting anyα-node. HenceY •=⇒lf α.

(2) If X •=⇒ Y andY •=⇒lf β, thenX •=⇒lf β.
X •=⇒ Y impliesX ⇒∗

lf Y + α for someα, andY •=⇒lf β impliesY ⇒∗
lf β + β1 for someβ1. As

X ⇒∗
lf Y + α, it suffices to find a derivation witnessingY + α ⇒∗

lf ∅ that reaches a multiset of the form
β + γ for someγ. Such a derivation is obtained by interleaving the witnesses forY ⇒∗

lf β + β1 ⇒∗
lf ∅

andα ⇒∗
lf ∅.

Assume now thatX0
•=⇒ Y andY •=⇒X X + Y hold. ThenY •=⇒X n · X for everyn ≥ 1. Now (1)

yieldsY •=⇒lf n · X, and (2) leads toX0
•=⇒lf n · X, also for everyn ≥ 1. SoX is v-accumulating. ⊓⊔

Now we complete the proof of Theorem 4.5.

Theorem 4.5. Let∆ be subcritical andv ∈ (1,∞)Γ with f(v) ≤ v. Letσ be av-light-first scheduler. Let
vminmax := minX −֒→〈Y,Z〉 max{vY , vZ} (here the minimum is taken over all transition rules with two types
on the right hand side). Thenvminmax ≥ vmin and for allk ≥ 1

Pr[Sσ ≥ k] ≤ vX0 − 1

vminvk−1
minmax − 1

.

Moreover, letvminacc := min{vX | X ∈ Γ, X is v-accumulating}. Thenvminacc ≥ vminmax, vminacc

can be computed in polynomial time, and there is an integerℓ such that for allk ≥ ℓ

Pr[Sσ ≥ k] ≤ vX0 − 1

vℓ
minvk−ℓ

minacc − 1
.

Proof. The inequalityvminmax ≥ vmin is trivial. For the inequalityvminacc ≥ vminmax, let Li := {Y ∈
Γ | vY < vminmax} be the set of types that are strictly lighter thanvminmax. We claim that, in each stepi,

there is at most one task ofLi -type. More formally, ife(Li) denotes the vector withe(Li)
Y = 1 for Y ∈ Li

ande
(Li)
Y = 0 for Y 6∈ Li , then we havez(i) e(Li) ≤ 1 for all i. This can be shown by a straightforward

induction on the derivation length: at each step the task ofLi -type (if present) is selected and replaced by at
most two tasks. By definition ofvminmax, at most one of the new tasks hasLi -type. Hence, the types inLi

are not accumulating. It followsvminacc ≥ vminmax.
The rest of the proof is obtained by a small modification of the proof of Theorem 4.3: it suffices to show

that, in Equation (5), we can replacekumin by umin + (k − 1)uminmax and byℓumin + (k − ℓ)uminacc

for some integerℓ. (The valuesuminmax and uminacc are defined in the obvious way, i.e., using theh
from the proof of Theorem 4.3 we havehuminmax = vminmax andhuminacc = vminacc.) So we need to
show for the light-first schedulerσ that |z(i)| ≥ k implies bothm(i) ≥ umin + (k − 1)uminmax and
m(i) ≥ ℓumin + (k − ℓ)uminacc.

For the first implication, recall thatm(i) = z(i) u. We have argued above thatz(i) e(Li) ≤ 1. This
impliesm(i) ≥ umin + (k − 1)uminmax.

For the second implication, letℓ′ be an integer such thatz
(i)
Y ≤ ℓ′ for all i and for all non-accumulating

typesY . Let ℓ := |Γ | · ℓ′. Then in each step, there are at mostℓ tasks of non-accumulating type. This implies
m(i) ≥ ℓumin + (k − ℓ)uminacc. ⊓⊔

C.4 Proof of Theorem 4.7

In the following we letM∗ := I+M +MM + · · · for any square matrixM . If M∗ converges, then, by basic
matrix facts, it equals(I − M)−1. Also by basic matrix facts (see e.g. [19]),M∗ converges iff the spectral
radius ofM is less than one.
We first prove Lemma 4.8.

Lemma 4.8. LetA[k] := L + Q(1 − s[k], ·). Then(I − A[k])−1 exists and for allk ≥ 1

s[k + 1] = A[k]s[k + 1] + Q(·,1)s[k] = (I − A[k])−1Q(·,1)s[k] .

Proof. The following equation follows from the definition of a depth-first scheduler σ.

Pr[Sσ
X ≥ k + 1] =

∑

X
p−֒→Y

pPr[Sσ
Y ≥ k + 1]

+
∑

X
p−֒→Y Z

p (Pr[Sσ
Y ≥ k] + Pr[Sσ

Y < k] · Pr[Sσ
Z ≥ k + 1])

Using the definitions this immediately implies the equality

s[k + 1] = A[k]s[k + 1] + Q(·,1)s[k] .

For the second equality of the proposition, note thatf ′(1) = L + Q(1, ·) + Q(·,1). As the task system
is subcritical, the spectral radius off ′(1) is, by Proposition 2.5, less than one. So the spectral radius of
A[k] ≤ L + Q(1, ·) ≤ f ′(1) is less than one as well. Hence, by standard matrix facts [19] the sumA[k]∗

converges and equals(I − A[k])−1. The second equality follows. ⊓⊔
For the proof of Theorem 4.7 we will need the following auxiliary lemma.

Lemma C.6. Let A be a nonnegative square matrix with spectral radius less than one. Let(ǫn)n∈N be a
sequence withǫn ≥ ǫn+1 ≥ 0 converging to0. Then there exists ann1 and a nonnegative matrixK such
that for all n ≥ n1 (

(1 − ǫn)A
)∗ ≥ (I − ǫnK)A∗ .

Proof. We can assumeǫn ≤ 1. Let M = (I − A)−1A. Then by a simple computation

(
(1 − ǫn)A

)∗
=
(
I + ǫnM

)−1
A∗ .

Choosen1 large enough so thatρ(ǫnM) < 1. Then(ǫnM)∗ exists and so

(
I + ǫnM

)−1
= I − (ǫnM) + (ǫnM)2 − (ǫnM)3 + − · · ·
≥ I − (ǫnM)(ǫnM)∗

≥ I − ǫnM(ǫn1M)∗

ChooseK = M(ǫn1M)∗ and the claim follows. ⊓⊔

We also need the following lemma.

Lemma C.7. Given a depth-first scheduler and using the notation from the main body of the paper, let
B := (I − L − Q(1, ·))−1Q(·,1). Then the spectral radius ofB is less than one.

Proof. Observe thatf ′(1) = L + Q(1, ·) + Q(·,1). As (∆, X) is subcritical, Proposition 2.5 implies that
the spectral radius off ′(1) is less than one. Then it follows that the spectral radius ofB is less than one as
well, using the theory of M-matrices and regular splittings, see [5], Theorem 6.2.3 part P48. ⊓⊔

Now we prove Theorem 4.7.

Theorem 4.7. Let ∆ be subcritical andσ be any depth-first scheduler. Letρ be the spectral radius of
(I − L − Q(1, ·))−1Q(·,1). Then0 < ρ < 1 andPr[Sσ ≥ k] ∈ Θ(ρk), i.e, there arec, C > 0 such that
cρk ≤ Pr[Sσ ≥ k] ≤ Cρk for all k.

Proof. Let B := (L + Q(1, ·))∗ Q(·,1) andρ the spectral radius ofB. We haveρ < 1 by Lemma C.7. To
showρ > 0, it suffices (by Perron-Frobenius theory [5]) to show that all row sums ofB are (strictly) positive.
For this, letY ∈ Γ be the index of an arbitrary row. Then, by compactness of the task system,there are types

X0, . . . , Xi (0 ≤ i ≤ n − 1) such thatY = Xi andXi
pi−֒→ Xi−1, . . . , X1

p1−֒→ X0 andX0
p0−֒→ ZW for some

Z, W ∈ Γ . It is straightforward to show by induction oni that the(Y, Z)-entry ofLiQ(·,1) is positive. It
follows that the(Y, Z)-entry ofB is positive, soρ > 1.

For the upper bound, observe that with Lemma 4.8 we have

s[k + 1] = (L + Q(1 − s[k], ·))∗ Q(·,1)s[k] ≤ Bs[k] . (6)

By a simple induction it followss[k + i] ≤ Bis[k]. As the absolute values of the eigenvalues ofB are
bounded byρ we get‖s[k + i]‖ ≤ C1ρ

i for someC1 > 0, which implies the claimed upper bound.
For the lower bound, observe that there is a real number0 < r ≤ 1 such that for all typesY ∈ Γ , the

probability thatX reachesY is at leastr. So it suffices to find anyY ∈ Γ such that there is ac1 > 0 with
Pr[Sσ

Y ≥ k] ≥ c1ρ
k for all k.

Recall thatρ is the spectral radius ofB. It is a corollary (Corollary 2.1.6 of [5]) of Perron-Frobenius
theory thatB has a principal submatrixB′ which is irreducible and also has spectral radiusρ. We writeΓ↑

for the subset ofΓ such thatB′ is obtained fromB by deleting all rows and columns that are not indexed
by Γ↑. Also by Perron-Frobenius theory,B′ has an eigenvectoru′ ∈ (0,∞)Γ↑ with B′u′ = ρu′ so thatu′ is
positive in all components. Defineu ∈ [0,∞)Γ as the vector withuY = u′

Y > 0 for Y ∈ Γ↑ anduY = 0 for
Y 6∈ Γ↑. Hence we haveBu ≥ ρu. By the already proven upper bound there is at > 0 such thats[k] ≤ tρk

for all k. We abbreviateǫk := tρk so thats[k] ≤ ǫk1.

Now we show that there is a natural numberk and a real numberd > 0 with ǫkd < 1 such that for
all i ≥ 0

s[k + i] ≥ ρi




i∏

j=1

(1 − ǫk+j−1d)



u . (7)

As uY = 0 for Y 6∈ Γ↑ it suffices to shows[k + i] ≥↑ ρi
(∏i

j=1(1 − ǫk+j−1d)
)

u where by the notation

v ≥↑ w we meanvY ≥ wY for all Y ∈ Γ↑. We proceed by induction oni and determine the constants on
the fly. For the induction base (i = 0) observe that, ass[k] is positive by compactness of the task system,
we can enforces[k] ≥ u by scaling downu by multiplying it with a small constant. This does not affect the
stated properties ofu. For the step, leti ≥ 0. We have

s[k + i + 1] = (L + Q(1 − s[k + i], ·))∗ Q(·,1)s[k + i] (by (6))

≥ ((1 − ǫk+i)(L + Q(1, ·)))∗ Q(·,1)s[k + i] (ass[k + i] ≤ ǫk+i1)

≥ ((1 − ǫk+i)(L + Q(1, ·)))∗ Q(·,1)ρi




i∏

j=1

(1 − ǫk+j−1d)



u (ind. hypothesis)

≥ (I − ǫk+iK)Bρi




i∏

j=1

(1 − ǫk+j−1d)



u

(
for a large k and
some matrixK by
Lemma C.6

)

≥ ρi




i∏

j=1

(1 − ǫk+j−1d)



 (ρu − ǫk+iKBu) (asBu ≥ ρu)

≥↑ ρi




i∏

j=1

(1 − ǫk+j−1d)



 (ρu − ǫk+iρdu)

(
for a larged with
KBu ≤↑ ρdu

)

= ρi+1




i+1∏

j=1

(1 − ǫk+j−1d)



u

This proves (7). So, denoting byumin > 0 the smallest nonzero component ofu, we have

s[k + i]Y ≥ ρi




i+1∏

j=1

(1 − ǫk+j−1d)



umin for all Y ∈ Γ↑ and alli ≥ 0.

Thus the proof is completed if
∏∞

j=k(1 − ǫjd) > 0. To see that this inequality holds, observe that1 − ǫjd =

1 − tρjd ≥ 1 − 1
j2 is true for almost allj and that

∏∞
j=2(1 − 1

j2) = 1
2 > 0. This completes the proof. ⊓⊔

D Proofs of Section 5

D.1 Proof of Theorem 5.1

Theorem 5.1. The expectationE[Sop] is finite (no matter whether∆ is critical or subcritical). Moreover,
O(b) terms computeb bits ofE[Sop]. If the task system∆ is subcritical, thenlog2 b +O(1) terms computeb
bits ofE[Sop]. Finally, computingk terms takes timeO(k · |Γ |3) in the unit cost model.

Proof. Note that the second statement implies the first one. Lete(i) := 1 − ν
(i)
X0

. Then we haveE[Sop] −
∑k−1

i=0 (1−ν
(i)
X0

) =
∑∞

i=k e(i). It follows from [11] that there is ac1 ∈ (0,∞) such that for alli ∈ N we have

e(i) ≤ c1 · 2−i/(n2n) wheren = |Γ |. Using this inequality we get

∞∑

i=k

e(i) ≤ c1

∞∑

i=k

2−i/(n2n) ≤ c2 · 2−k/(n2n)

with c2 = c1/(1 − 2−1/(n2n)). Choosingk = ⌈(b + log2 c2)n2n⌉ we obtain
∑∞

i=k e(i) ≤ 2−b which proves
the second statement.

For the third statement (about subcritical systems) recall from Corollary 3.5 that there arec > 0 and
0 < d < 1 such thate(i) ≤ c · d2i

for all i ∈ N. So

∞∑

i=k

e(i) ≤
∞∑

i=k

c · d2i ≤ c ·
∞∑

i=0

d2k+i =
c

1 − d
· d2k

.

By choosing a natural numberk with k ≥ − log2(− log2 d) + log2 b + 1 we obtain for allb ≥ log c
1−d that

c
1−d · d2k ≤ 2−b which proves the third statement.

The final statement follows from Corollary 3.4. ⊓⊔

D.2 Proof of Theorem 5.2

Theorem 5.2. If ∆ is critical, thenE[Sσ] is infinite for every online schedulerσ.

Proof. The proof follows the lines of the proof of Theorem 4.3. Let∆ be critical. By Proposition 2.5 we
haveρ(f ′(1)) = 1 for the spectral radius off ′(1).

Let us fix an online schedulerσ. First we proveE[Sσ] = ∞ for the case in whichX0 is reachable from
every typeX ∈ Γ . Later we will show how to drop this assumption. IfX0 is reachable from everyX, it
follows thatf ′(1) is an irreducible matrix. Then Perron-Frobenius theory [5] guaranteesthe existence of an
eigenvectoru ∈ R

Γ of f ′(1) which is positive in all components, i.e.,f ′(1)u = u anduX > 0 for all
X ∈ Γ . W.l.o.g. we can chooseu such that its largest component is1. Let againm(i) := z(i) u. Note that
m(1) = uX0 > 0 andm(i) ≤ |z(i)| where|z(i)| denotes the sum of the components ofz(i). Also note that
m(i) returns a weighted sum of the components ofz(i). Loosely speaking, we will show that its expectation
remains constant.

Let us consideri ≥ 1. Let y = c(1), · · · , c(i) be a sequence of elements ofN
Γ with c(i) 6= 0, and letTy

be the set of all family treest satisfyingz(j)(t) = c(j) for every1 ≤ j ≤ i. Note thatm(i)(t) 6= 0. Observe
thatm(i) is constant overTy, we denote bym(i)(Ty) its value overTy.

An easy computation reveals that for everyX ∈ Γ we have

E

[
r

(i)
X | Ty

]
=

∑

Λσ(y)
p−֒→α

p · #X(α) = f ′
Λσ(y),X(1)

which gives

E

[
r(i) | Ty

]
= f ′

Λσ(y)(1) (8)

(wheref ′
Λσ(y)(1) denotes the row vector indexed byΛσ(y)). Consequently, we have:

E

[
m(i+1) | Ty

]
= E

[
z(i+1) | Ty

]
u (def. ofm(i+1))

=
(
E

[
z(i) | Ty

]
+ E

[
r(i) | Ty

]
− E

[
〈X(i)〉 | Ty

])
u (def. ofr(i))

=
(
E

[
z(i) | Ty

]
+ f ′

Λσ(y)(1) − 〈Λσ(y)〉
)

u (by (8))

= m(i)(Ty) + f ′
Λσ(y)(1)u − 〈Λσ(y)〉 u (def. ofm(i)(Ty))

= m(i)(Ty) (asf ′(1)u = u)

Also clearlyE
[
m(i+1) | m(i) = 0

]
= 0, and hence we have

E

[
m(i+1) | m(1), . . . , m(i)

]
= m(i) ,

i.e., the sequencem(1), m(2), . . . is a martingale.
Define the stopping timeτk := inf{i ≥ 1 | m(i) ∈ {0}∪ [k,∞)}. Note thatm(τk) ≤ k+2 asu ≤ 1, and

hence thatm(τk) ∈ {0} ∪ [k, k + 2]. We wish to apply Doob’s Optional-Stopping Theorem [33] (sometimes
called Optional-Sampling Theorem) to infer thatE

[
m(τk)

]
= E

[
m(1)

]
= uX0 . To this end we define the

sequencêm(1), m̂(2), . . . by settingm̂(i) := m(i) for i ≤ τk andm̂(i) := m(τk) for i ≥ τk. The sequence
m̂(1), m̂(2), . . . is a martingale asm(1), m(2), . . . is a martingale. To apply the Optional-Stopping Theorem
we also need to make sure that|m̂(i+1)−m̂(i)| is bounded by a constant, which is the case asm̂(i) ∈ [0, k+2]
for all i. Doob’s Optional-Stopping Theorem now yields

E

[
m(τk)

]
= E

[
m̂(τk)

]
= E

[
m̂(1)

]
= uX0 .

Recall that this is> 0. Sincem(τk) ∈ {0} ∪ [k, k + 2],

uX0 = E

[
m(τk)

]
≤ 0 · Pr

[
m(τk) = 0

]
+ (k + 2) · Pr

[
m(τk) ≥ k

]
= (k + 2) · Pr

[
m(τk) ≥ k

]

which gives

Pr
[
m(τk) ≥ k

]
≥ uX0

k + 2
.

So we have

Pr[Sσ ≥ k] = Pr

[
sup

i
|z(i)| ≥ k

]
≥ Pr

[
sup

i
m(i) ≥ k

]
= Pr

[
m(τk) ≥ k

]
≥ uX0

k + 2
.

Hence,

E[Sσ] =
∞∑

k=1

Pr[Sσ ≥ k] ≥
∞∑

k=1

uX0

k + 2
= ∞

which completes the proof for the case whereX0 is reachable from all types.
Now we show thatE[Sσ] = ∞ also holds whenX0 is not reachable from all types. Recall that

ρ(f ′(1)) = 1. It is a corollary (Corollary 2.1.6 of [5]) of Perron-Frobenius theorythat f ′(1) has a prin-
cipal submatrixB which is irreducible and has spectral radiusρ(B) = 1. Let Γ ′ ⊆ Γ denote the set of types
such thatB is obtained fromf ′(1) by deleting all rows and columns not indexed byΓ ′. Consider the task
system∆′ which is the original task system restricted toΓ ′. More concretely,∆′ has typesΓ ′ and transition

rules as follows: A ruleX
p−֒→ α′ is in ∆′ iff X ∈ Γ ′ and there is anα ∈ M≤2

Γ such thatX
p−֒→ α is in the

original task system andα′ is obtained fromα by deleting the types that are not inΓ ′. Letg : R
Γ ′ → R

Γ ′

de-
note the pgf for∆′. From the construction of∆′ it is straightforward to see thatB = g′(1). Pick an arbitrary
X ∈ Γ ′ as the initial type of∆′. As B = g′(1) is irreducible,X is reachable from all types inΓ ′. Hence,
the first part of the proof applies and we obtain that, in∆′, we haveE[Sσ

X] = ∞ for all online schedulersσ.
As ∆′ was obtained by erasing types and rules from the original task system, it is easy to see that, also in the
original task system, we haveE[Sσ

X] = ∞ for all online schedulersσ. AsX is reachable fromX0, it follows
E[Sσ] = ∞ for all online schedulersσ. ⊓⊔

D.3 Proof of Theorem 5.3

Theorem 5.3. Let ∆ be subcritical, and letB := (L + Q(1, ·))∗Q(·,1). Then(I − B)−1 exists and
E[Sσ] − u[k] ≤

∥∥(I − B)−1
∥∥

1
‖s[k]‖1 for all k ≥ 1, whereu[k] :=

∑k
i=1 s[i]X0 =

∑k
i=1 Pr[Sσ ≥ i].

Hence,O(b) terms computeb bits ofE[Sσ]. Finally, computingk terms takes timeO(k · |Γ |3) in the unit cost
model.

Proof. By Lemma C.7 the spectral radius ofB is less than one. So by standard matrix facts (see [19])
B∗ = (I −B)−1 exists. Recall from Lemma 4.8 thats[k + j + 1] = A[k + j]∗Q(·,1)s[k + j] for all j ≥ 0.
As A[k + j]∗Q(·,1) ≤ B, we obtains[k + j] ≤ Bjs[k] by a simple induction. Define the “error vector”δ[k]
by

δ[k]Y := E[Sσ
Y] −

k∑

i=1

s[i]Y for all Y ∈ Γ .

Then we have

δ[k] =
∞∑

i=k+1

s[i] ≤
∞∑

j=0

s[k + j] ≤
∞∑

j=0

Bjs[k] = B∗s[k]

which yields
E[Sσ] − u[k] = δ[k]X0 ≤ ‖δ[k]‖1 ≤ ‖B∗‖1 ‖s[k]‖1 ≤ ‖B∗‖1 · C ′ρk

where the last step is by Theorem 4.7. Recall thatρ < 1. Let D > 1 such thatD ≥ ‖B∗‖1 · C ′. In order
to show thatO(b) terms computeb bits of E[Sσ], we have to find aK such thatDρK·b ≤ 2−b for all b.

ChoosingK :=

⌈
1+log D

log 1
ρ

⌉
we have in fact

DρK·b ≤ D · 2−b · D−b ≤ 2−b .

The final statement about the time in the unit-cost model follows from the commentsat the end of
Section 4.3. ⊓⊔

D.4 Proofs of Theorem 5.4 and Theorem 5.5

In this subsection we give formal proofs for Theorem 5.4, respectively Theorem 5.5.
For this we first introduce an alternative semantics of task systems which is equivalent to the original one

with respect to the expected completion space (see Lemma D.2 below). Informally, we move from the set of
family trees to the set of derivations (i.e. sequences of multisets) assigned tothe family trees by a given online
scheduler. The new semantics considerably simplifies proofs concerningthe expected completion space for
online schedulers.

Let ∆ = (Γ, −֒→,Prob, X0) be a task system. We denote byC the setNΓ , and callC the set ofcon-
figurations. In this section we use the multisets overΓ and vectors ofNΓ interchangeably in the canonical
way. A multiset schedulerκ takes a non-empty sequencec(1) . . . c(n) of configurations and chooses from the
current (= last) configurationc(n) the next task type which is going to be processed, more precisely,κ is a
functionκ : C+ → Γ such that for everyw ∈ C∗ andc ∈ C\{0} we havecκ(wc) > 0. By scheduling a task of

typeκ(wc), we obtain with probabilityProb((κ(wc), α)) a setα ∈ M≤2
Γ of new tasks, which yields the new

configurationc′ := (c−〈κ(wc)〉)+α. We may think of this as moving on fromwc to wcc′ with probability
Prob((κ(wc), α)). We abbreviate this withwc κ wcc′, and setP (wc κ wcc′) := Prob((κ(wc), α))
with c′ as defined above.

Let Pathκ be the set of allpaths w = c(1) · · · c(n) ∈ C+ such that for every1 ≤ i < n we
have c(1) · · · c(i)

 κ c(1) · · · c(i+1). Given c ∈ C, we denote byMPathκ(c) the set of all maximal
paths initiated inc, i.e. c(1) = c and c(n) = 0. Given w = c(1) · · · c(n) ∈ MPathκ(c), we define
Prκ[w] = Πn−1

j=1 P (c(1) · · · c(i)
 κ c(1) · · · c(i+1)).

We writewc(1)

∗
κ wc(1) · · · c(i) if for every1 ≤ j < i we havewc(1) · · · c(j)

 κ wc(1) · · · c(j+1). We
denote byκ↓ the restriction ofκ to thosew that satisfy〈Y 〉 ∗

κ w for someY ∈ Γ . In other words,κ↓ is a
partial function such that for everyw satisfying〈Y 〉 ∗

κ w for someY ∈ Γ we haveκ↓(w) = κ(w).

Lemma D.1. For everyc ∈ C \ {0} we have
∑

w∈MPathκ(c) Prκ[w] = 1, and hence(MPathκ(c), Prκ) is a
discrete probability space.

Proof. First, consider the case thatc = 〈X〉 for someX ∈ Γ . One can easily show that for every multiset
schedulerκ the partial functionκ↓ is equal toΛσ for a suitable online schedulerσ. However, then for every
c(1) · · · c(i) ∈ MPathκ(〈X〉) there is a unique family treet ∈ TX (and vice versa) such thatPr[t] =
Prκ

[
c(1) · · · c(i)

]
andz(j)(t) = c(j) for 1 ≤ j ≤ i (here everyz(j) is evaluated with respect toσ).

Consequently,

∑

w∈MPathκ(〈X〉)

Prκ[w] =
∑

w∈MPathκ(〈X〉)

PrΛσ [w] =
∑

t∈TX

Pr[t] = 1

Consider now an arbitraryc ∈ C \ {0}. Finally, starting inc, every computation according to an arbitrary
multiset schedulerκ can be considered as a parallel composition of|c| computations initiated in individual
elements ofc. Hence, the probability of reaching0 from c is equal to the probability of reaching0 from
every symbol inc, which is one. ⊓⊔

Given a multiset schedulerκ andc ∈ C, we define therandom widthSκ
c

on MPathκ(c) as follows: Given
w = c(1) · · · c(i) ∈ MPathκ(c), we defineSκ

c
(w) = max{|c(1)|, . . . , |c(i)|} (here each|c(i)| is the size of

the multisetc(i)).

Lemma D.2. For every online schedulerσ there is a multiset schedulerκ such thatE[Sσ] = E

[
Sκ
〈X0〉

]
. For

every multiset schedulerκ there is an online schedulerσ such thatE
[
Sκ
〈X0〉

]
= E[Sσ].

Proof. Let σ be an online scheduler. It follows directly from definition thatΛσ = κ↓ for some multiset
schedulerκ. Also by Lemma C.2, for every family treet we havePr[t] = Prκ

[
z(1)(t) · · ·z(n)(t)

]
where

n is the least number satisfyingz(n)(t) = 0. BecauseSσ(t) = Sκ
〈X0〉

(z(1)(t) · · ·z(n)(t)), we obtain that

E[Sσ] = E

[
Sκ
〈X0〉

]
. On the other hand, every multiset schedulerκ satisfiesκ↓ = Λσ for a suitable online

schedulerσ, which implies the second half of the lemma. ⊓⊔

Let us denote bySmu the set of all multiset schedulers. Givenκ ∈ Smu, n ≥ 1, andc ∈ C, we define
Sκ,n

c = max{Sκ
c
, n}. We defineval(n, c) = infκ∈Smu E[Sκ,n

c]. We say thatκ is optimal in[n, c] if E[Sκ,n
c] =

val(n, c).

Lemma D.3. val(n, c) = minκ∈Smu

∑
c κcc

′ P (c κ cc′) · val(max{n, |c|}, c′)

Proof. Given a multiset schedulerκ, we denote bȳκ a multiset scheduler defined bȳκ(w) = κ(cw). For
everyw = c(1)c(2) · · · c(n) ∈ MPathκ(c) we have

Sκ,n

c
(1)(w) = S

κ̄,max{n,|c|}

c
(2) (c(2) · · · c(n))

andPr[w] = P (c(1)
 κ c(1)c(2)) · Prκ̄

[
c(2) · · · c(n)

]
. It follows that

E[Sκ,n
c

] =
∑

c
(1)···c(n)∈MPathκ(c)

Prκ

[
c(1) · · · c(n)

]
· Sκ,n

c
(c(1) · · · c(n))

=
∑

c κcc
(2)

P (c κ cc(2))
∑

c
(2)···c(n)∈MPath κ̄(c(2))

Prκ̄

[
c(2) · · · c(n)

]
· Sκ̄,max{n,|c|}

c
(2) (c(2) · · · c(n))

=
∑

c κcc
(2)

P (c κ cc(2)) · E
[
S

κ̄,max{n,|c|}

c
(2)

]

inf
κ∈Smu

∑

c κcc
(2)

P (c κ cc(2)) · E
[
S

κ̄,max{n,|c|}

c
(2)

]
=

min
ζ∈Smu




∑

c ζcc
(2)

P (c ζ cc(2)) · inf
λ∈Smu

E

[
S

λ,max{n,|c|}

c
(2)

]




Indeed, the inequality≥ is obvious. For the opposite, observe that given a schedulerζ from the right hand
side and schedulersλ

c
(2) for everyc(2) such thatc ζ cc(2), we may construct a schedulerκ on the left

hand side that chooses the first step according to theζ (reachingcc(2)) and then behaves asλ
c
(2) (thus

κ̄(c(2) · · · c(n)) = λ
c
(2)(c(2) · · · c(n)). This gives

∑

c κcc
(2)

P (c κ cc(2)) · E
[
S

κ̄,max{n,|c|}

c
(2)

]
=

∑

c ζcc
(2)

P (c ζ cc(2)) · E
[
S

λ
c
(2) ,max{n,|c|}

c
(2)

]

Hence,val(n, c) = infκ∈Smu E[Sκ,n
c] = minκ∈Smu

∑
c κcc

(2) P (c κ cc(2)) · val(max{n, |c|}, c(2)). ⊓⊔

We are now ready to prove Theorem 5.4.

Theorem 5.4. There is an online schedulerσ such thatE[Sσ] = inf{π|π is online} E[Sπ].

Proof. We prove that for everyn ≥ 1 there is a multiset schedulerκ[n] which is optimal in[n, c] for every
c ∈ C. Then we obtain the desired result from the special case forn = 1 because by Lemma D.2 there is an
online schedulerσ such that

E[Sσ] = E

[
S

κ[1]
〈X0〉

]
= val(1, 〈X0〉) = inf

λ∈Smu

E

[
Sλ
〈X0〉

]
= inf

π∈Son

E[Sπ]

Givenw = c(1) · · · c(i) ∈ C+, we writewd(w) = max{|c(1)|, . . . , |c(i)|}. For everyn ≥ 1 we defineκ[n]
as follows: Givenw ∈ C+, we defineκ[n](w) to minimizethe following number

∑

w κ[n]wc

P (w κ[n] wc) · val(max{n, wd(w)}, c)

Givenn, m ≥ 1, c ∈ C, andc(1) · · · c(i) ∈ MPathκ(c), we define

S
κ[n],n
c,m (w) =

{
S

κ[n],n
c (c(1) · · · c(i)) if i ≤ m

0 otherwise.

Clearly, for everyn ≥ 1 we haveE
[
S

κ[n],n
c,m

]
≤ E

[
S

κ[n],n
c,m+1

]
≤ E

[
S

κ[n],n
c

]
, and by the monotone convergence

theorem,limm→∞ E

[
S

κ[n],n
c,m

]
= E

[
S

κ[n],n
c

]
. We prove thatE

[
S

κ[n],n
c,m

]
≤ val(n, c) for all m ≥ 1, which

givesE

[
S

κ[n],n
c

]
≤ val(n, c). The casem = 1 is trivial. Form > 1 we have by Lemma D.3 and induction

hypothesis

val(n, c) = min
λ∈Smu

∑

c λcc
′

P (c λ cc′) · val(max{n, |c|}, c′)

=
∑

c κ[n]cc
′

P (c κ[n] cc′) · val(max{n, |c|}, c′)

≥
∑

c κ[n]cc
′

P (c κ[n] cc′) · E

[
S

κ[max{n,|c|}],max{n,|c|}
c
′,m−1

]

= E
[
Sκ,n

c,m

]

⊓⊔
We turn to the proof of Theorem 5.5. We start by recalling the result:

Theorem 5.5. For sufficiently smallp andr (it suffices to choose, e.g.,r := 10−5 andp := 1
2r), any online

scheduler that minimizes the expected completion space of the task system

X
1/8−֒−→ 〈X, X〉 X

1/8−֒−→ 〈Y, Z〉 X
3/4−֒−→ ∅ Z

r−֒→ 〈U, U〉 Z
1−r−֒−→ ∅

Y
p−֒→ 〈Z, Z〉 Y

1−p−֒−→ ∅ U
1−֒→ ∅

requires infinite memory.
Note that the valuesr := 10−5 andp := 1

2 are not unique. In the course of the proof we provide a
series of inequalities involvingp andr so that whenever these inequelities are satisfied, the example works
as expected.

To simplify notation in the following, we identify any wordα ∈ Γ ∗ with the multiset which counts how
often a letter ofΓ appears inα, e.g. the wordY XY is one representation of the multiset〈X, Y, Y 〉.

The proof of Theorem 5.5 relies mainly on the following crucial proposition:

Proposition D.4.

1. If κ is optimal in[n + 2, Y ZXn], thenκ(Y ZXn) = Y
2. If κ is optimal in[n + 3, Y ZXn], thenκ(Y ZXn) = Z

Let us first explain the intuition behind this proposition, and how from this result Theorem 5.5 follows.
Assume that we want to minimize the expected completion space starting inY ZXn when the maximum
in the history is eithern + 2, or n + 3. What type we have to choose inY ZXn? First, choosingX is not
minimizing (in both cases), because this would increase the number of tasks withmuch higher probability
than choosing eitherY , or Z. Now the difference betweenY andZ is that the former generates3 tasks (via
ZZ) with a very small probability, while the latter generates at most2 tasks but with higher probability. It
follows that if the maximum in the history isn + 2, the better choice isY , because although bothY andZ
may exceedn + 2, theY exceeds with smaller probability. On the other hand, if the maximum in the history
is n + 3, then the better choice isZ, because it never exceedsn + 3 before getting toXn (as opposite toY).

Before giving a surprisingly non-trivial proof of Proposition D.4, let us show how this proposition implies
non-existence of a finite memory online scheduler that minimizes the expected completion space.

Proof. (of Theorem 5.5.) First, let us define a notion of finite memory multiset scheduler. We say that a
multiset schedulerκ is finite memoryif there is a finite state automatonA over an alphabetΣ and a function
h : C+ → Σ such that for everyc(1) · · · c(n) ∈ C+ the value ofκ(c(1) · · · c(n)) depends only on the state of
A after readingh(c(1)) · · ·h(c(n)) and onc(n). It follows from the proof of Lemma D.2 that ifσ is a finite

memory online scheduler that minimizes the expected completion space, thenΛσ is a finite memory multiset
scheduler that minimizes the expected completion space. Hence, it suffices toshow that there is no finite
memory multiset scheduler that minimizes the expected completion space.

To obtain a contradiction, let us assume thatκ is a finite memory multiset scheduler that minimizes
the expected completion space. Given a pathc(1) · · · c(i) ∈ Pathκ we denote byh(c(1) · · · c(i)) the word
h(c(1)) · · ·h(c(i)). For everyn ≥ 1 we denote bywn the pathX · X2 · · ·Xn+3 · Xn+2 · · ·X. There are
two numbersn < m such that the automatonA enters the same state after reading either of the words
h(wn) andh(wm). Let us consider the pathsw′

n = wn · X2 · X3 · · ·Xm+1 · Y ZXm andw′
m = wm · X2 ·

X3 · · ·Xm+1 · Y ZXm. The automaton enters the same stateq after reading either of the wordsh(w′
n) and

h(w′
m). Hence,κ(w′

n) = κ(w′
m). However, ifκ minimizes the completion space, then, by Proposition D.4,

we haveκ(w′
n) = Y andκ(w′

m) = Z, a contradiction. This proves Theorem 5.5. ⊓⊔

It remains to prove Proposition D.4.
For the rest of this proof we denotes := 1

8 . To prove Proposition D.4 we make use of the following three
technical lemmas (Lemma D.5, Lemma D.6, and Lemma D.7 below):

Lemma D.5. There are numbersk, ℓ > 0 such that for everyn ≥ 1 and everyi > 0 we have

1. val(n + i + 1, Xn) < val(n + i, Xn) + k

2. val(n + i, Xn) < val(n + i + 1, Xn) − ℓ

[More concretely, we may choosek := 1, andℓ := (3
4)4 · 6

7]

Proof.

ad 1. For every multiset schedulerκ we haveE

[
Sκ,n+i+1

Xn

]
≤ E

[
Sσ,n+i

Xn + 1
]

= E

[
Sκ,n+i

Xn

]
+ 1. Hence, it

suffices to definek = 1.
ad 2. Letκ be a multiset scheduler which is optimal in[n + i + 1, Xn]. Let κn be a scheduler that behaves

similarly asκ except that in configurations of size at mostn− 2, κn prefers eitherY or Z to X. Clearly,

E

[
Sκn,n+i

Xn

]
= E

[
Sκ,n+i

Xn

]
and E

[
Sκn,n+i+1

Xn

]
= E

[
Sκ,n+i+1

Xn

]
. Now using an arbitrary scheduler a

configuration of the formXn−4 is reachable fromXn with the probability(1 − 2s)4 via a pathwdec of
the formXnXn−1 · · ·Xn−4. Let us denoteAn the set of all paths ofPathκn that start withwdec, reach an
empty pool of tasks, and afterwdec never reach a configuration of the form{Y, Z}∗Xm wherem > n−4.
It is easy to see that for everyw ∈ An we haveSκn,n+i

Xn (w) = n + i andSκn,n+i+1
Xn (w) = n + i + 1,

which implies that

E

[
Sκn,n+i

Xn

]
≤ Pr[An] (E

[
Sκn,n+i+1

Xn | An

]
− 1) + (1 − Pr[An])E

[
Sκn,n+i+1

Xn | MPathκn(Xn) \ An

]

= E

[
Sκn,n+i+1

Xn

]
− Pr[An]

= E

[
Sκ,n+i+1

Xn

]
− Pr[An]

Thus every schedulerλ, which is optimal in[n + i, Xn], satisfiesE
[
Sλ,n+i

Xn

]
≤ E

[
Sκ,n+i+1

Xn

]
− Pr[An]

and henceval(n+i, Xn) ≤ val(n+i+1, Xn)−Pr[An]. We prove thatPr[An] > (1−2s)4(1− s
1−s) > 0

(hence, it suffices to defineℓ := (1 − 2s)4(1 − s
1−s)).

Let us denote byhn the probability that usingκn we reach the empty pool of tasks fromXn−4 and at
the same time never reach a configuration of the form{Y, Z}∗Xm wherem > n − 4. We prove that
hn > 1− s

1−s > 0 using basic results of the theory of random walks, and obtainPr[An] = Pr[wdec]·hn >

(1 − 2s)4(1 − s
1−s).

Let us define a sequence of random variablesZ1, Z2, · · · such that for every pathw ∈ MPathκn(Xn−2)
the valueZi(w) is the number ofX-tasks in thei-th moment whenX is chosen to move (i.e. by the
definition ofκn, the i-th moment when the current configuration is of the formXm for somem). It is
easy to see thatZ1, Z2, . . . is a random walk on the setZ

+ of non-negative whole numbers where the
probability of going fromk > 0 to k + 1 is s and the probability of going fromk > 0 to k − 1 is 1 − s.
It can be easily shown that the probability of reaching0 from n − 2 while avoidingn − 3 is equal to

1− s
1−s

1−(s
1−s

)n−2+1 . However, this is precisely the probabilityhn and hencehn > 1 − s
1−s > 0.

⊓⊔

In the rest of this section we write(m, α) instead ofval(m, α).

Lemma D.6. Let c, d > 0 such thatr c + (1 − r) d = 1 andr < d ℓ
16 c k . Then fori ≥ 2 we have

rc(n + i + 1, Xn) + (1 − r)d(n + i, Xn) < s(n + i + 1, Xn+1) + (1 − s)(n + i, Xn−1)

Proof. DenotingL = rc(n + i + 1, Xn) + (1 − r)d(n + i, Xn) we have

L = rcs(n + i + 1, X
n+1) + rcs(n + i + 1, Y ZX

n−1) + rc(1 − 2s)(n + i + 1, X
n−1)

+ (1 − r)ds(n + i, X
n+1) + (1 − r)ds(n + i, Y ZX

n−1) + (1 − r)d(1 − 2s)(n + i, X
n−1)

= rcs(n + i + 1, X
n+1) + rcs(n + i + 1, X

n−1) + rc(1 − 2s)(n + i + 1, X
n−1) (i ≥ 2)

+ (1 − r)ds(n + i, X
n+1) + (1 − r)ds(n + i, X

n−1) + (1 − r)d(1 − 2s)(n + i, X
n−1)

= rcs(n + i + 1, X
n+1) + rc(1 − s)(n + i + 1, X

n−1)

+ (1 − r)ds(n + i, X
n+1) + (1 − r)d(1 − s)(n + i, X

n−1)

< rcs(n + i, X
n+1) + rcsk + rc(1 − s)(n + i, X

n−1) + rc(1 − s)k (Lemma D.5)

+ (1 − r)ds(n + i + 1, X
n+1) − (1 − r)dsℓ + (1 − r)d(1 − s)(n + i, X

n−1)

Now because we have chosens = 1
8 , andr so thatr < 1

2 , we obtain

rcsk + rc(1 − s)k = rck <
dℓ

16
=

1

2
dsℓ < (1 − r)dsℓ

and thus

L < s(rc + (1 − r)d)(n + i + 1, Xn+1) + (1 − s)(rc + (1 − r)d)(n + i, Xn−1)

= s(n + i + 1, Xn+1) + (1 − s)(n + i, Xn−1)

⊓⊔

ForW ∈ {X, Y, Z}, we write

IW
n,α = inf

λ∈Smu

λ(α)=W

E

[
Sλ,n

α

]

Lemma D.7.

1. if κ is optimal in[n + 2, ZZXn], thenκ(ZZXn) = Z

2. if κ is optimal in[n + 3, ZZZXn], thenκ(ZZZXn) = Z

Proof.

ad 1. We have

IX
n+2,ZZXn = s(n + 3, ZZXn+1) + s(n + 3, Y ZZZXn−1) + (1 − 2s)(n + 2, ZZXn−1)

and
IZ
n+2,ZZXn = r(n + 3, Xn) + (1 − r)(n + 2, Xn)

However, we have chosenr so thatr < ℓ
16k , and hencer < dℓ

16ck for c = d = 1. Thus by Lemma D.6

IZ
n+2,ZZXn < s(n + 3, Xn+1) + (1 − s)(n + 2, Xn−1) ≤ IX

n+2,ZZXn

ad 2. We have

IX
n+3,ZZZXn = s(n + 4, ZZZXn+1) + s(n + 4, Y ZZZZXn−1) + (1 − 2s)(n + 3, ZZZXn−1)

and
IZ
n+3,ZZZXn = r(n + 4, Xn) + (1 − r)(n + 3, Xn)

We have chosenr so thatr < ℓ
16k , and hencer < dℓ

16ck for c = d = 1. Thus by Lemma D.6

IZ
n+3,ZZZXn < s(n + 4, Xn+1) + (1 − s)(n + 3, Xn−1) ≤ IX

n+3,ZZZXn

⊓⊔

We are now in the position to prove Proposition D.4.

Proof. (of Proposition D.4.)

ad 1. We have

IX
n+2,Y ZXn = s(n + 3, Y ZXn+1) + s(n + 3, Y ZY ZXn−1) + (1 − 2s)(n + 2, Y ZXn−1)

and

IZ
n+2,Y ZXn = r(n + 3, Xn) + (1 − r)(n + 2, Y Xn)

= r(n + 3, Xn) + (1 − r)p(n + 2, ZZXn) + (1 − r)(1 − p)(n + 2, Xn)

= r(n + 3, Xn) + (1 − r)pr(n + 3, Xn) (Lemma D.7)

+ (1 − r)p(1 − r)(n + 2, Xn) + (1 − r)(1 − p)(n + 2, Xn)

= r(1 + (1 − r)p)(n + 3, Xn) + (1 − r)(1 − pr)(n + 2, Xn)

Now observe that settingc = 1 + (1 − r)p and d = (1 − pr) gives rc + (1 − r)d = 1. Also a
straightforward computation reveals that we have chosenr so thatr < dℓ

16ck Hence, by Lemma D.6,
IZ
n+2,Y ZXn < IX

n+2,Y ZXn .
Finally, we have chosenp such that

p =
r

2
<

rℓ

rk + ℓ − rℓ + r2ℓ
(9)

which gives us

IY
n+2,Y ZXn = p(n + 3, ZZZXn) + (1 − p)(n + 2, ZXn)

= pr(n + 4, Xn) + p(1 − r)(n + 3, Xn) + (1 − p)(n + 2, Xn) (Lemma D.7)

= pr(n + 4, Xn) + p(1 − r)(n + 3, Xn)

+ (1 − r)(1 − pr)(n + 2, Xn) + ((1 − p) − (1 − r)(1 − pr))(n + 2, Xn)

< pr(n + 3, Xn) + prk + p(1 − r)(n + 3, Xn) (Lemma D.5)

+ (1 − r)(1 − pr)(n + 2, Xn) + ((1 − p) − (1 − r)(1 − pr))(n + 3, Xn)

− ((1 − p) − (1 − r)(1 − pr))ℓ

< (p + (1 − p) − (1 − r)(1 − pr))(n + 3, Xn) + (1 − r)(1 − pr)(n + 2, Xn) (Eq. (9))

= r(1 + (1 − r)p)(n + 3, Xn) + (1 − r)(1 − pr)(n + 2, Xn)

= IZ
n+2,Y ZXn

Hence,IY
n+2,Y ZXn < IZ

n+2,Y ZXn < IX
n+2,Y ZXn , andκ(Y ZXn) = Y if κ is optimal in[n+2, Y ZXn].

ad 2. We have

IY
n+3,Y ZXn = p(n + 3, ZZZXn) + (1 − p)(n + 3, ZXn)

= pr(n + 4, Xn) + p(1 − r)(n + 3, Xn) + (1 − p)(n + 3, Xn) (Lemma D.7)

= pr(n + 4, Xn) + (1 − pr)(n + 3, Xn)

and
IZ
n+3,Y ZXn = (n + 3, Xn)

which impliesIZ
n+3,Y ZXn < IY

n+3,Y ZXn . Also

IZ
n+3,Y ZXn = (n + 3, Xn)

= s(n + 3, Xn+1) + s(n + 3, Y ZXn−1) + (1 − 2s)(n + 3, Xn−1)

= s(n + 3, Xn+1) + (1 − s)(n + 3, Xn−1)

and

IX
n+3,Y ZXn = s(n + 3, Y ZXn+1) + s(n + 3, Y ZY ZXn−1) + (1 − 2s)(n + 3, Xn−1)

= sp(n + 4, ZZZXn+1) + s(1 − p)(n + 3, Xn+1) (1.)

+ s(n + 3, Y ZY ZXn−1) + (1 − 2s)(n + 3, Xn−1)

≥ sp(n + 4, Xn+1) + s(1 − p)(n + 3, Xn+1) + (1 − s)(n + 3, Xn−1)

> sp(n + 3, Xn+1) + spℓ + s(1 − p)(n + 3, Xn+1) (Lemma D.6)

+ (1 − s)(n + 3, Xn−1)

= s(n + 3, Xn+1) + (1 − s)(n + 3, Xn−1) + spℓ

HenceIZ
n+3,Y ZXn < IX

n+3,Y ZXn , and thusκ(Y ZXn) = Z if κ is optimal in[n + 3, Y ZXn].
⊓⊔

E Optimizing the Bound for Continuing Task Systems

It follows from Theorem 4.3 that, for largek, the best bound is obtained by maximizingvmin. Now we show
for continuing task systems that thebest(i.e., the largest)vmin can be approximated in polynomial time.
More formally, define the “optimal”vmin by v

opt
min := sup

{
d ∈ R | ∃v ∈ [0,∞)Γ : d1 ≤ v ≥ f(v)

}
.

We show that one can compute, in polynomial time, anǫ-approximation ofvopt
min, i.e., a numberd with

|d − v
opt
min| ≤ ǫ. As we consider continuing task systems we can, for allY ∈ Γ , write fY asfY (x) =

xY · qY (x) + cY whereqY (x) is linear. Note thatqY (1) + cY = 1. We can show the following theorem
whose proof closely follows a proof of [15]:

Theorem E.1. Given a continuing task system whose coefficients are given asb-bit rationals, one can com-
pute anǫ-approximation ofvopt

min in timepoly(|Γ |, b, log 1
ǫ) in the usual (Turing) model by solving the fol-

lowing system: maximized subject to0 ≤ d ≤ vY ≥ fY (v)

Proof. The proof follows a proof of [15]. We claim that the following systems (10)and (11) are equivalent:

maximized subject to 0 ≤ d ≤ vY ≥ fY (v) (10)

maximized subject to






0 ≤ d ≤ vY

sY = 1 − qY (v)(
vY

√
cY√

cY sY

)
positive semidefinite





(11)

For the equivalence of (10) and (11) note that the condition on the matricesbeing positive semidefinite is
equivalent tovY · sY ≥ cY . SubstitutingsY = 1 − qY (v) yieldsvY · (1 − qY (v)) ≥ cY which is, using
fY (v) = vY · qY (v) + cY , equivalent tovY ≥ fY (v). So (10) and (11) are in fact equivalent.

We solve the convex program (10) approximately using the ellipsoid algorithm[17]. Following [15], the
ellipsoid algorithm can solve a convex programming problem given (a) a separation oracle describing the
convex space, (b) a pointv inside the convex space, (c) radiiδ andR such that the ball of radiusδ aroundv
is inside the convex body, and the ball of radiusR contains the convex body. The running time is polynomial
in the dimension of the space and inlog R

δ .
The fact that (10) describes a convex program follows from the factthat it is equivalent to the semidefinite

program (11). A separation oracle can also be obtained due to this equivalence. For the radiusR, note that
all feasible pointsx satisfyxY · qY (x) + cY ≤ xY for all Y ∈ Γ , implying qY (x) ≤ 1. Also note that for
everyZ ∈ Γ there is aY ∈ Γ such thatqY (x) depends onxZ , so for allZ ∈ Γ and all feasible vectorsv
we havevZ ≤ 1/amin whereamin ≥ 2−b denotes the smallest nonzero coefficient of the task system. So
we can chooseR := |Γ | · 2b.

It remains to describe a feasible vectorv ≥ 1 and aδ ≥ 2−poly(|Γ |,b) such that every pointx with
‖x − v‖∞ ≤ δ is feasible. (Note thatd poses no problem: it can be chosen as1

2 .) For that we use the
vectoru from Lemma C.3, i.e.,u satisfiesu = f ′(1)u + 1. By a computation that is similar to the one in
the proof of Lemma C.3 we have1 + ru − f(1 + ru) = r(1 − rQ(u, u)). So we have for allY ∈ Γ :

1 + ruY − fY (1 + ru) = r(1 − ruY qY (u))

Lettingumax denote the largest component ofu we haveqY (u) ≤ umax and consequently:

≥ r(1 − ru2
max)

By restrictingr to 1/(4u2
max) ≤ r ≤ 1/(2u2

max) we haveru2
max ≤ 1/2 and so:

≥ r/2 ≥ 1

8u2
max

By settingδ := 1/(16u2
max):

= 2δ

Summarizing we have1 + ru − f(1 + ru) ≥ 2δ1.
Let x be any vector with1 + ru ≥ x ≥ 1 + ru − 2δ1. Then we have:

x − f(x) ≥ 1 + ru − 2δ1 − f(x) (asx ≥ 1 + ru − 2δ1)

≥ 1 + ru − 2δ1 − f(1 + ru) (asx ≤ 1 + ru)

≥ 2δ1 − 2δ1 = 0 (by the computation above)

So if we setv := 1+ru−δ1, then allx with ‖x − v‖∞ ≤ δ are feasible. Furthermore,δ = 1/(16u2
max) ≥

2−poly(|Γ |,b) becauseu is the solution of the linear equation systemx = f ′(1)x + 1. This completes the
proof. ⊓⊔

