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ABSTRACT
In this paper we present an approach of generating Sys-
temC executable models from software designs captured in
a new component-based modeling language, COLA, which
follows the paradigm of synchronous dataflow. COLA has
rigorous semantics and specification mechanisms. Due to
its well-founded semantics, it is possible to establish an in-
tegrated development process, the artifacts of which can be
formally reasoned about and are dealt with in automated
tools such as model checkers and code generators. How-
ever, the resulting models remain abstract and cannot be
executed immediately. Therefor SystemC offers executable
models of a component-based flavor. Establishing an auto-
mated translation procedure from COLA to SystemC thus
allows for design validation and performance analysis during
early design phases. We have validated our approach on a
case study taken from the automotive domain.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling Techniques

General Terms
Performance, Design, Languages

Keywords
COLA, Code Generation, Simulation, SystemC

1. INTRODUCTION
System features based on software are becoming the most

important factor in system designs in many branches of
industry, such as automotive, avionics and others. With
the ever-growing importance and complexity of embedded

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOSP’08, June 24–26, 2008, Princeton, New Jersey, USA.
Copyright 2008 ACM 978-1-59593-873-2/08/06 ...$5.00.

control systems, this trend places new demands on design
methodologies. In this context the component-based ap-
proach to software and system designs has been established
as the most appropriate approach to tackle the challenge.

COLA [6], the Component Language, is a component-
based modeling language especially targeted at embedded
control systems. It offers a graphical representation to spec-
ify the functional behavior of the modeled application. Be-
ing a synchronous formalism, COLA follows the hypothesis

of perfect synchrony [1]. Basically, this asserts that com-
putations and communication take no time. Components
in a synchronous dataflow language then operate in paral-
lel, processing input and output signals at discrete instants
of time. This discrete uniform time-base allows for a de-
terministic description of concurrency by abstracting from
concrete implementation details, such as physical bus com-
munication, or signal jitter. To take the resulting models to
the designated hardware platform, automated code genera-
tion is supported by our established toolchain.

Still, not only execution on the target hardware is sought
after, but also model-level simulation plays an important
role in the design process. As we know, specification mis-
takes made in the first phase of the development cycle are
quite frequent. These specification mistakes and the errors
that occur during the development are the most expensive
things to handle, if they can be identified only after the gen-
erated code run on the target hardware. Therefore, we aim
at a simulation framework for rapid prototyping, early de-
sign validation and performance analysis. SystemC is the
one that appears to be the most suitable for our purpose.
As an SLDL (system level design language) SystemC has
become a standard in system level design [4]. It allows for
efficient modeling of both hardware and software and enables
simulation of the entire system including its communication
architecture [5, 7, 9].

Since SystemC matches the common syntactic elements of
many component-based modeling languages, including com-
ponents, ports and hierarchical composition, SystemC code
may be generated automatically from COLA models. The
generated SystemC models can also match the COLA se-
mantics described in [6]. Thus, the two modeling approaches



are well incorporated to establish an integral development
process, which benefits from the advantages of the both ap-
proaches.

The rest of the paper is organized as follows: Section 2
gives an overview of related work. Section 3 gives a brief
introduction to COLA. Following this, Section 4 contains a
detailed description of the translation from COLA to Sys-
temC. Section 5 presents the ways to perform simulation
using SystemC. In Section 6 a case study from the automo-
tive domain is considered to validate the proposed approach.
Section 7 concludes this paper.

2. RELATED WORK
To achieve time-to-market reduction and meet various

safety requirements, model driven development processes
dominate the embedded control system industry. There
are dozens of modeling languages developed in either indus-
try or academia. The Unified Modeling Language (UML)
and MATLAB/Simulink have become industrial standards.
Both modeling languages provide graphical representation
and include means for component-based modeling. The mod-
eling concepts of COLA are similar to them, but with a
rigorous formal semantics.

Since synchronous dataflow languages are an increasingly
popular tool for description of embedded control software,
before COLA there are various efficient implementations of
synchronous languages that already exist (e. g.Esterel [2],
Lustre [3]). COLA combines many good features of these
existing languages. It is aimed at not only modeling log-
ical architecture but also including hardware models and
describing the technical architecture in a consistent formal-
ism.

For the purpose of performance analysis, several previ-
ous works report approaches to combining high-level mod-
eling languages and SystemC. Previous work found in [8]
proposes the translation from UML class diagrams and ob-
ject diagrams to SystemC models. UMLSC [10] is a tool
that translates UML state diagrams to SystemC. There are
other similar approaches. We do not give an exhaustive list
here. These approaches do not support modeling down to
the implementation level, and therefore, only SystemC skele-
ton code can be automatically generated. Implementation
details must be manually added to make the applications
work as expected.

3. OVERVIEW OF COLA
For brevity, we give only an overview of the modeling

concepts here. Most of the syntax elements of COLA are
introduced in Section 4. For a more detailed description of
the COLA language cf. [6].

The key concept of COLA is that of units. They can
be composed hierarchically, or occur in terms of blocks that
define the basic (arithmetic) operations of a system. Each
unit has a set of typed ports describing the interface, which
form the signature of the unit, and which are categorized
into input and output ports. Units can be used to build
more complex components by building a network of units
and by defining an interface to such a network. The indi-
vidual connections of (sub-) units in a network are called
channels and connect an output port with one or more suit-
ably typed input ports.

In addition to the hierarchy of networks, COLA provides
a decomposition into automata (i. e., finite state machines,

similar to UML Statecharts). If a unit is decomposed into an
automaton, each state of the automaton is associated with
a corresponding sub-unit, which determines the behavior in
that particular state. This definition of an automaton is
therefore well-suited to partition complex networks of units
into disjoint operating modes, whose respective activation
depends on the input signals of the automaton.

An example of modeling an adaptive cruise control is used
for illustration of the proposed modeling principles. The
top-level network, i.e., the COLA system representing the
ACC model, is shown in Figure 1. The main components
are the user interface (net ui), which realizes the control
actions, and the display (DEV A DISPLAY), the computa-
tion of the actual speed (net rotation), the distance sensing
(net radar), the connection to the engine (DEV A MOTOR),
and the main control code (net acc on off). In the COLA
model, interfaces to hardware are marked by naming the
blocks DEV A for actuators and DEV S for sensors.

Figure 1: ACC top-level view and decomposition of

the component net radar

As an example, we present the decomposition of net radar

in Figure 1. The network is implemented by constants and
basic arithmetic operations on data provided by the ultra-
sonic sensor (DEV S ULTRA). The interface of the network
consists of a single output port, whereas all sensor spe-
cific data manipulation is encapsulated within this network.
The characteristics of the employed hardware require further
computation, performed within an automaton (atm ultra).
In a similar manner, the other components of the ACC can
be decomposed.

4. COLA TO SYSTEMC TRANSLATION
There are obvious affinities between COLA units and Sys-

temC modules in terms of their structure. Both contain
input ports, output ports and an implementation of the in-
tended functionality. A higher level element may be com-
posed hierarchically of several such elements which are con-
nected by channels. The simulation semantics of SystemC
is also able to retain COLA semantics. In the rest of this
section we describe how COLA semantics is followed by Sys-
temC and present in detail the mapping between COLA and
SystemC elements.

4.1 Synchronous Dataflow in SystemC
Being a synchronous formalism, COLA asserts that com-

putation and communication occur instantly in a system,
i.e., take no time. The COLA components then operate
in parallel at discrete instants of time, only constrained by
the causality induced by data dependencies. This behav-



Figure 2: SystemC modules corresponding to the

COLA channel, delay and unit

ior of COLA designs can be efficiently modeled in SystemC
by means of its delta-cycles (i.e. zero-delay) mechanism.
Nevertheless, effort must be spent on mapping communica-
tion from COLA models onto SystemC. Since SystemC is
a modeling language in a discrete event-driven paradigm,
the primitive channels in SystemC have specific events as-
sociated with updating of the channels. In COLA, however,
communication has no notion of events. Channels propagate
data from source ports to destination ports without delay.
Therefore, data going through paths of possibly different
lengths arrive at the destination ports of a unit at the same
time.

As the first but not the best solution, we model COLA
channels using one-stage FIFO channels. In the rest of the
paper we call the one-stage FIFO channels FIFOs for short.
A FIFO has an event associated with the change from being
empty to having data written to it, and another with the
change from being full to having data read from it. In order
to fulfill the causality requirement of COLA models, the
FIFOs are accessed by blocking reads and writes. A blocking
read will cause the calling process to suspend, until data is
available, if a FIFO is empty. Likewise, a process will also
suspend, if it accesses a full FIFO with a blocking write. In
this way, the SystemC process that realizes the functionality
of a COLA unit can perform computation only after all the
FIFOs bound to its input ports are full.

4.2 Translation Rules
In this sub-section, we take a closer look at individual

COLA elements. We give a description of each element and
illustrate the mapping of the COLA elements to the respec-
tive SystemC elements.

4.2.1 Channels and Delays
Graphically, a COLA channel is simply represented by a

line (cf. Figure 2) connecting the ports in question. As dis-
cussed previously, we map a COLA channel onto a SystemC
FIFO, which is represented by a tube with the two ends in
dark gray depicting interfaces of the FIFO.

In the current version of COLA the delay is the only el-
ement whose behavior is dependent on time. It is used to
delay the dataflow for one tick. Intuitively this is a represen-
tation of memory, which is initialized with a given default
value. At the first evaluation of the delay, the default value
is written to the output port and the value present at the
input port is used as the new internal state. In all further
steps, the internal state is written to the output port and
again the input port value is stored as the new internal state.
A COLA delay is represented by two vertical lines drawn in
parallel. It has exactly one input and one output port, rep-
resented by the triangles on the vertical lines. Modeled by a

SystemC FIFO that is initialized with a default value before
simulation, the semantics of the delay can be preserved. In
this paper, we call such a filled FIFO a DFIFO. The body
of its graphical notation is colored in light gray, as shown in
Figure 2.

4.2.2 Units and Blocks
Units are the abstract computing elements within COLA.

Each unit defines a relation on a set of input and output
values. A unit is denoted by a box labeled with the identi-
fier of the unit (cf. Figure 2). Its ports are represented by
triangles on the border. When a COLA unit is mapped onto
a SystemC module, its input and output ports correspond
exactly to the respective input and output ports of the Sys-
temC module and its functionality is described by a thread

process. The generated SystemC code that represents the
COLA unit depicted in Figure 2 is given in Figure 3.

SC_MODULE(module_name){
sc_fifo_in<int> in1;
... // other ports
... // channels
// the thread process that realizes the functionality
void func_imp(){

while(1){
int temp_in1 = in1.read(); // blocking read
int temp_in2 = in2.read();
...
out.write(...); // blocking write

}
}
SC_CTOR(module_name){

... // body of constructor:
SC_THREAD(func_imp); // declare the process

}
};

Figure 3: A SystemC module from a COLA unit

Blocks are units that cannot be decomposed further. They
define basic computational behaviors. Examples of blocks
include arithmetic operations, logical operations, or con-
stants. The graphical notation of a block is distinguished
from those of the other units by drawing a black triangle
in its upper right corner (cf. Figure 4). For each block we
do not generate a SystemC module but generate one code
line in the process of the module that includes the block. If
several blocks are interconnected, the generated code is in-

lined. Figure 4 shows an example of a composite unit that is
composed of a set of blocks. The generated code describing
the blocks’ behavior is:

fifo_c5 = fifo_c1*(-1)/20;

As inlining is applied here, the FIFOs that interconnect
the blocks are not specified.

Figure 4: A network composed of blocks

4.2.3 Sources and Sinks
In COLA sources and sinks are categorized into blocks.

We discuss them separately because of their speciality. They
are blocks describing input- and output interfaces, through
which a COLA system communicates with sensors and actu-
ators, respectively. They are the only COLA elements, the



generated SystemC modules of which should be extended
with detailed behaviors. Figure 5 shows the SystemC skele-
ton code generated for the source DEV S ULTRA (cf. Fig-
ure 1) which interfaces ultrasonic sensor for distance sensing.
Code can be added to describe the data pattern that speci-
fies when and which data is measured from the sensor.

SC_MODULE(dev_s_ultra){
sc_fifo_out<int> ultra;

void dev_s_ultra_imp(){
while(1){

int temp_ultra;
/* please add code here */
ultra.write(temp_ultra);

}
}
SC_CTOR(dev_s_ultra)
{

SC_THREAD(dev_s_ultra_imp);
}

};

Figure 5: Generated SystemC skeleton code for

DEV S ULTRA

4.2.4 Networks and Automata
A composite COLA unit can be either a network or an au-

tomaton. A network contains sub-units connected by chan-
nels. It is used to describe data flow.

Control flow is modeled using automata in COLA designs.
The states of automata are also referred to as operating

modes. Each state of an automaton represents an operat-
ing mode and is associated with a behavior. For each state
a sub-unit is given to realize the state-associated behavior
and computes the output of the automaton. There is only
one active sub-unit in an automaton, namely the sub-unit
which corresponds to the enabled state of the automaton.
The passive sub-units freeze, i.e., retain their current state.
The transitions between the states are guarded by predicates.

The mapping of a COLA automaton to a SystemC mod-
ule follows the semantics described above. In the SystemC
module, computation and communication are divided into
several paths. Each path is associated with a state of the
automaton to be modeled. Based on predicates, the flow
of data is redirected to the sub-module implementing the
enabled state. Figure 6 illustrates an example of a COLA
automaton with two states, two input ports and one output
port. The activation of the path depends on whether the in-
put p equals 1 or not. All the input data are then forwarded
to the active sub-module.

Figure 6: Mapping from a COLA automaton to a

SystemC hierarchical module

5. TIMING SIMULATION USING SYSTEMC
Once an automated mapping as described above has been

established, simulating realistic scenarios requires a proper
definition of external stimuli (environmental/user events).

SystemC offers the flexibility to either specify when and
which data is measured or simulate the interactions between
the system and its environment. In this way the function-
ality of the system can be validated without knowing the
target platform.

For the time being, the hardware platform related issues
have not been taken into account. The whole system is mod-
eled as concurrently running modules connected by FIFOs
which implement the point-to-point communication scheme.
Both computation and communication are modeled at the
untimed level.

Once the target platform is known, performance analysis
of the whole system can be performed, starting at a high
level of abstraction and refining it stepwise. The first tim-
ing simulation step aims at determining the approximate
temporal behavior of the system by annotating timing infor-
mation to software components and replacing the untimed
FIFOs with timed FIFOs to take communication time into
account. Such a timing simulation can help making early
decisions regarding task allocation and hardware/software
partitioning. COLA units are annotated with their respec-
tive timing information and stored in a repository, to facili-
tate reuse.

In the further simulation steps, the target platform is also
modeled in SystemC at different levels of abstraction. The
software component modules are then bound to the proces-
sor models, while the communication can be further refined
by replacing the timed FIFOs with SystemC hierarchical
channels modeling the desired bus structure. In such a sim-
ulation framework, scheduling strategies can be easily inte-
grated. A detailed description of performance modeling is
out of the scope of this paper. For this purpose, the ap-
proaches proposed in [5, 9] can be followed.

6. CASE STUDY
We now show how the proposed simulation approach can

be applied, using a case study of modeling an adaptive cruise
control (ACC). This example is an imitation of the concerns
and requirements of automotive design, and does not repre-
sent a real set of control algorithms for an actual product or
prototype.

The intended functionality of the ACC is described as fol-
lows. When the ACC is turned on, the speed and distance
regulation is activated. This includes the measurement and
comparison of the pace set by the user and the actual mea-
sured car velocity. If the desired user speed differs from the
actual speed, the value for the motor control is corrected
accordingly. This regulation is used as long as no object is
detected within a safety distance ahead of the car. We chose
35 units for our example. If the distance drops below this
threshold, the actual speed is continuously decreased by 5
percent. The minimum distance allowed is set to 15 units. If
the actual distance is below 15 units, the car must perform
an emergency stop.

According to this specification, the system is modeled us-
ing COLA, as shown in Figure 1. The design is then simu-
lated at model level for both functional validation and timing
analysis (Figure 7). The test data are defined before sim-
ulation, except for the test data of the rotation sensor. As
shown in the figure, we add a module rotation gen to simu-
late feedback between motor and rotation in order to gener-
ate more realistic test data. rotation gen delays the motor’s
speed and converts it into appropriate rotation data, which



Figure 7: The ACC modeled using SystemC

will be forwarded to the rotation sensor.
In Figure 8 the results of simulating the SystemC model

are displayed. The simulation is run for 500 steps in this
example. The ACC is enabled permanently during the sim-
ulation. The diagram features the intermediate data as well
as the output value. The motor speed (s mot) is the only
output value shown in the diagram. Intermediate data in-
clude the desired speed (s user), the actual speed (s act) and
the distance (distance) that are generated by ui, rotation and
radar, respectively. s user is increased or decreased by 1 in
each simulation step, controlled by two triggers in ui. In
the diagram, s user is increased from 0 to 30 during the first
30 steps. distance is defined arbitrarily in the example, i.e.,
decreases linearly during the first 300 steps and increases
during the last 200 steps. s act is calculated interactively
using the data fed back from the motor. The delay in in-
crease of s mot visible in the diagram results from the soft
start functionality of the ACC. s mot is reduced some steps
when distance is lower than 35 and increases smoothly again
after distance exceeds 35 units again. As can be seen, the
functional behavior of the designed system can be simulated
well using SystemC.

Figure 8: Simulation of the modeled ACC

Further, the timing simulation with a PowerPC processor
as target is performed. We assume that the whole applica-
tion is mapped to this single processor. The individual worst
case execution times of the top-level components are given
in Table 1. So far, we have not considered more platform
related issues, such as communication delays of receiving
sensor data, allocation and scheduling, for this simple appli-
cation. However, the same simulation methodology is also
applicable for more complicated applications.

7. CONCLUSIONS
In this paper we presented an approach for integrating

SystemC based model-level simulation into a component-

Table 1: Timing Simulation Results

application components ET (cycles)

net ui 235
net rotation 75
net radar 141
net acc on off(acc off) 96
net acc on off(acc on, distance < 35) 698
net acc on off(acc on, 15 < distance ≤ 35) 568
net acc on off(acc on, distance ≤ 15) 342

based system development process. Such a process benefits
from the advantages of both COLA and SystemC. COLA
allows for modeling embedded control systems from logical
architecture down to technical architecture and from speci-
fication down to implementation within a single formalism.
The reason for selecting SystemC as simulation framework
is the fact that it is widely used for design space exploration
and performance analysis of embedded systems and consid-
ered as a standard in system level design. Our approach al-
lows for automatic generation of SystemC code from COLA
models.
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