
T U M
I N S T I T U T F Ü R I N F O R M A T I K

COLA – The Component Language

Stefan Kugele, Michael Tautschnig, Andreas Bauer, Christian
Schallhart, Stefano Merenda, Wolfgang Haberl, Christian

Kühnel, Florian M̈uller, Zhonglei Wang, Doris Wild, Sabine
Rittmann, Martin Wechs

ABCDEFGHIJKLMNO
TUM-I0714

September 07

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N

TUM-INFO-09-I0714-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c©2007

Druck: Institut f ür Informatik der
Technischen Universit ät M ünchen

COLA – The Component Language

Stefan Kugele, Michael Tautschnig, Andreas Bauer, Christian Schallhart,
Stefano Merenda, Wolfgang Haberl, Christian Kühnel, Florian Müller, Zhonglei

Wang, Doris Wild, Sabine Rittmann, and Martin Wechs

Technische Universität München

Abstract In this paper we introduce the component language COLA

for the design and development of embedded systems. We present the for-
mal syntax and semantics of COLA which is based upon synchronous
dataflow. Utilizing the abstraction provided by this paradigm, the de-
signer is freed from implementation details and is able to focus on the
core-functionality to be modeled and implemented. Due to the well-
founded semantics of the language, it is possible to establish an integrated
development process, the artifacts of which can be formally reasoned
about and are dealt with in automated tools such as model checkers or
model-based test case generators.

Since COLA has been developed in the context of an industrial coop-
eration, the main rationale in the design of COLA is its industrial ap-
plicability: Thus, the language must provide a well-defined semantical
foundation which is accessible to today’s tools and techniques and which
is also able to capture today’s industrial applications. To this end, we
extend the dataflow approach with automata to model operating modes
concisely as well as with a hierarchical decomposition to facilitate reuse
efficiently. We designed a textual and an equivalent graphical represen-
tation of COLA models to meet the need of our industrial collaborators.

Finally, we demonstrate the viability of our approach with a case study
from the automotive domain where we design an adaptive cruise control
(ACC) unit.

1 Introduction

COLA is a synchronous dataflow language for describing complex software sys-
tems, such as automotive or avionic control systems, in terms of hierarchic com-
ponents with a graphical and textual syntax. It offers modeling concepts known
in a similar manner from other industry standards, such as the Unified Model-
ing Language (UML) [1] or MATLAB/Simulink [2], but combines these with a
rigorous formal semantics.

Richer COLA concepts are built from a minimal set of core primitives that
make models easy to use, process, and understand from a user’s point of view
(where, for the sake of argument, the user can be a human or a third-party
toolkit, such as a model checker [3], for instance). This paper introduces these
core concepts, and defines the formal syntax and semantics of COLA.

Being a synchronous formalism, COLA follows the hypothesis of perfect syn-
chrony [4]. Basically, this asserts that computations and communication occur
instantly in a system, i. e., take no time. Components in a synchronous dataflow
language then operate in parallel, processing input and output signals at dis-
crete instants of time. This discrete uniform time-base allows for a deterministic
description of concurrency by abstracting from concrete implementation details,
such as physical bus communication, or signal jitter. Real-time requirements
which are inherent in many industrial applications are then expressed with re-
spect to the uniform time-base.

For COLA, this abstract computational model also facilitates the formal
validation and verification of systems. For instance, COLA systems can be au-
tomatically model checked for safety and liveness properties, or used for the
automatic generation of test cases, required to test the actual implementations
of systems on hardware.

The key concept of COLA is that of a unit which caters for composition
of elements, but may also define the actual behavior of COLA systems. Units
can be composed hierarchically, or occur in terms of blocks that define the basic
(arithmetic) operations of a system.

Each unit has a set of typed ports describing the interface, which amount to
the signature of the unit, and which are categorized into input and output ports.
Units can be used to build more complex components by building a network of
units and by defining an interface to such a network. The individual connections
in a network of (sub-) units are called channels and connect an output port with
one or more suitably typed input ports.

In addition to the hierarchical structure of networks, COLA provides a de-
composition into automata (i. e., finite state machines, similar to Statecharts [1]).
If a unit is decomposed into an automaton, each state of the automaton is asso-
ciated with a corresponding sub-unit, which determines the behavior in a partic-
ular state. This definition of an automaton is therefore well-suited to partition
complex networks of units into disjoint operating modes (cf. [5,6,7]), whose re-
spective activation depends on the input signals of the parent unit. Therefore
modes are also a suitable device to capture the hybrid nature of many control
systems, because discrete state changes can be modeled and continuous elements
associated to them (in terms of the corresponding units). An example for the
usage of units, automata and other COLA elements is given in Section 2.

1.1 The synchronous approach to software and systems engineering

Dataflow languages are an increasingly popular tool for the description of em-
bedded control software. Established CASE-tools like MATLAB/Simulink use
dataflow networks for the description of complex automotive systems, and sub-
sequent code-generation [8]. The synchronous subset of these languages, how-
ever, caters for a modeling paradigm of such systems where concurrency and
parallelism are explicable in a deterministic manner. Model-based design and
development approaches to embedded control software based on this paradigm

2

have been described, e. g., in [5,9]. Both articles give a good overview on the
subject.

In the synchronous paradigm, computation and communication of systems is
assumed to occur infinitely fast, i. e., without delay. Moreover, a uniform discrete
time base synchronizes all system events on so-called clock “ticks”. Systems pro-
duce and process results in accordance with this time base. However, to cater
for multi-rate sampling and to express real-time requirements of control systems
(e. g., deadlines), most synchronous approaches known from the literature pro-
vide dedicated sampling operators for the derivation of additional clocks. Clocks
are then defined with respect to a base clock, giving the entire design a well-
defined semantics. Examples include [10,11,12]. Especially, Lucid Synchrone [12],
was one of the first approaches to extend the synchronous paradigm towards a
higher-order type system known from functional languages, and to express pro-
grams that would be expressive and at the same time executed synchronously.

Another well-known synchronous approach, but instead of a functional char-
acter using an imperative character, is Esterel [13]. Esterel systems differ, in that
the behavior is defined in a reactive manner, rather than functionally based on
the dataflow relations alone.

Various efficient implementations of synchronous languages in the form of
textual (e. g., Esterel, Lustre [11], Signal [14], and FOCUS [15]), or graphical
languages (e. g., AutoFocus [16]) exist. In fact, when restricted to use only
discrete modeling blocks, MATLAB/Simulink also adheres to the synchronous
languages paradigm [17].

For an example of an efficient implementation scheme of synchronous data-
flow programs cf. [18]. Their work is based on the CAN-bus system as it is used
in present-day automobiles. The authors present the constraints under which
distribution of synchronous programs via an event-triggered medium is possi-
ble, and give means to determine worst-case scenarios concerning the resyn-
chronization of systems. Moreover, with GALS (globally asynchronous, locally
synchronous) [19] there exists another wide-spread approach to implement syn-
chronous systems in a distributed and non-synchronous environment. GALS can
be understood as having “synchronous islands” sitting and communicating in an
asynchronous environment. For COLA and related systems this would usually
require the use of FIFO-queues (first in, first out) to channel communication.
Experiments with this type of setup have been carried out, e. g., in the context
of the Esterel programming language [20], and formal analyses performed in the
works of [21], and by means of model checking in [22].

Since COLA is an inherently synchronous formalism, the language benefits
immediately from these deployment schemes, and distributed COLA systems
can be distributed under the well-known constraints accordingly. Note that for
the remainder, we focus mostly on the syntax and semantics of COLA, rather
than its formal deployment properties in a distributed setup. With this dis-
cussion, however, we would like to point out that deployment of synchronous
systems is a well-understood and researched topic in the literature.

3

This paper’s case study of an adaptive cruise control system makes a convinc-
ing case of how embedded control systems can directly benefit from our approach;
that is, we combine a UML-like graphical description catering for different views
and model aspects (e. g., depending on the stake-holders of a system), and a
formal semantics that is required to verify system properties (e. g., for systems
certification).

Existing approaches are not yet able to fully bridge the gap between indus-
trial process support and formally verifiable designs. Either the according tools
lack formal semantics that would allow users to perform dedicated reasoning
steps [23,24], or the tools’ focus rests solely on the semantics, often disregard-
ing important requirements such as scalability, traceability of design changes, or
versioning.

Efforts close to our approach are made by the Metropolis project [25], with
a focus on hardware/software codesign. The Architecture Analysis and Design
Language (AADL) [26] also offers well-defined models aimed at industrial appli-
cations. Unlike COLA, however, neither Metropolis nor AADL support model-
ing down to the implementation level within a single formalism. This may be
required for functional verification.

1.2 Organization

The remainder of this paper is structured as follows. The following section gives
a short introduction to the concepts of COLA using a case study taken from the
automotive domain. In Section 3 the modeling elements of COLA are briefly
introduced and the required basics on data types within COLA are given. Fur-
ther, a syntax of the language constructs used in COLA is provided in Section 4.
Next, Section 5 details on the formal semantics of the introduced syntactical el-
ements of COLA. The graphical representation of COLA systems, as used in
the example following, is defined in Section 6. We conclude with an overview of
ongoing work around COLA.

2 Case study: an adaptive cruise control (ACC)

This section gives an intuitive introduction to COLA on a case study taken from
the automotive domain. The modeled adaptive cruise control (ACC) enables cars
to keep the speed at a value set by the driver, while maintaining a minimum
distance to the car driving ahead (cf. [27]).

When implementing such control systems, usually an informal specification
in natural language is given. In the following paragraph, we provide a possible
excerpt of such a document that explains the relevant characteristics.

2.1 Informal specification

The intended functionality includes the possibility to turn the ACC on and off.
If the device is turned off, the motor speed set by the user is forwarded to the

4

engine control without any modification. The display shows “off” to indicate the
current ACC state. By engaging the ACC, the speed and distance regulation
are activated. This includes the measurement and comparison of the pace set by
the user and the actual measured car velocity. If the desired user speed suser

differs from the actual speed sact, the value for the motor control is corrected by
(suser − sact)/20. This results in a speed correction of 5 percent of the difference
between actual and desired speed. This regulation is used as long as no object
is detected within 35 meters ahead of the car. If the distance falls below this
threshold, the actual speed is continuously decreased by 5 percent. The minimum
distance allowed constitutes 15 meters. If the actual distance is lower, the car
should perform an emergency stop. After either reducing speed or coming to a
halt the ACC should speed up the car smoothly if the obstacle is out of the
critical region again.

A correct operation of the described system is crucial for safety reasons. It
is thus desirable to formally verify certain properties of the implementation,
according to its specification. This requires a formal semantics of the modeling
language. On the other hand, control systems, such as the ACC, are commonly
described using graphical modeling languages. COLA, as described in this paper,
satisfies both requirements.

2.2 The COLA model of the adaptive cruise control system

The implementation of this functionality is affected by the options available on
the target platform. The employed controller offers buttons for control actions
to the programmer. Further three sensor interfaces are present. The buttons
are used to set the desired user speed, and a push button is used to implement
switching the ACC on and off. The speed of the car is computed using a rotation
sensor, whereas distance to obstacles ahead is measured using an ultrasonic
device. In the COLA model, interfaces to hardware are marked by naming the
blocks DEV A for actuators and DEV S for sensors.

net_ACC

DEV_A_MOTOR

DEV_A_DISPLAY

net_acc_on_offnet_rotation

net_ui

net_radar

Figure 1. ACC top-level view

The top-level network of the ACC model is shown in Figure 1. As required
for a COLA system (see Definition 3 on page 11), this network has no ports and

5

all sensors and actuators used are included in the network. The main compo-
nents are the user interface (net ui and the display DEV A DISPLAY), the speed
computation (net rotation), the distance sensing (net radar), the connection to
the engine (DEV A MOTOR), and the main control code (net acc on off). Rect-
angles with a black triangle in the upper right corner mark blocks that are not
further refined, whereas all other rectangles are networks. For example, consider
the decomposition of net radar in Figure 2.

net_radar

atm_ultra/

DEV_S_ULTRA

100125

*

Figure 2. net radar: distance sensing

The network is implemented by constants and basic arithmetic operations on
data provided by the ultrasonic hardware (DEV S ULTRA). The interface of the
network consists of a single output port, whereas all sensor specific data manip-
ulation is encapsulated within this network. The characteristics of the employed
hardware require some further computation, performed within an automaton
(atm ultra), which is displayed in Figure 3.

atm_ultra

15

+

0

<=2

>2

Figure 3. atm ultra: input-specific computation

Depending on whether the data provided by the ultrasonic sensor and the
arithmetic postprocessing is greater than 2 or not, a constant value of 15 must
be added, or 0 is returned, respectively. This function is implemented using an

6

automaton with two states that describe the respective behavior. For brevity, in
Figure 3 the implementing units are drawn inside the states.

The following figures complete the model of the adaptive cruise control. By
generating code and compiling for the target platform, the application can be
deployed and used immediately.

net_ui

net_speed_control

DEV_S_TOUCH

DEV_S_VIEW

DEV_S_PRGM

net_speed_control

-

atm_limit_

0_255
+

(a) net ui and net speed control

atm_limit_0_255

0

255
< 0 > 0

> 255

< 0

< 255

> 255

id

(b) atm limit 0 255

Figure 4. net ui and its refinements

In Figure 4(a) the user interface is detailed further. Apart from the blocks—
which correspond to the buttons on the embedded system—DEV S TOUCH,
DEV S VIEW, and DEV S PRGM, the network net speed control and a delay are
shown. The latter is denoted by two vertical bars. The network net ui facilitates
a feedback loop to allow the user to increment and decrement the previously
selected speed.

net_rotation
DEV_S_ROTATION

DEV_S_TIME

425

*

-

/

Figure 5. net rotation

The network net rotation shown in Figure 5 implements the speed measure-
ment. Abstractedly speaking, it computes a function ∆rot·425

∆t
. The constant fac-

tor of 425 is specific to the platform as it, among others, depends on the diameter
of the wheels.

7

n _acc_on_off

mode==1

mode==1

net_acc_on off

n _acc_on

atm_integratoratm_dist_0_check

�� �
_dist_0_check

atm_dist_35_check

dist==0

dist > 0

1

stop

-1

�� �
_integratoremg

! emg

id atm_limit_

0_255
+

Figure 6. net acc on off and further refinement

Figure 6 includes the network atm integrator. This network reuses the au-
tomaton atm limit 0 255, which is displayed in Figure 4(b). Note that this au-
tomaton has already been used within net speed control.

The effective control, which determines the behavior whenever the cruise con-
trol is switched on, is shown in Figure 7. It satisfies the functional requirements
that were expressed in natural language in Section 2.1.

In the following sections, the formal interpretation of such systems will be
given. Furthermore, a textual representation of COLA will be given, where we
again refer to parts of this case study.

3 Modeling formalism

A COLA system is composed of units. Each unit has a set of input and output
ports and describes a relation on input and output values. Units appear as basic
blocks, forming the atomic building elements of a COLA system, or are composed
forming networks and automata. In the latter case units allow for combination
and integration of elements into more complex units. All kinds of units are
possibly connected by channels attached to the input and output ports.

In the following all modeling concepts are formally defined and further ex-
plained. Right before a notation of types is introduced to give way to a sound
definition of the syntax and the semantics of COLA.

8

���_dist_35_check
net_speed_
correction

dist < 35

dist >= 35

net_dist_lt_35

n _speed_correction

atm_up_down

0

n _dist_lt_35

*

-1
20 slow

0

/	
�_�_down
s_act == s_user

s_act != s_user

0

20

- /

Figure 7. The cruise control

3.1 Types

In order to validate fundamental static compatibility of connected units, their
communication endpoints, i. e., input and output ports, are statically typed such
that type compatibility can be checked. However, for this paper the details of
type compatibility checking are not considered and therefore only the rudiments
of a type system are introduced to describe units and all subsequently defined
terms properly. For a proper introduction to types in programming languages
consult, e. g., [28].

It is assumed that there exists a universe of types, T, such that the assump-
tions described next are consistent. These types may include basic types such as
Boolean or Float, but also complex types. With each type a domain of values is
associated, denoted by dom(t) for some t ∈ T.

To express type compatibility, a subtype relation forming a lattice of types
in T is required. Let the subtype relation be denoted by ⊑. This and the above
requirements are met by, e. g., [29]. The type system described there can be
applied to COLA immediately.

3.2 Units, signatures, and ports

The basic, yet abstract, computing element within COLA is a unit. Each unit
defines a relation on a set of input and output values. The valid domains are
implied by the types of the input and output ports. Together they syntactically

9

describe the interface, called the signature. To allow a proper definition of units,
ports and signatures must be formally specified first.

The static typing outlined above is implemented by associating a type with
each port. Otherwise, a port is solely an identifier that must be unique within
the unit. Note that the discrimination of input and output ports is only derived
from the signature, which also defines the order of the ports. We denote the
resulting pair of an identifier a and the port type t by a : t.

Using this ordering the type of the relation that is computed by the unit is
defined as the Cartesian product of all types of the input and output ports. The
domain of the relation is implied by the input ports, and the range is inferred
from the output port types.

Definition 1 (Signatures and ports). Let Pin = 〈a1 : t1, . . . , ak : tk〉 and
Pout = 〈ak+1 : tk+1, . . . , an : tn〉 with k, n ∈ N be (ordered) lists of ports, such
that all identifiers a1, . . . , an are pairwise distinct. A signature σ is written as
σ = (Pin Pout). Then, Pin denotes the input and Pout the output ports. For
the ease of use, the following notations are defined:

– in(σ) = (a1, . . . , ak) and out(σ) = (ak+1, . . . , an)
– type(ai) = ti
– dom(in(σ)) = dom(type(a1)) × . . . × dom(type(ak))
– dom(out(σ)) = dom(type(ak+1)) × . . . × dom(type(an))

Based on these preliminaries, units can be defined syntactically. Every unit
has a name that allows referring to it, a signature, a classifier, and an imple-
mentation. The identifier of the unit must be unique among all units to allow
the identification within the set of all units that build up a COLA system. This
is a formal requirement for instantiation, as discussed in Section 3.3. The clas-
sifier specifies the type of the implementation, because the effective description
of functional blocks (“fblock”), timing blocks (“tblock”), networks (“network”)
and automata (“automaton”) is different. Depending on the classifier, the im-
plementation may consist of a relation only, but may also be a specification of
composite units as described in the following sections.

Definition 2 (Unit). A unit u is a tuple u = 〈n, σ, c, I〉, where n is its name, σ
is a signature, c is a classifier and I is its implementation.

In the course of this section, the syntactical structure of each possible imple-
mentation will be discussed. However, to properly define the implementations of
all kinds of units, first COLA systems must be described.

3.3 Systems

A COLA system is a set of units with pairwise distinct identifiers. Out of these,
one is selected as the distinguished root unit of the hierarchy. It must not have
any input or output ports as there is no means of providing data to the root
unit or reading from it. Thus a system may also include a description of the
environment of the object that the modeling focuses on.

10

Definition 3 (System). A system is a pair 〈u, U〉 with a set of units, U , and
an identifier, u. It must hold that

1. each unit identifier within U is unique, and
2. there exists a unit 〈n, σ, c, I〉 ∈ U with n = u and no ports, i. e., in(σ) =

out(σ) = ∅.

Next, types of nested units are explained. In the context of component based
systems, hierarchical nesting is referred to as composition. The hierarchy of
COLA elements is built by instantiating units from the collection of units pro-
vided by the system and thereby composing new elements. Note that the only
initial elements to build such a set are blocks as defined at the end of this section.

3.4 Composite units

Within the hierarchy, units other than blocks are composed of further units. In
COLA, two principles to structure hierarchies of units are employed:

– First, a hierarchically structured unit can consist of a (dataflow) network of
further units, which are connected by channels.

– Second, a unit can contain an automaton. For example, a brake controller
might have the states “car is moving” and “car halted.” Then, for each state
of this automaton, a further unit is given, which computes the output of the
overall unit as long as the automaton remains in this state.

Networks and channels. If a unit is classified as a network, the implemen-
tation of this unit contains further units (or sub-units) which are connected
by channels. Apart from the interconnection, channels also facilitate the map-
ping between input and output ports of the network and ports of the contained
sub-units. The intention behind channels is the propagation of values within a
network of units. Informally, each channel transfers the data values from its in-
put, called the source, to its outputs, referred to as destinations. We distinguish
four valid ways of using channels:

– Channels between sub-units that connect a single output port to one or more
input ports.

– Connections between an input port of the network and one or more input
ports of contained sub-units, or connections between an output port of a
sub-unit and one or more output ports of the network.

– Direct connections from an input port of the network to one or more output
ports of the network.

– Channels that connect a sub-unit’s output port to one or more output ports
of the network and to one or more input ports of other sub-units.

To sum up, we can say that on the one hand sources can either be output ports
of sub-units or input ports of networks, on the other hand destinations can either
be input ports of sub-units or output ports of networks.

11

We further refer to the single port that provides input as the source of the
channel. On the contrary, the ports that allow gathering data from the channels
are called destinations of the channel.

To ensure compatibility, it is in all cases required that the type of the source
port is a subtype of the type of any connected destination.

Definition 4 (Channel). A channel is a triple c = 〈a, s, {d1, . . . , dk}〉 with port
identifiers s, d1, . . . , dk for k ≥ 1 and an identifier a. Then, d1, . . . , dk are the
destinations of the channel and s forms the source of the channel. To guarantee
type compatibility, type(s) ⊑ type(dj) must hold for any 1 ≤ j ≤ k. To refer to
the source of the channel, the function src(c) = s is provided. Similarly, the set
of destinations is obtained using dest(c) = {d1, . . . , dk}.

Given a set of units and interconnecting channels, a network can be described.
The resulting network instantiates, thereby reuses, (sub-)units and adds channels
as its implementation. Thereby it forms a new element that is then added to the
set of units of the system.

The instantiation is formally best described by a mapping inst from a set of
identifiers to the set U of the system 〈u, U〉. Note that each of the identifiers
must be unique within this set of sub-units. Further note that the mapping is
specific to each network, as only within that the identifiers are guaranteed to be
unique. Instantiation defined in this way also allows multiple uses of the same
unit within a single network.

There are several requirements channels and ports of sub-units must satisfy
in order to form a syntactically correct network. Note that type compatibility
already follows from the definition of channels.

– First, to guarantee dataflow within the network, any input port of the sub-
units must be a destination of some channel. As such, channels describe
data dependencies within a network and thus requirements on the order of
evaluation. The details thereof are given in the semantics in Section 5.3. It
shall be noted that such an order can only be obtained if there are no cycles,
unless a cycle contains at least one delay component (see Definition 8).

– Second, all output ports of the network must be supplied with data. To this
end, each of them must be the destination of some channel.

– Third, the identifier of any port of the network or the sub-units must be
contained in at most one channel.

– Finally, to prevent recursion, any referenced sub-unit must be already avail-
able in the collection U of the system 〈u, U〉.

Definition 5 (Network). A network is a unit 〈n, σ, network, I〉 with an im-
plementation I = 〈{u1, . . . , uk}, inst, C〉, with k ∈ N. The total function inst :
{u1, . . . , uk} → U maps a set of identifiers to units contained in the collection U
of a COLA system 〈u, U〉. C is a set of channels.

Valid port identifiers: As channels must refer to port names unique within the
network, the ports of instantiated units are addressed as ui.aj for some port aj

12

of a unit instantiation identifier ui. Whenever channels refer to the input or
output ports of the network the unit name is omitted.

The syntactic requirements on networks are formally described as follows.

1. Dataflow: For any identifier x ∈ {u1, . . . , uk} that yields the instantiation of
a unit inst(x) = 〈n′, σ′, c′, I ′〉 and any input port identifier p ∈ in(σ′) there
must be a channel c ∈ C such that p ∈ dest(c).

2. Cycle validity: Assume that there exists a subset of the sub-unit identifiers,
{u′

0, . . . , u
′

l} ⊆ {u1, . . . , uk}, such that, together with a set of channels, they
form a cycle. That is, for all 0 ≤ i ≤ l and j = i + 1 mod l + 1 there
exists an output port p of the unit instantiated from u′

i, an input port q of
the unit instantiated from u′

j, and a channel c ∈ C with src(c) = u′

i.p and
u′

j .q ∈ dest(c). If this is the case, then there must be at least one 0 ≤ d ≤ l
such that inst(u′

d) = 〈n′, σ′, tblock, I ′〉, i. e., u′

d instantiates a delay.

3. Output presence: For all output port identifiers p ∈ out(σ) of the network a
channel c ∈ C with p ∈ dest(c) must exist.

4. Channel validity: Channels must be connected. That is, for each channel c ∈
C the source src(c) must resolve to a valid port identifier as described above,
and dest(c) 6= ∅ must consist of valid port identifiers as well. Furthermore, if
p = src(c) and p = src(c′), or p ∈ dest(c) and p ∈ dest(c′), then c = c′ must
hold.

Orthogonal to the dataflow description using networks, control flow is de-
scribed using automata. We make use of Moore automata [30], i. e., output (gen-
erated by contained dataflow descriptions) is provided by states, independent of
the transition taken to reach the state.

Automata If a unit A is an automaton, then the implementation of this unit
is a finite automaton with transitions guarded by predicates. The output is
defined by the unit associated with each of the states. This is then equivalent
to substituting one of the states for the automaton. Thus, the states are also
referred to as operating modes. Each state of the automaton represents such an
operating mode and each such state is associated with its own dedicated and
possibly differing behavior in terms of a sub-unit.

Therefore, in each such unit A, there is one sub-unit which is enabled, namely
the sub-unit which corresponds to the enabled state of the automaton. The
question arises how to handle the passive sub-units, whether they should be
reset on reactivation, whether they should completely freeze, or whether they
should continue their computation while their outputs are ignored. As laid out
in Definition 13, we follow the freeze approach as we found it to be the most
natural one for our application domain. That is, only the unit corresponding to
the selected state performs its computation, while all others retain their current
system state.

Type correctness of the output of any enabled state is guaranteed by de-
manding that the signatures of A and each of the sub-units are equivalent.

13

Definition 6 (Automaton). A unit 〈n, σ, automaton, I〉 with an implementa-
tion I = 〈Q, inst, q0, ∆〉 is an automaton, where

– Q = {q0, . . . , qk} is the finite set of state labels. As with networks, each of
which is associated with a unit using a total function inst : Q → U for a
system 〈u, U〉.

– q0 ∈ Q is the initial state,
– ∆ ⊆ Q × dom(in(σ)) × Q is the transition relation.

For syntactical compatibility of the automaton with each state q ∈ Q it must
hold that inst(q) = 〈nq, σq, cq, Iq〉 implies σq = σ for all q ∈ Q.

In practice, the transition relation is given by a set of predicates over the
inputs, which is again expressible using COLA networks.

3.5 Blocks

A block provides some basic computational functionality which is not further
decomposed. Thus they are the leaves of the tree formed by the hierarchy of
a COLA system. Following the syntactic description in Definition 7, a block
comes with a signature and a relation that maps the values at the input ports
to values at the output ports. Further, it is distinguished between timing blocks
and functional blocks. Functional blocks are used to define the behavior, whereas
timing blocks at the current stage may be used to influence the succession of
data. With the advent of a clock calculus for COLA there will also be operators
to modify the order and frequency of the execution of units.

Definition 7 (Functional block). A functional block is formalized as a unit
〈n, σ, fblock, I〉 with an implementation I that is a relation. It associates each
input with a set of output values, i. e., the type of I is specified by

I ⊆ dom(in(σ)) × dom(out(σ))

Examples of functional blocks include the arithmetic operations +,−,×, /,
Boolean connectives like ∨,∧,¬, or comparison operators (=, <, >,≤,≥).

The only timing block that is defined here is the delay. Further timing oper-
ators will be discussed in the COLA clock calculus, which is subject to another
document.

The idea of a delay is to provide means for retaining a value for a single time
unit, thereby supplying a low-level realization of variables as found in high-level
programming languages. The detailed semantics are described in Definition 12.
To guarantee proper operation from the beginning, the delay must be initialized
with a constant value c. The mapping computed by the delay is described by
the delay relation, parametrized by the default value. It is of the following type:

delayc : dom(t) → dom(t) for t ∈ T, c ∈ dom(t)

Definition 8 (Delay). A delay is a unit 〈n, σ, tblock, I〉 with a signature σ =
(〈i : t〉 〈o : t〉) and the relation I = delayc, c ∈ dom(t) as its implementation.

14

3.6 Unique identifiers for instantiated units

Within COLA, unique identifiers are used for referring to instances. Unique
names are generated in a recursive manner following the hierarchy of composition
by descending from the root unit to blocks that cannot be further decomposed.

Definition 9 (Unique identifier). The unique identifier of an instance of a
unit x = 〈n, σ, c, I〉 is inductively defined as follows:

– If x is the root unit of a system 〈u, U〉, i. e., n = u, then its unique identifier
is root.

– For a network x with unique identifier net id, the unique identifiers of the
contained sub-units {u1, . . . , uk} are defined to be net id.ui for any ui ∈
{u1, . . . , uk}.

– For an automaton x with unique identifier atm id, the unique identifiers of
its states {q0, . . . , qk} are defined to be atm id.qi for any qi ∈ {q0, . . . , qk}.

These three cases are sufficient to uniquely identify all unit instances of a
system since functional blocks as well as timing blocks either occur as the root
unit or are contained in one of the composed units.

4 Syntax

In this section a textual representation of COLA models is described in terms
of an EBNF, compliant with the ISO standard as defined in [31].

4.1 Libraries and systems

As laid out in Definition 3, a COLA system is a pair 〈u, U〉 with a set of units U
and an identifier u that distinguishes the unit which implements the system to be
modeled by using the other given units. To facilitate reuse, the COLA language
supports structuring the set of given units. Therefore COLA introduces libraries
and inline definitions within a unit.

A library contains a set of reusable COLA units. For further structuring
sub-libraries are also allowed. Since a library is marked as used in a dedicated
context by an include-statement, all units contained in the library itself and its
sub-libraries can be used. Libraries themselves can contain an include-statement
which indicates that all units defined within this library and sub-libraries can use
the units defined in the library given by the include-statement. Inline defined
units can only be used within the defining unit.

Since libraries, inline definitions and include-statements only cater for fur-
ther structuring of the defined units, these concepts are omitted in the COLA

modeling formalism (Section 3) and semantics (Section 5). There, every defined
unit can be used instead.

Since the defined units are captured by libraries and inline definitions, besides
an identifier a COLA system just consists of the implementing root unit.

15

Library = “library” Identifier “{” { “include” Reference “;” }
{ Library } { Unit } “}” ;

System = “system” Identifier “{” Unit “}” ;

4.2 Units

The unit, which is formally described in Definition 2, is the central modeling
concept of COLA. Its implementation can be either a block, a network, or an
automaton. As defined in the EBNF-rule BasicUnitHeader, every unit has an
identifier, a signature and optional properties.

Identifier and signature are mandatory except for units used as guards, which
describe the predicates of the transition relation, or behaviors of automata. In
this case, identifiers can be omitted because guards and behaviors are not in-
tended to be reused and thus do not need to be referenced. The guard’s and
behavior’s signature can be be left out, as it is defined by the signature of the
surrounding automaton. For behaviors the signature is exactly the same as the
one of the automaton. For guards only the input ports are the same as those of
the automaton; the output ports of a guard are defined by exactly one port with
the type Bool and the name “guard”.

For automata and networks the ExtendedUnitHeader is defined. Again, the
include-statement allows the indication of library usage. The units of the library
can then be used in the implementation. Additionally, units can be defined inline.
These units are only accessible by the defining unit and its other inline defined
sub-units. As mentioned above, the inline definitions are omitted in the COLA

modeling formalism and semantics.

Unit = Block | Network | Automaton ;
BasicUnitHeader = [Identifier] [Signature] “{” { Property } ;
ExtendedUnitHeader = BasicUnitHeader { “include” Reference “;” }

{ “inline” Unit } ;

Signatures and ports According to Definition 1 a signature consists of input
and output ports. Note that an empty list of input and/or output ports is possi-
ble. Thus (->) denotes the empty signature. A port is defined by its identifier
and its datatype.

Signature = “(” [Port { “,” Port }] “->” [Port { “,” Port }] “)” ;
Port = Identifier “:” Datatype ;

Datatypes and literals Presently only the three datatypes Bool, Int, and
Real are allowed. Records and tuples are currently under development and will

16

be subject of a continuative work. The corresponding literals are also defined
below.

Datatype = “Bool” | “Int” | “Real” ;
Literal = BooleanLiteral | IntegerLiteral | RealLiteral ;
BooleanLiteral = “true” | “false” ;
IntegerLiteral = [“-”] Digit { Digit } ;
RealLiteral = [“-”] Digit { Digit } “.” Digit { Digit } ;

Properties Properties allow an additional (partial) description of the unit’s
behavior by a SALT [32] formula and/or natural language. A detailed description
of properties will be given in an additional paper.

Property = “property” (TextProperty | SaltProperty) “;” ;
TextProperty = { UniCodeChar – “;” } ;
SaltProperty = ? a SALT formula ? ;

Blocks As described in Section 3.5 a block can not be further decomposed. In
principle, blocks are used to represent four kinds of primitive units:

– primitive stateless functions, like add or sub
– the delay operator pre
– legacy units
– physical connections modeled by sources and sinks

Even though blocks are not further decomposed, properties can be optionally
specified.

Block = “block” BasicUnitHeader “}” ;

Automata Automata are formally defined in Section 3.4. According to that,
the behavior of an automaton is described by a set of states and corresponding
transitions. Exactly one of those states must be indicated as initial. For each
state, the behavior is defined by a unit. All transitions which end at this state
are defined by a from-statement including the corresponding guard unit. The
guard unit with its Boolean output implements the transition relation described
in Definition 6.

Automaton = “automaton” ExtendedUnitHeader State { State } “}” ;
State = [“initial”] “state” Identifier “{”

“transitions” “{” { Transition } “}”

17

“behavior” Unit “}” ;
Transition = “from” Reference “guard” Unit ;

Networks According to Definition 5 a network is implemented by units con-
nected via channels. Once a unit is specified (in a library or inline) it can be
used in multiple network implementations. Due to this fact the decomposition
of networks is implemented by instances of units. For better readability, COLA

provides a function-like notation for network implementations. Thus a network
consists of a set of assignments. In order to be able to reference port-to-multiport
channels, which are channels connected to more than one destination, within the
assignments, they have to be declared explicitly by a channel-statement. We call
these channels “named channels”.

A reference on the left side of an assignment points either to an output port
of the network or to a named channel. The right side of an assignment may be a
reference to an input port of the network or a named channel. It is not allowed
that both sides of an assignment are references to named channels. In case of
a constant input the right side is a literal. Note that in the COLA modeling
formalism a constant is seen as a COLA block. The third alternative for the
right side of an assignment is a unit instance and therefore the output ports
of the instantiated unit are connected to the left side of the assignment. The
number of references on the left side must correspond to the number of output
ports of the instantiated unit. The input for the instantiated unit is given by
a list of arguments within parentheses. The notion looks like a function call
and the channels are implicitly defined. For better readability some important
COLA blocks are written in infix and prefix notation respectively.

Network = “network” ExtendedUnitHeader
{ “channel” Identifier “;” } { Assignment “;” } “}” ;

Assignment = (Reference | (“(” Reference “,” Reference
{ “,” Reference } “)”)) “:=” Argument ;

Argument = Reference | Literal | UnitInstance ;
UnitInstance = (Reference “(” [Argument { “,” Argument }] “)”)

| InfixFcts | PrefixFcts ;
InfixFcts = “(” Argument (“+” | “-” | “*” | “/” | “=” |

“<=” | “>=” | “<” | “>” | “&” | “|”) Argument “)” ;
PrefixFcts = “(” “!” Argument “)” ;

4.3 Identifiers and references

In general, (simple) identifiers are not be globally unique. Based on simple identi-
fiers and based on this grammar we obtain canonical identifiers, which are unique
by construction. As described in Section 3.6, a canonical identifier is built up
by concatenating the identifiers of all nodes on the path in the hierarchy from
the root to the node to identify, separated by a dot. For referencing, canonical

18

identifiers can always be used. The simple identifier can be used instead if the
canonical identifier of the referencing element and that of the referenced element
are the same except for the last identifier in the paths.

Identifier = (BasicChar | “ ”) { BasicChar | Digit | “ ” } ;
Reference = Identifier { “.” Identifier } ;

4.4 Basic alphabet

Text strings in COLA may use the unicode character set.

UniCodeChar = ? a printable unicode character ? ;
BasicChar = (“A” . . . “Z”) | (“a” . . . “z”) ;
Digit = (“0” . . . “9”) ;

4.5 Example

In the following the network net radar, as already displayed in Figure 2 on page 6,
with all of its sub-units, including atm ultra from Figure 3, coded in the above
defined COLA syntax is shown:

network net_radar (-> dist:Int) {

automaton atm_ultra (in:Int -> out:Int) {

initial state sPlus15 {

transitions {

from state s0 guard network (in:Int -> guard:Bool)

{ guard := (in > 2); }

}

behavior network (in:Int -> out:Int)

{ out := (in + 15); }

}

state s0 {

transitions {

from state sPlus15 guard network (in:Int -> guard:Bool)

{ guard := (in <= 2); }

}

behavior network (in:Int -> out:Int)

{ out := 0; }

}

}

source block DEV_S_ULTRA (-> ultra:Int) {}

dist := atm_ultra(((DEV_S_ULTRA() * 125) / 100));

}

19

5 Semantics

In COLA, as a synchronous dataflow language, it is assumed that operations
start at the same instant of time and are performed simultaneously with respect
to data dependencies. As denoted in Definition 10, the computation of the system
over time can be subdivided into discrete steps, called ticks, and the execution is
performed in a stepwise manner over the discrete uniform time-base. The data
dependencies are implied by the employed channels. At each step a unit emits
new values to the channels connected to its output ports. These values become
available immediately for ports connected to the reading side of the channel.
The semantics of a COLA system is described by an infinite run of the system.
In order to define this system behavior, we first consider basic concepts common
to all units.

5.1 Units

The semantics of a unit 〈n, σ, c, I〉 ∈ U with a unique identifier x of a COLA

system 〈u, U〉 is described by a relation opn. In order to define it properly,
the state of a unit—which intuitively resembles to a snapshot of its internal
memory—denoted by state[x] has to be defined first.

The vector state stores the state of all unit instances of the system 〈u, U〉. It is
indexed, denoted as [·], by unique instance identifiers. As detailed below, in case
of composite units, state[·] may again refer to entries in the vector corresponding
to the instances of sub-units.

State of a unit The state of a unit 〈n, σ, c, I〉 with unique identifier x is described
by the vector entry state[x]. Its domain depends on the unit’s classifier c and the
implementation I. In order to distinguish stateful and stateless units, we first
have to clarify both terms: A stateless unit’s output only depends on its input
values. stateful means that a unit’s output value may also depend on the unit’s
history, i. e., on previous computations. Based on this definition, we can specify
the state of a unit in the following way:

– If 〈n, σ, fblock, I〉 is a functional block with a unique identifier x, then for any
tick holds: state[x] = ∅ = dom(state[x]) . A functional block can implement
basic arithmetic operations, Boolean connectives, comparison operators as
well as constant functions. All these operations and functions do not depend
on past calculations and are therefore stateless.

– For a unit implementing a delay 〈n, σ, tblock, delayc〉 with unique identi-
fier x, the state is a value from the domain of the port types: state[x] ∈
dom(in(σ)) = dom(out(σ)) = dom(state[x]). In the first tick, the state of the
delay is the default value (see Definition 8) c ∈ dom(in(σ)), i. e., state[x] = c.
The delay copies the current input into the internal state and emits its
previous internal state. The initial value is the first emitted value, whereas
subsequently, the incoming stream of values is reproduced as output, delayed
for a single tick.

20

– The state of a network 〈n, σ, network, 〈N, inst, C〉〉 with the unique identifier
x is a tuple of all unit states contained in N = {u1, . . . uk} with k ∈ N:

state[x] = (state[x.u1], . . . , state[x.uk])

dom(state[x]) = dom(state[x.u1]) × . . . × dom(state[x.uk])

– Finally, the implementation of a unit 〈n, σ, automaton, 〈Q, inst, q0, ∆〉〉 with
a unique identifier x as an automaton has to be considered. As introduced in
Definition 6, each state qi, 0 ≤ i ≤ k where k + 1 is the number of states in
the automaton, is itself realized by a unit. The state of a unit implementing
an automaton is thus defined to be the enabled state qe ∈ {qo, . . . , qk}, which
equals q0 at the first tick, in combination with the state of all automaton
states qi.

state[x] = (qe, state[x.q0], . . . , state[x.qk])

dom(state[x]) = Q × dom(state[x.q0]) × . . . × dom(state[x.qk])

Utilizing this description of the state of a unit, the semantic relation opn,
where n refers to the name of the unit, may be defined for any unit 〈n, σ, c, I〉
with unique identifier x. It describes all—possibly non-deterministic—valid tran-
sitions of a unit that can occur in a single tick. Because we assume perfect
synchrony, computations and communication between different units take no
time. Disregarding automata for a moment, for each instantiated unit of the
COLA system, one of its possible transitions is chosen at each tick. In case of
an automaton, however, this only applies to the enabled state, whereas all other
states, and the entire hierarchy below the respective sub-units, do not perform
any transitions. In consequence, the system is evaluated exactly once at each
tick.

As the concept of a unit is a general one and not associated with a specific
behavior, opn is first described as a subset of tuples of internal state, input
values, a new internal state, and output values.

opn ⊆ dom(state[x]) × dom(in(σ)) × dom(state[x]) × dom(out(σ))

In the following the definition of opn is explained in detail for blocks and
composite units. We further describe the semantics in terms of an interpreter of
COLA systems, because this approach naturally lends itself to later attempts
of code generation.

To algorithmically express port valuations, for each unit instance uniquely
identified by x a vector valx is defined, with

valx ∈ dom(in(σ)) × dom(out(σ)).

It is indexed by port names from σ, i. e., valx[p] ∈ dom(type(p)) for some p ∈
in(σ) ∪ out(σ). The values of the entries of valx are set and read from in the
algorithms described below.

21

5.2 Semantics of systems

As described in Algorithm 2, a COLA system 〈u, U〉 is evaluated in a recursive
manner starting at the unit identified by u. We thus define the semantic rela-
tion, opS , of a COLA system S = 〈u, U〉 in terms of the semantic relation of
the root unit 〈u, σ, c, I〉 ∈ U , which is the unit corresponding to the identifier u.
Then, opS = opn.

To algorithmically obtain the unit with this identifier, FindRootUnit (see Al-
gorithm 1) iterates over all units contained in the COLA system. The resulting
unit instance is then the root instance of the COLA system.

The evaluation is performed until all enabled unit instances have been eval-
uated once by EvaluateUnit, which is described in Algorithm 3.

Algorithm 1 FindRootUnit(〈u, U〉)

1: foreach (〈n, σ, c, I〉 ∈ U) do

2: if (n = u) then

3: return 〈n, σ, c, I〉

Using FindRootUnit, Algorithm 2 first selects the root unit from the set of
all units, U , and then runs the system. Each cycle of the while-loop corresponds
to one tick. Note that no input needs to be consumed here and no output is
generated, as the root unit of a COLA system has no ports. However, the internal
state may be modified.

Algorithm 2 EvaluateColaSystem(〈u, U〉)

1: rootInstance = FindRootUnit(〈u, U〉)
2: while (true) do

3: EvaluateUnit(rootInstance, root)

The way a unit is evaluated in each tick of the run is different for basic blocks
and composite units that were introduced in Section 3. Algorithm 3 thus calls
the respective functions, which are defined below, depending on the classifier of
the unit 〈n, σ, c, I〉 with unique identifier x at hand. Each function returns the
results of the evaluation of the unit.

Definition 10 (Semantics of a system). The semantics of a system S =
〈u, U〉 is given by the semantic relation of the unit 〈u, σ, c, I〉 ∈ U . That is,
opS = opu. A tick is defined as a single evaluation of opS for a given internal
state.

Following the top-down manner of evaluation of units, first the semantics of
networks is given. As networks strongly depend on delays, these are considered
next. Finally, automata and functional blocks are described.

22

Algorithm 3 EvaluateUnit(u = 〈n, σ, c, I〉 , ui)

1: if (c = fblock) then

2: return EvaluateFunctionalBlock(u, ui)
3: else if (c = tblock) then

4: return EvaluateTimingBlock(u, ui)
5: else if (c = network) then

6: return EvaluateNetwork(u, ui)
7: else if (c = automaton) then

8: return EvaluateAutomaton(u, ui)

5.3 Networks

To reason about a set of interconnected units, first the impact of channels, which
were described in Definition 4, on the semantics shall be discussed. First, a
channel implies that at each tick the value at its source equals the value present
at the destination ports. Second, as consequence of this, channels effect the order
of evaluation of the units contained in a network, because input values to a unit
must be known prior to its evaluation. Thus a unit providing data to a channel
has to be evaluated before any other unit which is connected to the destination
side of the channel.

To reason about these data dependencies in the network, let G = (V, E) be
the directed graph spanned by the network 〈n, σ, network, 〈{u1, . . . , uk}, inst, C〉〉
in the following way. Each source-destination pair of a channel forms an edge
in the graph, whereas the vertexes correspond to the sub-units. Thus, V =
{u1, . . . , uk}, and E = {(s, d) | ∃c ∈ C : s.p = src(c)∧d.p′ ∈ dest(c)}, where s.p
denotes port p of the sub-unit s ∈ {u1, . . . , uk}, d.p′ respectively, as detailed in
Definition 5 on page 12.

The required evaluation order, which is a topological sorting of the vertexes,
may be obtained by a breadth-first traversal of the graph of a network [33].
While this is straightforward in case of an acyclic graph, networks with data
cycles must be looked at more closely. Despite their incoming channels, delays
also constitute valid starting points of the traversal, because the output of these
blocks may be read from without prior knowledge of the input. Their output
only depends on the—known—internal state (see Definition 12).

We thus modify the graph such that there are no edges corresponding to
outgoing channels of delays:

E′ = {(s, d) | ∃c ∈ C : s.p = src(c) ∧ d.p′ ∈ dest(c)

∧(inst(s) = 〈n′, σ′, c′, I ′〉 ⇒ c′ 6= tblock)}

Furthermore, a single starting point, v0, of the traversal is defined as an addi-
tional vertex, i. e., V = {u1, . . . , uk, v0}. Consequently, edges from v0 to all ver-
texes ui ∈ {u1, . . . , uk} with an indegree of 0, denoted by deg+(ui) = 0, must be
added. These vertexes correspond to units without input ports or units that only
depend on inputs to the network or input from delays; all of them may be evalu-

23

ated immediately. We then define E = E′∪{(v0, x) | x ∈ {u1, . . . , uk}∧deg+(x) =
0}.

The evaluation order corresponds to a breadth-first traversal of the graph G,
which is acyclic for a COLA network as any data cycle there must contain at
least one delay. The acyclic graph canonically extends to a preorder � on the
vertexes in that

v � v′ ⇔ (v, v′) ∈ E ∨ ∃v′′ : (v, v′′) ∈ E ∧ v′′ � v′.

Consequently, the evaluation of a network, as described in Algorithm 5, must
proceed such that for any pair of sub-units ui and uj with ui � uj, ui is evaluated
before uj . While performing the evaluation, output port valuations must be
forwarded to input ports, as implied by the channels. To facilitate the latter, the
helper function getDestPorts is defined in Algorithm 4.

Algorithm 4 getDestPorts(C, p)

⊲ Returns all destination ports connected to port p by a channel in C

1: result = ∅
2: foreach (c ∈ C) do

3: if (p = src(c)) then

4: result = result ∪ dest(c)

5: return result

Definition 11 (Semantics of a network). Let a unit 〈n, σ, network, I〉 with
an implementation I = 〈{u1, . . . , uk}, inst, C〉, k ∈ N, and a unique identifier x
be a network. Further let in(σ) = (a1, . . . , al) and out(σ) = (b1, . . . , bm) with
l, m ∈ N be the input and output port names.

The semantic relation opn is defined in terms of the semantic relations of
the sub-units. Assume that, for any 1 ≤ j ≤ k, inst(uj) = 〈nj , σj , cj , Ij〉 with

in(σj) = (aj
1, . . . , a

j
lj

) and out(σj) = (bj
1, . . . , b

j
mj

) with lj, mj ∈ N. Let si with 1 ≤

i ≤ k be defined to be state[x.ui], further, for 1 ≤ i ≤ k, let s′i ∈ dom(state[x.ui]).

((s1, . . . , sk), (i1, . . . , il), (s
′

1, . . . , s
′

k), (o1, . . . , om)) ∈ opn ⇔

∀j ∈ {1, . . . , k} ∃(ij1, . . . , i
j
lj
) ∃(oj

1, . . . , o
j
mj

) :

(sj , (i
j
1, . . . , i

j
lj

), s′j , (o
j
1, . . . , o

j
mj

)) ∈ opnj
∧ ∀c ∈ C ∀d ∈ dest(c) :

channel from an input to an output port of u

(∃p ∈ {1, . . . , l} ∃q ∈ {1, . . . , m} :

src(c) = ap ∧ d = bq ⇒ ip = oq) ∨

channel from an input of u to an input port of uj

(∃p ∈ {1, . . . , l} ∃q ∈ {1, . . . , mj} :

src(c) = ap ∧ d = uj.a
j
q ⇒ ip = ijq) ∨

24

channel from an output of uj to an output port of u

(∃p ∈ {1, . . . , lj} ∃q ∈ {1, . . . , m} :

src(c) = uj .b
j
p ∧ d = bq ⇒ oj

p = oq) ∨

channel from an output of uj to an input port of uj′

(∃p ∈ {1, . . . , lj} ∃q ∈ {1, . . . , mj} ∃j′ ∈ {1, . . . , k} :

src(c) = uj .b
j
p ∧ d = uj′ .a

j′

q ⇒ oj
p = ij

′

q)

Algorithm 5 outlines the basic procedure to evaluate a network. In this al-
gorithm, choose is used to select an item from a set of items fulfilling a given
property. choose works in a non-deterministic fashion, i. e., if there are more
than one items with the demanded property, one item is non-deterministically
picked and returned. For an effective implementation, e. g., for code generation,
it is essential to resolve this non-determinism by choosing arbitrarily.

Given a COLA system it is guaranteed that choose always works on a non-
empty set, because by Definition 5 on page 12, requirement cycle validity, there
must be at least one delay in a cycle.

Two further technical details must be well considered for Algorithm 5. First,
as defined above, val is specific to each unit instance, and thus denoted as valx′

for a unique identifier x′. Second, as detailed in Definition 5, port identifiers used
in channels are of the form ui.p for a sub-unit identifier ui and a port name p,
and of the form p, if the port is an input or output port of the network. This
scheme is also used to obtain the unit identifier from a port name (see, e. g.,
lines 10–11).

5.4 Timing Block

As discussed above, delays—which are the only timing blocks considered in this
paper—are fundamental when evaluating networks. Intuitively, they are a rep-
resentation of memory, which is initialized with its default value. The semantics
is as follows: At the first evaluation of the delay, i. e., at the first tick, the default
value is written to the output and the input is written as the new internal state.
In all further steps, the internal state is written to the output and again the
input is stored in the internal state.

Recall that the type of the internal state equals the type of the input and
output port, and also that of the default value. The semantic relation opn then
exchanges the previous state and the input value in that it stores the latter as
the new state and sets the output to the previous state.

Definition 12 (Semantics of a delay). Let 〈n, σ, tblock, delayc〉 be a delay
with unique identifier x and t = type(in(σ)). Further, let state[x] = m, with
m ∈ dom(t), denote the current state of the delay, which equals c at the first
tick, i. e., the first emitted value is c. Subsequently, all delay outputs i′ ∈ dom(t)
are input values i ∈ dom(t) that were delayed for exactly one tick. Then, opn is
defined as follows:

∀m, i, m′, i′ ∈ dom(t) : (m, i, i′, m′) ∈ opn ⇔ (i = i′ ∧ m = m′)

25

Algorithm 5 EvaluateNetwork(〈n, σ, network, 〈{u1, . . . , uk}, inst, C〉〉 , ui)

Require: out(σ) = (b1, . . . , bm)
⊲ Propagate values of input ports to the ports of connected sub-units

1: foreach (c ∈ C : src(c) ∈ in(σ)) do

2: ports = dest(c)
3: foreach (d.p ∈ ports) do

4: ports = ports \ {d.p}
5: valui.d[p] = valui[src(c)]

⊲ Propagate values of input ports to output ports, if applicable
6: foreach (p ∈ ports) do

7: valui[p] = valui[src(c)]

⊲ Propagate the current values of delays to ports of connected sub-units
8: foreach (u ∈ {u1, . . . , uk} : inst(u) = 〈n′, σ′, tblock, delay

c
〉) do

⊲ Get the name of the output port to build a valid port identifier in line 10
9: p′ = out(σ′)

10: foreach (d.p ∈ getDestPorts(C,u.p′)) do

11: valui.d[p] = state[ui.u]

12: units = {u1, . . . , uk} ⊲ Set of unit identifiers contained in the network
⊲ Evaluate all sub-units in an appropriate order

13: while (units 6= ∅) do

14: choose u such that u ∈ units ∧ ∄u′ ∈ units : u′ � u

15: units = units \ {u}
16: result = EvaluateUnit(inst(u), ui.u)
17: foreach (p ∈ out(σ′)) do

18: valui.u[p] = result[p] ⊲ Set values of the output ports
⊲ Propagate values to connected units

19: ports = getDestPorts(C, u.p)
20: foreach (d.p′ ∈ ports) do

21: ports = ports \ {d.p′}
22: valui.d[p

′] = valui.u[p]

⊲ Propagate values to output ports, if applicable
23: foreach (p′ ∈ ports) do

24: valui[p
′] = valui.u[p]

25: return (valui[b1], . . . , valui[bm])

26

While EvaluateTimingBlock in Algorithm 6 describes the semantic relation in
terms of an interpreter, the evaluation of delays within networks first requires
writing the output to connected units. This step can be performed without prior
knowledge of the input and is executed at the beginning of Algorithm 5.

Algorithm 6 EvaluateTimingBlock(〈n, (〈i : t〉 〈o : t〉), delayc〉 , ui)

1: result = state[ui]
2: state[ui] = valui[i]
3: return result

5.5 Automata

The semantics of units which are implemented as automata is based on the state
transition relation of the automaton and the evaluation of the unit associated
with the enabled state. For selecting the next state the definition of the state
transition relation possibly takes into account the inputs of the unit containing
the automaton. Whenever a state and a respective unit is enabled, it is acting
on behalf of the overall unit. All passive sub-units are frozen, i. e., their state
is preserved until they become enabled again. This could have been dealt with
in other ways, e. g., the disabled sub-units could be reset on activation or even
continue their operation while discarding their outputs.

Given an automaton 〈n, σ, automaton, 〈Q, inst, q0, ∆〉〉, assume ql to be the
current state and ql′ , with 0 ≤ l, l′ ≤ k, to be another state. A transition
is enabled if and only if there exists a δ ∈ ∆ with δ = (ql, i, ql′) for some
i ∈ dom(in(σ)). The required evaluation of the transition relation takes place
before any respective sub-unit is evaluated.

Let o ∈ dom(out(σ)) be an output of the automaton. Then, (s, i, s′, o) ∈ opn

is a tuple in the relation opn of the automaton with the state vectors s =
(ql, s0, . . . , sk) and s′ = (ql′ , s

′

0, . . . , s
′

k) where the latter represents the state
vector of the next state.

Let opnl
and opnl′

be the relations for the current and the next automa-
ton state realized by the units 〈nl, σl, cl, Il〉 and 〈nl′ , σl′ , cl′ , Il′ 〉 for any l, l′ ∈
{0, . . . , k}. Then we distinguish the following two cases:

– If the automaton remains in the current state, i. e., l = l′ then the relation
(sl, i, s

′

l, o) ∈ opnl
holds. Further, sj = s′j for all j ∈ {0, . . . , k}, j 6= l, i. e.,

only the currently enabled sub-unit is changes its state and produces output.
– On the other hand, if a transition is taken, i. e., l 6= l′ then it is required that

(sl′ , i, s
′

l′ , o) ∈ opnl′
and that sj = s′j for all j ∈ {0, . . . , k}, j 6= l′.

Algorithm 7 figures out the behavior of an automaton.

Definition 13 (Semantics of an automaton). Let 〈n, σ, automaton, I〉 be an
automaton with an implementation I = 〈{q0, . . . , qk}, inst, q0, ∆〉, k ∈ N.

27

Algorithm 7 EvaluateAutomaton(〈n, σ, automaton, I〉 , ui)

Require: in(σ) = (a1, . . . , al)
Require: I = 〈{q0, . . . , qk}, inst, q0, ∆〉
Require: state[ui] = (qe, state[ui.q0], . . . , state[ui.qk])
1: if (∃q ∈ Q : (qe, (valui[a1], . . . , valui[al]), q) ∈ ∆) then

2: choose q such that q ∈ Q : (qe, (valui[a1], . . . , valui[al]), q) ∈ ∆

3: return EvaluateUnit(inst(q), ui.q)
4: else

5: return EvaluateUnit(inst(qe), ui.qe)

For any d, e ∈ {0, . . . , k}, the semantic relation opn is defined in terms of
the semantic relation of the enabled state, qe. Without loss of generality assume
d ≤ e.

((qd, s0, . . . , sd, . . . , se, . . . , sk), i, (qe, s0, . . . , sd, . . . , s
′

e, . . . , sk), o) ∈ opn

⇔ (d = e ∨ ((qd, i, qe) ∈ ∆)) ∧ (se, i, s
′

e, o) ∈ opne

with inst(qd) = 〈nd, σd, cd, Id〉 and inst(qe) = 〈ne, σe, ce, Ie〉.

With this semantics, the state transition relation is evaluated first to select
the next enabled state. Thus it is possible that the sub-unit which is enabled
during the first tick does not coincide with the initial state of the automaton.

5.6 Functional Blocks

In case of functional blocks opn is canonically obtained from the implementing
relation I that is specific to each functional block 〈n, σ, fblock, I〉 with unique
identifier x. As these blocks are stateless, any pair (u, v) ∈ I corresponds to a
tuple (∅, u, ∅, v) ∈ opn, because state[x] = ∅.

Note that the algorithmic description given in Algorithm 8 has to cope with
the possible non-determinism involved in the relation I, where choose as out-
lined above is used again.

Definition 14 (Semantics of a functional block). For a functional block
b = 〈n, σ, fblock, I〉 the semantic relation opx is defined as follows:

(∅, u, ∅, v) ∈ opn ⇔ (u, v) ∈ I

Assume |in(σ)| = l and |out(σ)| = m. On input (i1, . . . , il) to unit b, Evalu-
ateFunctionalBlock returns (o1, . . . , om) such that ((i1, . . . , il), (o1, . . . , om)) ∈ I.

6 Visualization

This section introduces graphical representations of the syntactic elements of
COLA as defined above.

28

Algorithm 8 EvaluateFunctionalBlock(〈n, σ, fblock, I〉 , ui)

Require: in(σ) = (a1, . . . , al)
1: choose result such that ((valui[a1], . . . , valui[al]), result) ∈ I

2: return result

6.1 Unit

A unit is denoted by a box labeled with the identifier of the unit. The input
and output ports belonging to the unit, as defined by the signature, are repre-
sented by small triangles drawn on the border line of the unit, resembling to an
arrowhead. Input ports are triangles pointing into the rectangle, while output
ports point outwards. In Figure 8(a) a unit 〈n, σ, c, I〉 with σ = (Pin Pout) is
depicted. The unit has three input ports in1, in2, in3 ∈ Pin and two output ports
out1, out2 ∈ Pout. The ports are annotated with their respective implementation
data types.

Unit

out2 : Bool

out1 : Real

in3 : Int

in2 : Int

in1 : Int

(a)�lop : Int

rop : Int
result : Int

(b)

Figure 8. (a) An arbitrary COLA unit. (b) Functional block (adder) with two input
and one output port.

If a unit cannot be further decomposed into sub-units, this is indicated by
drawing a black triangle in the right upper corner of the unit. Figure 8(b) depicts
an example of such a block.

6.2 Delay

A specialization of a unit is the delay. A delay is depicted by two vertical lines
drawn in parallel. It has exactly one input and output port, represented by the
triangles on the border. Its default value is written centered above the two lines.
Figure 9 shows a delay with type information.

6.3 Network

In Section 3.4 composed units were introduced. One possibility of composing
such a non-primitive unit is a network of units. The example in Figure 10 shows

29

result : Realnext : Real

default : Real

Figure 9. A COLA delay with a typed input and output port and a default value of
the same type.

a network with the three units Unit1, Unit2, Unit3 and a delay. Each output

Unit1

in3 : Int

in2 : Int

Unit2

out2 : Bool
in3 : Real

in2 : Bool

in1 : Int

Unit3

out2 : Bool

default : Real

Figure 10. A network of units

port of Unit1 is connected to an input port of unit Unit3 via channels (for ease
of readability, the identifiers of connected ports are omitted). The unconnected
input ports shown in the example are the input ports of the network, and thus
connected to the ports of the unit containing the network. The unconnected
output ports, on the other hand, may stay unconnected or can be connected
to the output ports of the containing network. The exact definition is given in
Definition 5.

6.4 Automaton

Besides networks, units can be implemented by an automaton as specified in
Definition 6. The visual representation of automata is similar to that used in
other modeling languages. The automaton’s states are depicted by ellipses con-
taining the states’ identifiers. Transitions between states are arrows annotated
with predicates which are Boolean expressions for the transitions’ guards. The
initial state is marked by an arrow leading into the respective state. Figure 11

30

shows an automaton with its two states State1 and State2 and two corresponding
transitions annotated with their guards. State1 is marked as the initial state.

[Predicate1]

State2State1

[Predicate2]

Figure 11. A COLA automaton with two states

The details of the visualization of decomposition are not discussed here. It
could be realized in several ways but basically it is a substitution of a unit by
its contained network or automaton.

7 Conclusions and ongoing work

This paper gave a formal and graphical description of COLA, the component
language for the development of embedded control software. Consequently, the
formal syntax, its synchronous dataflow semantics, and its visualization have
been discussed and examplified on a case study.

Systems in COLA are synchronous dataflow networks consisting of hierar-
chically composed units, whose individual behaviors are defined by further units
and/or automata. Real-time requirements of the system are expressed with re-
spect to a discrete uniform time base.

However, a detailed clock calculus for COLA is not subject of this paper.
A clock calculus facilitates the expression of real-time requirements, such that
different signal frequencies and activation times can be expressed (and checked)
in a convenient manner. COLA as described in this paper can be extended with
such a calculus, in a straightforward manner. Still, the exact constraints imposed
by the calculus and the methodological implications on the systems described
by COLA are in the process of being evaluated.

Together with an appropriate tool-chain, COLA is currently applied in a
case study to model an adaptive cruise control. To verify certain safety proper-
ties, model checking is used, and C code is to be generated automatically. Using
a specifically crafted middleware, the system is deployed onto an experimen-
tal embedded platform to prove practical applicability and seamless integration
without any manual modifications.

Despite already being usable, the formalism described in this document lacks
some concepts that we found to be necessary when performing the described and
several other case studies. Namely these are blocks describing input- and output
interfaces, called sources and sinks, parametrization of units, and legacy blocks to
interface with existing source code. Parametrization is used to describe constants
and is required for the delay blocks.

31

These extensions are currently being integrated into the COLA framework
and will be described in a separate document. Furthermore, support for complex
data types is being added to the language.

Acknowledgments We thank Manfred Broy, Reinhardt Hierl, and Helmut Veith
for their invaluable comments on earlier versions of this paper.

References

1. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User
Guide. Addison-Wesley (1998)

2. The MathWorks Inc.: Using Simulink. (2000)
3. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press,

Cambridge, Massachusetts (1999)
4. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le Guernic, P., de Simone,

R.: The synchronous languages 12 years later. Proceedings of the IEEE 91(1)
(2003)

5. Bauer, A., Broy, M., Romberg, J., Schätz, B., Braun, P., Freund, U., Mata, N.,
Sandner, R., Ziegenbein, D.: AutoMoDe — Notations, Methods, and Tools for
Model-Based Development of Automotive Software. In: Proceedings of the SAE
2005 World Congress, Detroit, MI, Society of Automotive Engineers (2005)

6. : IEEE Std 830-1998: IEEE Recommended Practice for Software Requirements
Specifications. Institute of Electrical and Electronics Engineers (1998)

7. Maraninchi, F., Rémond, Y.: Mode-automata: a new domain-specific construct for
the development of safe critical systems. Science of Computer Programming 46(3)
(2003) 219–254

8. Stürmer, I., Weinberg, D., Conrad, M.: Overview of existing safeguarding tech-
niques for automatically generated code. SIGSOFT Softw. Eng. Notes 30(4) (2005)
1–6

9. Caspi, P., Curic, A., Maignan, A., Sofronis, C., Tripakis, S., Niebert, P.: From
simulink to SCADE/lustre to TTA: a layered approach for distributed embedded
applications. In: LCTES, ACM (2003) 153–162

10. Gautier, T., Guernic, P.L., Besnard, L.: Signal: A declarative language for syn-
chronous programming of real-time systems. In: Proceedings of a conference
on Functional programming languages and computer architecture, London, UK,
Springer-Verlag (1987) 257–277

11. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data-flow
programming language LUSTRE. Proceedings of the IEEE 79(9) (1991) 1305–
1320

12. Pouzet, M.: Lucid Synchrone, version 3. Tutorial and reference manual. Uni-
versité Paris-Sud, LRI. (2006) Distribution available at: www.lri.fr/∼pouzet/

lucid-synchrone.
13. Berry, G., Gonthier, G.: The esterel synchronous programming language: Design,

semantics, implementation. Science of Computer Programming 19(2) (1992) 87–
152

14. Le Guernic, P., Gautier, T., Le Borgne, M., Le Maire, C.: Programming real-time
applications with Signal. Proceedings of the IEEE 79(9) (1991) 1321–1336

15. Broy, M., Stølen, K.: Specification and development of interactive systems: Focus
on streams, interfaces, and refinement. Springer-Verlag, New York (2001)

32

16. Broy, M., Huber, F., Schätz, B.: AutoFocus – Ein Werkzeugprototyp zur Entwick-
lung eingebetteter Systeme. Informatik Forschung und Entwicklung 13(3) (1999)
121–134

17. Romberg, J.: Synthesis of distributed systems from synchronous dataflow pro-
grams. PhD thesis, Technische Universität München (2006)

18. Romberg, J., Bauer, A.: Loose Synchronization of Event-Triggered Networks for
Distribution of Synchronous Programs. In: Proceedings of the 4th ACM Interna-
tional Conference on Embedded Software (EMSOFT), Pisa, Italy, Association for
Computing Machinery (2004) 193–202

19. Chapiro, D.M.: Globally-asynchronous locally-synchronous systems. PhD thesis,
Stanford University (1984)

20. Berry, G., Sentovich, E.: Embedding Synchronous Circuits in GALS-based Sys-
tems. In: Sophia Antipolis Forum on MicroElectronics (SAME 1998), Sophia An-
tipolis, France (1998)

21. Chakraborty, S., Mekie, J., Sharma, D.K.: Reasoning about synchronization in
GALS systems. Formal Methods in System Design 28(2) (2006) 153–169

22. Doucet, F., Menarini, M., Krüger, I.H., Gupta, R.K., Talpin, J.P.: A verification
approach for GALS integration of synchronous components. Electr. Notes Theor.
Comput. Sci. 146(2) (2006) 105–131

23. France, R.B., Evans, A., Lano, K., Rumpe, B.: The UML as a formal modeling
notation. Computer Standards & Interfaces 19(7) (1998) 325–334

24. Amálio, N., Polack, F.: Comparison of formalisation approaches of UML class
constructs in Z and Object-Z. In Bert, D., Bowen, J.P., King, S., Waldén, M.A.,
eds.: ZB. Volume 2651 of Lecture Notes in Computer Science., Springer (2003)
339–358

25. Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Passerone, C., Sangiovanni-
Vincentelli, A.L.: Metropolis: An integrated electronic system design environment.
IEEE Computer 36(4) (2003) 45–52

26. Feiler, P.H., Lewis, B., Vestal, S.: The SAE avionics architecture description lan-
guage (AADL) standard: A basis for model-based architecture-driven embedded
systems engineering. In: Proceedings of the RTAS 2003 Workshop on Model-Driven
Embedded Systems (MDES), Washington, DC (2003)

27. GmbH, R.B.: Kraftfahrtechnisches Taschenbuch. 26th edn. Vieweg (2007)
28. Cardelli, L., Wegner, P.: On understanding types, data abstraction, and polymor-

phism. ACM Computing Surveys 17(4) (1985) 471–522
29. Kühnel, C., Bauer, A., Tautschnig, M.: Compatibility and reuse in component-

based systems via type and unit inference. In: Proceedings of the 33rd EUROMI-
CRO Conference on Software Engineering and Advanced Applications (SEAA),
IEEE Computer Society Press (2007)

30. Moore, E.F.: Gedanken-experiments on sequential machines. In Shannon, C.E.,
MacCarthy, J., eds.: Automata Studies, Princeton University Press (1956) 129–153

31. : ISO/IEC 14977:1996: Information technology — Syntactic metalanguage — Ex-
tended BNF. International Organization for Standardization, Geneva, Switzerland
(1996)

32. Bauer, A., Leucker, M., Streit, J.: SALT—structured assertion language for tem-
poral logic. In: Proceedings of the Eighth International Conference on Formal
Engineering Methods. Volume 4260 of Lecture Notes in Computer Science. (2006)
757–775

33. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
Second Edition. The MIT Press and McGraw-Hill Book Company (2001)

33

