
Slope Testing for Activity
Diagrams and Safety Critical

Software
Andreas Holzer Visar Januzaj Stefan Kugele Christian Schallhart

Michael Tautschnig Helmut Veith Boris Langer

Formal Methods in Systems Engineering, FB Informatik, TU Darmstadt

holzer@forsyte.de, januzaj@forsyte.de, kugele@forsyte.de,
schallhart@forsyte.de, tautschnig@forsyte.de, veith@forsyte.de,

boris.langer@diehl-aerospace.de

Technical Report TUD-CS-2009-0184

Slope Testing for Activity Diagrams and

Safety Critical Software ⋆

Andreas Holzer1, Visar Januzaj1, Stefan Kugele1, Christian Schallhart1,
Michael Tautschnig1, Helmut Veith1, and Boris Langer2

1 Formal Methods in Systems Engineering, FB Informatik, TU Darmstadt
{holzer, januzaj, kugele, schallhart, tautschnig, veith}@forsyte.de

2 Diehl Aerospace GmbH
boris.langer@diehl-aerospace.de

Abstract. Formal system modeling and rigorous validation techniques
have become a corner stone in the development practice for safety crit-
ical systems. It is characteristic for model-based approaches that the
relationship between the model and its implementation needs to be moni-
tored and ultimately brought to conformance. To bridge the gap between
model and implementation, the current paper proposes a new method-
ology called slope testing where we concretize an abstract test suite cov-
ering the model to obtain a corresponding concrete test suite on the
implementation. In this way, our method is able to systematically ex-
pose the potential deficiencies in the mapping between model and code.

Motivated by the avionic certification standard DO-178B, we introduce
slope testing in a prototypical process which is based upon UML activ-
ity diagrams and ANSI-C as the respective modeling and implementa-
tion languages. Our implementation makes use of the test case generator
FShell which automatically generates the required test suites for activ-
ity diagrams and source code.

1 Introduction

As the complexity of safety critical software is increasing, industry and regulators
have defined standards such as DO-178B [1] to assure software correctness. The
standards are putting pressure on suppliers to obtain approved software models
as early as possible, and to develop implementations whose conformance to the
models is supported by strong evidence. It is crucial to avoid or at least detect
potential deviances as early as possible: If the certification authorities are not
convinced about the system’s safety, they will request a re-development of the
questionable subsystems. The high investment already made leaves the supplier
usually no other choice than to implement the requested changes.

This situation is reflected in a real-life emphasis on analysis and design which
we observed in the avionics industry. For Design Assurance Level (DAL) A,

⋆ Supported by DFG grant FORTAS and BMWI grant 20H0804B in the frame of
LuFo IV-2 project INTECO

which is the highest assurance level in DO-178B on a range from A to E, a
typical avionics supplier company will spend 15% of time on analysis, 25% on
design, 30% on implementation, 10% on requirements validation, and 20% on
implementation verification. Decreasing the assurance level from A to B saves
only 5% in the verification expenses while the step from B to C cuts them half.
The validation costs are not affected by the aspired DAL.

Concerning verification, DO-178B is essentially asking for a test suite satis-
fying the following conditions:3

C1 The test suite is derived from the requirements independently of the source
code.

C2 The test suite has to assure requirements coverage; both high level and low
level requirements have to be considered.

C3 On the source code, the test suite has to achieve structural coverage. The
exact coverage notion depends on the required DAL. For instance, DAL A
requires modified condition/decision coverage (MC/DC) as well as data and
control coupling coverage on the source code.

C4 The test suite has to be executed on the implementation without errors.

When executed on a program under test, the test suite may indicate problems
by violating either C3 or C4, i.e., either MC/DC is not achieved (C3), or an
error is found (C4). In contrast, conditions C1 and C2 are process criteria
which cannot be formally verified; in a tool chain, errors in these conditions
only become visible through process inherent consistency checks and subsequent
violations of C3 and C4.

In this way, DO-178B attempts to reveal errors in process criteria C1 and
C2 through formal criteria C3 and C4.4 The most striking difficulty here is,
of course, the apparent contradiction between C1 and C3. How is it possible to
achieve MC/DC in a black box manner ?

It is witness to the genius of DO-178B that extremely careful requirements
engineering is the only solution to this dilemma. In essence, C1 and C3 say
that at the time of certification, the requirements must contain sufficient detail
about the control flow of the implementation to predict MC/DC. Thus, the
requirements should preclude “creativity” in coding.

Industrial practice thus demands a powerful mechanism to support the smooth
transition from abstract requirements to very detailed models. This is the rea-
son why UML activity diagrams [2] have become a very popular tool in avionics
engineering. Originally intended for high level requirements, activity diagrams
have sufficient expressive power to be a viable alternative to represent low level
requirements. The practice that activity diagrams are already used to express
low level requirements on a day-to-day basis at our industrial collaborators is

3 This paper discusses key aspects of DO-178B; rather than claiming full conformance,
we introduce notation and terminology for better understanding of the standards.

4 For certification purposes, the supplier must argue—usually in an informal and tex-
tual manner—that C1 and C2 have been satisfied.

2

compatible with the expected more rigorous requirements of the successor stan-
dard DO-178C, which will require a formal modeling of low level requirements.
In preparation for the following discussion we note an asymmetry in DO-178B:
While low level requirements have to be specified formally, high level require-
ments are required to be understandable by a general audience, i.e., to be textual.

The main contribution of this paper is a systematic testing methodology
which provides tool support for DO-178B conformant testing in avionics soft-
ware and similar settings, for instance in the automotive industry. Our method
aims to reflect the degree of abstraction which separates the model from the
implementation, e. g., an activity diagram from its corresponding C code. If the
model exhibits a high degree of abstraction, or, equivalently, if the implemen-
tation enjoys a significant amount of behavioral liberty, the conceptual slope
between the models is steep, and further refinement is necessary; otherwise, the
slope is flat, and conformance is achieved. To reflect the conceptual gap between
the two models, we refer to our method as “slope testing”.

In the implementation of slope testing discussed here, we will use activity
diagrams and ANSI-C programs to serve as modeling and implementation lan-
guages respectively; the results of this paper can be easily transferred to other
settings. Note, however, that our tool chain makes heavy use of FShell [3–5],
a configurable (“query-driven”) test case generator for C source code which was
developed in our group during the last years; in fact, we shall see below that the
ability to generate white box test cases with high precision is essential to the
methodology of this paper.

Slope testing instantiates the generic picture of DO-178B with the following
steps:

S1 Test Suite Generation. Following industrial practice, we use activity dia-
grams to express low level requirements. In an automatic step, we translate
activity diagrams into fragmentary C code containing control flow state-
ments, stubs, and labels.

S1a Using FShell, we compute a test suite which achieves MC/DC on this
fragmentary program (or another generic coverage criterion, depending
on the assurance level needed). Essentially, this aims at satisfying C3
and C1 simultaneously.

S1b In addition, the test engineer spells out the tests needed for requirements
coverage in FQL, the input language of FShell. Importantly, FQL

supports the succinct and declarative description of user defined coverage
criteria. Oftentimes, hundreds of concrete test cases can be described by
a single FQL query, and thus it is easier to link the test cases to the
original (possibly textual) requirements. This step enlarges the test suite
from S1a and assures C2.

S2 Test Suite Concretization. In this step, each of the test cases generated
in step S1 is realized as a concrete test case on the implementation. In order
to fulfill the black box criterion implicit in C1, we need to verify that there
is a 1-1 correspondence between the test cases from the activity diagrams
and the test cases on the implementation. At this point, the following two
deficiencies in the model-implementation slope can occur:

3

D1 Implementation Poverty. If some test case cannot be concretized,
then the model contains behavior not implemented in source code. The
reason can be either on the side of an incomplete implementation, but
also in erroneous or imprecisely formulated requirements. Note that im-
plementation poverty can be spurious, if the model does not reflect rel-
evant dependencies of the involved control flow decisions.

D2 Implementation Liberty. The implementation contains more than one
concrete control flow path for some abstract test case. This situation
expresses that the activity diagram is an abstraction of the implemen-
tation, and thus, the model does not fully determine the control flow of
the implementation.

If neither D1 nor D2 occurs, then for each abstract test case there exists
exactly one control flow path to be captured by an implementation test case
which matches the abstract test case, and vice versa.
If the concretization step S2 fails, then the resulting concrete test depends
crucially on the implementation, violating condition C1. In addition, con-
dition C2 should be checked since some test cases proved to be over- or
underspecified, corresponding to deficiencies D1 and D2.

S3 Test Suite Evaluation. In this phase, the test suite obtained in S2 is
executed on the implementation. It should achieve MC/DC (C3) and run
on the implementation without errors (C4). Two further deficiencies may
occur in this phase:
D3 Implementation Anarchy. In violation of C3, the implementation

contains behavior not covered by the test cases and therefore not con-
tained in the model. Reasons for this situation include programming
errors, reuse of code, use of COTS components, or undocumented func-
tionalities.

D4 Implementation Error. In violation of C4, either code assertions are
violated or some program output is inconsistent with the requirements.

If neither D3 nor D4 occurs, then the test suite covers the implementation
and does not reveal any disagreement with its requirements.
If the evaluation step S3 fails, we can distinguish three possible reasons:
First, the requirements can be insufficient (causing D3) or incorrect (causing
D4). Second, the implementation can be erroneous (causing D4) or contain
dead code (causing D3). And third, the test suite generated during step S1
can be too small to achieve coverage (causing D3).

The rest of this paper describes the technical realization of steps S1-S2-S3
with our test case generation tool FShell. To integrate our approach into the
processes of our industrial collaborators, we realized slope testing within the
Topcased [6] framework based upon the Eclipse IDE.

– Test Engine. Section 2 provides a succinct summary of the FShell test
case specification language FQL [4]. It focuses on FQL filter functions, a
succinct formalism for the identification of control flow graph elements; most
importantly, filter functions are used to express test goals as parts of FQL

queries.

4

– Tailoring Test Cases for the Detection of Slope Deficiencies. Sec-
tion 3 describes the technical realization both theoretically and with an
example. Importantly, Section 3.3 introduces a formal relation between the
activity diagram and the source code (“compatibility relation”).

To achieve the black-box requirement discussed above, we use filter func-
tions to associate elements of the activity diagram with source code ele-
ments. Following the generation of a model level test suite, we use these
filter functions to compose specifications for implementation level test cases
from each generated model level test case. When the source code is revealed,
the compatibility relation can be categorized in one of four types, i. e., a plain
compatibility relation, an abstraction mapping, a decision isomorphism, or
a condition isomorphism.

– Post Mortem Assessment of Deficiencies. In Section 3.4, we refine
the discussion of deficiencies initiated above in the rigorous framework of
Sections 2 and 3. Based on the distinction of the four mapping types, we
systematically discuss the relationship between the deficiencies and possible
reactions taken by the software developer.

The paper concludes with a case study in Section 4, and related work.

2 FQL & FShell

FShell’s Query Language (FQL) [4, 7, 5] allows to specify a broad variety of
coverage criteria, ranging from standard criteria such as statement or decision
coverage [8, 9] to specifically tailored criteria used to explore isolated aspects of
the program behavior. In this section we quickly survey FQL and describe an
extension concerning coverage of control flow structures. FQL itself is applicable
to most imperative programming languages and we provide with FShell [5] a
backend for the C programming language: Given an FQL query and the corre-
sponding source code of a program, FShell generates automatically a test suite
which satisfies the coverage criterion expressed by the query on the program at
hand. For example, consider the FQL query

> cover EDGES(@BASICBLOCKENTRY)

which consists of a single cover clause. This clause specifies the set of statements
starting a new basic block as the set of test goals to be covered by the generated
test suite.

This simple example already demonstrates the core concepts of FQL: Cov-
erage specifications in FQL are based upon the control flow automaton (CFA)
of the program under scrutiny. The CFA representation is similar to the con-
trol flow graph but places program locations on its nodes and statements on its
edges. During query processing, the program’s CFA is first filtered to obtain a
target graph: In our case, the filter function is @BASICBLOCKENTRY which discards
all edges which do not start a basic block. After filtering, the obtained target
graph is used in a second step to generate a set of test goals. In the query above,

5

we take all edges of the target graph as test goals, i.e., a covering test suite must
contain for each edge in the target graph a path which moves along this edge.

In variations of the above query, we can use alternative filter functions (in-
stead of @BASICBLOCKENTRY) to obtain different target graphs and alternative
generators (instead of EDGES) to build different test goal sets, as discussed in
Sections 2.1 and 2.2, respectively.

FQL also allows to restrict the test cases with path monitors in a passing
clause (discussed in Section 2.3). A path monitor is specified as a regular ex-
pression over program paths and precludes all unmatched paths as test cases.
Aside from standard set theoretic recombinations of test goal sets, FQL also
allows to chain test goal sets into coverage sequences, which require the coverage
of the Cartesian product of all involved individual test goal sets, discussed in
Section 2.4.

2.1 Target Graphs and Filter Functions

FQL refers to programs in terms of a CFA where nodes represent program
locations and edges are labeled with statements. In order to select relevant parts
of the CFA as target graphs FQL uses a number of filter functions.

Similar to the already discussed @BASICBLOCKENTRY filter function, we use the
following filters to specify decision, condition, and modified condition coverage
as required by DO-178B [1]: @DECISIONEDGE selects all edges marking the out-
come of the decision of a conditional statement, @CONDITIONEDGE selects all edges
marking the outcome of some atomic condition arising in a Boolean expression,
and @CONDITIONGRAPH selects all parts of the CFA which are part of the evaluation
of a decision of a conditional statement.

In addition to filter functions which refer to coverage relevant elements of the
CFA, FQL also provides filter functions to restrict the target graph to certain
areas within the source code, e. g., @FILE("file.c") and @FUNC(foo) select the
CFAs corresponding to the file "file.c" and function foo, respectively. If we
need to select the entire CFA, we use the identity filter ID.

For example, to require that each edge marking the outcome of a decision
statement is covered, i.e., to require decision coverage, we use

> cover EDGES(@DECISIONEDGE)

If we would like to restrict our test suite on the source code appearing in "file.c",
then we would use

> cover EDGES(INTERSECT(@DECISIONEDGE,@FILE("file.c")))

where we intersect two filter functions to obtain a new one. FQL also provides
set union, difference, and complementation to combine filter functions for more
specific needs.

2.2 Test Goal Generators

Each cover clause is made up from one or more primitive test goal sets. A prim-
itive test goal set is constructed from either states (using the keyword STATES),

6

edges (EDGES), paths (PATHS), or dependencies (DEPS). In case of the first three
generators, each constructed test goal refers to a fragment of the CFA which
must be covered by a single test case. For example, in PATHS(ID,2) the test goal
set contains all possible paths which visit no state more than twice.

For the modified condition (MC) part in MC/DC, we use the fourth gen-
erator DEPS: First, consider the condition c in the decision if ((a || b) && c).
Modified condition coverage produces for the condition c a test goal which re-
quires two test cases. These two test cases must evaluate c to respectively true
and false – without altering the evaluation of the remaining conditions a and
b while resulting in different evaluations of the overall decision of the if state-
ment. Thus, (a=1, b=0, c=0) and (a=1, b=0, c=1) would cover the test goal for
c, since the evaluation of c is the only difference between the two cases, while
the first one evaluates the overall decision to true and the second one to false.
In general, modified condition coverage requires for each atomic condition in
each conditional statement two test cases which demonstrate that the decision
of the statement does indeed depend non-vacuously on the condition. Thus, the
two test cases must (i) lead to different outcomes of the decision, (ii) evaluate
the condition in concern to different truth values, and (iii) evaluate all other
conditions to the same truth value.

We omit a detailed discussion of DEPS and the formulation of MC/DC for
space reasons. For details see [7].

2.3 Path Monitors

While the cover clause of an FQL query states the test goals to be covered
by the requested test suite, the passing clause of an FQL query restricts the
paths through the program which are eligible as test cases. Cover and passing
clause are independent and can be combined freely. A passing clause specifies
a path monitor as a regular expression on the edges of the CFA. The edges
of a CFA constitute a rather large alphabet and therefore we usually identify
relevant edge subsets with filters. For example, @CALL(sort) describes all edges
in the CFA which are labeled with a call to sort. To require a test suite achieving
decision coverage with test cases that invoke sort at least once, we use

> cover EDGES(@DECISIONEDGE) passing ID*.@CALL(sort).ID*

where ID* describes an arbitrary path through the program, and a dot denotes
concatenation. Thus we ask for test cases which start with an arbitrary path
through the program (ID*), call sort (@CALL(sort)), and end again with an ar-
bitrary path through the program. As another example, consider the passing
clause

passing (ID*.@CALL(insert).ID*)>=10.@CALL(sort).ID*

which requires to invoke sort at least once after calling insert at least ten times.
Alternatively, with passing COMPLEMENT(@CALL(sort))*, one only allows test cases
which never invoke sort.

7

2.4 Coverage Sequences

For the analysis of the interaction of different program parts, we introduced
coverage sequences to FQL. A coverage sequence combines the test goals of
state-, edge-, and path-coverage specifications into a new set of test goals based
on their Cartesian product. Consider the example

> cover EDGES(@BASICBLOCKENTRY)->EDGES(@BASICBLOCKENTRY)

which requests for each pair of basic blocks a test case that covers both basic
blocks. As another example,

> cover EDGES(INTERSECT(@DECISIONEDGE,@FUNC(sort)))->

EDGES(INTERSECT(@DECISIONEDGE,@FUNC(insert)))

requires a test suite that features a test case for every pair of decisions occurring
in sort and insert , respectively. FQL allows to construct coverage sequences of
arbitrary length and to restrict the paths between the concatenated test goal
sets with path monitors.

The presented material on FQL is sufficient to discuss slope testing in detail.
For a precise description of FQL, please cf. [4, 7].

3 Slope Testing

With FQL and FShell, we can specify and solve complex coverage criteria
on C programs efficiently. We use this capability to apply slope testing in an
industrial context where ANSI-C is used as implementation language. The low
level requirements expressed in each activity diagram are implemented by a
corresponding C function. As we model function calls by corresponding links
(i. e., by call behavior actions) between the individual activity diagrams, we
obtain a network of interconnected activity diagrams. To relate the individual
code fragments of the implementation to nodes in the activity diagram, we use
annotations in the source code as described in Section 3.3. Before we discuss
such technical aspects, we start in Section 3.1 with a detailed description of the
slope testing process, and exemplify it in Section 3.2. Finally, in Section 3.4, we
analyze the occurrences of deficiencies in the context of different mappings from
activity diagrams to source code.

3.1 Process Description

In our tool chain, we take an activity diagram Diagram as model and an ANSI-C
source code Source as implementation. Furthermore, slope testing is based upon
two queries, namely QueryM and QueryI , as explained below.

The model level query QueryM is devised by the test engineer to generate
the model level test suite SuiteM . The implementation level query QueryI is also
formulated by the test engineer to check that the concretized test suite SuiteI

does indeed satisfy the necessary coverage criterion, e. g., in case of software at
DAL A, QueryI requires MC/DC. In most cases, one will start with identical

8

queries QueryM = QueryI . If this approach leads to deficiencies and reveals a
steep slope between Diagram and Source, one can either refine Diagram to flatten
the slope, refine QueryM to avoid some of the deficiencies, or, in case of missing
traceability information or an implementation error, fix the implementation.

As already introduced in Section 1, slope testing works in three steps: In step
S1, the test suite is generated from QueryM and Diagram. Afterwards, the test
suite is concretized in step S2 and evaluated against QueryI in step S3. If test
cases cannot be concretized uniquely, then implementation poverty (D1) and/or
implementation liberty (D2) occur in S2. If the check against QueryI in step
(S3) fails, we have found an implementation anarchy (D3).

S1 Test Suite Generation. First, the test engineer must devise a model
level test suite SuiteM which relies exclusively on the activity diagram Diagram

and achieves requirements coverage. The meaning of requirements coverage is
not formally defined and leaves the choice of a proper methodology to construct
SuiteM to the test engineer. Nevertheless, SuiteM must achieve MC/DC upon
concretization on Source at DAL A (or condition coverage at DAL B).

To assist the test engineer in the analysis of Diagram, our Topcased plug-
in translates Diagram into a skeleton function in C which has a control flow
identical to the structure of Diagram. This step is necessary to process Diagram

with FShell. Then the test engineer specifies the necessary test cases with an
FQL query QueryM to generate with FShell a test suite over the skeletal C
code. The resulting test cases are automatically translated back into test cases
for Diagram to obtain SuiteM . A test case Casei

M in SuiteM determines a single
path through the activity nodes in Diagram.

After inspecting SuiteM , the test engineer can either release the suite or
update QueryM to enhance the suite until it is considered to achieve requirements
coverage.

S2 Test Suite Concretization. During this step, each model level test
case Casei

M ∈ SuiteM is concretized fully automatically to obtain an implemen-
tation level test suite Suitei

I which covers all behavior described by Casei
M : Using

FShell, we generate Suitei
I as a test suite which covers the FQL query Queryi

I .
This query expands QueryI with a passing clause that requires each test case to
follow the abstract path described by Casei

M . Hence, Suitei
I covers as many test

goals of QueryI as possible while following the abstract execution path prescribed
by Casei

M . Note that this approach does not produce any test cases which do not
cover further test goals within the behavior described by Casei

M . For example, it
precludes for structural coverage criteria, such as MC/DC, test cases following
the same execution path with other input values.

Upon concretization, we check for implementation poverty (D1) and imple-
mentation liberty (D2): If Suitei

I = ∅ holds for some Casei
M , then D1 occurred,

and if |Suitei
I | > 1 occurs, we identified an instance of D2.

The final concretized test suite SuiteI is obtained as the union
⋃

i Suitei
I of

all individual test suites Suitei
I .

9

S3 Test Suite Evaluation. Since we obtained SuiteI as concretization of
SuiteM , we do not know a priori whether SuiteI satisfies QueryI . Therefore,
we check in this step whether SuiteI achieves coverage on the implementation
according to QueryI . If some test goals of QueryI remain uncovered, then the im-
plementation exhibits anarchy (D3). Finally, the test cases in SuiteI are executed
and unexpected program output or assertion violations result in an implemen-
tation error (D4).

3.2 Example

In this section, we exemplify slope testing throughout the steps S1 to S3 and
demonstrate the deficiencies implementation poverty (D1), liberty (D2), and
anarchy (D3), skipping only implementation errors (D4).

Initial Model & Source. We use the activity diagram Diagram depicted in
the screen shot shown in Figure 1. It models a printing functionality for a linked
list. The corresponding handwritten C code Source (cf. Listing 1) should realize
this feature. The first action node in the model is a call behavior action that

Fig. 1. Printing elements of a linked list

ensures that a given list is not empty. The activity diagram in Figure 2 is linked

10

to the call behavior action and models an assertion used for this check. There, a
violated assertion is logged and a special EXIT node is entered that terminates
program execution. The function assert in Listing 1 realizes this functionality.
Model and source alike select in the next step the first element of the list as
current element, print it, and set its successor as new current element. This
processing is repeated until the end of the list is reached. The printing of the list
is modeled with three activities that are not associated with further subdiagrams:
select head element as current element, print current element, and select next
element as current element.

Relevant elements of the activity diagrams are annotated with FQL filter
expressions to identify in a given C source code the corresponding code frag-
ments, e. g., @ENTRY(show list) selects the entry of the function show list . In our
example, annotations refer to labels A0 to A5 which are contained in Listing 1.
For example, the action print current element annotated with @ACTION(A5) is im-
plemented in Listing 1 using an if−then−else construct which is not reflected
in the model. Slope testing will reveal this situation.

S1 Test Suite Generation. In our example, we aim at achieving path
coverage on the model show list with a loop bound of 2, i. e., no node shall be
visited more than twice by the same test case. Considering the activity diagram
this bound is sufficient to generate test cases that do not enter the loop at all
as well as test cases that do enter the loop once. Table 1 shows SuiteM obtained
by QueryM = cover PATHS(ID, 2).

S2 Test Suite Concretization. Besides SuiteM , Table 1 gives the FQL

queries Query1
I and Query2

I derived from Case1
M and Case2

M . We solve these
queries on Source to obtain Suite1

I and Suite2
I as their respective solution. Ob-

serve that the annotations in the diagrams are FQL filter function expressions
used in Query1

I and Query2
I .

The first query Query1
I yields an empty test suite Suite1

I , i. e., we observe
implementation poverty (D1). Our model does not formally model control con-
ditions and thus the model level test case generation step S1 did not consider

Fig. 2. Modeling of an assertion

11

1void assert(int assertion , char∗ text) {
2 A0: if (! assertion) {
3 A1: { log(”assertion violated : %s!\n”, text); }
4 A2: { exit (1); }
5 }
6 }

8void show list(struct list ∗ p list) {
9 struct list element∗ e;

10 A3: { assert (p list −>head != NULL, ”head is null”); }
11 A4: for (e = p list−>head; e; e = e−>next)
12 A5: { if (e−>allocated) print(”ALLOCATED”);
13 else print(”FREE”);
14 }
15 }

Listing 1. Sample program

Case1
M

: [@ENTRY(show list),@ACTION(A3),@ENTRY(assert),@CONDITIONGRAPH(A0),
@TRUE-EDGE(A0),@EXIT(assert),@FOR-INIT(A4),@CONDITIONGRAPH(A4),
@FALSE-EDGE(A4),@EXIT(show list)]

Query1
I
: cover PATHS(ID, 2) PASSING @ENTRY(show list)>=1.@SKIP*.@ACTION(A3)>=1.

@SKIP*.@ENTRY(assert)>=1.@SKIP*.@CONDITIONGRAPH(A0)>=1.@SKIP*.
@TRUE-EDGE(A0)>=1.@SKIP*.@EXIT(assert)>=1.@SKIP*.@FOR-INIT(A4)>=1.
@SKIP*.@CONDITIONGRAPH(A4)>=1.@SKIP*.@FALSE-EDGE(A4)>=1.@SKIP*.
@EXIT(show list)>=1

Case2
M

: [@ENTRY(show list),@ACTION(A3),@ENTRY(assert),@CONDITIONGRAPH(A0),
@TRUE-EDGE(A0),@EXIT(assert),@FOR-INIT(A4),@CONDITIONGRAPH(A4),
@TRUE-EDGE(A4),@ACTION(A5),@FOR-INCREMENT(A4),@CONDITIONGRAPH(A4),
@FALSE-EDGE(A4),@EXIT(show list)]

Query2
I
: cover PATHS(ID, 2) PASSING @ENTRY(show list)>=1.@SKIP*.@ACTION(A3)>=1.

@SKIP*.@ENTRY(assert)>=1.@SKIP*.@CONDITIONGRAPH(A0)>=1.@SKIP*.
@TRUE-EDGE(A0)>=1.@SKIP*.@EXIT(assert)>=1.@SKIP*.@FOR-INIT(A4)>=1.
@SKIP*.@CONDITIONGRAPH(A4)>=1.@SKIP*.@TRUE-EDGE(A4)>=1.@SKIP*.
@ACTION(A5)>=1.@SKIP*.@FOR-INCREMENT(A4)>=1.@SKIP*.
@CONDITIONGRAPH(A4)>=1.@SKIP*.@FALSE-EDGE(A4)>=1.@SKIP*.@EXIT(show list)>=1

Table 1. Model level test suite SuiteM = {Case1

M , Case2

M} and derived FQL queries
Query1

I
and Query2

I

12

the fact that only nonempty lists are processed by show list . This precondition
is enforced at label A3, where we assert p list −>head != NULL, such that e is
initialized at label A4 with a non-null value. Therefore, the condition of the for

loop cannot evaluate to false and the loop body is entered at least once. As we
generate C code for the activity diagram, in principle, our approach would allow
to model such dependencies.

Suite2
I contains two concrete test cases revealing implementation liberty (D2)

in the modeling of the action print current element. As noted above, the
if−then−else construct in the for loop of Listing 1 is not modeled. We choose
to correct this situation by replacing the action print current element with a call
behavior action that is associated with the diagram shown in Figure 3. In the
source code, we add corresponding labels to associate the activity nodes with
their concrete implementation (not shown in the listing).

Fig. 3. Activity diagram of if structure

S3 Test Suite Evaluation. At last, during structural coverage analysis
of SuiteI = Suite1

I ∪ Suite2
I , for QueryI = cover PATHS(ID, 2), we observe that

some code in function assert is not executed. More specifically, we detected
implementation anarchy (D3) in the code corresponding to an assertion failure.
In this case, one would not adapt the model or the implementation but argue
during integration that this assertion is never violated.

Test cases for Suite2
I :

1 struct list l list ;

3 struct list element l element ;
4 l element .next = NULL;
5 l element . allocated = 1;

7 l list .head = &l element;

13

Activity Node Usage Rules

Action node unique predecessor, unique successor

Decision node unique predecessor

Merge node unique successor

Initial node unique initial node, no predecessor, unique successor

Activity final node unique activity final node, unique predecessor, no suc-
cessor

Table 2. Supported Activity Nodes

9 show list (& l list);

Listing 2. Test case 1 in Suite2
I

1 struct list l list ;

3 struct list element l element ;
4 l element .next = NULL;
5 l element . allocated = 0;

7 l list .head = &l element;

9 show list (& l list);

Listing 3. Test case 2 in Suite2
I

3.3 Formal FQL Query Derivation

In UML, activity diagrams are introduced to “specify the dynamic, behavioral
constructs used in various behavioral diagrams” and “emphasize the sequence
and conditions for coordinating lower-level behaviors” [2]. Following the model-
ing approach practiced by our industrial collaborators, we use restricted activity
diagrams to represent the low level requirements in a manner suitable to derive
a test suite and its corresponding implementation. As we rule out concurrency
in our activity diagrams, our diagrams essentially describe finite state machines.

Definition 1 (Activity Diagram). An activity diagram is a tuple 〈A, T, θ〉,
where A is the set of activity nodes, T ⊆ A×A is the set of activity edges, and
θ maps every activity edge starting at a decision node to a constraint.

In Table 2, we list the supported types of activity nodes, i. e., we do not support
object nodes, fork nodes, join nodes, and flow finals. We also require a number of
usage rules for each supported node type, also shown in Table 2, and construct
our diagrams exclusively from the control structures shown in Figure 4.

The test suite concretization S2 makes it necessary to relate individual nodes
and edges of Diagram to the corresponding parts of Source’s CFA. We establish

14

switch

.

[e = k0] [e = k1] [default]

if

.

[e] [¬e]

while

. . .

[e]

[¬e]

do

. . .

[e]

[¬e]

for init

inc

. . .

[e]

[¬e]

Fig. 4. Modeling of control structures

this relationship in two steps: First, we define for each activity node n (and each
relevant edge e) an FQL filter expression η(n) (η(e)). This filter expression only
depends on Diagram and is used to select the fragment of Source which is expected
to implement η(n) (or η(e)). Some trivial edges, such as edges within a basic
block, remain without a filter expression and are not explicitly related to Source.
Albeit defined independently from Source, the filter expressions defined by η

assume that Source is annotated with labels to mark the fragments corresponding
to activity nodes and edges. Second, given Source, we categorize the resulting
mapping between Diagram and Source according to their degree of accuracy, i. e.,
Diagram can be compatible, more abstract, or isomorphic to Source.

Filters for Activity Nodes and Edges For every action node n, we set
η(n) = @ACTION(n), where @ACTION(n) is a filter which selects the next compound
statement following label n. For example, for an action node INC described with
“print i and increment it by one”, we use η(INC) = @ACTION(INC). A typical
Source matching the filter would be:

INC: { printf(”%d\n”,i); ++i; }

If a Diagram models a C function f, then the initial node ni in Diagram is
associated with the entry of f, and its activity final node nf is associated with
the exit of f, i. e., we use η(ni) = @ENTRY(f) and η(nf) = @EXIT(f).

Required FQL Filters. Before we discuss the filter expressions associated
with control structures, we introduce the necessary primitive filters: We use the
filter expression @CONDITIONGRAPH(n) to match in Source’s CFA all computations

15

of the conditional statement which follows immediately after the label n (if no
such statement exists, the filter yields the empty CFA). Likewise, @TRUE-EDGE(n)
and @FALSE-EDGE(n) match in the CFA the edge corresponding to the true and
false outcome of the conditional statement following label n.

@FOR-INIT(n) yields the subgraph of the CFA that corresponds to the initial-
ization part of the for statement following the label n. Analogously, @FOR-INCREMENT(n)
identifies the subgraph corresponding to the incrementation part.

@CASE(n, d) identifies the edge that is taken in case the next switch expres-
sion following the label n evaluates to d. Likewise, @DEFAULT(n) identifies the
edge that corresponds to the default case.

Filter Expressions for Control Structures. In case of a control structure
n with two outcomes (if , while, do, for, as shown in Figure 4), we define (i) a
filter for the computation necessary to decide which branch to take, and (ii) a
filter for those edges which correspond to one possible outcome of the decision:

η(n) = @CONDITIONGRAPH(n)

η(t[e]) = @TRUE-EDGE(n)

η(t[¬e]) = @FALSE-EDGE(n)

Here, t[e] and t[¬e] are the edges starting in node n which are labeled by θ

with e and ¬e, respectively.
For example, given an if structure named PRECOND with e = (a || b) we use

η(PRECOND) = @CONDITIONGRAPH(PRECOND) to denote the computation necessary to
determine the outcome of the decision. The two outcomes of PRECOND are filtered
for with η(t[e]) = @TRUE-EDGE(PRECOND) and η(t[¬e]) = @FALSE-EDGE(PRECOND),
respectively.

Finally, in case of a switch control structure n with outgoing edges t[e=k0],
t[e=k1], . . . , and t[default], the mapping is as follows:

η(n) = @CONDITIONGRAPH(n)

η(t[e=k0]) = @CASE(n, k0)

η(t[e=k1]) = @CASE(n, k1)

. . .
η(t[default]) = @DEFAULT(n)

Relating Activity Diagrams and Source Code Given Diagram, we deter-
mine the filter expressions η(·). These filter expressions relate an—in principle—
arbitrary Source with Diagram. However, to match the filter expressions properly,
Source must be annotated to link activity nodes and edges with Source’s CFA.

Before checking the relation between Diagram and Source, we inline all call
behavior actions which model only a part of a C function. Hence, every call be-
havior action refers to an activity diagram which models a complete C function.

We say that Diagram and Source are compatible, if the filter expressions
described by η(·) match non-overlapping fragments in the CFA of Source. Oth-
erwise, multiple action nodes or edges of Diagram would refer to the same code
fragment.

Definition 2 (Compatibility). If Diagram = 〈A, T, θ〉 is an activity diagram
and Source is some C source code, then Diagram and Source are compatible,

16

iff for all r 6= t ∈ A ∪ T with η(r) 6= ∅ and η(t) 6= ∅, η(r) and η(t) yield
non-overlapping subgraphs of Source’s CFA.

Compatibility alone assures only that we are able to process Diagram and
Source with slope testing in a meaningful way. But in most cases—especially
in case of certification relevant software, the relationship between Diagram and
Source will be much tighter.

From a methodological point of view, we can investigate the compatibility
of an activity diagram Diagram with an arbitrary source code Source, but, in
practice we investigate this relationship between a model and its concrete imple-
mentation. Here, using FQL filter function expressions and source code annota-
tions, a programmer is able to trace back source code to the model level. Such
a traceability is required by DO-178B and can be monitored automatically by
comparing the target graphs of the annotations before and after a modification
in the source code. Therefore, we are able to handle a broad field by starting
from comparing a model to some source code up to full traceability from source
code to its corresponding low level requirement.

Definition 3 (Compatible Relationships). Let Diagram = 〈A, T, θ〉 be
an activity diagram and let Source be some compatible C source code. Then we
define the following refined relationships between Diagram and Source:

– Abstraction Mapping: In an abstraction mapping, every edge in the CFA
which is not labeled with a skip operation is matched by some filter expres-
sions η(r) for r ∈ A ∪ T .

– Decision Isomorphism: A decision isomorphism restricts an abstraction map-
ping further and requires additionally that the subgraph of Source’s CFA
matched by η(r) contains no branches, for all r ∈ (A \ Ad) ∪ T where Ad is
the set of decision nodes in Diagram.

– Condition Isomorphism: A condition isomorphism is defined like a decision
isomorphism, but requires that η(r) contains no branches for all r ∈ A ∪ T .

Thus, the four considered relationships between Diagram and Source form a hi-
erarchy, with plain compatibility as weakest relationship, which is refined at
increasing levels by an abstraction mapping, a decision isomorphism, or a con-
dition isomorphism.

3.4 Post Mortem Deficiency Assessment

In this section we prove that, depending on the type of relationship between
Diagram and Source, the deficiencies D1 to D3 are correlated and imply each
other’s occurrence. To do so, we need some further notation, introduced next:
We denote with testgoals(Query, Program) the set of test goals required by the
coverage criterion Query on the program representation Program, which may
either be activity diagrams or some source code. The test goals covered by a test
case Case are denoted covered(Case, Program).

17

Definition 4 (Subsumed Query). Let Query1 and Query2 be two FQL

queries. Then we say that Query2 subsumes Query1 and write Query1 ⊆ Query2,
if

covered(Query1, Program) ⊆ covered(Query2, Program)

holds for every program representation Program. If the subset relation is a strict
one, we say that Query2 strictly subsumes Query1 and write Query1 ⊂ Query2.

If Query1 ⊆ Query2 holds, then every test suite satisfying Query2 also satis-
fies Query1. Thus, this definition requires that both covered(Query1, Diagram) ⊆
covered(Query2, Diagram) and covered(Query1, Source) ⊆ covered(Query2, Source)
hold. Below, we are mostly interested in the setting when QueryI ⊆ QueryM

holds: If the relation between Diagram and Source is a true abstraction (i. e.,
does not describe a condition isomorphism), then the test engineer will have to
compensate the lack of modeling precision with a more rigid model level coverage
criterion, i. e., QueryI ⊂ QueryM will be necessary.

To analyze the reason for occurring deficiencies, we need to assure that the
test goals derived from Diagram and Source are comparable. Therefore, we in-
troduce the query Structural which subsumes all queries which impose only test
goals referring to the control structures present in both, Diagram and Source:
Structural = BB∪DC∪MCC∪PC. Therein, BB, DC, MCC, and PC denote basic
block, decision, multiple condition, and path coverage (cf. [10, 11]).

Furthermore, we assume that Diagram is at least an abstraction of Source,
since otherwise, some parts of Source would not even be modeled in abstract
terms and remain completely unrelated with Diagram.

CASE I: General Abstraction. If Diagram is an abstraction of Source,
then implementation liberty (D2) can occur, since every model level action po-
tentially refers to arbitrary constructs at the implementation level. Thus, it is
possible that more than one implementation level test case is required to cover
the abstracted control flow. For this reason, implementation liberty becomes an
approximate measure for the degree of abstraction between Diagram and Source:
The more abstract Diagram is, the more implementation level test cases in Suitei

I

are on average necessary to cover all behavior described by test case Casei
M at

model level.
Intuitively, if implementation poverty (D1) occurs and Diagram abstracts

Source, then some part of the implementation must remain uncovered, i. e., im-
plementation anarchy (D1) occurs. In the next lemma, we make this intuition
precise. We say that a model or implementation level test suite Suite, which sat-
isfies some coverage criterion Query, contains a redundant test case Case ∈ Suite

if Suite \ {Case} is still satisfying Query.

Lemma 1. If Diagram is an abstraction of Source and SuiteM contains no re-
dundant test case, then implementation poverty (D1) implies implementation
anarchy (D3) for all queries QueryI = QueryM ⊆ Structural.

The converse of Lemma 1 does not hold for general abstraction mappings,
i. e., an instance of implementation anarchy (D3) does not imply implementation

18

poverty (D1). This is true, since anarchy can also occur in lieu of liberty for two
reasons: (i) A model level test case Casei

M with a non-empty concretization
Suitei

I covers some further action which refers to some unreachable code in the
implementation. (ii) A fraction of the code referred by some covered action is
only reachable, if this action is approached in some specific manner. In the latter
case, the abstraction appears to be an unsuitable choice, since the code referred
by the action is not independent from the remaining code.

Remark 1. If implementation anarchy (D3) occurs without poverty (D1), then
some action in Diagram refers to dead code in Source, or the reachability of the
referred code crucially depends on the path reaching the action – indicating an
unsuitable abstraction from Diagram to Source.

Therefore, if implementation anarchy (D3) occurs without poverty (D1),
then the reason should be tracked down and either eliminated or thoroughly
justified with a suitable rationale (following Remark 1). Otherwise, if imple-
mentation anarchy (D3) and poverty (D1) occur together, we start eliminating
implementation poverty (D1) for the following reason: Since FShell never pro-
duces test suites with redundant test cases, Lemma 1 is applicable and hence we
know that each instance of poverty (D1) entails an occurrence of anarchy (D3).
To eliminate poverty (D1), either Diagram or QueryM should be refined as to
ensure that all test cases in SuiteM can be concretized.

At the end of this process, implementation liberty (D2) without poverty
(D1) or anarchy (D3) occurs, and therefore the remaining slope is purely a
result of the abstraction between Diagram and Source: The steeper the slope,
the stronger the dependence of SuiteI on Source. Depending on the involved
certification regulations, it might be necessary to refine Diagram to lower the
slope.

CASE II: Condition Isomorphism. In case of condition isomorphism,
implementation liberty (D2) cannot occur because of the same control flow
structure in Diagram and Source (shown below in Lemma 2). Making practically
unrestraining assumptions on the involved queries, we show that implementation
poverty (D1) occurs iff anarchy (D3) occurs (Lemmata 1 and 3). In consequence,
the absence of implementation poverty (D1) in the context of a condition iso-
morphic Diagram and Source is sufficient to show that none of the deficiencies
(D1) to (D3) occurred (Theorem 1).

Therefore, in case of condition isomorphism, one should refine Diagram or
QueryM until no implementation poverty (D1) occurs. Note that no coverage
check against implementation anarchy (D3) is necessary.

Lemma 2. If Diagram is condition isomorphic to Source, then implementation
liberty (D2) cannot occur during slope testing for any pair of FQL queries
QueryM and QueryI with QueryI ⊆ Structural.

Lemma 3. If Diagram is condition isomorphic to Source, then implementation
anarchy (D3) implies implementation poverty (D1) for every pair of queries
QueryI ⊆ QueryM ⊆ Structural.

19

Corollary 1. If Diagram is condition isomorphic to Source, SuiteM contains no
redundant test case and QueryI = QueryM ⊆ Structural holds, then implementa-
tion poverty (D1) occurs iff implementation anarchy (D3) occurs.

Theorem 1. If Diagram is condition isomorphic to Source, then the absence of
implementation poverty (D1) shows that none of the deficiencies (D1) to (D3)
occurred, for all queries QueryI ⊆ QueryM ⊆ Structural.

Case III: Decision Isomorphism. In case of decision isomorphism, we
cannot rule out liberty since a model level test case passing a decision if (a || b)

through its true-edge has two choices in the unfolded CFA: Either evaluating a

to true and leaving through the true-edge, or evaluating a to false and continuing
with the evaluation of b resulting in a true outcome as well.

However, if we rule out all test goals referring to individual conditions and
assume decision isomorphism, then no test goal at the implementation level
can possibly refer to a CFA structure not present at the model level. There-
fore, we can restate the results and proofs of the preceding section (Lemmata 2
and 3, their Corollary 1 and Theorem 1) for decision isomorphism by replacing
Structural with BB ∪ DC and condition by decision isomorphism.

Therefore, all coverage according to every criterion subsumed by BB ∪ DC

can be enforced with an Diagram and a query QueryM that produces no imple-
mentation poverty (D1). If condition-based coverage criteria are used, one must
revert to the procedure for general abstraction mappings, i. e., one must check
for implementation anarchy (D3) as well and eliminate both, implementation
poverty (D1) an anarchy (D3) until liberty (D2) alone remains.

4 Case Study

We present two case studies—a memory manager and an engine controller—that
underline the practical applicability in an industrial context. In both case studies
we apply slope testing using our Eclipse plug-in as described in Section 3. We
performed our experiments on a 2.33 GHz AMD64 system with 16 GB RAM.
Characteristics of our benchmarks and a summary of our results are shown in
Table 3.

As a case study from the avionics domain we consider a memory manager
for helicopter software. The memory manager is implemented in 526 lines of
ANSI-C code5 and will be a core component of several other applications to be
deployed as part of a pilot assistance and mission planning system. The purpose
of the memory manager is to avoid memory fragmentation caused by dynamic
memory allocation. It provides an API to prepare a memory manager object
and to provide individual chunks in the previously acquired memory area to
application components.

5 Source lines of code (SLOC) are measured using David A. Wheeler’s SLOCCount
tool.

20

Taken from the automotive domain, we studied the software for an engine
controller. The implementation of 3449 lines of ANSI-C code was built from
a MATLAB/Simulink model using automated code generation. We manually
inserted labels into the source code to establish traceability.

Comparing the execution times of stages S1–S3 for the memory manager and
the engine controller, as shown in Table 3, we observe that our approach scales
well with the implementation size. The relatively long execution times of stage
S3 are primarily due to the compiler used to build executables with execution
trace logging and analysis. We expect to replace this part by alternative means
in future releases of our framework.

Memory M. Engine C.

SLOC 526 3449
Activity Diagrams 21 2
Action Nodes per AD ≤ 13 9 and 17
Decision Nodes per AD ≤ 2 4 and 7
Loops ≤ 1 0
Model-Level TC 27 171
Time S1 [s] 19 7
Time S2 [s] 60 1880
Time S3 [s] 1050 8893
Poverty 1 169
Liberty 10 1

Table 3. Summary of experimental results

Memory Manager. The requirements for the memory manager yielded 21
activity diagrams, 17 of which are implemented as C functions, two are part of
these functions, and the remaining two are macros. Both, activity diagrams and
source code were annotated as described in Section 3.3. The level of detail of the
activity diagrams suggested that a condition isomorphism should be achieved.
As the experiments revealed, however, this was not always the case (see be-
low). Because of their simple structure, we applied path coverage at model level.
Several models, however, contain loops. We therefore bound the number of per-
mitted repetitions by two, i. e., we use QueryI = QueryM = cover PATHS(ID,

2). In total, we obtained a model level test suite of 27 test cases. The initial
concretization revealed several errors in design and coding: In one diagram, the
order of activities was not correctly reflected in the implementation. This im-
plementation anarchy (D3) resulted in a set of activities not being covered by
the test suite and one model level test case with no matching concretization,
causing implementation poverty (D1). Some action nodes were implemented us-
ing loops, which were consequently not properly covered by the test suite. This
implementation liberty (D2) required changes in the activity diagrams to gain
a 1-1 correspondence.

21

Engine Controller. Compared to the memory manager, the implementa-
tion of the engine controller is about seven times as large. Due to the nature of
the domain, however, only abstract activity diagrams were available. The two
diagrams contain four and seven decisions, respectively. At implementation level,
however, 252 decisions were found. We added annotations to establish an abstrac-
tion mapping and estimate the slope. Here, we also used QueryI = QueryM =
cover PATHS(ID, 2) and obtained 161 model level test cases, whereas their con-
cretization only produced two implementation level test cases. The reason for
this implementation poverty (D1) was found through code inspection: Parts of
the generated engine controller code proved to be unreachable. As the activity
diagrams were abstractions that did not reflect all decisions, implementation lib-
erty (D3) was expected. We obtained nine different concrete test cases for one
model level test case, witnessing the steep slope between the abstract model and
its implementation.

5 Related Work

There are several approaches to generate test cases for UML models: In the tra-
dition of automata theoretic methods, the most common [12] approaches employ
UML statecharts [13, 14] and interaction diagrams [15], respectively. To answer
a strong industrial demand, we generate test cases based on activity diagrams.

Test case generation approaches based on activity diagrams are introduced
in [16–18]. Chen et al. [17] propose a method to randomly generate test cases for
Java programs. Since their technique is based on randomness, a good coverage
cannot be guaranteed. In [16] a coverage directed approach for test case genera-
tion is proposed that uses the model checker NuSMV. As the authors themselves
mention, the proposed method is vulnerable to the state space explosion prob-
lem. Therefore we assume this approach to be inadequate for practical use in an
industrial context.

Kundu and Samanta [19] present an extension of [16, 18]. They overcome
restrictions with regard to loops and concurrent system behavior. We do not
deal with concurrency – however, in our application domain of safety-critical
embedded systems, most individual software components are still designed and
implemented in a non-concurrent fashion. Kundu and Samanta use activity dia-
grams to model use cases and are therefore much more abstract. The generated
test cases are apparently not executable without additional processing.

Considering the level of sophistication, Automated Gray-Box Testing [20] is
much closer to our work than the ones mentioned above. This approach combines
black-box testing on model level with white-box parametrized unit testing. They
generate parametrized unit tests for an extended version of activity diagrams
and instantiate these tests via white-box test case generation. For their case
study they report high implementation coverage, but, do not state their coverage
criterion.

22

References

1. RTCA DO-178B: Software considerations in airborne systems and equipment cer-
tification (1992)

2. OMG: UML 2.0 Superstructure Specification. Technical Report ptc/04-10-02,
Object Management Group (2004)

3. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: FShell: systematic test case
generation for dynamic analysis and measurement. In: CAV. (2008) 209–213

4. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: A Precise Specification
Framework for White Box Program Testing. Technical Report TUD-CS-2009-0148,
TU Darmstadt (2009)

5. Holzer, A., Tautschnig, M., Schallhart, C., Veith, H.: Query-driven program test-
ing. In: VMCAI. (2009) 151–166

6. Pontisso, N., Chemouil, D.: Topcased combining formal methods with model-driven
engineering. In: ASE. (2006) 359–360

7. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: Dependency Coverage Cri-
teria with FQL. Technical Report TUD-CS-2009-0149, TU Darmstadt (2009)

8. Chilenski, J.J., Miller, S.P.: Applicability of modified condition/decision coverage
to softwaretesting. Software Engineering Journal 9(5) (1994) 193–200

9. Myers, G.J.: The Art of Software Testing. John Wiley and Sons (1979)
10. Ball, T.: A theory of predicate-complete test coverage and generation. In: FMCO.

(2004) 1–22
11. Ntafos, S.C.: A comparison of some structural testing strategies. IEEE Trans.

Software Eng. 14(6) (1988) 868–874
12. Dias Neto, A.C., Subramanyan, R., Vieira, M., Travassos, G.H.: A survey on

model-based testing approaches: a systematic review. In: WEASELTech. (2007)
31–36

13. Weißleder, S., Schlingloff, B.H.: Deriving input partitions from UML models for
automatic test generation. In: MoDELS Workshops. (2007) 151–163

14. Chevalley, P., Thévenod-Fosse, P.: Automated generation of statistical test cases
from UML state diagrams. In: COMPSAC. (2001) 205–214

15. Nayak, A., Samanta, D.: Model-based test cases synthesis using UML interaction
diagrams. SIGSOFT Softw. Eng. Notes 34(2) (2009) 1–10

16. Chen, M., Mishra, P., Kalita, D.: Coverage-driven automatic test generation for
UML activity diagrams. In: GLSVLSI. (2008) 139–142

17. Chen, M., Qiu, X., Li, X.: Automatic test case generation for UML activity dia-
grams. In: AST. (2006) 2–8

18. Chen, M., Qiu, X., Xu, W., Wang, L., Zhao, J., Li, X.: UML activity diagram-
based automatic test case generation for java programs. The Computer Journal
52(5) (2009) 545–556

19. Kundu, D., Samanta, D.: A novel approach to generate test cases from UML
activity diagrams. Journal of Object Technology 8(3) (2009) 65–83

20. Kicillof, N., Grieskamp, W., Tillmann, N., Braberman, V.A.: Achieving both model
and code coverage with automated gray-box testing. In: A-MOST. (2007) 1–11

23

A Proofs

Proof (of Lemma 1). If we face implementation poverty (D1), then there exists
a model level test case Casei

M ∈ SuiteM with Suitei
I = ∅. Since SuiteM contains

no redundant test case, Casei
M covers some test goal which is not covered by any

other test case in SuiteM . Because of QueryM ⊆ Structural, this test goal refers
to a state, edge or path in the CFA of Diagram.

This test goal refers to a potentially larger subgraph in the CFA of the
implementation: Since we have QueryI = QueryM , this subgraph in Source’s CFA
gives rise to at least one implementation level test goal (in case of a condition
isomorphism between Diagram and Source, it is a single test goal, in case of a
true abstraction, there will be more test goals). We fix one such test goal.

Hence SuiteI must cover this test goal to satisfy QueryI . But since all test
cases in CaseI ∈ SuiteI must follow some test case CaseM ∈ SuiteM \ {Casei

M}—
and none of them covers the test goal in question—this test goal must remain
uncovered – causing implementation anarchy (D3).

Proof (of Lemma 2). For the sake of contradiction, assume that an implemen-
tation liberty occurs, i. e., there exists a Casei

M ∈ SuiteM which is concretized to
Suitei

I with |Suitei
I | > 1.

Then there must exist two distinct test cases CaseI 6= Case′I in Suitei
I which

both implement Casei
M but hit different test goals, i. e., CaseI and Case′I both

concretize Casei
M but covered(CaseI , Source) 6= covered(Case′I , Source) holds.

But since QueryI ⊆ Structural produces only states, edges, and paths from
the CFA as test goals, the inequality in the covered test goals implies that the
execution paths induced by CaseI and Case′I deviate at some point—although
being abstracted to Casei

M . Thus, there must exist a branch which is mapped
into a single action—but this is a contradiction to the assumption that Diagram

is condition isomorphic to Source.

Proof (of Lemma 3). If implementation anarchy (D3) occurs, then we have
found some test goal which is not covered by SuiteI . Since QueryI ⊆ Structural

holds, this test goal must refer to a state, edge, or path in the CFA of Source.
Because of the condition isomorphism, this CFA structure must exist in Diagram

as well, and since QueryI ⊆ QueryM holds, it must be covered at model level as
well. Since SuiteM satisfies QueryM (since it is generated in step (S2) to achieve
coverage), there exists a covering test case Casei

M at the model level. But as
the concretization is missing, it must have been lost through concretization, i. e.,
Suitei

M = ∅ holds and implementation poverty (D1) occurred.

Proof (of Corollary 1). The Corollary combines Lemmata 1 and 3.

Proof (of Theorem 1). Follows from Lemmata 2 and 3: Lemma 2 rules out im-
plementation liberty (D2). Lemma 3 states that implementation anarchy (D3)
implies implementation poverty (D1) and therefore, the absence of poverty (D1)
implies the absence of anarchy (D3).

24

