Mapping Data-Flow Dependencies onto
Distributed Embedded Systems

Stefan Kugele Wolfgang Haberl
Institut fur Informatik Institut fir Informatik Institut fur Informatik
Technische Universit Minchen Technische UnivergitDarmstadt Technische Universit Miinchen
Boltzmannstr. 3, 85748 Garching Hochschulstr. 10, 64288vi3tadt Boltzmannstr. 3, 85748 Garching
Germany Germany Germany

Abstract—Model-driven development (MDD) is an emerging points in time, so-called clocticks Computation within data-
paradigm and has become state-of-the-art for embedded systs flow networks and the communication associated therewith is
software design. In the overall design process, several stepave assumed to elapse infinitely fast.
to be taken in order to get from a high-level system design to the
deployed binaries on the target platform: starting from model
design, software partitioning and code generation reaching down

to task and bus scheduling. B. Introduction toCOLA
In this paper we focus on the later steps in the overall .
developing process and present a way to deploglusters, which In this paper, we use th@omponent LanguagéOLA as a

are tasks from an operational point of view, specified using the representative of synchronous data-flow languages. COLA is
Component Language (COLA) [1]. In this context, we introduce ntended for the design of complex and reliable software sys
the notion of a Cluster Dependency Graph (CDG) which forms yoms guch as automotive or avionic control systems. COLA

the basis for scheduling, address generation and estimation ofd . deled in t f hi hical -
memory requirements for the used middleware. Moreover the G€SIGNS are modeled in terms of hierarchical componemtgusi

CDG provides clues about possibly parallelizable tasks. a graphical and textual syntax respectively. The fundaatent

A case-study, namely an adaptive cruise control system (ACC), modeling concepts can be recognized in an akin manner in
taken from the automotive domain serves as example throughout other industrial standards like the Unified Modeling Langgia
this paper to demonstrate our new approach. (UML) [5] or MATLAB/Simulink. But in contrast to those,

Index Terms—Model-based development, data-flow graphs, COLA is based on .a rlgprous semantics. Slqce COLA s a
embedded systems, distributed systems, code generation synchronous formalism, it follows thhypothesis of perfect
synchrony[6] which means that in a given system, compu-
tation as well as communication occur instantly and therefo
need no time.

During the last years, model-driven develpment (MDD) Units are at the very heart of the COLA syntax definition.
has become state-of-the-art for the design and developmgRky can interact with their environment via so-called type
of safety-critical embedded systems. Control systems susbrts We distinguish between input and output ports and
as those used in the automotive or avionic domain, demaggimmarize them in the unitsignatures Units can either be
for special requirements concerning reliability, robess and composed in a hierarchical manner to build compiefworks
correctness. COLA as the used data-flow language turn@doccur in terms ofblocks forming the basic building ele-
out to be very promising because it provides support fefients of COLA like arithmetic£, —, %, /) and comparison
a consistent development process from a high level systeferators €, <, =, #, >, >).
model design down to a level taking very specific platform pata-flow is realized bychannelswhich connect a source
details into account. port with one or more suitable typed destination ports.

In addition to blocks and networks, units can be decom-
posed intoautomata that is, finite state machines similar

Over the past years, data-flow languages have become ppStatecharts [5]. Each of their states is realized by a sub-
ular for the definition and design of safety-critical embedd unit which determines the respective behavior. Hence, this
control systems. Data-flow networks for example, are usedformalism is well suited to express disjoint system behavio
CASE-tools like MATLAB/Simulink [2] to describe complex These different behaviors are referred tooperating modes
automotive systems. There are some approaches for modsée also [3], [7], [8]). In this paper, we describe a profibun
based development and design for embedded control systemomated way to deploy COLA systems including a brisk
based on the synchronous paradigm [3], [4]. Componentsage of mode automata. This includes a foundation for
defined in such a synchronous data-flow language operathedule plan generation for the target platform as well as
in parallel and process input and output signals at discrébe generation of logical addresses for the used middleware

I. INTRODUCTION

A. Data-flow languages

C. Related work mode==1

<net_acc_on_off>
Similar to our approach, Eles et al. [9] use a graph-based mode \
method to calculate schedules for a hardware architecture s_user acc_disp
consisting of processors, ASICs, and shared buses. Their S—c::: me

notion of aConditional Process Grapls used for analyzing
control and data-flow dependencies of tasks that were alread
assigned to processors. Similar to Pop et al. [10], theiugoc
Ibsa(s)lns Sf((;?es(::lfjlller:j%IIu]gck?thtr:(l)Sctl'Jggsr rgr]et{;](;d dr:ar[())l\(l)l Sr?"lse:][“; ?Tl]lo dléigure 1. Operating modes in a fictional adaptive cruise cbsystem.
tasks extracted from COLA models. The graph structure we
are presenting is generated in a fully automated way from O
COLA model and fits perfectly into the overall MDD process. "
Moreover, it provides all necessary information to geree@t In a tool-backed model-driven development process, not
code and configure the platform. A middleware for distriduteonly the modeling of system behavior is in focus, but for
real-time systems is used to map inter-task communicationthe sake of clearness and maintainability different viewso
the system at hand are defined and have to be distinguished.
Following the nomenclature of Pretschner et al. [14] we
In the following section, we motivate the usage of sdistinguish between thdogical architecture and technical
called mode automatdo express distinct system behaviorsarchitecture The first one describes the functional system
This leads to a distinction between different types of COLAehavior whereas the latter contains target hardwareophatf
clusterswhich partition the SyStem model. Section Il intro-information and other non-functional requirements_
duces the notion of €luster Dependency GrapRossible task Operating modes are initially defined in the logical archi-
orderings as well as logical addresses are calculateddingor tecture. In order to clarify the transition from the logidal
to this data structure. A case study outlined in Section Me technical architecture, we introduce the notion ofuster
demonstrates our approach using an adaptive cruise c@stroj, the following.
example. We conclude with an outlook on possible extensions, he course of advancing from the logical to the technical

and current work. Throughqut the paper we use parts of tQF‘Chitecture, the question arises in which way COLA units
model of the case study to illustrate the presented approagly, .« o pe mapped onto tasks from the operating system's

1. SYSTEM ORGAN|ZAT|ON USING OPERAT|NG MODES pOint Of VieW. Such a taSk iS Ca."eduster in the teChnical

During our work, it turned out to be very useful to havéslrchnecture. Actually the process of clustering a COLA

- : . sfystem is done manually. Yet, in a future version, a fully
a way to formulate distinct system behaviors in terms @ S . -
automated workflow is intended for this activity.

different operating modes. This prompted us to include aI the followi ing th labilitv of
language construct in the Component Language which is nh el Ot OW(IjngéOV;i,eA\ aret aSSl:\lmmg it € hava|a ”yt(zh
commonly calledmode automatorin the literature [1], [8], such a clustere system. No matter how we got the

[11]. Fohler [12] describes issues of handling mode Chang?$§ter|ng—mangally or f.u.IIy automated—a valid one has to
in the context of MARS [13]. ulfill the clustering condition the set of all cIustersﬁ’ has .
In the case of COLA, the results present at the output poF cover the complete' CQLA 'system. More precise, a valid
of the unit which is realized by a mode automaton, depend §lYSt€"ing of a system is given if and onlydiistered(root) is
the automaton’s current state and the values at the outpist pgatlsﬂed. He_reTOOt € .UI denotes the unique |_dent|_f|_er of the
of the particular unit implementing that state. Figure lveba top-most unit andU'T'is the set of all unique |dent|f|_ers_, of a
COLA automaton which illustrates the principle of opergtinCOLA system (see aIS(? [1] for more details). We distinguish
modes by means of a fictitious adaptive cruise control systéﬁ? following two cases:
(ACC) used in modern automobiles. Depending on whether thel) There exists exactly one clustet € CL, where CL
driver switches the ACC system on or off, the mode is altered. ~ denotes the set of all clusters, which refers to the unit
This design enables the developer to decouple the modeling instance with unique identifier. In the following, this
process of the—in this case—two different behaviors. This relation is denoted byl ~ x. Furthermore, no sub-unit
caters for a reduction of system complexity and results in instances uniquely identified with.y are allowed to be

mode==1

COLA clusters

D. Organization

improved software quality. Moreover, the separation infe d clustered separately.
ferent operating modes advances the reusability of COLA
components and therefor contributes to saving development Cl(z) & FhdeCL:cl~zA
costs. Vo.y€ Ul . el € CL: cl' ~ .y
To seize the given example, one can assume that most of the
ACC functionality is not used in the modeet _acc_of f, 2) There exists exactly one clustet which refers to a
whereas in the modeet _acc_on a lot of sensor processing unit instance with unique identifier implementing an

like velocimetry and distance measurement has to be done. automaton (denoted by_atm(z)). Its sub-unit instances

‘DEV,ROTATION ‘ ‘ DEV_TIME ‘ ‘ DEV_ULTRA ‘ ‘ DEV_TOUCH ‘ ‘ DEV_VIEW ‘ ‘ DEV_PRGM ‘

*

En

N
£
‘ ACC_off ‘ ‘ ACC_on ‘

‘ DEV_DISPLAY ‘ ‘ DEV_MOTOR ‘

Ny

Figure 2. Port correlation: the signature of automata ant ¢hahe unit

instances implementing the states is the same. Figure 3. Cluster dependency graph for the case study untest in

Section IV.

uniquely identified withz.y are clustered. a better understanding. We'll give a short introductiomiits

C2z) & Fele CL: el ~a Ais_atm(z) A functi(.)n'allity in Section 11I-C and V.
Definition 1 (Cluster Dependency Graph Cluster De-

Va.y € UL : clustered(z.y) pendency Graph (CDG) is a directed, acyclic graph
The first-order predicatelustered(-) is defined as follows: G = (Vu, Vi, Vi, Eyg, Ei) with three types of pairwise
disjoint vertices:working cluster verticed/,,, buffer vertices
clustered(z) <« Cl(z)V C2(z) V, and so-callednode cluster verticeg,,,. The set of directed

edges is divided intdata-flow edged’; andmode edge#,,
with E; N E,, = (. For the edges it holds&; = {(u,v) |
B. Relating mode- and working-clusters u € Vy,v € VU {(w,v) | u € Vp,v € (V,, UV,,)} and
As mentioned in the previous section, the entire COLA&m = {(u,v) [u € Vin,v € (Vi UVyy)}
system model has to be clustered. In this section, we intedu Solid data-flow edges going out of a working cluster vertex
the distinction between different cluster typesode clusters (visualized by a rectangle) and pointing into an octagorff¢bu
andworking clusters vertex) symbolize that the working cluster vertex writesada
Mode clusters realize mode automata which are responsilslt® @ buffer, whereas an edge pointing from a buffer vertex t
to initiate further control- and data-flow, that is, the nex@n working or mode cluster vertex (symbolized by a diamond)
operations to perform_ In our terms, these next Operatimaa indicate the fact that they read from the buffer. In case ofieno
set ofworking or mode clustersA mode cluster can either becluster vertices, only mode edges (drawn as dashed edges) ca
the top-most cluster of a system or can be initiated by amottiart here and the edges can only point to working and mode
mode cluster. cluster vertices. This distinction is made in order to enge
Furthermore, there exists a very important correlation bthe differentexclusivecontrol- and data-flows depending on
tween these two cluster types: input and output ports of #¢ current mode. Figure 3 shows an example for a cluster
automaton and those of the units realizing the automatoffgpendency graph of the case study explained in Section IV.
different stqtes have the same ports, that is, thesg unies h . Data dependencies
the same signature and therefor share the same input values.) })
In Figure 2 the dashed lines indicate port correlationscivhi Data dependencies arise when two or more COLA units
means that these ports share the same value and aCtu(.]l"yaeg‘('aemterconnected via channels. Data-flow is then given in
identical. the following three cases:
1) Data-flow from an input port of a network to either an
I1l. CLUSTER DEPENDENCY GRAPH input port of a connected sub-unit or to an output port
Data dependencies which arise due to channels between Of the network at hand, or
interconnected units in COLA networks, lead to dependancie 2) between sub-units of a network, that is, from a single
in COLA clusters, too. For more complex COLA systems Output port to at least one input port of another sub-unit,
it is administrable to have a clearer understanding of data and finally
dependencies which in the sequel will help us to generate3) between an output port of a sub-unit and an output port
schedule plans and C code (see also [15], [16]). Further the Of the surrounding network.
contained information serve for the configuration of thedusélhese data dependencies between COLA units in the logical
middleware. This middleware will be subject to another paparchitecture are reflected in the technical architectuna, i,
and will only be roughly discussed where it is necessary fdependencies between clusters. These dependencies on the

technical architecture are represented as edges inthe CL| (3771614519713 [5]
We distinguish between two kinds of edges: solid data-flo\
and dashed mode edges, as introduced above. Before sta
the accurate relation between the logical and technicdli-arc
tecture, let us first introduce necessary notations acogridi 1
Kugele et al [1]. [1]2]3la[5 6 7[6]0]

Let u; = <Tl1,0'1,01,11> and Uy = <TL2,0’2,CQ,IQ> be two t
units of the COLA systemS = (u,U) with uy,us € U,
being the set of all units, and denoting the root unit of Figure 4. Examples for feasible task orders.
the COLA model.o; and oo are the signatures of both
units, that is, the particular vectors of typed input andpatit
ports (accessible usinm(c) and out(c)). Furthermore, let input buffers which are in turn set by the working clusters
ch = (a,s,{d1,ds,...,d;}) be a channel connecting a singldXEV_ROTATI ON, DEV_TI ME, and so on. Once the buffers
source ports with at least one destination port;, with (s_act,dist,node, ands_user) have been set, the mode
1<i<k. clusterACC can be executed using the data present at its con-

Then, two cluster verticesl; (working cluster) andcl, nected buffer vertices. Depending on the active mode, reithe
(working or mode cluster), are connected by solid edges avitA"CC_of f or ACC_on will be executed afterwards and write
buffer vertexb in between ¢, — b — cl»), if there exist two its results to the respective buffers. Based on this caysali
connected unit instances, and u, (with unique identifiers @ possible execution order of clusters—tasks in the sense
z1 andz,) in the COLA system model, which are associate@f operating systems—can be derived in a straightforward

[6 [1[5[2]4[3[9[7]8]

14
[1[2[7[3[4[8[6[5[9]

with these clustersel; ~ x; andcly ~ z5. It holds manner. We have to point out, that there can be a plethora
of possible execution orders. The task of our offline-schexdu

Vel € Vi, cla € (Vi U Vi) Yoy, 20 € UL: which is currently under development, is to select the best

cy ~xy Nely ~ 29 = order with respect to a set of given constraints. In the examp
[Ber,e2 € g 3b e Vi ey = (cly,b) Aea = (b, clo) given in Figure 3, hundreds of possible execution orders can
be found. Some of them are exemplarily presented in Figure 4.

< For the sake of clarity, cluster names are substituted biy the

(Jch € C Jz1, 22 € UL : s € out(o1)A logical addresses given in Figure 5. A very small extract of

3d; € {dy,...,dp} : d; € in(02))] all possible orderings, the working clusteA€C relies on, is

) , . depicted in the gray box. These clusters can be placed in an
, whereas’ is the.set of aII.channe.Is in the ngtwork Con'["’“né\rbitrary order with respect to the exception that clusteust
ing u; andus. In this scenario, we dictate that is not a sub-

not be executed before their input buffer(s) are set. Afteds,

unit of u; since all sub-units of a network are automaticallyhe ACC mode cluster is run and finally one of the sequences
contained in the same cluster@as But then, for dashed modelo, 12 or 11, 13 is chosen, depending on the result returned

edges we have a different characteristics. tigtbe a mode by the mode cluster.
cluster vertex ana:, be either a working or a mode cluster It is the job of our allocation procedure to assign each

vertex. Then, there is a dashed edge connecting theseeﬂartl[%sk to a specific procesor of a multi-processor platform. In

(cly ==» cl) if uy is an automaton with a set of sta@s and .. scanario communication over buses as well as processor
Uz 15 the instantiation of one of its statgsc Q, denoted by capacity utilization with respect to memory and CPU usage ha
inst(q) = uz. to be taken into account. We will elaborate on our allocation
and scheduling procedure in a subsequent paper.
Veli € Vi, cla € (Vi UVyy,) VY, 20 € UL : Furthermore, regarding multi-core or multi-processott-pla
i~ xy Acly ~ xy = forms we can state _that some of 'Fhe working cluster tasks can
operate in parallel since they are independent from eaddr,oth
Be € Bz e = (ch,clz) such asDEV_ROTATI ON, DEV_TI ME, DEV_ULTRA, and so
< forth. Hence, in the example given in Figure 3 there are sdver
is_atm(z1) A Jg € Q : inst(q) = 2] independent paths, that is, they do not share a common yertex
from a root vertex to the mode verteXCC. Paths starting
at a working cluster vertex passing different buffer vessic
Thecluster dependency gragitovides a basis for reasoningeach of them has to be a child of the starting vertex, and
about causality and is appropriate to cover the executidaror ending again in the same cluster vertex (working or mode)
of tasks. In Figure 3 causality is given in the following wayare count as one path. Hence all those sub-paths have a length
the working clustersRot ati on, Radar and U have to of exactly two, such as the sub-path startingJatand ending
be executed in order to write their results to the suitablt ACC. Vertices on independent paths starting at root vertices
bufferss_act , di st, nbde, ands_user . In addition, these and ending inACC (excluded) could be deployed on different
working clusters are again dependent on the values of thpiocessors in order to make use of parallelism where pessibl

B. Causality and task execution order

l l 6 l DEV_S
¢ VIEw b~ View_sens

L« JC 2 J[s J[4][s
)) I I I
[:,75] | s! | ~. 5 L pev_s_ |
I !

<net_ACC>

s DEV_A_
acc_disp DISPLAY
s_mot d DEV A

MOTOR

mode

touch_sens

TOUCH
s_user

DEV.S_ |
s_act
DEV_S_
ROTATION bp— rot_sens g
L net_rotation [>
N

net_ACC_on_off

¥ k
DEV_S_ " dist
? ULTRA [>- ultra_sens PP

Figure 5. Logical addresses for the case study. Figure 6. TheACC main diagram.

and beneficial. dependency graph introduced in Figure 3. As described, each
)) buffer in this example is assigned an address pointing to an
C. Logical address generation appropriately sized data buffer. The addresses reservatdo

As mentioned before, the presented approach for a dep&asks’ state storage are enlisted as well.
dency graph is intended for use in a MDD process. HaberlWhile the stated concept for saving states is true for both
et al. [15] presented an approach to generate code fully aukinds of clusters, a mode cluster is given an additional eskir
matically, to minimize the possibility of programming feail As we explained in Section 1I-B, mode clusters decide on
In order to use the process for development of distributechich clusters to be executed next. The information about
systems, it is necessary to allow for communication durirteir decision which state to execute is not depicted using a
runtime. Each channel between two clusters, which is trangannel in the functional model, but by means of hierarchy.
formed into C code and thus turn into tasks during runtimé|l working clusters contained in a unit implementing a stat
indicates the need for a communication link at runtime. Alorm the active cluster set. But as there is no channel in the
described before, buffers are used for temporary storagefaifictional model, the cluster graph does not contain a buffe
data sent from one cluster to another. These buffers camneispfor filing this decision. That is the reason why mode clusters
to memory allocated by the middleware used on the executiare given an additional address. Considering our example
platform. It is, amongst others, the middleware’s task tbde graph, this is true for théd\CC mode cluster. Figure 5 states
for transparent and timely communication between the nmniboth addresses for that cluster. When being executed, the mod
tasks. cluster stores a numeric value, which points to a mode, &t tha

The middleware can be managed using a configuration fitegical address. As the middleware is the first instance & se
which contains information about the sizes and addressestlg decision about the active mode, it hands the tasks iregliz
local and remote buffers. The dependency graph providéee functionality of that mode over to the operating sysgem'’
assistance during construction of this configuration file akspatcher for execution.
well as the correct addressing of middleware API calls while
generating the C code for each cluster. Every buffer vertex i
the graph is given a logical address, which will be used laterin the following we will exemplify the usage and the
on in the development process for middleware configuratidienefits of our dependency graph considering a model for
and appropriate read and write calls by the connected cfusta fictitious adaptive cruise control (ACC). This system is
Of course, the logical addresses of all buffer vertices Have intended to keep an automobile’s velocity at a constantevalu
be different to avoid race conditions. while maintaining a defined minimum distance to the car

In addition to inter-cluster communication, there is a neeattiving ahead.
for storing the state of each cluster. As the hypothesis of The top-level diagram of the according COLA model is
perfect synchrony assumes the periodic invocation of eashown in Figure 6. While this is a fictitious model and not
unit, we use a time-triggered scheduling scheme. Thus ealgrived from any real implementation, it is well suited to
generated task is started over and over again. In order { k&emonstrate our concepts in this paper. The COLA unit shown
the tasks’ states between invocations, the middlewaressairethis diagram is a network containing several sourcekssin
their local variables. This state buffering is realizedngsa (both are indicated by solid rectangles in the upper right
logical address, too. Each cluster vertex in the dependerayrner) and other sub-units. Sources and sinks refer tmeens
graph is assigned its private logical address for this pggpoand actuators of the real system, while the rest of the shown
When executed, a task’s first job is to read its state usisgb-units implements the ACC'’s behavior. In the following w
the assigned address. Accordingly, the last instructidorbe will refer to this diagram in order to exemplify some coneept
the task’s termination writes the actualized state backhéo t The dependency graph for the ACC example has already
middleware. Figure 5 shows a possible addressing for theen given in Figure 3. As can be seen in the figure, the

IV. CASE STUDY

6 mv_read(22, &s_act);
7 mw_read(23, &dist);
8

<net_rotation>

mw_read(24, &node);
9 mw_read(25, &s_user);
10 switch(uni t _state. atm state)
11 {
12 case 0:
13 if ((mode == 1))
14 {
15 unit_state.atmstate = 1;
16 decision = 1;
17 break;
18 }
19 decision = 0;
20 break;
21 case 1:
22 if ((mode == 1))
23 {
Figure 7. COLA networknet _r ot at i on which has been translated intc2 iy state atmstate = 0;
C code. 26 break; '
27
28 decision = 1;
29 break;
. . 30 }
graph consists of a single mode cluster, nam&EC, 13 31 muwite(1s, &decision); ,
) .) . 32 mwv_save_task_state(14, &unit_state);
working clusters, 12 buffers and their respective conoesti 3 !
First we want to detail on the inter-cluster communication. Listing 2. Code fomet _ACC on_of f.
comparison to the examples presented by Haberl et al. i5], t
code generation has been altered to interface the midddewar V. CONCLUSIONS

mentioned before, inserting the |Ogica| addresses filedhén t In th|s paper we introduced the Concept of a Cluster Depen_
dependency graph. This enhancement allows for distributgéhcy Graph. We showed that this formalism is well suited
execution of the ACC example code. An example for the & capture the dependencies arising from data-flow models
tered code representing the working clustet _rotation, ysing COLA as an example language. We defined clusters
which is depicted in Figure 7, can be seen in Listing 1. a5 distributable entities which build up the partitionedtsyn
In lines 6, 7, and 10 data are read from or written to thgodel.

buffers which are connected to the working cluster in Figure The definition of clusters together with the dependency
This realizes the inter-cluster communication describefdie. graph enables for unattended generation of app”catior@lcod

The example also ShOWS, how the task reads its actual Statq’Fﬁls results in code inc|uding the functiona”ty Captureﬂj b

|ine 5 and WriteS baCk the aCtUaIiZed State in Iine 11. the model as We” as the Communication needs imposed by
J yold net_rotati on200399() the allocation of clusters onto a distributed system. Tioere

3 state_rotation200399 unit_state; channels included in the data-flow model are mapped to lbgica
4 int rotation_0, tinme_1, rotation_out_O;

2 murestorefaskstale(7, funi(state); addresses. These addresses are then attached to the@udresp

g rmgl‘,l';?g;iszy Ta(%:ot ation_0 % 425) / (time_1l - unit_state.del ay200513)); Ing Vertlces Of the graph Later onin the development pmces
9 unit_state. del ay200513 = time_L; this information is used by the code generator when inggrtin
10 nw_wite(22, &otation_out_0);

11 musave_task_state(7, &unii_state); communication calls to, and generating a configuration dite f

the middleware.

Additionally, the dependency graph forms a basis for auto-

The code for the mode cluster looks a bit different. Firghatic construction of feasible system schedules and pesvid
of all mode clusters are, per definition, made up solely @fclue for distribution of tasks to the available system sode
automata. Unlike automata used in working clusters, thése these extension are subject of current research and will be
mode clusters do not call a function realizing the statesbeh discussed in future work.
ior, but write a numeric value to the designated middleware
address. This can be seen in line 31 of Listing 2, which shovxﬁ] s kugele. M. Tautschnia. A. Bauer C. Schallhart S. bfata
the generated code for th&CC mode cluster of Figure 1. W. Hagerl,’ C. k]hnel, F. Mg.'ll‘ler,‘Z. Wan,g, D. Wild, S. R’ittm.ann, ar’1d
The address is assigned during logical address generaton, M. Wechs, “COLA — The component language,” Tech. Rep. TUME7
described in Section 1lI-C. The numeric value written by the Institut fur Informatik, Technische Universit Minchen, Sept. 2007.
mode cluster identifies the active mode. After executiorhef t [thxzt:“,(ﬂv?g(rifgj’léz';%esrg“g!nskﬁ?g'Braun' U. Freund. N. Mata,
mode cluster, the middleware checks the value stored at thiS R. Sandner, and D. Ziegenbein, “AutoMoDe — Notations, Metho

address and initiates the execution of the appropriate ingrk and Tools for Model-Based Development of Automotive Softwaire
clusters Proceedings of the SAE 2005 World Congrg&etroit, MI), Society of
' . . .)) Automotive Engineers, April 2005.

Another difference in comparison to working clusters is thg4] p. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakasid P. Niebert,
absence ofw_wri t e() statements for the automaton’s out “From simulink to SCADE/lustre to TTA: a layered approach for

ports. Only the input ports are read for computing the mode g'gég?med embedded applications.” UCTES pp. 153-162, ACM,

Listing 1. Code fomet _rot ati on.

REFERENCES

to activate, as depicted in lines 6 through 9. [5] G. Booch, J. Rumbaugh, and I. Jacobs®he Unified Modeling Lan-
woid ret _acc_on_of £ 200244() guage User GuideAddison-Wesley, 1998.
{ T [6] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “Thelsgonous

state_acc200244 unit_state; data-flow programming language LUSTRERtoceedings of the IEEE

int decision, s_act, dist, node, s_user;

mw_restore_task_state(14, &unit_state); vol. 79, pp. 1305—1320, September 1991.

A WN R

(7]

(8]

(9]

(20]

[11]

[12]

IEEE Std 830-1998: IEEE Recommended Practice for SoftwageiiRe-
ments Specificationsinstitute of Electrical and Electronics Engineers,
1998.

F. Maraninchi and Y. Bmond, “Mode-automata: a new domain-specifi¢14]

construct for the development of safe critical systenB¢ience of
Computer Programmingvol. 46, no. 3, pp. 219-254, 2003.

P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and P. Pop, li8duling of
conditional process graphs for the synthesis of embeddddmsgs in
DATE ’'98: Proceedings of the conference on Design, autamatind
test in Europe (Washington, DC, USA), pp. 132-139, IEEE Computer
Society, 1998.

P. Pop, P. Eles, and Z. Peng, “Schedulability analysissfstems with [16]

data and control dependencies,” 2000.

F. Maraninchi and Y. Remond, “Mode-automata: About moded a
states for reactive systemd7togramming Languages and Systems: 7th
European Symposium on ,.Jan 1998.

G. Fohler, “Realizing changes of operational modes wgtle run-
time scheduled hard real-time systems,”"Rroceedings of the Second
International Workshop on Responsive Computer Syst¢8wtama,
Japan), 1992.

(18]

[13] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, Cnfieand

R. Zainlinger, “Distributed fault-tolerant real-time sgsts: The mars
approach,”IEEE Micro, vol. 09, no. 1, pp. 25-40, 1989.

A. Pretschner, W. Prenninger, S. Wagner, @hKel, M. Baumgartner,
B. Sostawa, R. @lch, and T. Stauner, “One Evaluation of Model-Based
Testing and its Automation,” irProc. 27th International Conference
on Software EngineeringA. Press, ed.), no. ICSE'05, (New York,
Manhatten), ACM Press, 2005.

W. Haberl, M. Tautschnig, and U. Baumgarten, “Runningl@®n Em-
bedded Systems,” iRroceedings of The International MultiConference
of Engineers and Computer Scientists 200trch 2008.

I. Sturmer, D. Weinberg, and M. Conrad, “Overview of existing safe
guarding techniques for automatically generated ca8EGSOFT Softw.
Eng. Notesvol. 30, no. 4, pp. 1-6, 2005.

