
Mapping Data-Flow Dependencies onto
Distributed Embedded Systems

Stefan Kugele
Institut für Informatik Institut f̈ur Informatik

Technische Universität München Technische Universität Darmstadt
Boltzmannstr. 3, 85748 Garching Hochschulstr. 10, 64289 Darmstadt

Germany Germany

Wolfgang Haberl
Institut für Informatik

Technische Universität München
Boltzmannstr. 3, 85748 Garching

Germany

Abstract—Model-driven development (MDD) is an emerging
paradigm and has become state-of-the-art for embedded systems
software design. In the overall design process, several steps have
to be taken in order to get from a high-level system design to the
deployed binaries on the target platform: starting from model
design, software partitioning and code generation reaching down
to task and bus scheduling.

In this paper we focus on the later steps in the overall
developing process and present a way to deployclusters, which
are tasks from an operational point of view, specified using the
Component Language (COLA) [1]. In this context, we introduce
the notion of a Cluster Dependency Graph (CDG) which forms
the basis for scheduling, address generation and estimation of
memory requirements for the used middleware. Moreover the
CDG provides clues about possibly parallelizable tasks.

A case-study, namely an adaptive cruise control system (ACC),
taken from the automotive domain serves as example throughout
this paper to demonstrate our new approach.

Index Terms—Model-based development, data-flow graphs,
embedded systems, distributed systems, code generation

I. I NTRODUCTION

During the last years, model-driven develpment (MDD)
has become state-of-the-art for the design and development
of safety-critical embedded systems. Control systems such
as those used in the automotive or avionic domain, demand
for special requirements concerning reliability, robustness, and
correctness. COLA as the used data-flow language turned
out to be very promising because it provides support for
a consistent development process from a high level system
model design down to a level taking very specific platform
details into account.

A. Data-flow languages

Over the past years, data-flow languages have become pop-
ular for the definition and design of safety-critical embedded
control systems. Data-flow networks for example, are used in
CASE-tools like MATLAB/Simulink [2] to describe complex
automotive systems. There are some approaches for model-
based development and design for embedded control systems
based on the synchronous paradigm [3], [4]. Components
defined in such a synchronous data-flow language operate
in parallel and process input and output signals at discrete

points in time, so-called clockticks. Computation within data-
flow networks and the communication associated therewith is
assumed to elapse infinitely fast.

B. Introduction toCOLA

In this paper, we use theComponent LanguageCOLA as a
representative of synchronous data-flow languages. COLA is
intended for the design of complex and reliable software sys-
tems, such as automotive or avionic control systems. COLA
designs are modeled in terms of hierarchical components using
a graphical and textual syntax respectively. The fundamental
modeling concepts can be recognized in an akin manner in
other industrial standards like the Unified Modeling Language
(UML) [5] or MATLAB/Simulink. But in contrast to those,
COLA is based on a rigorous semantics. Since COLA is a
synchronous formalism, it follows thehypothesis of perfect
synchrony[6] which means that in a given system, compu-
tation as well as communication occur instantly and therefor
need no time.

Units are at the very heart of the COLA syntax definition.
They can interact with their environment via so-called typed
ports. We distinguish between input and output ports and
summarize them in the units’signatures. Units can either be
composed in a hierarchical manner to build complexnetworks,
or occur in terms ofblocks forming the basic building ele-
ments of COLA like arithmetic (+,−, ∗, /) and comparison
operators (<,≤,=, 6=,≥, >).

Data-flow is realized bychannelswhich connect a source
port with one or more suitable typed destination ports.

In addition to blocks and networks, units can be decom-
posed intoautomata, that is, finite state machines similar
to Statecharts [5]. Each of their states is realized by a sub-
unit which determines the respective behavior. Hence, this
formalism is well suited to express disjoint system behaviors.
These different behaviors are referred to asoperating modes
(see also [3], [7], [8]). In this paper, we describe a profound
automated way to deploy COLA systems including a brisk
usage of mode automata. This includes a foundation for
schedule plan generation for the target platform as well as
the generation of logical addresses for the used middleware.



C. Related work

Similar to our approach, Eles et al. [9] use a graph-based
method to calculate schedules for a hardware architecture
consisting of processors, ASICs, and shared buses. Their
notion of aConditional Process Graphis used for analyzing
control and data-flow dependencies of tasks that were already
assigned to processors. Similar to Pop et al. [10], their focus
is on scheduling. In contrast, our method provides inter alia a
basis for scheduling but focuses on the deployment of mode
tasks extracted from COLA models. The graph structure we
are presenting is generated in a fully automated way from our
COLA model and fits perfectly into the overall MDD process.
Moreover, it provides all necessary information to generate C
code and configure the platform. A middleware for distributed
real-time systems is used to map inter-task communication.

D. Organization

In the following section, we motivate the usage of so-
called mode automatato express distinct system behaviors.
This leads to a distinction between different types of COLA
clusterswhich partition the system model. Section II intro-
duces the notion of aCluster Dependency Graph. Possible task
orderings as well as logical addresses are calculated according
to this data structure. A case study outlined in Section IV
demonstrates our approach using an adaptive cruise controlas
example. We conclude with an outlook on possible extensions
and current work. Throughout the paper we use parts of the
model of the case study to illustrate the presented approach.

II. SYSTEM ORGANIZATION USING OPERATING MODES

During our work, it turned out to be very useful to have
a way to formulate distinct system behaviors in terms of
different operating modes. This prompted us to include a
language construct in the Component Language which is
commonly calledmode automatonin the literature [1], [8],
[11]. Fohler [12] describes issues of handling mode changes
in the context of MARS [13].

In the case of COLA, the results present at the output ports
of the unit which is realized by a mode automaton, depend on
the automaton’s current state and the values at the output ports
of the particular unit implementing that state. Figure 1 shows a
COLA automaton which illustrates the principle of operating
modes by means of a fictitious adaptive cruise control system
(ACC) used in modern automobiles. Depending on whether the
driver switches the ACC system on or off, the mode is altered.
This design enables the developer to decouple the modeling
process of the—in this case—two different behaviors. This
caters for a reduction of system complexity and results in
improved software quality. Moreover, the separation into dif-
ferent operating modes advances the reusability of COLA
components and therefor contributes to saving development
costs.

To seize the given example, one can assume that most of the
ACC functionality is not used in the modenet_acc_off,
whereas in the modenet_acc_on a lot of sensor processing
like velocimetry and distance measurement has to be done.

<net_acc_on_off>

mode==1

mode==1

net_acc_offnet_acc_on

mode

s_user

s_act

dist

acc_disp

s_mot

Figure 1. Operating modes in a fictional adaptive cruise control system.

A. COLA clusters

In a tool-backed model-driven development process, not
only the modeling of system behavior is in focus, but for
the sake of clearness and maintainability different views onto
the system at hand are defined and have to be distinguished.
Following the nomenclature of Pretschner et al. [14] we
distinguish between thelogical architecture and technical
architecture. The first one describes the functional system
behavior whereas the latter contains target hardware platform
information and other non-functional requirements.

Operating modes are initially defined in the logical archi-
tecture. In order to clarify the transition from the logicalto
the technical architecture, we introduce the notion of acluster
in the following.

In the course of advancing from the logical to the technical
architecture, the question arises in which way COLA units
have to be mapped onto tasks from the operating system’s
point of view. Such a task is calledcluster in the technical
architecture. Actually the process of clustering a COLA
system is done manually. Yet, in a future version, a fully
automated workflow is intended for this activity.

In the following, we are assuming the availability of
such a clustered COLA system. No matter how we got the
clustering—manually or fully automated—a valid one has to
fulfill the clustering condition: the set of all clustersC has
to cover the complete COLA system. More precise, a valid
clustering of a system is given if and only ifclustered(root) is
satisfied. Here,root ∈ UI denotes the unique identifier of the
top-most unit andUI is the set of all unique identifiers of a
COLA system (see also [1] for more details). We distinguish
the following two cases:

1) There exists exactly one clustercl ∈ CL, where CL

denotes the set of all clusters, which refers to the unit
instance with unique identifierx. In the following, this
relation is denoted bycl ∼ x. Furthermore, no sub-unit
instances uniquely identified withx .y are allowed to be
clustered separately.

C1(x) ⇔ ∃1cl ∈ CL : cl ∼ x ∧

∀x.y ∈ UI . ∄cl ′ ∈ CL : cl ′ ∼ x.y

2) There exists exactly one clustercl which refers to a
unit instance with unique identifierx implementing an
automaton (denoted byis atm(x)). Its sub-unit instances



 

<net_acc_off>

off

<net_acc_on_off>

mode==1

mode==1

net_acc_offnet_acc_on

Figure 2. Port correlation: the signature of automata and that of the unit
instances implementing the states is the same.

uniquely identified withx .y are clustered.

C2(x) ⇔ ∃1cl ∈ CL : cl ∼ x ∧ is atm(x) ∧

∀x.y ∈ UI : clustered(x.y)

The first-order predicateclustered(·) is defined as follows:

clustered(x) ⇔ C1(x) ∨ C2(x)

B. Relating mode- and working-clusters

As mentioned in the previous section, the entire COLA
system model has to be clustered. In this section, we introduce
the distinction between different cluster types:mode clusters
andworking clusters.

Mode clusters realize mode automata which are responsible
to initiate further control- and data-flow, that is, the next
operations to perform. In our terms, these next operations are a
set ofworking or mode clusters. A mode cluster can either be
the top-most cluster of a system or can be initiated by another
mode cluster.

Furthermore, there exists a very important correlation be-
tween these two cluster types: input and output ports of an
automaton and those of the units realizing the automaton’s
different states have the same ports, that is, these units have
the same signature and therefor share the same input values.
In Figure 2 the dashed lines indicate port correlations, which
means that these ports share the same value and actually are
identical.

III. C LUSTER DEPENDENCYGRAPH

Data dependencies which arise due to channels between
interconnected units in COLA networks, lead to dependencies
in COLA clusters, too. For more complex COLA systems
it is administrable to have a clearer understanding of data
dependencies which in the sequel will help us to generate
schedule plans and C code (see also [15], [16]). Further the
contained information serve for the configuration of the used
middleware. This middleware will be subject to another paper
and will only be roughly discussed where it is necessary for

DEV_ROTATION DEV_ULTRA DEV_TOUCH

Rotation Radar UI

ACC

rot_sens ultra_sens touch_sens

s_act dist mode s_user

acc_disp s_mot

ACC_off ACC_on

DEV_DISPLAY DEV_MOTOR

DEV_TIME

time_sens

DEV_VIEW DEV_PRGM

view_sens prgm_sens

Figure 3. Cluster dependency graph for the case study introduced in
Section IV.

a better understanding. We’ll give a short introduction into its
functionality in Section III-C and IV.

Definition 1 (Cluster Dependency Graph):A Cluster De-
pendency Graph (CDG) is a directed, acyclic graph
G = (Vw, Vm, Vb, Ed, Em) with three types of pairwise
disjoint vertices:working cluster verticesVw, buffer vertices
Vb and so-calledmode cluster verticesVm. The set of directed
edges is divided intodata-flow edgesEd andmode edgesEm

with Ed ∩ Em = ∅. For the edges it holds:Ed = {(u, v) |
u ∈ Vw, v ∈ Vb} ∪ {(u, v) | u ∈ Vb, v ∈ (Vw ∪ Vm)} and
Em = {(u, v) | u ∈ Vm, v ∈ (Vw ∪ Vm)}.

Solid data-flow edges going out of a working cluster vertex
(visualized by a rectangle) and pointing into an octagon (buffer
vertex) symbolize that the working cluster vertex writes data
into a buffer, whereas an edge pointing from a buffer vertex to
an working or mode cluster vertex (symbolized by a diamond)
indicate the fact that they read from the buffer. In case of mode
cluster vertices, only mode edges (drawn as dashed edges) can
start here and the edges can only point to working and mode
cluster vertices. This distinction is made in order to emphasize
the differentexclusivecontrol- and data-flows depending on
the current mode. Figure 3 shows an example for a cluster
dependency graph of the case study explained in Section IV.

A. Data dependencies

Data dependencies arise when two or more COLA units
are interconnected via channels. Data-flow is then given in
the following three cases:

1) Data-flow from an input port of a network to either an
input port of a connected sub-unit or to an output port
of the network at hand, or

2) between sub-units of a network, that is, from a single
output port to at least one input port of another sub-unit,
and finally

3) between an output port of a sub-unit and an output port
of the surrounding network.

These data dependencies between COLA units in the logical
architecture are reflected in the technical architecture, that is,
dependencies between clusters. These dependencies on the



technical architecture are represented as edges in the CDG.
We distinguish between two kinds of edges: solid data-flow
and dashed mode edges, as introduced above. Before stating
the accurate relation between the logical and technical archi-
tecture, let us first introduce necessary notations according to
Kugele et al [1].

Let u1 = 〈n1, σ1, c1, I1〉 and u2 = 〈n2, σ2, c2, I2〉 be two
units of the COLA systemS = 〈u,U〉 with u1, u2 ∈ U ,
being the set of all units, andu denoting the root unit of
the COLA model.σ1 and σ2 are the signatures of both
units, that is, the particular vectors of typed input and output
ports (accessible usingin(σ) and out(σ)). Furthermore, let
ch = 〈a, s, {d1, d2, . . . , dk}〉 be a channel connecting a single
source ports with at least one destination portdi, with
1 ≤ i ≤ k.

Then, two cluster verticescl1 (working cluster) andcl2
(working or mode cluster), are connected by solid edges witha
buffer vertexb in between (cl1 → b → cl2), if there exist two
connected unit instancesu1 and u2 (with unique identifiers
x1 andx2) in the COLA system model, which are associated
with these clusters:cl1 ∼ x1 andcl2 ∼ x2. It holds

∀cl1 ∈ Vw, cl2 ∈ (Vw ∪ Vm) ∀x1, x2 ∈ UI :

cl1 ∼ x1 ∧ cl2 ∼ x2 =⇒

[∃e1, e2 ∈ Ed ∃b ∈ Vb : e1 = (cl1, b) ∧ e2 = (b, cl2)

⇔

(∃ch ∈ C ∃x1, x2 ∈ UI : s ∈ out(σ1)∧

∃di ∈ {d1, . . . , dk} : di ∈ in(σ2))]

whereasC is the set of all channels in the network contain-
ing u1 andu2. In this scenario, we dictate thatu2 is not a sub-
unit of u1 since all sub-units of a network are automatically
contained in the same cluster asu1. But then, for dashed mode
edges we have a different characteristics. Letcl1 be a mode
cluster vertex andcl2 be either a working or a mode cluster
vertex. Then, there is a dashed edge connecting these vertices
(cl1 99K cl2) if u1 is an automaton with a set of statesQ, and
u2 is the instantiation of one of its statesq ∈ Q, denoted by
inst(q) = u2.

∀cl1 ∈ Vm, cl2 ∈ (Vw ∪ Vm) ∀x1, x2 ∈ UI :

cl1 ∼ x1 ∧ cl2 ∼ x2 =⇒

[∃e ∈ Em : e = (cl1, cl2)

⇔

is atm(x1) ∧ ∃q ∈ Q : inst(q) = x2]

B. Causality and task execution order

Thecluster dependency graphprovides a basis for reasoning
about causality and is appropriate to cover the execution order
of tasks. In Figure 3 causality is given in the following way:
the working clustersRotation, Radar and UI have to
be executed in order to write their results to the suitable
bufferss_act, dist, mode, ands_user. In addition, these
working clusters are again dependent on the values of their

14

15

1 2 3 4 5 6 7 8 9

10

1 2 7 3 4 8 6 5 9

12

11 13

6 1 5 2 4 3 9 7 8

2 1 6 4 5 9 7 3 8

t

Figure 4. Examples for feasible task orders.

input buffers which are in turn set by the working clusters
DEV_ROTATION, DEV_TIME, and so on. Once the buffers
(s_act, dist, mode, ands_user) have been set, the mode
clusterACC can be executed using the data present at its con-
nected buffer vertices. Depending on the active mode, either
ACC_off or ACC_on will be executed afterwards and write
its results to the respective buffers. Based on this causality,
a possible execution order of clusters—tasks in the sense
of operating systems—can be derived in a straightforward
manner. We have to point out, that there can be a plethora
of possible execution orders. The task of our offline-scheduler
which is currently under development, is to select the best
order with respect to a set of given constraints. In the example
given in Figure 3, hundreds of possible execution orders can
be found. Some of them are exemplarily presented in Figure 4.
For the sake of clarity, cluster names are substituted by their
logical addresses given in Figure 5. A very small extract of
all possible orderings, the working clustersACC relies on, is
depicted in the gray box. These clusters can be placed in an
arbitrary order with respect to the exception that clustersmust
not be executed before their input buffer(s) are set. Afterwards,
theACC mode cluster is run and finally one of the sequences
10, 12 or 11, 13 is chosen, depending on the result returned
by the mode cluster.

It is the job of our allocation procedure to assign each
task to a specific procesor of a multi-processor platform. In
this scenario communication over buses as well as processor
capacity utilization with respect to memory and CPU usage has
to be taken into account. We will elaborate on our allocation
and scheduling procedure in a subsequent paper.

Furthermore, regarding multi-core or multi-processor plat-
forms we can state that some of the working cluster tasks can
operate in parallel since they are independent from each other,
such asDEV_ROTATION, DEV_TIME, DEV_ULTRA, and so
forth. Hence, in the example given in Figure 3 there are several
independent paths, that is, they do not share a common vertex,
from a root vertex to the mode vertexACC. Paths starting
at a working cluster vertex passing different buffer vertices,
each of them has to be a child of the starting vertex, and
ending again in the same cluster vertex (working or mode)
are count as one path. Hence all those sub-paths have a length
of exactly two, such as the sub-path starting atUI and ending
at ACC. Vertices on independent paths starting at root vertices
and ending inACC (excluded) could be deployed on different
processors in order to make use of parallelism where possible



1 3 4

7 8 9

14

15

16 18 19

22 23 24 25

26 27

10 11

12 13

2

17

5 6

20 21

Figure 5. Logical addresses for the case study.

and beneficial.

C. Logical address generation

As mentioned before, the presented approach for a depen-
dency graph is intended for use in a MDD process. Haberl
et al. [15] presented an approach to generate code fully auto-
matically, to minimize the possibility of programming faults.
In order to use the process for development of distributed
systems, it is necessary to allow for communication during
runtime. Each channel between two clusters, which is trans-
formed into C code and thus turn into tasks during runtime,
indicates the need for a communication link at runtime. As
described before, buffers are used for temporary storage of
data sent from one cluster to another. These buffers correspond
to memory allocated by the middleware used on the execution
platform. It is, amongst others, the middleware’s task to enable
for transparent and timely communication between the running
tasks.

The middleware can be managed using a configuration file
which contains information about the sizes and addresses of
local and remote buffers. The dependency graph provides
assistance during construction of this configuration file as
well as the correct addressing of middleware API calls while
generating the C code for each cluster. Every buffer vertex in
the graph is given a logical address, which will be used later
on in the development process for middleware configuration
and appropriate read and write calls by the connected clusters.
Of course, the logical addresses of all buffer vertices haveto
be different to avoid race conditions.

In addition to inter-cluster communication, there is a need
for storing the state of each cluster. As the hypothesis of
perfect synchrony assumes the periodic invocation of each
unit, we use a time-triggered scheduling scheme. Thus each
generated task is started over and over again. In order to keep
the tasks’ states between invocations, the middleware saves
their local variables. This state buffering is realized using a
logical address, too. Each cluster vertex in the dependency
graph is assigned its private logical address for this purpose.
When executed, a task’s first job is to read its state using
the assigned address. Accordingly, the last instruction before
the task’s termination writes the actualized state back to the
middleware. Figure 5 shows a possible addressing for the

 

<net_ACC>

net_ACC_on_off

mode

s_user

s_mot

net_rotation

net_radar

net_ui

dist

s_act

view_sens

touch_sens

prgm_sens

rot_sens

time_sens

ultra_sens

DEV_S_

TOUCH

DEV_S_

PRGM

DEV_S_
ROTATION

DEV_S_

SYSTIME

DEV_S_

ULTRA

DEV_S_

VIEW

DEV_A_

MOTOR

DEV_A_

DISPLAYacc_disp

Figure 6. TheACC main diagram.

dependency graph introduced in Figure 3. As described, each
buffer in this example is assigned an address pointing to an
appropriately sized data buffer. The addresses reserved for the
tasks’ state storage are enlisted as well.

While the stated concept for saving states is true for both
kinds of clusters, a mode cluster is given an additional address.
As we explained in Section II-B, mode clusters decide on
which clusters to be executed next. The information about
their decision which state to execute is not depicted using a
channel in the functional model, but by means of hierarchy.
All working clusters contained in a unit implementing a state,
form the active cluster set. But as there is no channel in the
functional model, the cluster graph does not contain a buffer
for filing this decision. That is the reason why mode clusters
are given an additional address. Considering our example
graph, this is true for theACC mode cluster. Figure 5 states
both addresses for that cluster. When being executed, the mode
cluster stores a numeric value, which points to a mode, at that
logical address. As the middleware is the first instance to see
the decision about the active mode, it hands the tasks realizing
the functionality of that mode over to the operating system’s
dispatcher for execution.

IV. CASE STUDY

In the following we will exemplify the usage and the
benefits of our dependency graph considering a model for
a fictitious adaptive cruise control (ACC). This system is
intended to keep an automobile’s velocity at a constant value,
while maintaining a defined minimum distance to the car
driving ahead.

The top-level diagram of the according COLA model is
shown in Figure 6. While this is a fictitious model and not
derived from any real implementation, it is well suited to
demonstrate our concepts in this paper. The COLA unit shown
in this diagram is a network containing several sources, sinks
(both are indicated by solid rectangles in the upper right
corner) and other sub-units. Sources and sinks refer to sensors
and actuators of the real system, while the rest of the shown
sub-units implements the ACC’s behavior. In the following we
will refer to this diagram in order to exemplify some concepts.

The dependency graph for the ACC example has already
been given in Figure 3. As can be seen in the figure, the



<net_rotation>

425

*

_

/

Figure 7. COLA networknet_rotation which has been translated into
C code.

graph consists of a single mode cluster, namelyACC, 13
working clusters, 12 buffers and their respective connections.
First we want to detail on the inter-cluster communication.In
comparison to the examples presented by Haberl et al. [15], the
code generation has been altered to interface the middleware
mentioned before, inserting the logical addresses filed in the
dependency graph. This enhancement allows for distributed
execution of the ACC example code. An example for the al-
tered code representing the working clusternet_rotation,
which is depicted in Figure 7, can be seen in Listing 1.

In lines 6, 7, and 10 data are read from or written to the
buffers which are connected to the working cluster in Figure5.
This realizes the inter-cluster communication described before.
The example also shows, how the task reads its actual state in
line 5 and writes back the actualized state in line 11.
1 void net_rotation200399()
2 {
3 state_rotation200399 unit_state;
4 int rotation_0, time_1, rotation_out_0;
5 mw_restore_task_state(7, &unit_state);
6 mw_read(16, &rotation_0);
7 mw_read(17, &time_1);
8 rotation_out_0 = ((rotation_0 * 425) / (time_1 - unit_state.delay200513));
9 unit_state.delay200513 = time_1;

10 mw_write(22, &rotation_out_0);
11 mw_save_task_state(7, &unit_state);
12 }

Listing 1. Code fornet_rotation.

The code for the mode cluster looks a bit different. First
of all mode clusters are, per definition, made up solely of
automata. Unlike automata used in working clusters, those of
mode clusters do not call a function realizing the states behav-
ior, but write a numeric value to the designated middleware
address. This can be seen in line 31 of Listing 2, which shows
the generated code for theACC mode cluster of Figure 1.
The address is assigned during logical address generation,as
described in Section III-C. The numeric value written by the
mode cluster identifies the active mode. After execution of the
mode cluster, the middleware checks the value stored at this
address and initiates the execution of the appropriate working
clusters.

Another difference in comparison to working clusters is the
absence ofmw_write() statements for the automaton’s out
ports. Only the input ports are read for computing the mode
to activate, as depicted in lines 6 through 9.
1 void net_acc_on_off200244()
2 {
3 state_acc200244 unit_state;
4 int decision, s_act, dist, mode, s_user;
5 mw_restore_task_state(14, &unit_state);

6 mw_read(22, &s_act);
7 mw_read(23, &dist);
8 mw_read(24, &mode);
9 mw_read(25, &s_user);

10 switch(unit_state.atm_state)
11 {
12 case 0:
13 if ((mode == 1))
14 {
15 unit_state.atm_state = 1;
16 decision = 1;
17 break;
18 }
19 decision = 0;
20 break;
21 case 1:
22 if ((mode == 1))
23 {
24 unit_state.atm_state = 0;
25 decision = 0;
26 break;
27 }
28 decision = 1;
29 break;
30 }
31 mw_write(15, &decision);
32 mw_save_task_state(14, &unit_state);
33 }

Listing 2. Code fornet_ACC_on_off.

V. CONCLUSIONS

In this paper we introduced the concept of a Cluster Depen-
dency Graph. We showed that this formalism is well suited
to capture the dependencies arising from data-flow models
using COLA as an example language. We defined clusters
as distributable entities which build up the partitioned system
model.

The definition of clusters together with the dependency
graph enables for unattended generation of application code.
This results in code including the functionality captured by
the model as well as the communication needs imposed by
the allocation of clusters onto a distributed system. Therefor,
channels included in the data-flow model are mapped to logical
addresses. These addresses are then attached to the correspond-
ing vertices of the graph. Later on in the development process
this information is used by the code generator when inserting
communication calls to, and generating a configuration file for,
the middleware.

Additionally, the dependency graph forms a basis for auto-
matic construction of feasible system schedules and provides
a clue for distribution of tasks to the available system nodes.
These extension are subject of current research and will be
discussed in future work.

REFERENCES

[1] S. Kugele, M. Tautschnig, A. Bauer, C. Schallhart, S. Merenda,
W. Haberl, C. K̈uhnel, F. M̈uller, Z. Wang, D. Wild, S. Rittmann, and
M. Wechs, “COLA – The component language,” Tech. Rep. TUM-I0714,
Institut für Informatik, Technische Universität München, Sept. 2007.

[2] The MathWorks Inc.,Using Simulink, 2000.
[3] A. Bauer, M. Broy, J. Romberg, B. Schätz, P. Braun, U. Freund, N. Mata,

R. Sandner, and D. Ziegenbein, “AutoMoDe — Notations, Methods,
and Tools for Model-Based Development of Automotive Software,” in
Proceedings of the SAE 2005 World Congress, (Detroit, MI), Society of
Automotive Engineers, April 2005.

[4] P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis,and P. Niebert,
“From simulink to SCADE/lustre to TTA: a layered approach for
distributed embedded applications.,” inLCTES, pp. 153–162, ACM,
2003.

[5] G. Booch, J. Rumbaugh, and I. Jacobson,The Unified Modeling Lan-
guage User Guide. Addison-Wesley, 1998.

[6] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous
data-flow programming language LUSTRE,”Proceedings of the IEEE,
vol. 79, pp. 1305–1320, September 1991.



[7] IEEE Std 830-1998: IEEE Recommended Practice for Software Require-
ments Specifications. Institute of Electrical and Electronics Engineers,
1998.

[8] F. Maraninchi and Y. Ŕemond, “Mode-automata: a new domain-specific
construct for the development of safe critical systems,”Science of
Computer Programming, vol. 46, no. 3, pp. 219–254, 2003.

[9] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and P. Pop, “Scheduling of
conditional process graphs for the synthesis of embedded systems,” in
DATE ’98: Proceedings of the conference on Design, automation and
test in Europe, (Washington, DC, USA), pp. 132–139, IEEE Computer
Society, 1998.

[10] P. Pop, P. Eles, and Z. Peng, “Schedulability analysis for systems with
data and control dependencies,” 2000.

[11] F. Maraninchi and Y. Remond, “Mode-automata: About modes and
states for reactive systems,”Programming Languages and Systems: 7th
European Symposium on . . ., Jan 1998.

[12] G. Fohler, “Realizing changes of operational modes withpre run-
time scheduled hard real-time systems,” inProceedings of the Second
International Workshop on Responsive Computer Systems, (Saitama,
Japan), 1992.

[13] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C. Senft, and
R. Zainlinger, “Distributed fault-tolerant real-time systems: The mars
approach,”IEEE Micro, vol. 09, no. 1, pp. 25–40, 1989.

[14] A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel, M. Baumgartner,
B. Sostawa, R. Z̈olch, and T. Stauner, “One Evaluation of Model-Based
Testing and its Automation,” inProc. 27th International Conference
on Software Engineering(A. Press, ed.), no. ICSE’05, (New York,
Manhatten), ACM Press, 2005.

[15] W. Haberl, M. Tautschnig, and U. Baumgarten, “Running COLA on Em-
bedded Systems,” inProceedings of The International MultiConference
of Engineers and Computer Scientists 2008, March 2008.

[16] I. Stürmer, D. Weinberg, and M. Conrad, “Overview of existing safe-
guarding techniques for automatically generated code,”SIGSOFT Softw.
Eng. Notes, vol. 30, no. 4, pp. 1–6, 2005.


