
Model Analysis via a Translation Schema to

Coloured Petri Nets

Visar Januzaj1 and Stefan Kugele21

1 Technische Universität Darmstadt, Fachbereich Informatik,
FG Formal Methods in Systems Engineering,
Hochschulstr. 10, 64289 Darmstadt, Germany

{januzaj, kugele}@forsyte.de
2 Technische Universität München, Institut für Informatik,
Boltzmannstr. 3, 85748 Garching bei München, Germany

kugele@in.tum.de

Abstract. Model-driven development (MDD) has become a success story
and a de facto standard in the development of safety-critical embed-
ded systems. The daily work in the development of such systems can-
not be imagined without industry standard CASE tools like e.g. MAT-
LAB/Simulink. Often however, the analysis capabilities of such tools are
limited. Therefore, we propose to combine them with the powerful anal-
ysis tools developed for Coloured Petri Nets (CPNs).
In this paper, we present a translation schema from COLA—a syn-
chronous data-flow language—to CPNs. We believe this approach to be
also feasible for other data-flow languages as long as they have a well-
defined syntax and semantics. The combination of both modelling lan-
guages allows us to verify properties of COLA models using algorithms
and tools designed for CPNs. An example demonstrates the viability of
this approach.

Key words: Coloured Petri Nets, Model-driven development (MDD),
embedded systems, synchronous data-flow languages

1 Introduction

Embedded systems development is seeing a surge of interest both in academia
and industry, this is due to the rapid growth of the market share of embedded
systems. About 98% [1] of all processors are nowadays used in embedded systems.
Their presence becomes ubiquitous, ranging from portable music players and
mobile phones to airbag controllers and flight control systems (FCS). For the first
mentioned consumer electronics products properties like reliability, robustness,
and correctness are circumstantial. Whereas in the field of automotive or avionics
control software, failures of any kind may be fatal or at least result in large
warranty costs.

A multitude of different development tools, frequently based on model-driven
development (MDD) approaches, have been invented to tackle the complexity

of embedded systems design. Nowadays, modelling large system designs without
industry standard CASE tools like e.g. MATLAB/Simulink [2] or SCADE by
Esterel Technologies (A380, FCS) [3] cannot be imagined. Here, most different
aspects play a major role: due to abstraction and different model views, the
complexity apparent to the system’s developer is reduced. This helps to reduce
design errors by supporting the engineer at the daily work. In the desirable case,
that the chosen modelling technique (language) has a well-defined basis, the
use of formal methods is facilitated. This improves the quality of the system
de novo. In the automotive domain for instance, OEMs are working in a highly
competitive mass market, where the time to market is essential for the success of
a product and for the company as a last consequence. There, a reduction or—in
the best case—the absence of errors detected late in the overall development
process considerably saves money and shortens the development process, which
in return reduce development costs.

Since the widely used MATLAB/Simulink lacks a formally-defined seman-
tics [4], in a co-operation project together with an industry partner from the
automotive domain, the synchronous data-flow language COLA (Component
Language) [5] has been developed. During its development, aims like usability,
soundness, and reusability were in mind. Around this language, a fully inte-
grated tool [6–14] was created supporting the complete development process
ranging from the early requirements engineering, the system modelling, to the
system deployment phase.

Coloured Petri Nets (CPNs) [15–17]—similar to COLA—are a graphical
modelling language emerged from the combination of Petri Nets [18] and the
functional programming language Standard ML (SML) [19,20]. CPNs and their
corresponding computer tools (CPN Tools [21]) have been successfully applied
in various application areas and industry projects [17], ranging from VLSI chip
design, communication protocols [22] to military systems [23–25].

In this paper, we describe how to benefit from both modelling techniques
by first translating COLA designs into the CPN formalism and second using
analysis techniques and tools applicable to Coloured Petri Nets. This combina-
tion allows to augment the well-defined COLA syntax and semantics with the
comprehensive CPN Tools.

1.1 Related work

Coloured Petri Nets have been extensively used to model and verify business
processes. Gottschalk et al. [26] translated Protos models, i. e. a popular tool for
business process modelling, into Coloured Petri Nets for simulation, testing, and
configuration reasons. Moreover, in the field of Web services, CPNs are used.
There, questions concerning correctness and reliability arise, when composing
single Web services to more complex ones. Kang et at. [27] and Yang et al. [28]
have studied the translation of WS-BPEL (Web Services Business Process Ex-
ecution Language) or BPEL specifications into CPNs. This allows for analysis
and verification of the composed Web services using for example CPN Tools [21].
However their translations are rather informal than a formal defined translation

schema. Hinz et al. [29] translated BPEL specifications into Petri Nets in order
to use the model checking tool LoLA to verify relevant properties.

Akin to the presented approach, the authors of [30] bring together the two
modelling languages UML and CPN. They translate Use Cases and UML 2.0
Sequence Diagrams into CPN models for formal analysis. In the automotive
domain or in the field of embedded systems design in general, Live Sequence
Charts (LSC) are widely used as specification language. The authors of [31]
claim, that LSC do not provide the possibility for analysis and verification and
thus a translation into CPN is appropriate and which is given in a well-defined
formal way.

1.2 Organisation

The remainder of this work is structured as follows: First, we will give a brief
introduction into Coloured Petri Nets in Sect. 2 followed by a more detailed
description of the Component Language COLA in Sect. 3. Sect. 4 presents the
basic contribution of this work, namely a translation schema from COLA to
CPN. An Example demonstrating the feasibility of this approach is given in
Sect. 5. Finally, we conclude in Sect. 6.

2 Coloured Petri Nets

Coloured Petri Nets (CPNs) [15–17] belong to the family of high-level Petri nets.
Their modelling power strongly relies on the composition between Petri nets and
the high-level functional programming language Standard ML (SML) [19,20]. On
the one hand, the usage of Petri nets offers an effective framework for modelling
concurrency, communication, and synchronisation. On the other hand, the appli-
cation of SML facilitates the definition and manipulation of the data. In order to
be able to cope with the normally large size of real life systems and to introduce
a better system overview, CPNs offer the possibility of hierarchically modelling,
i. e. parts of the model are combined into submodules. In addition to the pos-
sibility of modular modelling, CPNs include a time concept. The integration of
the notion of time allows the investigation of especially for distributed, real-time
and embedded systems important timing requirements, such as deadline and
delay constraints. Furthermore, a set of graphical computer tools is developed
to support the modelling, editing, simulation, and analysis of various important
properties of systems modelled as CPNs. This set of tools is integrated into the
CPN Tools [21] framework.

In the following we briefly introduce the definitions of hierarchical and non-
hierarchical CPNs. These definitions should serve to easier understand the ter-
minology used for the translation of COLA models. For more detailed and
complete definitions see [15–17]. We assume, however, that the reader is familiar
with Petri nets and CPNs as well as with the notions such as multi-sets (multiple
appearances of the same element, denoted MS), marking (a function mapping
each place into a multi-set of tokens of the same colour), reachability, firing, etc.

Definition 1 (Non-hierarchical CPN (cf. [16])). A non-hierarchical CPN
is a 9-tuple Ω = (P ,T ,A, Σ,V ,C ,G ,E , I) with:

– A finite set of places P and transitions T such that P ∩ T = ∅.
– A set of directed arcs A ⊆ P × T ∪ T × P.
– A finite set of colour sets Σ.
– A finite set of variables V, Type(v) ∈ Σ,∀ v ∈ V .
– A colour set function C : P → Σ, C (p) ∈ Σ,∀ p ∈ P.
– A guard function G : T → Expr, Type(G(t)) = BOOL,∀ t ∈ T.
– An arc expression function E : A → Expr,

Type(E (a)) = C (p)MS ,∀ a ∈ A and a is connected to p ∈ P.
– An initialisation function I : P → Expr, Type(I (p)) = C (p)MS ,∀ p ∈ P.

In order to easier understand the following definition, we need to introduce
some basic notions: substitution transitions are transitions that represent an
abstraction of a more detailed submodule of a CPN system. The set of places
belonging to the preset and the postset of a transition t is denoted X (t) = •t∪t•.
Socket nodes are called the places p surrounding a substitution transition t , i. e.
p ∈ X (t). The socket type function ST is defined as follows (cf. [16]):

ST (p, t) =

in if p ∈ (•t - t•)

out if p ∈ (t• − •t)

i/o if p ∈ (•t ∩ t•)

Definition 2 (Hierarchical CPN (cf. [16])). A hierarchical CPN is a 9-tuple
ΩH = (S ,SN ,SA,PN ,PT ,PA,FS ,FT ,PP) with:

– A finite set of pages S. Each page is a non-hierarchical CPN:
∀ s ∈ S , s = (Ps ,Ts ,As , Σs ,Vs ,Cs ,Gs ,Es , Is), the set of net elements of
each page pair are disjoint.

– A set of substitution nodes SN ⊆ T - the set of all transitions in ΩH .
– A page assignment function SA : SN → S, such that no page is a subpage

of itself.
– A set of port nodes PN ⊆ P - the set of all places in the entire ΩH .
– A port type function PT : PN → {in, out , i/o, general}.
– A port assignment function PA : SN → Pot(X(SN) × PN) such that:

• The relation between socket nodes and port nodes is defined as follow:
∀ t ∈ SN: PA(t) ⊆ X (t) × PNSA(t).

• Correct types for socket nodes are required:
∀ t ∈ SN ,∀(p1, p2) ∈ PA(t) : [PT (p2) 6= general ⇒ ST (p1, t) = PT (p2)].

• Related nodes have the same colour set and initialisation:
∀ t ∈ SN ,∀(p1, p2) ∈ PA(t) : [C (p1) = C (p2) ∧ I (p1) <>= I (p2) <>].

– A finite set of fusion sets FS ⊆ Ps , such that all elements have the same
colour set and initialisation.

– A fusion type function FT : FS → {global , page, instance}, such that page
and instance fusion sets belong to a single page.

– A multi-set of prime pages PP ∈ SMS .

3 COLA—The Component Language

The key concept of COLA is that of units. Consequently, all COLA models are
built up by simple units—so-called basic blocks. They are at the lowest level in a
hierarchy of composed units. Those composed units are called networks and are
used to build up more complex data-flow networks. The basic blocks are atomic,
i. e. they cannot be further decomposed. They define the basic (arithmetic and
boolean) functions of a system. Environmental interaction is given via typed
ports. Port to port communication is established via channels. According to the
synchronous paradigm, which COLA is based on, computation and communi-
cation takes no time. Thus, cycles realised by channels that connect an output
port to an input port of the same network have to contain at least a delay block.
It has an initial value and defers value propagation by one clock tick. This con-
struct is well-suited to realise memory and feedback loops often used in control
systems.

In addition to basic blocks and networks, units can be decomposed into au-
tomata, i. e. finite state machines similar to Statecharts [32]. The behaviour in
each state is again determined by units corresponding to each of the states. This
capability is well-suited to express disjoint system modes, also called operating
modes (cf. [33, 34]).

Figure 1(a) shows a COLA network consisting of a couple of add blocks and
a const block with value 3. An impression of a similarly behaving CPN is given
in Fig. 1(c). The top level of the latter is depicted in Fig. 1(b). In the following,
we give a formal definition of each COLA language construct in order to develop
a formal translation schema into Coloured Petri Nets.

3.1 COLA in Detail

COLA models are build up by very few, but powerful primitives. The defini-
tion of COLA language elements is rather short and builds upon other industry
standard data-flow language elements found in MATLAB/Simulink, SCADE,
or Lucid Synchrone. COLA’s advantage, however, is the reduction to only the
bare necessities. Moreover, this slender syntactical core is well-defined and pro-
vides a rigourous semantics. The authors of COLA [5] defined the semantics by
providing an interpreter for COLA that can be seen as a reference implemen-
tation. Moreover, a graphical as well as a textual syntax definition is given in
the mentioned article. This formal framework is required, e. g. to simulate the
model in a well-defined way, or to perform static analysis like type checking and
behavioural verification.

The following sections provide a definition of each syntactical language ele-
ment.

Units define a relation between its typed input and output ports. Ports are
used for environment interaction. The combination of all input ports Pin =

(a) COLA network

NETWORK

network

out2

[]

INT_L

out1

[]

INT_L

in 3

[3]

INT_L

in 2

[2]

INT_L

in 1

[1]

INT_L

network

1

1

1

1

1

(b) CPN model (superpage CPNnetwork)

[]

[n + m]

[]

[m]

[] [n]

[]

[m + k]

[]

[n + k]

[]

[n]

[]

[m]

k

k

[]

[]

[m]

[n]

[k] []

[]

[]

[] [k]

[m]

[n]

add 1

add 3

add 2

input

out2

I/O

[]

INT_L

result3
out1

I/O

[]

INT_L

result1
x3

[]

INT_L

result2
y3

[]

INT_L

y1
const3

3

INT

x1

[]

INT_L

x2
const3

3

INT

y2

[]

INT_L

in 3

I/O

[3]

INT_L

in 2

I/O

[2]

INT_L

in 1

I/O
INT_L

[1]

I/O

I/O

I/O

I/O

I/O

1

1

1

1

1 1`3

1

1 1`3

1

1

1

1

(c) CPN model (subpage network)

Fig. 1. (a) A COLA network consisting of a couple of basic blocks. (b) The top level
of the corresponding CPN with the same behaviour (c).

〈i1 : t1, . . . , im : tm〉 where tj , 1 ≤ j ≤ m, is the type of port ij , and all out-
put ports Pout = 〈o1 : tm+1, . . . , on : tm+n〉, with m,n ∈ N, defines the unit’s
signature σ = (Pin Pout).

A unit u is defined as a 3-tuple 〈n, σ, I 〉 where n is its name, σ defines the
signature, and I specifies the actual implementation. A unit can be considered
as the superclass for special types of units, namely functional block, timing block,
network, and automaton. Depending on the used type, the implementation I is
chosen adequately. A detailed description of the different unit types is presented
next.

Functional blocks can realise a multitude of different operators: first, funda-
mental arithmetic operations (+, −, /, ∗) can be used. Second, COLA provides
the basic comparison operators (=, 6=, <, ≤, >, and ≥). Third, Boolean connec-
tivities are supported (∧, ∨, and ¬). A functional block u is defined as follows:

u = 〈n, (〈lop : t , rop : t〉 〈result : b〉) , I 〉. All operations are binary with in-
put ports lop (left operand) and rop (right operand) and provide a result port
result . The type b of the result depends on the operation. For arithmetic oper-
ations holds that b is equal to t , e. g. Int or Real. All other operators return
a result value of type Boolean. Their implementation I is defined by the used
operator, i. e. the functional block add, cf. Fig. 2(a), (operator +) for example
is mathematically defined and implemented as result := lop + rop.

Delays (timing blocks) retaining a value for a single time unit (tick) and
thereby provide a low-level realisation of variables as found in high-level pro-
gramming languages. This is indispensable in the context of feedback control
system. There, computed values have to be stored and fed-back as input for
the next clock tick. Initially, delays are initialised with a constant as default
value. Each cycle in a network has to contain at least one delay. Otherwise, the
modelled system cannot be interpreted.

A delay is a unit, defined in the following way: d = 〈n, σ, I 〉, with n being
an identifier, the signature σ = (〈in : t〉 〈out : t〉) and an implementation I
defined as its valuations over the infinite sequence of discrete time steps (sj)j∈N0

out[sj] :=

{

default if j = 0

in[sj−1] if j > 0

where in[sj] indicates the value of the input port at time step sj and out[sj] that
of the output port, respectively.

For basic blocks, i. e. functional blocks and timing blocks, the concrete graph-
ical syntax is depicted throughout the Fig(s) 2(a), 2(b), 2(c), and 2(d).

Networks are used to structure the overall system. They are used to provide
a high-level system view in order to abstract from implementation details and
thus reduce the complexity apparent to the developers. By descending, or de-
composing a network, the initial hidden implementation becomes visible. They
are realised using so-called channels to interconnect a set of units and build up
larger data-flow networks. A channel c is a triple c = 〈n, s, {d1, . . . , dk}〉 with
n being the identifier and s is the source port which is connected to a set of
destination ports di ∈ {d1, . . . , dk}, with 1 ≤ i ≤ k . Together with the included
sub-units, networks are defined as: 〈n, σ, 〈U ,C 〉〉 where n is the identifier, σ
is the signature as defined for units, and the implementation consists of a set
of units U contained in the network together with the set of interconnecting
channels C .

The graphical syntax of networks can be learned from the example given in
Fig. 1(a).

(a) Arithmetic operators (b) Logical operators

(c) Comparison operators (d) Timing and constant block

Fig. 2. Basic blocks provided by COLA: (a) arithmetical operators, (b) logical oper-
ators, (c) comparison operators, and (d) timing block (delay or pre) and the constant
block.

Automata are special units, whose implementation is a finite automaton with
states and transitions guarded by predicates. Both, states and guards are itself
implemented by units: a state’s behaviour is defined by a network, the guards are
stateless networks, i. e., networks without occurrences of automata and delays
since these units are statefull. They have to store their current state in the case
of an automaton and their last value in the case of a delay for at least one
execution cycle.

Formally, an automaton is a unit 〈n, σ, I 〉 with identifier n and signature σ.
The implementation of an automaton is given by: I = 〈Q , qo ,∆〉, where Q is a
finite set of state labels, that refer to the names of units, which implement the
state’s behaviour. Their signature is equal to that of the automaton. q0 is the
name of the initial state and ∆ ⊆ Q × dom(in(σ))×Q is the transition relation.
dom(in(σ)) is defined as

dom(in(σ))
def
= dom(type(a1)) × . . . × dom(type(ak))

where dom(type(ai)) denotes the domain of the typed ports ai ∈ in(σ), 1 ≤ i ≤ k .
in(σ) defines the projection onto the input ports of the signature and respectively
out(σ) defines the projection onto the output ports.

Starting from the initial state, the semantics is defined as follows: let q be
the current state, if there is an outgoing transition whose guard evaluates to
true, take it and execute the unit referenced by the target state. If there is no
such transition predicate evaluating to true, execute the unit referenced by the
current state.

An example for the graphical syntax of a COLA automaton is depicted in
Fig. 3.

Fig. 3. A COLA automaton with two states T (initial state) and F and from each
state a transition to the other one.

4 Translation Schema

In the following, a translation schema from COLA to CPNs is proposed. There-
fore, each language construct is translated one after another. Beginning with
basic units, namely functional blocks, we give stepwise more and more complex
translation schemas for units like networks and automata. We will, however, not
introduce translation schemas neither for constant blocks nor for delay units as
their translation is straightforward: constant blocks – are translated into a sin-
gle CPN place initialised with the corresponding value, delays – for each input
and output we generate a separate CPN place as well as a transition to connect
them. The input place holds the initialisation value. A translation of a delay, e.g.
pre 1, can be found in Fig. 8(a). Note that the delay is modelled as a substitu-
tion transition. The translation described above is modelled in its subpage (not
visible in Fig. 8(a)). Keeping the same structure as the original COLA model
should serve for a better understanding of the translation process.

For the translation we use both hierarchical and non-hierarchical CPNs. Units
that can be decomposed are translated into hierarchical CPNs, those that cannot
into non-hierarchical CPNs. In order to make sure that no value is written into
a non-empty place, we define input and output places (and where necessary)
as lists of a given data type. Thus, apart from other constraints, each transi-
tion connected to such places fires only if its postset is empty. This reflects the
behaviour defined in COLA.

(a) COLA

lop

T_list

rop

T_list

result

M_list

[]

t_op

[]

[]

[]

[]

[r]

[l]

[OP(l, r)]

[]

1 1`[]

1 1`[]

1 1`[]

(b) CPN

Fig. 4. (a) COLA basic block with two input ports of type T and an output port of
type M . (b) Corresponding CPN with three places and one transition.

Before we start with the definition of the translation schema we need first to
define a function π : io(σ) → P which maps the set of COLA input and output
ports into the set of CPN places, with io(σ) = in(σ) ∪ out(σ).

4.1 Functional Block

In Fig. 4 a COLA functional block and its translation is depicted. The transla-
tion schema for a functional block is defined as shown in Fig. 5. Since functional
blocks cannot further be decomposed their translation is straightforward. Input
and output ports are transformed into CPN places (P), including their corre-
sponding data types (C). A transition (T) is generated to reflect the operation
OP and is accordingly connected to places by arcs (A). Arc inscriptions (E)
matching the empty list [] play a key role for the generated CPN model. On
the one hand, they force the transition to fire only if its postset is empty, cf.
a = (result , top) in Fig. 4(b). In this way the behaviour defined in COLA is
reflected, i. e. no new value is added to an output port unless old values are con-
sumed. On the other hand, they notify other modules connected to them, that
the data residing in the input ports has been consumed (cf. the outgoing arcs
from top), i. e. new values can proceed. To achieve this we define lists of used
data types (Σ). Variables (V) corresponding to a data type are used to read the
input and process the data according to the operation OP, cf. the arc inscription
of a = (top , result) in Fig. 4(b). The guard (G) of the transition is always true.
All places are initialised (I) with the empty list.

4.2 Network

In COLA networks can consist of a large number of subunits. An example
of a network is depicted in Fig. 1. We will describe only the translation of the
highest level of a network.The translation schema for COLA data-flow networks

FunctionalBlock

A COLA functional block

FB = 〈n, σ = (〈lop : tt , rop : tt〉 〈result : m〉) , OP〉
is translated into a CPN

cpn = (P ,T ,A, Σ,V ,C ,G,E , I)
using the following schema:

Schema

P = π(in(σ) ∪ out(σ)), i.e. {lop, rop} ∪ {result}

T = {top}

A = {(lop, top), (rop, top), (top , result), (top , lop), (top , rop), (result , top)}

Σ = {tt l ,m l}, tt l and m l are lists of type tt and m, resp.

V = {l : tt , r : tt}

C (p) =

(

tt l if p ∈ {lop, rop}

m l if p ∈ {result}

G(t) = TRUE, ∀ t ∈ T

E(a) =

8

>

>

>

<

>

>

>

:

[l] if a = (lop, top)

[r] if a = (rop, top)

[OP(l , r)] if a = (top , result)

[] if a ∈ {(top , lop), (top , rop), (result , top)}

I (p) = [], ∀ p ∈ P

Network

A COLA network

NET = 〈n, σ, 〈U ,C 〉〉
is translated into a hierarchical CPN

Hcpn = (S ,SN ,SA,PN ,PT ,FS ,FT ,PP)
using the following schema:

Schema

S = {CPNnetwork} ∪ SU

SN = {nNET} ∪ SNU ,nNET is the identifier of NET

SA(SN) =
S

s∈SN
SA(s)

PN = π(io(σ)) ∪ PNU

PT (p) =

(

i/o if p ∈ π(io(σ))

PT (PNU) if p ∈ PNU

PA(t) =

8

>

>

>

<

>

>

>

:

{(in1@CPNnetwork , in1@network),

(in2@CPNnetwork , in2@network), . . . ,

(out1@CPNnetwork , out1@network), . . .} if t = nNET

PA(SNU) if t ∈ SNU

PP = 1‘CPNnetwork

Note: FS and FT are not considered during the translation.

Fig. 5. Functional Block and Network Schema.

is defined as shown in Fig. 5. Each network is translated into a corresponding
hierarchical CPN. For the top level of each COLA network a page, the super
page, is generated, e. g. CPNnetwork in Fig. 1(b). In the following we will refer
to the COLA and CPN models and their components in Fig. 1, when necessary
to achieve a better understanding of the translation process. The set of other
pages, representing the implementation I = 〈U ,C 〉 of the network, are included
in SU , where U is the set of subunits participating in the network. Each of these
units is separately translated corresponding to its schema type. The translation
of the set of channels C is not explicitly given. However, they are important
for establishing the connectivity between translated components, e. g. if there is
a connection/channel from a COLA unit A to a unit B , in the corresponding
CPN model the output places of A are correspondingly glued together with the
input places of B (unless some other criteria apply). Each subunit is represented
by the set of substitution transitions SN , which consists of a transition, e. g.
nNET = NETWORK, and the set of those (SNU) appearing in the subunits in U .
SA maps each substitution transition to their implementations in the subpages,
e. g. transition NETWORK to the subpage network . The set of input and output
nodes of CPNnetwork (in1, in2, . . .) are unified with those of the subpages PNU

building the set PN . Most of port nodes are of type (PT) i/o as described
in the schema. Now we just need to define the assignment (PA) of port nodes
to socket nodes, e. g. in1 in network, denoted in1@network , is assigned to in1 in
CPNnetwork (in1@CPNnetwork). Since the nodes in both pages share commonly
the same name, the tuple (out1@CPNnetwork , result3out1@network) illustrates
best such an assignment.

4.3 Automaton

Automata are the most complex units of COLA. Figure 6 shows a COLA au-
tomaton and its CPN representation. For the translation of an automaton we
introduce a two-step schema (cf. Fig. 6). In the first step we describe the highest
abstraction level as a hierarchical CPN. In the second step the functionality of
the automaton, i.e. guard evaluation and state switching, is described as a non-
hierarchical CPN. For each state of the automaton, e.g. T and F, there exists
a separate transition, which serves as a substitution transition for the imple-
mentation of the underlying network unit (cf. Fig. 8(b)). The same figure would
represent also the functionality of the automaton in Fig. 6, by only replacing
do nothing and working with T and F, respectively. The first translation step
is similar to the translation of a network, thus we give no further description.
We have, however, to stress that the index Q represents the implementation of
the underlying network for each automaton state in Q . The set of their corre-
sponding substitution transitions is denoted QT .

The second schema describes by means of non-hierarchical CPNs the next
lower level page (automaton). Besides the port nodes, determined by π(), which
are needed to be assigned to sockets of the parent or super page (CPNautoma-
ton), there are two additional places State and Activated added to the set of
places P . Place State is of type State and holds the identifiers of each state

(a) COLA automaton

automaton

automaton

out

[]

INT_L

INT_L

INT_L

in1

in2[]

[]

automaton

1 1`[]

1 1`[]

1 1`[]

(b) CPN page CPNautomaton

Automaton

A COLA automaton

AUT = 〈n, σ, I 〉, I = 〈Q , q0, ∆〉, ∆ ⊆ Q × dom(in(σ)) × Q
is translated into a hierarchical CPN

Hcpn = (S ,SN ,SA,PN ,PT ,FS ,FT ,PP)
using the following schema:

Schema1

S = {CPNautomaton} ∪ SQ

SN = {nAUT} ∪ SNQ ,nAUT is the identifier of AUT

SA(SN) =
S

s∈SN SA(s)

PN = π(io(σ)) ∪ PNQ

PT (p) =

(

i/o if p ∈ π(io(σ))

PT (PNQ) if p ∈ (PNQ)

PA(t) =

8

>

>

>

<

>

>

>

:

{(in1@CPNautomaton, in1@automaton),

(in2@CPNautomaton, in2@automaton), . . . ,

(out1@CPNautomaton, out1@automaton), . . .} if t = nAUT

PA(SNQ) if t ∈ (SNQ)

PP = 1‘CPNautomaton

automaton represents the subpage of nAUT.

Note: FS and FT are not considered during the translation.

Schema2 − page automaton

P = {State,Activated} ∪ π(in(σ) ∪ out(σ))

T = {activate State} ∪ QT ,A = {(State, activate State), (activate State,State),

(activate State,Activated), (Activated , activate State), . . .}

Σ = {State,State L, } ∪ D, with D = dom(in(σ))

V = {s : State} ∪ {v1 : t1, . . . , vn : tn}, ti ∈ D, 1 ≤ i ≤ n,n =| in(σ) |

C (p) =

8

>

<

>

:

State if p = State

State L if p = Activated

D if p ∈ π(io(σ))

G(t) = TRUE, ∀ t ∈ T

E(a) =

8

>

>

>

<

>

>

>

:

s if a = (State, activate State)

state(s, {v1, v2, . . .}) if a = (activate State,State)

[state(s, {v1, v2, . . .})] if a = (activate State,Activated)

. . .

I (State) = q0

Fig. 6. Exemplary (a) COLA automaton with two states and (b) its translation, and
the translation schema.

in Q . Activated holds the currently active state. The transition activateState
is responsible for the initialisation of state switching, by feeding the function
state() with input data and the actual active state. The purpose of function
state() is to check and control the switching between states, according to the
defined guards of the automaton. How this works has already been described in
Sect. 3.1. Let G = {g1, g2, . . . , gn} be the set of the guards of an automaton, V =
{v1, v2, . . . , vm} the set of variables used in the guards and S = {s1, s2, . . . , si}
the set of states of the automaton, with s ∈ S . We define the state() function
and the colour sets State and State L as follows:

fun state(s, v_1, ..., v_m) = if s = s_1 andalso g_1 then s_2

else

if s = s_2 andalso g_2 then s_3

...

else s;

colset State = with s_1 | s_2 | ... | s_i;

colset State_L = list State;

The rest of the translation schema is straightforward.

4.4 Translation Algorithm

The idea of the outlined Algorithm 1 is to translate COLA models into CPNs
in a DFS manner. For each visited unit, the corresponding translation schema
is applied. Once all units are translated there will be loose components and a
superfluous number of places (representing each input and output port of each
component). To reduce the number of places and establish the corresponding
connectivity between components, we glue together input and output places
(cf. line 19) regarding the defined channels in the original COLA model, i. e.
the corresponding source and destination ports. Finally, to accommodate the
structure of the generated hierarchical CPN, the connection between subpages
and their parent pages is established by assigning ports to sockets (cf. line 20).

There are two special cases that need to be considered during the translation
of a network: first, if multiple ports read from one and the same port (cf. port
out of the constant block in Fig. 1(a)). In this case, we translate the connection
in that way that the source of the channel is translated to as many places as
there are destinations (cf. places y1out3 and x2out3 in Fig. 1(c)). Second, the
input and output of a unit are not connected (cf. Fig. 7 the implementation of
the do nothing state). Therefore, we create a new place and connect it with the
input transition and other transitions accordingly (cf. Fig. 8(c)). This is done
to make sure that the data flow in the network is not broken, i. e. we want to
establish a correct consumption of the input data in order to proceed to the
output, as required in COLA.

Note that one can merge the transitions input and out , thus not needing
to add the new place at all. The transition input can often get merged with
other transitions and reduce the size of the net, e. g. one could merge input and

Algorithm 1: Cola2Cpn

Data: COLA model
Result: CPN model
while (not all units u ∈ U have been visited) do1

perform a DFS traversal on the COLA model;2

switch (u instanceof) do3

case (functional block)4

if (u isA constant) then5

create a single place p;6

initialise p accordingly;7

else8

FunctionalBlock(u);9

case (network)10

Network(u);11

create a transition input to collect the incoming data;12

connect input according to the connections in u (channels);13

case (automaton)14

Automaton(u);15

case (delay)16

Delay(u);17

initialise the translation18

glue input and output places together, according to their connectivity in the19

COLA model;
assign ports to sockets;20

add (cf. Fig. 8(d)) and deleting the places in 1 and in 2, without changing the
behaviour of the net.

5 Example

In Fig. 7, a screenshot of the COLA simulation tool is depicted. It shows a
high level COLA system consisting basically of two automata, two input con-
stants and two delay operators (pre). Each automaton has two states, namely
do nothing and working. In both cases, do nothing always provides the value 0
as output, concerning the behaviour of working, however, both automata show
a different implementation. automaton 1 performs the subtraction of the values
present at the input ports in 1 and in 2 (out := in 1 - in 2). The state working of
automaton 2 increases the input value at port in 1 by 3 (out := in 1 + 3). The
modelled transition relations are omitted for the sake of clarity.

In COLA a deadlock in a classical sense is not possible. This is due to the
fact that the COLA semantics dictates that at each tick of the system execution
a new value is assigned to each output port. A deadlock from a Petri net point
of view is compared best with a COLA system, that is stuck in an automaton

state, which cannot be changed anymore. This might, however, be a system
design decision. But in many cases, as in the given example, it is a modelling
error. Regarding the example, the values present at the output ports result of
both delays have a special behaviour: at the first tick both ports emit the value
1. To simplify matters, we write these values as a result vector r = (1

1) where the
upper value corresponds to the port value of the upper delay, and the lower value
to the lower delay, respectively. Both values have been set by the developer as
default values for the delays. When considering the behaviour over time we use
a matrix-like notation, i. e., the ith column of the matrix represents the output
values after the ith tick: M∞ =

(

1 2 −3 −4 0 0...

1 6 7 0 0 0...

)

. For this simple example, the
following infinite sequence

M∞ =

(

1 2 −3 −4
1 6 7 0

)

◦

(

0
0

)

ω

of port valuations is obtained, i. e., after a finite number of steps (four in this case)
the system reaches a deadlock-like state and from then on only emits r = (0

0)
as result. However, for more complex examples, similar behaviour cannot be
detected by the developer by solely using the COLA simulator. Here, the power
of the CPN Tools becomes important.

After translating the COLA model into a CPN, using the outlined translation
algorithm, the CPNs depicted in Fig. 8 are obtained. The idea is to automatically
construct the state space of the CPN models and finally create the state space
report which contains information about standard behaviour properties: dead
markings, dead and live transitions, etc. These information collected in the report
support the analysis of a system in an early stage of its development and help to
decreases the number of design errors. Furthermore, one can check other specific
behavioural properties by using predefined query functions provided by CPN
Tools to write user-defined analysis algorithms. For our example, the CPN Tools
reported a set of live transitions shown as an excerpt of the report below.

Live Transition Instances

automaton1’activate State 1

automaton2’activate State 1

doNothing1’input 1

doNothing1’out 1

doNothing2’input 1

doNothing2’out 1

pre1’delay 1

pre1’init 1

pre2’delay 1

pre2’init 1

The expected behaviour is reflected in this result to the effect that the tran-
sitions representing both working states are not contained. That means for the
CPN, that there is a marking from which there exists no path containing these

Fig. 7. COLA Simulator: Dashed lines are added manually to clarify the hierarchical
decomposition.

automaton_2

automaton2

automaton_1

automaton1

pre_2

pre2

pre_1

pre1

in_1_2

[]

INT_L

in_1_1

const_3

INT

in_2_1

[]

INT_L

out_A2

[]

INT_L

out_A1

[]

INT_L

in_2_2

const_5

INT

pre1

pre2

automaton1

automaton2

1 1`[]

1 1`3

1 1`[]

1 1`[]

1 1`[]

1 1`5

(a) CPN example

[s]

[m]

[n]

activatedState

[]

INT_L

in2

I/O
INT_L

in1

I/O

doNothing

doNothing

working

working

out

I/O

working
I/O

I/O

state(s,m)

State

doNothing

activate
State

I/O

State_L

[]

[s]

[state(s,m)]

[]s

INT_L
doNothing

1 1`[]1 1`doNothing

1 1`[]

1 1`[]

1 1`[]

(b) Automaton

n

s

[s]

[m]

[n]

outinput new

const_0

0

INTin2

I/O
INT_L

out

I/O
INT_L

doNothing

State

in1

I/O
INT_L

[]

State_L

I/O

I/O

[]

I/O

[] []

[n] [n]

INT_L

[0]

[]

[]

[]

activated

InIn

doNothing

1 1`[]

1 1`0

1 1`[]

1 1`[]

1 1`[]

1 1`[]

1 1`doNothing

(c) State do nothing

[]

[m]

[]
[n]

[m]

[]

[n]

[]

[m]

[n]

[s]

s

input

[] INT_L

[]

INT_L

working

in2

I/O
INT_L

activated

In

[]

State_L

in1

I/O

in_2

in_1

In

I/O
INT_L

[]

[]

State

[n + m]

[]

add out

I/OI/O

INT_L

working

I/O

1 1`[]

1 1`[]

1 1`[]

1 1`[]

1 1`[]

1 1`[]

1 1`working

(d) State working

Fig. 8. CPN example: (a) The highest abstraction level of the CPN example. (b)
Realisation of an automaton. (c) Realisation of the state do nothing. (d) Realisation of
the state working (automaton 2).

transitions. In other words—from a COLA point of view—it is possible to reach
a system state that prohibits a change to a distinguished system state (working

in our case). Based on this information, the developer has to check whether the
modelled system behaviour is what was desired. If this it not the case, a mod-
elling error has been detected. This is only one of the many observation one
can receive, i. e. by far not all what an analysis process can yield. The intention
of the analysis example was however to show how helpful can be such analysis
result. Being beyond the scope of this paper, the analysis of COLA models will
not be discussed.

An issue, however, remains the state space explosion problem. To alleviate it
a number of state space reduction methods (symmetry, equivalence, sweep line)
have been developed and integrated into CPN Tools. Furthermore, Khomenko
et al. [35] presented an improvement of the unfolding technique which can be
applied to all classes of high-level Petri nets. Based on this work, in [36] a
prototype has been proposed and developed for unfolding a subclass of n-safe
CPNs. In the ASCoVeCO project [37] a platform (ASAP) is being developed
aiming for the integration of various analysis methods into one environment, as
well as giving the possibility to extend the existing tool collection, thus increasing
the analysis possibilities for CPNs.

Our translation concept can only profit from such an analysis environment,
facilitating broader analysis aspects for COLA models in return.

6 Conclusions

In this paper we introduced a mathematically sound schema for the transla-
tion of the synchronous data-flow language COLA into Coloured Petri Nets.
This translation schema allows the combining of the strengths of both modelling
techniques to have a powerful model analysis methodology at hand. The toy
example presented here showed the applicability of the presented approach by
providing hints for possible design errors. A possible future extension could be
the use of Timed Coloured Petri Nets to fit better the synchronous paradigm
that COLA follows. Furthermore, we want to facilitate the automatically trans-
lation of COLA models into CPNs. This will allow us to deal with and analyse
more interesting, larger and real-life systems modelled in COLA.

We believe that this approach is feasible to be also applied to other syn-
chronous data-flow languages, like Lustre for instance.

Acknowledgments

We would like to thank Andreas Holzer and the anonymous reviewers for their
fruitful comments in finalising this paper.

References

1. Broy, M.: Automotive software and systems engineering (panel). In: MEMOCODE.
(2005) 143–149

2. The MathWorks Inc.: Using Simulink. (2000)
3. Berry, G., Gonthier, G.: The esterel synchronous programming language: design,

semantics, implementation. Sci. Comput. Program. 19(2) (1992) 87–152
4. Tripakis, S., Sofronis, C., Caspi, P., Curic, A.: Translating discrete-time simulink

to lustre. Trans. on Embedded Computing Sys. 4(4) (2005) 779–818
5. Kugele, S., Tautschnig, M., Bauer, A., Schallhart, C., Merenda, S., Haberl, W.,

Kühnel, C., Müller, F., Wang, Z., Wild, D., Rittmann, S., Wechs, M.: COLA –
The component language. Technical Report TUM-I0714, Institut für Informatik,
Technische Universität München (September 2007)

6. Kugele, S., Haberl, W.: Mapping Data-Flow Dependencies onto Distributed Em-
bedded Systems. In: Proceedings of the 2008 International Conference on Software
Engineering Research & Practice, SERP 2008, Las Vegas, Nevada, USA (July 2008)

7. Wang, Z., Haberl, W., Kugele, S., Tautschnig, M.: Automatic Generation of Sys-
temC Models from Component-based Designs for Early Design Validation and Per-
formance Analysis. In: Proceedings of the 7th International Workshop on Software
and Performance, WOSP 2008, Princeton, NJ, USA, ACM (June 2008) 23–26

8. Kugele, S., Haberl, W., Tautschnig, M., Wechs, M.: Optimizing automatic de-
ployment using non-functional requirement annotations. In Margaria, T., Steffen,
B., eds.: Leveraging Applications of Formal Methods, Verification and Validation.
Volume 17 of CCIS., Springer (2008) 400–414

9. Haberl, W., Tautschnig, M., Baumgarten, U.: Running COLA on Embedded Sys-
tems. In: Proceedings of The International MultiConference of Engineers and
Computer Scientists 2008. (March 2008)

10. Herrmannsdoerfer, M., Haberl, W., Baumgarten, U.: Model-level Simulation
for COLA. In: International Workshop on Modeling in Software Engineering
(MISE’09: ICSE Workshop 2009). (2009)

11. Haberl, W., Birke, J., Baumgarten, U.: A Middleware for Model-Based Embed-
ded Systems. In: Proceedings of the 2008 International Conference on Embedded
Systems and Applications, ESA 2008, Las Vegas, Nevada, USA (July 2008)

12. Haberl, W., Tautschnig, M., Baumgarten, U.: From COLA Models to Distributed
Embedded Systems Code. IAENG International Journal of Computer Science
35(3) (September 2008) 427–437

13. Kühnel, C., Bauer, A., Tautschnig, M.: Compatibility and reuse in component-
based systems via type and unit inference. In: Proceedings of the 33rd EUROMI-
CRO Conference on Software Engineering and Advanced Applications (SEAA),
IEEE Computer Society Press (2007)

14. Wang, Z., Sanchez, A., Herkersdorf, A.: Scisim: a software performance estimation
framework using source code instrumentation. In: Proceedings of the 7th interna-
tional workshop on Software and performance (WOSP ’08), New York, NY, USA,
ACM (2008) 33–42

15. Jensen, K.: Coloured Petri nets (2nd ed.): basic concepts, analysis methods and
practical use, volume 1. Springer-Verlag, London, UK (1996)

16. Jensen, K.: Coloured Petri nets: basic concepts, analysis methods and practical
use, volume 2. Springer-Verlag, London, UK (1997)

17. Jensen, K.: Coloured Petri nets: basic concepts, analysis methods and practical
use, volume 3. Springer-Verlag New York, Inc., New York, NY, USA (1997)

18. Reisig, W.: Petri nets: an introduction. Springer-Verlag New York, Inc., New York,
NY, USA (1985)

19. Paulson, L.C.: ML for the working programmer (2nd ed.). Cambridge University
Press, New York, NY, USA (1996)

20. Standard ML. http://www.standardml.org/

21. CPN Tools. http://www.daimi.au.dk/CPNTools/

22. Kristensen, L.M., Jensen, K.: Specification and validation of an edge router dis-
covery protocol for mobile ad hoc networks. In: SoftSpez Final Report. (2004)
248–269

23. Kristensen, L.M., Billington, J., Qureshi, Z.: Modelling military airborne mission
systems for functional analysis. (2001)

24. Petrucci, L., Billington, J., Kristensen, L.M., Qureshi, Z.H.: Developing a formal
specification for the mission system of a maritime surveillance aircraft. In: ACSD
’03: Proceedings of the Third International Conference on Application of Concur-
rency to System Design, Washington, DC, USA, IEEE Computer Society (June
2003) 92–101

25. Qureshi, Z.H.: Formal modelling and analysis of mission-critical software in mili-
tary avionics systems. In: SCS ’06: Proceedings of the eleventh Australian work-
shop on Safety critical systems and software, Darlinghurst, Australia, Australia,
Australian Computer Society, Inc. (2006) 67–77

26. Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M.H., Verbeek, H.M.W.:
Protos2cpn: using colored petri nets for configuring and testing business processes.
STTT 10(1) (2008) 95–110

27. Kang, H., Yang, X., Yuan, S.: Modeling and verification of web services composition
based on cpn. In: NPC ’07: Proceedings of the 2007 IFIP International Conference
on Network and Parallel Computing Workshops, Washington, DC, USA, IEEE
Computer Society (2007) 613–617

28. Yang, Y., Tan, Q., Xiao, Y., Liu, F., Yu, J.: Transform bpel workflow into hierar-
chical cp-nets to make tool support for verification. In: APWeb. (2006) 275–284

29. Hinz, S., Schmidt, K., Stahl, C.: Transforming bpel to petri nets. In: Business
Process Management. (2005) 220–235

30. Fernandes, J.M., Tjell, S., Jorgensen, J.B., Ribeiro, O.: Designing tool support for
translating use cases and uml 2.0 sequence diagrams into a coloured petri net. In:
SCESM ’07: Proceedings of the Sixth International Workshop on Scenarios and
State Machines, Washington, DC, USA, IEEE Computer Society (2007) 2

31. Amorim, L., Maciel, P.R.M., Jr., M.N.N., Barreto, R.S., Tavares, E.: Mapping
live sequence chart to coloured petri nets for analysis and verification of embedded
systems. ACM SIGSOFT Software Engineering Notes 31(3) (2006) 1–25

32. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User
Guide. Addison-Wesley (1998)

33. Bauer, A., Broy, M., Romberg, J., Schätz, B., Braun, P., Freund, U., Mata, N.,
Sandner, R., Ziegenbein, D.: AutoMoDe — Notations, Methods, and Tools for
Model-Based Development of Automotive Software. In: Proceedings of the SAE
2005 World Congress, Detroit, MI, Society of Automotive Engineers (April 2005)

34. Maraninchi, F., Rémond, Y.: Mode-automata: a new domain-specific construct for
the development of safe critical systems. Science of Computer Programming 46(3)
(2003) 219–254

35. Khomenko, V., Koutny, M.: Branching processes of high-level petri nets. In Gar-
avel, H., Hatcliff, J., eds.: TACAS. Volume 2619 of Lecture Notes in Computer
Science., Springer (2003) 458–472

36. Januzaj, V.: CPNunf: A tool for McMillan’s Unfolding of Coloured Petri Nets.
In: Proceedings of 8th Workshop on Practical use of Coloured Petri Nets and the
CPN Tools. (2007) 147–166

37. The ASCoVeCO project. http://www.daimi.au.dk/~ascoveco/

