
Reliable Operating Modes for Distributed Embedded Systems

Wolfgang Haberl∗ Stefan Kugele∗† Uwe Baumgarten∗

∗Institut für Informatik †Fachbereich Informatik
Technische Universität München Technische Universität Darmstadt

Boltzmannstr. 3 Hochschulstr. 10
85748 Garching b. München, Germany 64289 Darmstadt, Germany

{haberl, kugele, baumgaru}@in.tum.de

Abstract

Hard real-time embedded distributed systems pose huge
demands in their implementation which must contain as few
faults as possible. Over the past years, model-driven devel-
opment and automatic code generation have proven to ef-
fectively reduce design faults in those systems. Still, models
are mainly used for parts of the systems’ functionality and
most solutions do not address the generation of a whole sys-
tem.

In this paper we will showcase an approach for code
generation for entire systems. A crucial step is the seman-
tically correct realization of operating modes defined in the
model. If they are not changed synchronously, a distributed
system will show unpredictable behavior. We will demon-
strate how a reliable transition between operating modes,
even for a distributed system, can be achieved. Our ap-
proach is exemplified using a case study we carried out re-
cently.

1 Introduction

Embedded systems have become very popular over the
past years. They exist in many forms, ranging from small
sized consumer products like digital cameras or entertain-
ment systems, to large-scale distributed systems like cars
or airplanes. Besides their distributed nature, the latter ones
pose higher demands in their correct implementation as they
are mission-critical systems. In case of a failure, human
lives are endangered. Our work, part of which is presented
here, is focused on these hard real-time embedded systems.

Meanwhile model-driven development (MDD) is the
state-of-the-art approach to come to grips with the complex-
ity of embedded systems design. Using abstraction mecha-
nisms, developers gain an insight only into those items nec-

essary for their work, by hiding unnecessarily detailed in-
formation. Thus, the implementation is easier to survey,
even more if the modeling language features a graphical
syntax. If the employed language also has a mathemati-
cally defined semantics, the correctness and quality of the
models described therewith, can be checked using verifi-
cation techniques like model-checking or automated rea-
soning. To this end we developed COLA, the Component
Language [16], for modeling distributed, embedded real-
time systems. Around this language, a multitude of tools
were implemented, proving the possible benefits when em-
ploying the described concepts.

A crucial step during MDD is the transformation of mod-
els into code. Often this is done coding the modeled sys-
tem by hand, leading most certain to the introduction of hu-
man failures and thus compromising the correctness of the
model. This can be avoided by using automated code gen-
eration. So, one of the tools implemented for our COLA-
based development process is an automated code generator,
as described in [9]. In this paper we introduce an extension
of the presented work, dealing with the automatic genera-
tion of code for operating modes in a distributed system.
As we will show, our approach ensures synchronous mode
changes in a distributed system, thus allowing the definition
of system wide operating modes without explicitly taking
distribution into account, while modeling the system.

Compared to other tools commercially available, like
MATLAB R©/Simulink R©, ASCET R©, or SCADE Suite R©,
our approach possesses some key advantages. Compared to
MATLAB/Simulink and ASCET the semantics of our lan-
guage is formally defined, enabling as already mentioned
automated checking and processing of systems modeled
therewith. While SCADE Suite features a similar founda-
tion, it is, as are MATLAB/Simulink and ASCET, targeted
at the definition of partial functionality running on a single
computing node, rather than for an entire distributed sys-

tem. In contrast, COLA is suitable, and intended, for the
specification of a distributed system as a whole. This is also
true for all the tools implemented for a COLA based devel-
opment process.

1.1 Operating Modes

When dealing with distributed systems, generating exe-
cutable code for each computing node of the system is not
sufficient. There is also the need for valid distribution and
scheduling plans, which have to be calculated with respect
to resource usage of the distributed software components.

The found scheduling plans especially have to consider
operating modes. These modes group a set of functions,
which shall be executed together to achieve a certain system
behavior. Starting, landing, taxiing in case of an airplane or
locked, running, ignition on/off in case of a car are examples
for operating modes. Each operating mode triggers a set
of tasks, which are distributed over the computing nodes
forming the system. For modern cars, this may be up to 80
nodes, as presented by Broy in [4].

Using operating modes in embedded systems design of-
fers two key advantages. First, it breaks up the complexity
of a system into smaller pieces, making its specification eas-
ier. Second, an operating mode groups only those functions
necessary in the actual situation. All other tasks are inactive
in that mode. This leads to a more efficient resource usage,
as the hardware platform can be chosen according to the
most resource demanding operating mode. That platform
may be still significantly less expensive than one which is
capable of executing all functions of all operating modes in
parallel.

A major difficulty of operating mode changes is the syn-
chronous transition from one operating mode to the next in
a distributed system. Just imagine the engine control not
shutting down the motor, when the driver turns the key, be-
cause not all involved system nodes change their state to
ignition off.

In the following, we will present our solution to this
problem, using model-based code generation for the entire
system. Thus not only single application tasks are trans-
formed into C code, but also a main scheduling loop for
each node of the hardware platform is created, implement-
ing synchronous mode changes. Due to the automatic code
generation concepts presented here, mode switches follow
strictly the semantics of the defined COLA model. Hence,
the resulting system is guaranteed to perform operating
mode changes reliably.

1.2 Related Work

For SCADE, which is based on Lustre [10], a deploy-
ment concept for distributed embedded systems has been

presented in [5]. Compared to COLA, this approach lacks
a key concept: it does not offer the automatic deploy-
ment of operating modes, supporting a dynamic change
of scheduling plans at runtime, although Lustre supports
mode automata. Furthermore, unlike the COLA modeling
process, no optimized automatic allocation is performed.
Considering model-based engineering of embedded con-
trol software, Schätz proposes in [18] a clear separation of
control- and data-flow models to avoid unnecessary com-
plexity. Control-flow is used to specify modes of opera-
tion, whereas data-flow is used to define the mode’s control
task. In a similar way, COLA models are structured with
respect to operating modes using mode automata. As an
essential improvement—especially in the context of safety-
critical systems—this paper describes a novel technique to
generate executable code for complete systems, where op-
erating modes are distributed over several computing nodes.

Another language with similar focus regarding the tar-
get systems is Giotto, as presented by Henzinger in [11].
The models specified therewith are also executed in a cyclic
manner, similar to COLA models. An extension of Giotto
towards distributed platforms has been described in [12],
namely Distributed Giotto. Unlike COLA, Giotto defines
the causal order of tasks and their resource requirements,
but does not deal with specifying their implementation.
Rather tasks are implemented by hand and the Giotto com-
piler guarantees the timely execution in a distributed sys-
tem, given worst-case execution times and call frequencies
for all tasks are known. COLA contrariwise defines the
tasks implementation, which allows for verifying their im-
plementation and calculating reliable execution times based
on the designed model, as presented in [19].

Lately UML has become popular for modeling real-time
systems. One approach for generating C code from UML
models has been presented by Khan et al. in [13]. But com-
pared to COLA, the current diagram types defined in UML
do not provide enough information for generating the entire
application code. Rather a framework consisting of some
files with definitions of variables and functions can be de-
rived. The rest of the implementation has to be carried out
manually. Avoiding those error prone manual changes to
the resulting code was one of the main reasons for using a
data-flow language like COLA in our work. The informa-
tion captured in a COLA model is sufficient for generating
all of the code needed for a system.

1.3 Organization

The remainder of this paper is structured as follows:
in Section 2 we give an introduction to the modeling lan-
guage COLA which forms the base of our work. Follow-
ing in Section 3 the concepts for calculating allocation and
scheduling plans for a system modeled in COLA are pre-

sented. On the basis of these results the generation of code
which preserves the model’s semantics is shown in Sec-
tion 4. Throughout the paper we use an autonomous parking
system for cars as a case study. A brief description of the
hardware platform used for the case study as well as the re-
sulting system’s functionality is given in Section 5. Finally
we sum up our results in Section 6.

2 Overview of COLA

In the following we will give a brief introduction into the
modeling constructs of COLA. COLA is a synchronous
data-flow language, i. e., models are executed in a cyclic
manner, following the time semantics described in Sec-
tion 2.1. Details of COLA as well as its semantic foun-
dation can be found in [16]. In addition to the software
modeling constructs contained in COLA, the definition of
the hardware plattform is facilitated. Specific information
about the hardware modeling portion of COLA are ex-
plained in [15].

The key concept of COLA is that of units. These can
be composed hierarchically, or occur in terms of blocks that
define the basic (arithmetic, boolean, etc.) operations of an
application.

Each unit has a set of typed ports describing the inter-
face. These ports form the signature of the unit, and are
categorized into input and output ports. Units can be used
to build more complex components by building a network
of units and by defining an interface to such a network. The
individual connections of sub-units in a network are called
channels and connect an output port with one or more suit-
ably typed input ports. Based on the formal semantics of
COLA, type compatibility can be checked, as described
in [17].

In addition to the hierarchy of networks, COLA provides
a decomposition into automata, i. e., finite state machines,
similar to Statecharts [3]. If a unit is decomposed into an
automaton, each state of the automaton is associated with
a corresponding sub-unit, which determines the behavior
in that particular state. This definition of an automaton is
therefore well-suited to partition complex networks of units
into disjoint operating modes [1], the activation of which
depends on the input signals of the automaton.

The collection of all units forms a COLA system, which
models the application, including the interface to its envi-
ronment. Such a system does not have any unconnected
input or output ports as there would be no way to provide
input to systems. For effective communication with the
environment not describable within the functional COLA
model, sources and sinks embody connectors to the under-
lying hardware. Sources represent sensors and sinks corre-
spond to actuators of the used hardware platform. via chan-
nels, dataflow is realized. A unit can be automaton. Delays

are used to store values for a single execution cycle.

scaler

light_control

infra_to_cm

speed_control

infra_to_cm

Sources Sinks

sdc_active

normal parking

vehicle_mode

normal sdc_active parking

System

Operating Modes

Figure 1. COLA model of the case study sys-
tem

In Figure 1 a part of the COLA model of the case study
used throughout the paper is shown. As depicted, the model
features several sources and sinks to connect to the underly-
ing hardware. The system is implemented at top-level using
a network, which contains several sub-units. We are es-
pecially interested in the vehicle mode automaton, whose
three respective states, normal, parking, and sdc active,
form operating modes in the designed system, as we will
detail later on. In the shown example, each operating mode
is realized by a network, while an automaton also were a
valid implementation.

The implementations of the units scaler, infra to cm,
light control, and speed control are omitted for brevity in
Figure 1.

2.1 Time Semantics

COLA is a synchronous data-flow language, i. e., it is
assumed that computation and communication are infinitely
fast. The term synchronous resembles to the hypothesis of
perfect synchrony described by Berry and Benveniste [2]
and which is assumed for the temporal semantics of COLA.
According to this assumption the modeled operations start
at the same instant of time and are performed simultane-
ously with respect to data dependencies. The computa-
tion of the system over time can be subdivided into discrete
steps, called ticks, and the execution is performed in a step-
wise manner over the discrete uniform time-base.

Following the synchrony paradigm, the entire system is
evaluated in logically zero time. Only data dependencies
implied by the connecting channels, avoiding a unit to be
evaluated before its inputs are available. At each tick a unit
emits new values to the channels connected to its output

ports. These values become available immediately for ports
connected to the reading side of the channel.

To retain data for a series of ticks, the concept of delays
is introduced. These blocks model memory by saving the
actual input value and providing the input of the previous
tick at their output port. At the first tick, when no prior
input is available, a default value specified in the model is
emitted.

Code generation maps the modeling construct of ticks to
a time-triggered schedule. During each cycle of the sched-
ule all software components of the modeled system are
called. The length of the cycle is calculated using the dead-
lines specified in the model. If a mode change is detected,
the actual schedule has to be adapted accordingly. Regard-
ing the model time assumption this happens within one tick.
Thus, in the real system the detection of a necessary mode
change and the schedule modification have to be achieved
in the same cycle of the time-triggered schedule. The code
generator for the system dispatcher guarantees this require-
ment, as we will show in Section 4.3.

2.2 Clustering

Modeling system functionality with COLA results in a
set of interconnected units, not taking any partitioning de-
cisions into account. Defining a partitioning is done in a
succeeding step. For this purpose, any unit of the model
can be marked as defining a cluster. In this vein, the com-
plete system has to be clustered, i. e., every unit has either
to be marked to be a cluster or it is itself a sub-unit of an
already clustered unit. Clusters are the model representa-
tion of distributable software components, i. e., tasks in the
executable system.

Two types of clusters are distinguished, namely mode
clusters and working clusters. As indicated by the term
mode cluster, these clusters implement the transitions be-
tween operating modes. To this end, a mode cluster is
built up of one or more automata as exemplified by the ve-
hicle mode automaton in Figure 1. Inside a mode clus-
ter, further clusters may be defined. Usually, each state of
a mode cluster’s automaton is defined to be an individual
(sub-)cluster, denoted as an operating mode. These clusters
may be mode clusters themselves, which would mean they
define sub-modes of the actual mode.

Alternatively, working clusters can be defined for a mode
automaton’s states. In contrast to mode clusters, a working
cluster must not contain further clusters. Instead working
clusters define the behavior of an operating mode. Code
generation for working clusters has been described in [9].
In the following we will detail on the generation of code for
mode clusters and their semantically correct execution. For
this purpose, a synchronized timing for all computing nodes
of the system is indispensable.

Considering our example in Figure 1, the vehicle mode
automaton is defined to be a mode cluster, while all other
units depicted are coded as working clusters. Accordingly,
the three states, normal, parking, and sdc active are ex-
clusively active, as they are distinct operating modes of our
case study.

3 System Distribution

The overall functionality of the modeled system design
is distributed onto the components of the hardware platform
due to reasons of different nature: first of all, clusters may
be allocated, i. e., placed on different computing nodes due
to redundancy reasons.

Second, third-party suppliers providing both software
and hardware may demand that clusters have to be placed
onto their controllers because of being a one-stop shop.

Third, in some cases it is advantageous to place a clus-
ter directly onto the controller, which is itself connected to
sensors and actuators, providing and consuming data pro-
cessed by the cluster. Thereby the execution time of that
cluster may be minimized. Similarly other reasons to dis-
tribute a complete system model can be imagined.

3.1 Allocation

The problem of placing COLA clusters onto available
computing nodes can be compared best with the VARIABLE
SIZED BINPACKING problem, i. e., placing a finite set of
weighted items onto a set of bins, each having a certain ca-
pacity. A similar problem, but in the context of system dis-
tribution considerably extended, is to determine an optimal
placement of clusters onto the available computing nodes,
taking non-functional requirements into account. Although,
this problem is known to be NP-complete [7], i. e., there is
probably no efficient (polynomial) procedure to solve the
problem, an approach based on Integer Linear Program-
ming (ILP) turned out to be feasible at least for systems of
manageable size [15]. Since allocation, as the overall sys-
tem generation process, is done offline, i. e., at design-time,
enough computing resources are available. Therefore, we
aim at getting the optimal rather than an approximated so-
lution, if this is possible. The ILP approach provides the
flexibility to quickly adopt the technique to the respective
needs. In this regard, non-functional requirements like re-
dundancy, costs, suppliers, and further aspects like power
states, and processor architectures could be considered.

3.2 Dependency Analysis

COLA, as a data-flow language, provides the modeling
concepts of networks representing data-flow and automata
illustrating control-flow. Hereby a causal order between

scalar infra_to_cm infra_to_cm

vehicle_mode

normal parkingsdc_active

light_controlspeed_control

Figure 2. Cluster Dependency Graph for the
running example

units is induced which is reflected in dependencies between
clusters of the partitioned model. The consideration of these
dependencies is crucial to maintain the COLA semantics.
We introduced the concept of a Cluster Dependency Graph
(CDG) in [14], visualizing the cluster dependencies.

3.3 Scheduling

Based on this dependency analysis, schedules for the
complete system can be computed. Here, two aspects
have to be emphasized: first, the CDG defines a relation
R ⊆ C × C on the set of clusters C, i. e., (ci, cj) ∈ R if
and only if cj depends on ci. In this modality, a natural ex-
ecution order is defined. Second, if a pair of cluster nodes
(ci, cj) is not in this relation, they can be executed in an ar-
bitrary order, including parallel execution. Figure 2 depicts
a simplified CDG for the autonomic parking assistant used
as a case study here.

In this example, (scalar, infra to cm) is not in the
dependency relation R and therefore the respective clusters
can be executed in parallel, if they were allocated onto
different computing nodes. In contrast the execution
of vehicle mode has to be delayed until the results
of the preceding working clusters scalar, infra to cm,
and infra to cm are available since the following holds:
(scalar, vehicle mode), (inftra to cm, vehicle mode),
and (inftra to cm, vehicle mode) are contained in the
relation R as they have dependencies.

By traversing the graph top-bottom, the following sets
of schedulable clusters induced by the operating modes are

obtained (mode clusters are underlined):

S1 = {scalar, infra to cm, infra to cm, vehicle mode,

normal, speed control, light control}
S2 = {scalar, infra to cm, infra to cm, vehicle mode,

sdc active, speed control, light control}
S3 = {scalar, infra to cm, infra to cm, vehicle mode,

parking, speed control, light control}

In all three sets, the working clusters before the (underlined)
mode cluster are identical. Depending on the mode decision
either normal, sdc active, or parking is executed subse-
quent to the mode cluster. For this purpose, the schedule
plans are changed at runtime according to the calculated
mode. As indicated by the CDG, no cluster will be exe-
cuted, before the result of the mode cluster is available. This
assures that, if a mode change is necessary, all computing
nodes will alter their scheduling plan simultaneously. On
the strength of the presented offline scheduling approach, it
is guaranteed, that if a feasible scheduling for all possible
cluster sets exists, the generated system behaves exactly as
defined by the found schedule. Notice, that the scheduling
result not only contains information for a single computing
node, but for the complete system. Scheduling plans for the
single nodes are derived thereof.

In consideration of the fact that in principle cascades of
mode nodes are possible, thus leading to an exponential
(in the height of the CDG) number of schedulable clus-
ter sets, the calculation of each schedule plan should be
implemented efficiently. Therefore, we implemented a bi-
nary search algorithm based on a decision procedure—in
this case the SMT-solver YICES [6]—to find for each set
of clusters the optimal starting time. We define an optimal
plan as the one, which invokes all clusters as early as possi-
ble during the schedule cycle (of length CT), leading to the
shortest finishing time of all tasks in the distributed system.

For each set of clusters to schedule, S1, S2, and S3 in
the example, the procedure shown in Algorithm 1 is called.
The idea of the outlined algorithm is to schedule all clusters
as early as possible. Therefore, a binary search between
the lower bound lb and upper bound ub, respectively, look-
ing for the minimal satisfying value for mid is performed.
Hence, the bounds are initially chosen according to equa-
tions (1) and (2).

lb =
∑
p∈P

|C(p)|∑
i=1

 i∑
j=1

dp(cj)

 (1)

ub =
∑
p∈P

|C(p)|∑
i=1

CT −
∑

c∈C(p)

dp(c) +
i−1∑
j=0

dp(c|C(p)|−j)

(2)

Algorithm 1 Scheduler(int lb, int ub, Set clusters)
1: last← ∅
2: while (lb <= ub) do
3: mid = lb +

(
ub−lb

2

)
4: result = isFeasible(clusters, mid)
5: if (result = ∅) then
6: lb← mid + 1
7: else if (result 6= ∅) then
8: last← result
9: ub← mid− 1

10: end if
11: end while
12: return last

On the one hand, equation (1) determines the lower bound.
For each processing node p ∈ P out of the set of all avail-
able nodes P , the task completion times are summed up for
all clusters cj allocated onto p, 1 ≤ j ≤ |C(p)|, where C(p)
provides the set of those clusters allocated onto node p. This
information is available since scheduling is performed after
the optimal cluster placement has been computed. dp(c) de-
termines the duration (worst case execution time) of cluster
c on processing node p. If all clusters cj , 1 ≤ j ≤ |C(p)|,
were sorted in ascending order with respect to their dura-
tion, i. e., dp(c1) ≤ dp(c2) ≤ . . . ≤ dp(c|C(p)|), and aligned
at the beginning of the scheduling cycle, lb provides the
minimal value of the sum of all task completion times on
processor p.

On the other hand, equation (2) determines the upper
bound. It is achieved by aligning all clusters cj , 1 ≤ j ≤
|C(p)| in an descending order with respect to their execu-
tion times, i. e., dp(c|C(p)|) ≥ . . . ≥ dp(c2) ≥ dp(c1) on
the respective processing node p at the end of the schedul-
ing cycle. Similarly, ub is calculated as the sum of all
task completion times. Figure 3 illustrates the idea for
four clusters c1, . . . , c4 with worst case execution times
dp(c1) = 10, dp(c2) = 20, dp(c3) = 30, and dp(c4) = 40,
respectively for a schedule cycle of length CT = 150. Us-

unused

10 30 60 100 150

c1 c2 c3 c4

lb = 200

unused

50 90 120 140 150

c1c2c3c4

ub = 550

Figure 3. Initial determination of the bounds

ing formulae (1) and (2) we obtain:

lb = 10 + 30 + 60 + 100 = 200
ub = 90 + 120 + 140 + 150 = 500

Since the initial bounds do not take any task dependencies
into account, they really define strict bounds and describe
both best and worst case scenarios.

At each step of Algorithm 1 the method
isFeasible(clusters, mid) is called to check whether
there is a feasible solution or not (cf. line 4), which then
considers dependencies. In this vein, the earliest possible
placement taking allocation and data-flow dependencies
into account is accomplished. The function isFeasible()
generates an input file for the YICES SMT-solver, which in
turn checks whether there is an feasible schedule plan for
the value mid and the given clusters. An annotated excerpt
from the generated file is given in Figure 4. First, the used
variables are declared and initialized, then the basic bounds
for the cluster invocation and latest completion times are
set. Next, an assertion is given, expressing that the sum of
all task completion times has to be less or equal than the
value mid. Afterwards, two cases are distinguished: first, a
pair of independent clusters allocated onto the same ECU
is considered. They can be executed in an arbitrary order.
Second, two dependent clusters are considered. Their
placement is not of importance.

In Figure 5, the allocation of clusters onto processing
nodes (ECU 1, ECU 2, and ECU 3) and their respective
starting times are depicted exemplarily for the mode park-
ing. At the beginning of each scheduling cycle sensors are
read and at the end actuators are written, respectively. In
between, there is time for evaluating those clusters realizing
the actual functionality. As a prerequisite for allocation and
scheduling, the resource requirements for each cluster on a
respective processing unit have to be known. Therefore, a
technique described by Wang et al. [19] is used.

If a mode other than parking is chosen by the mode clus-
ter, either the subsequent clusters of the schedule depicted
in Figure 5 could have different starting times, or even a
different set of clusters might be activated.

Code generation for working and mode clusters de-
scribed in the following Sections 4.1 and 4.2 is completely
decoupled, i. e., neither an allocation information nor the
schedule plans are necessary. By that an arbitrary distribu-
tion of clusters onto computing node is facilitated. During
generation of the dispatcher code for each node, finally, the
results of allocation and scheduling are used to trigger the
clusters at the starting time, defined by the schedule.

4 Code Generation

To allow for an automatic generation of distributed code,
several different types of generators are needed. The code

;; Strating and ending times are integer as well as
;; the duration of a task; in this case the duration of
;; task 1 is set to 10 ms
(define start_task_1::int)
(define end_task_1::int)
(define duration_task_1::int 10)
;; similar for all others

;; Tasks can only be started after the sensor
;; reading phase
(assert (>= start_task_1 30))
(assert (>= end_task_1 30))
;; similar for all others

;; A task completion can only be after the start and the
;; duration
(assert (= end_task_1 (+ start_task_1 duration_task_1)))
;; similar for all others

;; All tasks have to be finished befor the actuator
;; writing phase begins
(assert (<= end_task_1 120))
;; similar for all others

;; Check if the sum of all task completion times is less
;; or equal than the value mid (in this case 993)
(assert (<= (+ (+ ... (+ end_task_1 end_task_2)...)

end_task_n) 993))

;; CASE I ;; (task_1, task_2)
(assert
(or
(and (> start_task1 start_task_2)

(not (> start_task_2 end_task_1)))
(and (> start_task_2 end_task_1)

(not (> start_task_1 end_task_2)))
)
)
;; similar for all others

;; CASE II ;; (task_4, task_3)
(assert (> start_task_4 end_task_3))
;; similar for all others

(check)

Figure 4. Excerpt from the generated input
file in the YICES format

used for a mode cluster differs from that of a working clus-
ter. Thus two different code generators are used for clusters.
Moreover, the calculated schedule has to be transferred into
code for execution on a concrete platform, which demands

scalar

Scheduling cycle (Cycle Time, CT)

infra_to_cm vehicle_mode

parking

light_control

ECU 1

ECU 2

ECU 3

R
ea

d
Se

ns
or

s

W
ri

te
 A

ct
ua

to
rs

t

infra_to_cm speed_control

Figure 5. Schedule cycle

Working Cluster
Code Generator

Software Model

Mode Cluster
Code Generator

Calculated Schedule

Dispatcher
Code Generator

ECU
1

ECU
2

ECU
3

Hardware Model

Middleware
Configurator

Mode-Number
Mapping

include
C Files C Files C Files XML File

Figure 6. Code generators and their artifacts

for a third code generator. As we employ a middleware
for transparent communication, which has been introduced
in [8], there is a need to configure the platform according to
the actual allocation. This is, again, done by a separate code
generator, thus leading to four code generators overall.

For each cluster in the model one file of C code is gen-
erated, no matter if it is a working or a mode cluster. Fur-
thermore, using the results calculated by the scheduling al-
gorithm described in Section 3.3, a single file of C code is
generated for every computing node. The latter file embod-
ies the dispatcher and contains a loop calling all clusters at
the point in time defined as starting time for each cluster by
the scheduler. As indicated in Figure 6, the code files gener-
ated for mode and working clusters are hence referenced by
the dispatcher. Finally the hardware model is used as input
for platform configuration.

We will describe the execution of each of these gener-
ation steps next. All described concepts have been imple-
mented using the Eclipse development plattform. Our pro-
totypical implementation includes, amongst other tools, a
meta-model for COLA whose API is used for accessing
modeled systems’ designs and a graphical editor for defini-
tion of those designs.

4.1 Working clusters

Working clusters implement the modeled system’s actual
behavior in an operating mode. They may be distributed
over the available computing nodes of the hardware plat-
form using an arbitrary mapping, just restricted by the hard-
ware resources available. This degree of freedom regarding
the allocation is achieved by communicating all the input
and output values using the system’s middleware. To this
end, each channel connecting two clusters in the model is
represented by a middleware address. The interconnected
clusters, which are executed as tasks at runtime, then use
this address in their communication primitives.

Besides inter-cluster communication, the middleware
also serves as a data storage for the tasks’ internal states.

1 void vehicle_mode() {
2 switch(unitstate->vehicle_mode_state) {
3 case 0:
4 if((! (steering_control == 0))) {
5 decision = 2;
6 unitstate->vehicle_mode_state = 2;
7 break;
8 }
9 if(((steering_control == 0) && ((mode_control == 1) && (! emergency_stop)))) {

10 decision = 1;
11 unitstate->vehicle_mode_state = 1;
12 break;
13 }
14 if(((mode_control == 0) || emergency_stop)) {
15 decision = 2;
16 unitstate->vehicle_mode_state = 2;
17 break;
18 }
19 decision = 0;
20 break;
21 case 1:
22 ...
23 case 2:
24 ...
25 }
26 }
27
28 void mode2074738() {
29 mw_restore_task_state(&stateVal, sizeof(stateVal), 110);
30 mw_receive(&mode_control, sizeof(mode_control), 118);
31 mw_receive(&speed_control, sizeof(speed_control), 130);
32 mw_receive(&steering_control, sizeof(steering_control), 131);
33 mw_receive(&distance_front, sizeof(distance_front), 115);
34 mw_receive(&distance_front_right, sizeof(distance_front_right), 132);
35 mw_receive(&distance_right, sizeof(distance_right), 136);
36 mw_receive(&distance_back, sizeof(distance_back), 126);
37 mw_receive(&axle_rotation, sizeof(axle_rotation), 123);
38 mw_receive(&parking_ready, sizeof(parking_ready), 103);
39 mw_receive(&emergency_stop, sizeof(emergency_stop), 101);
40 mw_receive(&last_vehicle_mode, sizeof(last_vehicle_mode), 125);
41 vehicle_mode();
42 mw_send(&decision, sizeof(decision), 111);
43 mw_save_task_state(&stateVal, sizeof(stateVal), 110);
44 }

Listing 1. The vehicle mode cluster code

Thus each cluster is assigned an address, where it may save
the activated states of its automata and recent values of con-
tained delays.

We have presented the details of code generation for
working clusters in [9]. Calling the correct set of working
clusters for the actual operating mode is carried out by the
dispatcher.

4.2 Mode clusters

As mentioned before, a mode cluster may, in contrast to
working clusters, contain other clusters. Mode clusters de-
cide upon which set of working clusters to execute in the
actual operating mode and when to change that mode. Thus

mode clusters are located from top level down to the first
definition of a contained working cluster in the model hi-
erarchy. Accordingly, the code generator for mode clusters
starts working at the very top of the model and generates
code for all sub-units, which do not define a cluster them-
selves. If a unit is found which defines a cluster, code gener-
ation stops. The discovered unit must, per language defini-
tion, be the implementation of an automaton’s state, i. e., an
operating mode. According to the type of cluster detected,
it is again coded as a separate mode or a working cluster.

The mode cluster’s duty is to decide upon the active
mode, depending on its input values. Based on the calcu-
lated mode, it outputs a numeric value which is mapped to
that mode. Thus, each mode is mapped to a distinct number

1 infra_to_cm20792_init();
2 rotation_2002502_init();
3 sdc_active206638_init();
4 speed_control2072689_init();
5 normal206613_init();
6 parking206663_init();
7
8 while(run) {
9 mw_global_time(&time_start); //store the actual global time

10 rt_task_resume(&task_sensor); //first read the sensors
11 rt_task_resume(&task_send); //resume the send task
12 mw_global_time(&time_actual);
13 rt_task_sleep(78000000 - (time_actual - time_start)); //wait till 78ms
14 infra_to_cm20792();
15 rt_task_resume(&task_send); //resume the send task
16 ...
17 mw_global_time(&time_actual);
18 rt_task_sleep(121000000 - (time_actual - time_start)); //wait for mode decision at 121ms
19 mw_receive(&mode_decision, sizeof(mode_decision), 111);
20 if(mode_decision == 0) {
21 mw_global_time(&time_actual);
22 rt_task_sleep(122000000 - (time_actual - time_start)); //wait till 122ms
23 parking206663();
24 rt_task_resume(&task_send); //resume the send task
25 ...
26 }
27 else if(mode_decision == 2) {
28 ...
29 }
30 else if(mode_decision == 1) {
31 ...
32 }
33 mw_global_time(&time_actual);
34 rt_task_sleep(170000000 - (time_actual - time_start));
35 rt_task_resume(&task_actuator); //wait to run actuator task
36 }

Listing 2. A node’s dispatcher code

by the code generator. The generated mapping is used dur-
ing coding of the dispatcher to start the mode and working
clusters in question. This mapping is used during genera-
tion of the dispatcher as given in Section 4.3.

In Listing 1 a shortened example for the code generated
for a mode cluster can be seen. This sample belongs to the
vehicle mode automaton depicted in Figure 1. The mode
is called using its main function defined in line 28. During
the cluster’s execution first the actual state, which includes
the active mode, is read from the middleware. The corre-
sponding middleware call is shown in line 29 of the list-
ing. Then the values for the input ports are read, as shown
in lines 30 through 40. The automaton responsible for de-
ciding upon the active operating mode is called in line 41.
Based on the previous state, c.f. line 2, the outgoing transi-
tions are checked. If one of the guards in lines 4, 9 and 14
evaluates to true, the state of the vehicle mode automaton
changes and the emitted decision value is set accordingly.
For brevity, the code in Listing 1 only shows the implemen-
tation for one of the automaton’s modes and omits variable

declarations.
The mode decision is communicated to the underlying

middleware layer, and thus to all computing nodes in the
system, using the API call shown in line 42. Finally, the up-
dated mode cluster state is stored in the middleware, which
is achieved by the code in line 43.

4.3 Dispatcher

As stated before, it is the dispatcher’s purpose to start the
clusters allocated to that node, the dispatcher is executed
on. Our concept envisions the use of a non-preemptive
scheduler, which is assigned the tasks to execute by the dis-
patcher. For our demonstrator however, we had to rely on
a preemptive scheduler, as the employed operating system
Xenomai does not offer a non-preemptive mode. The solu-
tion to this problem was to use semaphores to achieve the
desired non-preemptive behavior.

Extracts of the dispatcher for one of the demonstrator’s
nodes are given in Listing 2. In lines 1 through 6 the init

functions of all clusters allocated to the node are called.
This triggers the initial states for all automata and delays
contained in the clusters. Then in line 8 the scheduling cycle
loop is started. At its beginning the global time is read from
the middleware by the function call in line 9. It is stored in
a variable and used to calculate waiting periods between the
executed tasks, according to the calculated schedule. Exam-
ples for these sleeps can be found in lines 13, 18, 22, and 34.
Instances of called clusters are located in lines 14 and 23.
The other clusters are omitted for brevity in Listing 2. As
shown in Figure 5, the scheduling cycle starts with sensor
readings and ends with actuator writes. The according calls
are shown in lines 10 and 35 of Listing 2.

So far we have only dealt with working cluster calls. The
special thing about mode clusters is that they are executed
on one node of the system and their result influences the dis-
patching of all nodes of the system. In the example shown in
Listing 2 the branching between different operating modes,
and thus different scheduling plans, can be seen in lines 20,
27, and 30. These statements use the mapping of modes to
numerical values, defined during mode code generation de-
scribed in the preceding section. Please note that the actual
mode value is read from the middleware in line 19, because
the according mode cluster is run on another node. Ob-
viously, the middleware address 111 has to be used here
as well as in the code generated for the mode cluster to
communicate the actual operating mode. For reference see
line 42 of Listing 1 where the mode result is written to the
middleware.

Because of the globally defined scheduling for all com-
puting nodes of the system and the global time avail-
able from the employed middleware, synchronous mode
switches can be guaranteed. Every node in the systems
waits for the reception of the calculated mode value accord-
ing to the pre-defined schedule. Thus this value is always
up-to-date.

4.4 Middleware Configuration

To allow for transparent communication via our middle-
ware, a configuration for the nodes has to be given. This
configuration states information about the sensors and actu-
ators connected to each node. Furthermore, for each cluster
allocated onto a node, the middleware addresses read from
and written to are included. Thus the memory needed for
input and output data can be allocated.

As indicated in Figure 6 the configuration is done using
an XML file. The middleware loads this file at startup and
reads the information suitable for the current node. We ex-
plained the operation of the middleware in detail in [8].

5 Case Study

To prove the viability of our approach, we implemented
a case study using the concepts and tools described before.
The idea was to build a model car, featuring a function
also available in real cars. We decided to implement an au-
tonomous parking system based on several distance sensors.
Additionally, the system should be controllable manually
via a Bluetooth connection to a cell phone, and it should
initiate an emergency stop when reaching a given minimum
distance to obstacles.

The model car was equipped with three Gumstix R© mi-
crocomputers connected by an Ethernet network. Our mid-
dleware was employed on top of the network for data
exchange and clock synchronization services. Xenomai
served as operating system for the nodes. Distances were
measured using two infrared and one supersonic sensor.
Bluetooth was used as another input, connected to the cel-
lular phone remote. The model car’s motor and steering, in-
dicator, reversing, and breaking lights were the actuators of
the system. The mentioned sensors and actuators were con-
nected to different computing nodes, thus posing the need
for synchronous communication in the system.

Further the system should be separated into three operat-
ing modes, namely normal, parking, and sdc active. The
normal mode leaves control to the user, which can mod-
ify speed and direction using the remote control. parking
makes the model car run in parallel to a wall and search
for a gap of sufficient size to park. If such a gap is found,
the model automatically starts parking using a predefined
curve. In sdc active mode, the car drives parallel to a given
wall and adjusts its distance to all convexities found. Mode
changes are triggered using the remote control, thus implic-
itly altering the clusters executed on all microcomputers.

Figure 7. Developed case study

After specification of the software and hardware models,
we were able to generate code for the specified software
components as well as the middleware configuration files.
Past cross-compilation of the code, the system behaved cor-

rectly without the need of any manual coding. We were able
to change between driving, parking, and side distance mode
without any issues. Hence the operating mode changes were
communicated and executed correctly on all involved com-
puting nodes.

6 Conclusions

In this paper, we presented an approach for the automatic
generation of distributed embedded systems. The employ-
ment of operating modes offers a desirable partitioning of
the systems functionality, by means of easier modeling as
well as efficient resource usage. The modeling constructs
of mode automata allows for an easy to understand defini-
tion of the different operating modes.

COLA features the concept of mode automata and en-
ables for their specification using a graphical syntax. By
using COLA with its clearly defined semantics, the auto-
mated checking of model characteristics is made possible,
leading to a less faulty design. Further, automatic alloca-
tion and scheduling is facilitated. The results of those steps
are used to generate executable code that preserves the cor-
rectness of the modeled system and the synchronous change
between specified operating modes on an actual distributed
platform.

The viability of this approach was pointed out by realiz-
ing a case study based on the implemented tools.

References

[1] A. Bauer, M. Broy, J. Romberg, B. Schätz, P. Braun, U. Fre-
und, N. Mata, R. Sandner, and D. Ziegenbein. AutoMoDe —
Notations, Methods, and Tools for Model-Based Develop-
ment of Automotive Software. In Proceedings of the SAE
2005 World Congress. Society of Automotive Engineers,
Apr. 2005.

[2] A. Benveniste and G. Berry. The synchronous approach to
reactive and real-time systems. In Readings in hardware/-
software co-design, pages 147–159. Kluwer Academic Pub-
lishers, Norwell, MA, USA, 2002.

[3] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Mod-
eling Language User Guide. Addison-Wesley, 1998.

[4] M. Broy. Automotive software and systems engineering
(panel). In MEMOCODE, pages 143–149, 2005.

[5] P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis,
and P. Niebert. From simulink to SCADE/lustre to TTA: a
layered approach for distributed embedded applications. In
LCTES, pages 153–162. ACM, 2003.

[6] B. Dutertre and L. de Moura. The yices smt solver. Tool pa-
per at http://yices.csl.sri.com/tool-paper.pdf, August 2006.

[7] D. K. Friesen and M. A. Langston. Variable sized bin pack-
ing. SIAM J. Comput., 15(1):222–230, 1986.

[8] W. Haberl, U. Baumgarten, and J. Birke. A Middleware
for Model-Based Embedded Systems. In Proceedings of
the 2008 International Conference on Embedded Systems

and Applications, ESA 2008, Las Vegas, Nevada, USA, July
2008.

[9] W. Haberl, M. Tautschnig, and U. Baumgarten. From COLA
Models to Distributed Embedded Systems Code. IAENG
International Journal of Computer Science, 35(3):427–437,
Sept. 2008.

[10] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The synchronous data-flow programming language LUS-
TRE. Proceedings of the IEEE, 79(9):1305–1320, Septem-
ber 1991.

[11] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto:
A time-triggered language for embedded programming. In
EMSOFT, pages 166–184, 2001.

[12] T. A. Henzinger, C. M. Kirsch, and S. Matic. Composable
code generation for distributed giotto. In LCTES ’05: Pro-
ceedings of the 2005 ACM SIGPLAN/SIGBED conference
on Languages, compilers, and tools for embedded systems,
pages 21–30, New York, NY, USA, 2005. ACM.

[13] M. U. Khan, K. Geihs, F. Gutbrodt, P. Gohner, and
R. Trauter. Model-driven development of real-time systems
with uml 2.0 and c. Model-Based Methodologies for Per-
vasive and Embedded Software, International Workshop on,
0:33–42, 2006.

[14] S. Kugele and W. Haberl. Mapping Data-Flow Dependen-
cies onto Distributed Embedded Systems. In H. R. Arabnia
and H. Reza, editors, Proceedings of the 2008 International
Conference on Software Engineering Research & Practice,
SERP 2008, volume 1, pages 272–278. CSREA Press, July
2008.

[15] S. Kugele, W. Haberl, M. Tautschnig, and M. Wechs. Opti-
mizing automatic deployment using non-functional require-
ment annotations. In T. Margaria and B. Steffen, edi-
tors, Leveraging Applications of Formal Methods, Verifica-
tion and Validation, volume 17 of CCIS, pages 400–414.
Springer, 2008.

[16] S. Kugele, M. Tautschnig, A. Bauer, C. Schallhart,
S. Merenda, W. Haberl, C. Kühnel, F. Müller, Z. Wang,
D. Wild, S. Rittmann, and M. Wechs. COLA – The com-
ponent language. Technical Report TUM-I0714, Institut für
Informatik, Technische Universität München, Sept. 2007.

[17] C. Kühnel, A. Bauer, and M. Tautschnig. Compatibility and
reuse in component-based systems via type and unit infer-
ence. In Proceedings of the 33rd EUROMICRO Confer-
ence on Software Engineering and Advanced Applications
(SEAA). IEEE Computer Society Press, 2007.

[18] B. Schätz. Model-based engineering of embedded con-
trol software. In MBD-MOMPES ’06: Proceedings of
the Fourth Workshop on Model-Based Development of
Computer-Based Systems and Third International Workshop
on Model-Based Methodologies for Pervasive and Embed-
ded Software, pages 53–62, Washington, DC, USA, 2006.
IEEE Computer Society.

[19] Z. Wang, A. Sanchez, and A. Herkersdorf. Scisim: a soft-
ware performance estimation framework using source code
instrumentation. In WOSP ’08: Proceedings of the 7th in-
ternational workshop on Software and performance, pages
33–42, New York, NY, USA, 2008. ACM.

