
Lehrstuhl für Theoretische Informatik

und Grundlagen der Künstlichen Intelligenz

Fakultät für Informatik

Technische Universität München

Diplomarbeit in

Informatik

Efficient Solving of Combinatorial

Problems using SAT-Solvers

Stefan Kugele

kugele@cs.tum.edu

Aufgabensteller: Univ.-Prof. Dr. Helmut Veith

Betreuer: Dipl.-Ing. Christian Schallhart

Abgabedatum: 12. Oktober 2006

Erklärung

Ich versichere, dass ich diese Diplomarbeit selbstständig verfasst und nur die angegebe-

nen Quellen und Hilfsmittel verwendet habe.

Stefan Kugele

München, 12. Oktober 2006

iii

Kurzfassung

In dieser Diplomarbeit beschäftigen wir uns mit Boolean Satisfiability (Sat), einem

klassischen Suchproblem der Informatik. Stephen A. Cook und Leonid Levin zeigten,

dass dieses Problem NP-vollständig ist, das heißt, dass sich viele, sehr unterschiedlich

aufgebaute und gleichzeitig praktisch zentrale Suchprobleme auf Sat in einem streng

formalen Sinn durch sogenannte Reduktionen zurückführen lassen. Im Rahmen dieser

Diplomarbeit stellen wir eine Methode vor, um beliebige NP-vollständige Probleme

mit Hilfe von modernsten, dem aktuellen Stand der Technik entsprechenden, Sat-

Solvern zu lösen.

Zunächst verwenden wir einen auf Binärer Suche aufbauenden Ansatz, der als Ent-

scheidungs-Prozedur Sat-Solver verwendet, um die Chromatische Zahl schwieriger

Graphen zu finden. Mit dieser Technik haben wir Erfolg und können für bisher unge-

löste Benchmarkprobleme optimale Färbungen berechnen.

Die Idee der Graph-Färbbarkeit wird als Grundlage des zweiten vorgestellten Pro-

blems verwendet: Inverse RNA-Faltung bezeichnet den Vorgang, um aus einer 2-

dimensionalen Strukturbeschreiben (Sekundärstruktur) zu einer—biologischen Ein-

schränkungen unterliegenden—Basenbelegung zu gelangen. Wir führen eine Redukti-

on ein, um die inverse RNA Faltung sehr schnell mit Hilfe von Sat-Solvern durchzu-

führen. Diese Reduktion wird in einem zweiten Schritt erweitert und angepasst. Um

die Anzahl der möglichen Lösungen zu reduzieren, benutzen wir ein realistischeres

Energiemodell. Wir verwenden hierzu Solver für Pseudo Boolesche Optimierungspro-

bleme (PBO), um den inversen RNA Faltungsprozess im Hinblick auf Energiestufen

zu optimieren.

Letztlich beschäftigen wir uns mit einem Problem aus der Zahlentheorie, und zwar

den Ramsey Zahlen R(m,n). Obwohl diese Problem coNPNP-hart zu sein scheint,

werden wir für kleine Eingabewerte R(m,n) errechnen. Ein rekursiver Algorithmus

um die Grenzen für R(m,n) zu ermitteln vervollständigt diese Arbeit.

v

Abstract

In this thesis we focus on Boolean Satisfiability (Sat), a classical search problem in

computer science. Stephen A. Cook and Leonid Levin showed, that this problem is

NP-complete, i.e., great many differently structured and at the same timepractically

relevant search problems can be translated to Sat in a strictly formal sense by so-

called reductions. In this thesis, we present a methodology to solve arbitrary NP-

complete problems by dint of state-of-the-art Sat-solvers.

First, we use a binary search approach and state-of-the-art Sat-solvers as decision

procedure to find the chromatic number of hard graph coloring instances. We ap-

ply the presented technique successfully and are able to find for formerly unsolved

benchmark problems the optimal coloring.

The idea of graph coloring is taken as a basis for our second example: Inverse RNA

folding denotes the process of obtaining a base assignment—restricted by biological

constraints—given a 2-dimensional structure description (Secondary Structure). We

introduce a reduction to perform inverse RNA folding very quickly with the help of

Sat-solvers. This reduction is enhanced and adopted in a second step. To reduce the

number of possible solutions we use a more realstic energy model. More specifically,

we use solvers for Pseudo Boolean Optimization (PBO) problems, to optimize the

inverse RNA folding process with respect to energy levels.

Finally, we deal with a number theoretical problem, namely the Ramsey numbers

R(m,n). Although this problem seems to be coNPNP-hard, we will calculate for

small inputs R(m,n). A recursive algorithm to determine bounds for R(m,n) com-

pletes this thesis.

vii

Acknowledgments

I want to thank the following persons who have supported me and thus made this

thesis possible.

First and foremost, I am indebted to Christian Schallhart and Professor Helmut Veith.

I have been working together with Christian for more than two years. For the SEP

(research project during the master program) as well as for my diploma thesis, he

provided me with help in all scientific and practical problems. Without him, this

work would not have been possible. I give my special thanks to Helmut, for his

constructive and helpful comments and new ideas on my work.

Last but not least, I thank everyone who contributed to this thesis but whom I did

not mention.

ix

Contents

1 Introduction 1

1.1 Motivation . 7

1.2 Outline . 7

2 Experimental Setup and Format Definitions 8

2.1 Sat-Solver . 8

2.2 Format Definitions . 9

2.2.1 DIMACS Format for CNF-Formula Encoding 9

2.2.2 PBO and LP Format for (Pseudo) Boolean Equations Encoding 10

2.3 Used Hardware Configuration . 12

3 Chromatic Numbers 14

3.1 Introduction . 14

3.2 Reduction to Sat . 14

3.2.1 Variable Mappings . 15

3.3 MinColoring as Optimization Problem 16

3.3.1 Binary Search Algorithm . 16

3.4 Experimental Results . 17

4 RNA Problems 22

4.1 Introduction . 22

4.2 Reduction to SAT . 24

4.2.1 Interpretation as Coloring Problem 25

4.2.2 Biological Constraints . 26

4.2.3 Variable Mappings . 26

4.3 Molecular Switch . 29

4.4 Energy Parameters . 31

4.5 RNA and Linear Programming . 32

4.5.1 Introduction . 32

4.5.2 Pseudo-Boolean Representation 35

5 Ramsey Numbers 41

5.1 Introduction . 41

5.2 Interpretation as Graph Theoretic Problem 41

xi

Contents

5.2.1 Complexity Considerations . 44

5.2.2 Reduction to Sat . 46

5.3 Algorithm to determine Bounds for R(m,n) 50

5.4 Graphs with neither a Clique nor an IndependentSet 50

5.5 Estimation of the Instance Size . 56

5.6 Experimental Results . 56

6 Conclusion and Future Work 59

A Chromatic Numbers 61

B RNA Encodings 76

B.1 Example CNF Encoding for the tRNAPhe Molecule 76

B.2 Example IP Encoding for only one Base Stacking 79

C Ramsey Numbers 83

List of Figures 85

List of Tables 87

List of Algorithms 88

Bibliography 89

xii

Chapter 1

Introduction

Suppose that you are organizing a public viewing event for the FIFA World Cup

2006TMfor a group of 400 international soccer fans. Because of the limited space

around the screen, you have to choose 100 of visitors. They will receive places in the

viewing area. To complicate matters, the Department of the Interior has provided

you with a list of pairs of incompatible visitors, i.e., visitors who are prepared to use

violence against each other. Then no pair from this list is allowed to appear in your

final choice. This is an example of what computer scientists call an NP-complete

problem, since it is easy to check whether a given choice of one hundred visitors

proposed by a co-worker is satisfactory, i.e., no pair taken from your co-worker’s list

also appears on the list from the Department of the Interior. However the task of

generating such a list from scratch seems to be so hard as to be completely impractical.

Indeed, the total number of ways of choosing 100 viewers from the 400 applicants is

greater than the number of atoms in the known universe!

One of the outstanding problems in computer science is whether there are compu-

tational problems which have quickly verifiable solutions, but which require an in-

tractable long time to be solved by any deterministic procedure. Problems like the

one listed above certainly seem to be of this kind, but so far no one was able to prove

that these problems are really as hard as they appear, i.e., that they cannot be solved

efficiently by a computer. Stephen Cook [9] and Leonid Levin [25] formulated the P

(i.e., easy to find a solution) versus NP (i.e., easy to verify a given solution) problem

independently in 1971. P is the class of tractable problems, since it is easy to find

a solution for a given problem instance. In the case of NP, we only know that it is

easy to verify a given solution—but we do not know whether it is easy to find such a

solution. Thus NP contains problems which resisted an algorithmic approach so far

and appear to be computational intractable. This characterization of tractable and

intractable problems dates from workings from Alan Cobham [8] and Jack Edmonds

[14]. Even earlier letters from Kurt Gödel to John von Neumann [19] addressed this

topic. A formal definition of these classes reads as follows:

Definition 1 (Decision problem). A decision problem is a problem which has as result

for a given input instance either yes or no.

1

Chapter 1 Introduction

Definition 2. P is the complexity class containing decision problems which can be

solved by a deterministic Turing machine [42] in an amount of time that is polynomial

in the size of the input.

Definition 3 (Alternative I). NP is the complexity class containing all decision prob-

lems whose satisfying solution has polynomial size and can be verified in polynomial

time.

Definition 4 (Alternative II). NP is the complexity class containing decision problems

which can be solved by a non-deterministic Turing machine in an amount of time that

is polynomial in the size of the input.

In the latter definition, non-deterministic means that the Turing machine can make

non-deterministic computation steps. Unlike to a deterministic Turing machine whose

next action is uniquely defined, the non-deterministic Turing machine may have a

choice between several next actions. In this way, the Turing machine guesses at each

computation step the right action, i.e., it choses the action which eventually leads to an

accepting state, if such an action exists. A non-deterministic Turing machine acceps

an input if there is some sequence of choices, which are made in a non-deterministically

way, that leads to an accepting state. It is sufficient to have a single accepting path

in the computation tree. An input is rejected, if and only if all possible computation

paths lead to an rejecting state. This is different to a deterministic Turing machine

which has a single determined computation path, and not a tree. A deterministic

Turing machine accepts or rejects an input if the only computation sequence leads to

an accepting state or an rejecting, respectively. Thus, it is obvious that a deterministic

Turing machine is a special case of a non-deterministic Turing machine since the

single computation path of the deterministic machine is also included as a path in

the computation tree of the non-deterministic machine. Hence, it follows that P is a

subset of NP since determinism is a special case of non-determinism. Whether this

subset is proper or not is the big question (P
?
(NP).

In Computer Science the notion of a reduction has been formulated and in fact, lies

at the very heart of complexity theory. Let us recall what a reduction is.

Definition 5 (Karp Reduction [23]). Let A,B be decision problems. We say that B

reduces to A if there is a poly-time transformation (reduction) R which, for every

instance x of B, produces a corresponding instance R(x) of A, such that x ∈ B ⇔
R(x) ∈ A. In symbols we write B ≤p A.

B ≤p A means that problem A is at least as hard as problem B: In Figure 1.1 on

the facing page we show how to use an algorithm for A to solve problem B given a

reduction R from B to A. Use reduction R to transform input instance x (R(x)) in

order to have a correct input instance for algorithm A. A returns either yes or no

2

y e s / n oA l g o r i t h m f o r BR e d u c t i o nR A l g o r i t h m f o rAR (x)I n s t a n c ex
Figure 1.1: Reduction from B to A. According to [34] page 160.

which is the result for problem instance x. Using the concept of reductions, we can

define further essential concepts of complexity theory: hardness and completeness.

Definition 6 (Hardness). Let C be a complexity class and L a language. L is C-hard
with respect to ≤P if L′ ≤P L holds for all L′ ∈ C.

Definition 7 (Completeness). Let C be a complexity class and L a language. We say

that L is C-complete if L is C-hard with respect to ≤P and L ∈ C holds.

In fact, problems with membership in NP occur in many real life applications. Start-

ing from protein folding in biology, chemical synthesis, reconstruction of 3D images

in medical applications going to problems in physics, statistics, finance and many

more.

The Clay Mathematics Institute of Cambridge, Massachusetts (CMI) has named seven

Prize Problems. The Scientific Advisory Board of CMI selected these problems, fo-

cusing on important classic questions that have resisted solution over the years. The

Board of Directors of CMI designated a $7 million prize fund for the solution to these

problems, with $1 million allocated to each problem. The question whether P = NP

or P 6= NP is one of the selected problems.

It is commonly believed that P 6= NP holds and therefore one cannot hope to solve

NP-problems effectively in general (since P is the class of efficiently solvable prob-

lems). However, there are some approaches dealing with NP-complete problems—

none of them is perfect but each of them is an essential technique to practically handle

these problems.

1. Special heuristics that are optimized for specific problems.

2. Approximation algorithms which return solutions of guaranteed quality. That

leads to a whole new branch of complexity classes characterized by means of

the poly-time approximability of the respective problems.

3

Chapter 1 Introduction

3. Calculation of the exact solution as efficient as possible having in mind that the

algorithms we are using have exponential worst case run-time.

Our approach is based on solving the Boolean Satisfiability (Sat) problem as

efficiently as possible. This is the basis for solving many other problems, e.g., Bounded

Model Checking (BMC) [5] which uses Sat techniques very successfully. Our method

is based on a two step process: first we reduce (transform) instances of a certain

problem domain (e.g. bio-chemistry, number theory, etcetera) into a Sat formula

(Sat domain). This formula acts as input for a state-of-the-art Sat-solver which has

two possible results: either it returns a satisfying assignment or it states that the

input formula is unsatisfiable. In the first case, the result has to be transformed back

to the original problem domain. This two step process is illustrated in Figure 1.2.

Formally, we use the following definition: S A T d o m a i nP r o b l e m d o m a i nS t a r t
I n s t a n c e x T r a n s f o r m a t i o n

B a c k �T r a n s f o r m a t i o n
S A T � I n s t a n c e

S a t i s fi a b l e ?R e s u l t
S A T � S o l v e r

y e s
S t o p pn oS t o p p

Figure 1.2: Solving problem domain specific instances by first reducing them to Sat, then
using a Sat-solver to search for a result. If such a result exists, transform it back into the
problem domain to interpret the result.

Definition 8 (Satisfiability). A Boolean expression φ is satisfiable if and only if there

4

exists at least one variable assignment to the variables of φ under which φ evaluates

to true.

Definition 9 (Satisfiability Problem). An instance of the problem is defined by a

Boolean expression written using only AND, OR, NOT, variables, and parentheses.

The question is: given the expression, is there some assignment of truth values to the

variables such that the expression will evaluate to true under the assignment?

In general, all Sat-solvers work on instances that have a certain normal form—the

so-called Conjunctive Normal Form (CNF)

Definition 10 (Conjunctive Normal Form). A Boolean formula is in conjunctive normal

form (CNF) if it is a conjunction of clauses, where each clause is a disjunction of

literals.

There exist of course other ways to formulate Boolean formulas but due to the fact that

the conjunctive normal form is a de facto standard to formulate problem instances for

Sat-solvers we will only concentrate ourselves to this form. The technical reason why

most of the available Sat-solvers use CNF as their input format is the following: As

already mentioned, CNF is a conjuncture of clauses. A formula φ evaluates to true if

and only if each clause contains at least one positive literal. Once, a clause evaluates

to false the complete formula φ is unsatisfiable. This is used to propagate literals

in most Sat-solver implementation. For a detailed analysis of how state-of-the-art

Sat-solvers work, we refer to [32]. limboole [3] as a front end to limmat [2] accepts

arbitrary Boolean formulas as input and allows to check satisfiability and tautology.

Inside, it then uses the so-called Tseitin-transformation [41] to transform the input

into CNF. Let us have a look at the following example.

Example 1.

ϕ ≡ (x1 ∨ ¬x3 ∨ x4) ∧ (x2) ∧ (x1 ∨ ¬x3) (1.1)

Formula ϕ is in conjunctive normal form. It consists of three clauses, each having

a different number of literals. On Figure 1.3 on the following page, we can see the

corresponding circuit with four input pins x1, . . . x4, two NOT-gates, two OR-gates

and one AND-gate. The output pin y has a high signal if and only if the input pins

have an appropriate assignment with high or low signals. This problem is also referred

to as CircuitSat.

Probably, the most seminal theorem of complexity theory is Cook’s theorem [9]. It

states that Sat is NP-complete, i.e., all other problems of NP can be reduced in

polynomial time to Sat. This subset is representative for the hardness of all problems

in NP and is called NP-complete. A subsequent paper by Richard Karp [23] points

5

Chapter 1 Introduction

&≥ 1
≥ 1

x 1x 2x 3x 4 1
1 y

(a)

x1 x2 x3 x4 x1 x2 x3 x4

solution 1 false true false false low high low low
solution 2 true true false false high high low low
solution 3 true true false true high low high high
solution 4 true true true true high high high high

(b)

Figure 1.3: (a) Formula (1.1) represented as a circuit, (b) ϕ’s satisfying assignments on the
left part of the table, on the right hand side we can see the assignment for the circuit’s input
pins.

out the true wealth of NP-complete problems, and therefore the significance of NP-

completeness.

Theorem 1 (Cook, Levin). (without proof) Sat is NP-complete.

That was a milestone because due to the existence of a NP-complete problem the

proof of NP-completeness for other problems become much easier. Other proofs of

NP-completeness use a Karp reduction from an already known NP-complete problem

to the relevant one.

That means that solving Sat allows to solve any other problem in NP by first reducing

the problem to Sat, then solving the Sat instance, and finally by back-transforming

the found assignment (if any) to the original problem domain. That means we cannot

expect that there is a poly-time solver for Sat: if such a solver existed, P = NP

would hold. On the other hand, Sat-solvers work amazingly well in many practically

relevant cases.

The efficiency of Sat-solvers has two main reasons, namely the use of highly optimized

algorithms, in many cases a refinement of the Davis-Putnam [12] algorithm—the

Davis-Putnam-Longmann-Loveland (DPLL) algorithm [11]—and the structure of real

6

1.1 Motivation

world problems. In this thesis we elaborate the question if we can use Sat-solvers to

solve general NP-complete problems efficiently.

1.1 Motivation

As already mentioned in the introduction, Sat-solvers work pretty well even for large

instances. A lot of work and research has been invested during the last decades to

achieve that performance. Sat-solvers are so efficient for historical reasons, too—Sat

was the first problem that has been shown to be NP-complete [9, 25]. Hence Sat

plays a fundamental role in computational complexity and was studied intensively by

many researchers with varying backgrounds.

The idea of reducing NP-complete problems to Sat and then using efficient Sat-

solvers to search for solutions has a major advantage compared to other approaches:

this is a totally generic way to solve problems in NP.

1.2 Outline

This work is organized as follows. We start with a motivating example to introduce

the complexity class NP. Beside of other definitions we state the probably most

seminal theorem of complexity theory: Cook’s Theorem [9, 25]. It states, that Sat,

i.e., the satisfiability problem for Boolean formulas, is NP-complete. Sat again is

the problem at the center of this thesis.

Next is a brief description of the experimental environment, in Chapter 2. That is, a

short overview of the used Sat-solver and used hardware. Finally, we introduce file

formats used to encode the problems discussed in this thesis.

The aim of Chapter 3 is to present a Sat-based way to find chromatic numbers of

hard graph instances. New results are presented.

In Chapter 4 we concentrate ours attention to bioinformatics questions. We consider

different standpoints of RNA folding problems.

As another problem which allows the use of Sat-solvers, we focus on Ramsey Num-

bers, which is a number theoretical problem, in Chapter 5. We present an approach

to determine bounds for even large Ramsey Numbers.

Finally, we conclude and present future directions in Chapter 6.

7

Chapter 2

Experimental Setup and Format

Definitions

2.1 Sat-Solver

In this thesis, most computatios are made using the Sat-solver minisat. minisat is a

minial Sat-solver developed by Niklas Eén and Niklas Sörensson. The term minimal

refers to its source code size. Without comments it is unter 600 lines of C++ code and

thus is one of the shortest implementations for a state-of-the-art Sat-solver. minisat

is an advancement of satzoo and satnik which both are developed by the same

authors as minisat.

minisat as most other Sat-solver is based in the DPLL [12, 11] algorithm and uses

popular techniques like conflict-driven backtracking [27] and boolean constraint prop-

agation (BCP) using watched literals [30]. Some of the fundamental techniques Sat-

solvers use in general, are inspired by already existing solvers. Thus, minisat uses

mostly the propagation procedure of chaff [30], the learnig procedure of grasp [28]

and the activity heuristic of satzoo [15] which is a variant of the dynamic variable

orderung based on activity first introduced in [30].

limmat [2, 4] and compsat [4] as two more Sat-solvers used in this thesis were devel-

oped at the formal methode group of Armin Biere at ETH Zürich. limmat follows in

its implementation the ideas of grasp and chaff. Although limmat won some compe-

titions during the SAT’02 Solver competition, its plain reasoning speed is much slower

than the one of chaff, arguable based in its bulkyer data structures. On this account,

compsat as the succesor of limmat has been designed to have a compact memory lay-

out. Further improvements affect a new technique described in [6] to decompose Sat

problems into connected components. We have to mention, that compsat only found

one component for the problem instances used in this thesis.

In our experiments, limmat proved to be the slowest Sat-solver. compsat and minisat

displayed an almost identical run-time behaviour. zChaff is in most cases fast and

8

2.2 Format Definitions

can be distinguished to be the robustest solver, i.e., did not crash during our experi-

ments.

2.2 Format Definitions

2.2.1 DIMACS Format for CNF-Formula Encoding

A Satisfiability problem in conjunctive normal form consists of a conjunction of

clauses, where a clause is a disjunction of literals, i.e., a variable or its negation, see

also Definition 10 on page 5. If we let xi represent variables that can only assume the

values true or false, then a sample formula in CNF would be

(x1 ∨ ¬x3 ∨ x4) ∧ (x2) ∧ (x1 ∨ ¬x3) (2.1)

where ∨ represents the Boolean or connective, ∧ represents and and ¬xi is the nega-

tion of xi. At this point, we refer to Example 1 given in the introduction. The Sat

problem is to determine if such a formula is satisfiable, i.e., whether there exists an

assignment such that the formula evaluates to true under this assignment.

To represent an instance in the same way, we will create an ASCII file consisting of

two major parts that cover all the information necessary to specify the problem.

Preamble The Preamble contains information about the input instance which is or-

ganized in lines. Each of these lines begins with a single character specifying

the line type followed by a space. The following types can be distinguished:

Comments Comment lines are ignored by programs. They appear at the begin-

ning of the preamble and are intended to give human-readable information

about the file. Each comment line begins with a c.

c This is a comment line.

Problem line In each ASCII file, there is exactly one problem line. Problem

descriptions have the following format.

p FORMAT VARIABLES CLAUSES

The lowercase p marks the line as a problem line. In the FORMAT field we

can specify the type as which programs should interpret the file. In the

CNF case we have to write cnf. The VARIABLES field contains the integer

value specifying the number of variables in the instance. With CLAUSES we

have to define the number of clauses of the input instance.

9

Chapter 2 Experimental Setup and Format Definitions

Clauses Clauses appear immediately after the problem line. Variables are numbered

from 1 to VARIABLES whereas it is not necessary that each number appears

in the instance. Numbers are separated by spaces, tabs or newlines. Positive

variables i are represented just by writing i and negative variables ¬i by writing

-i. Each clause is terminated by 0.

For the example given in Formula (2.1) a possible input file would be

c Example of an CNF format file

c

p cnf

1 -3 4 0

2 0

1 -3 0

2.2.2 PBO and LP Format for (Pseudo) Boolean Equations Encoding

In this section, we want to give a short review on the ASCII file format that is

used for coding LP problem data1. LP is short for Linear Programming and

intends to find an extreme point (i.e. minimum or maximum) of a linear optimization

function subject to a set of linear inequalities. The format used in this thesis is the

so-called CPLEX LP format, that was developed in the end of the 1980’s by the

CPLEX Optimization, Inc., which has been acquired by the ILOG, Inc. in 1997. It is

intended to formulate Integer Programming (IP) and Linear Programming

(LP) problems. This line-oriented file format is ordered in general like:

Objective function definition This defines the function which should either be mini-

mized or maximized. The prescribed form is:

{

minimize

maximize

}

f : s c x s c x . . . s c x

where f is the name of the objective function, s is a sign (+ or -), c is a numeric

constant that denotes an objective coefficient and x is a variable name.

Constraints section The constraints section defines a system of equalities and/or in-

equalities. The required form is as follows:

1For detailed information on the CPLEX LP format, have a look at
http://plato.asu.edu/cplex_lp.pdf (visited on 2006-06-21)

10

2.2 Format Definitions

subject to

constraint1

constraint2
...

constraintm

where constrainti, 1 ≤ i ≤ m is a constraint definition of the form:

r : s c x s c x . . . s c x

<=

>=

=

b

which is defined in the same way as before, but with the addition that r denotes

the name of the specified constraint and b is the right-hand side.

Bounds section In this optional section, we can define bounds for variables. If no such

section exists, all variables are assumed to be non-negative. The compulsory

form is:

bounds

bound1

bound2

...

boundk

where boundj , 1 ≤ j ≤ k is a bound definition where the following intuitive six

forms are allowed: x >= l, l <= x, x <= u, l <= x <= u, x = t, x free.

General Integer and Binary section This section is intended to specify some variables

as general integer or binary. The form has to be like:

{

general

binary

}

x1

x2

...

xq

11

Chapter 2 Experimental Setup and Format Definitions

where xl, 1 ≤ l ≤ q are symbolic variable names. Variables in the general integer

section are assumed to be general integer variables. If they appear in the binary

section, they are assumed to be binary, i.e, they have 0 as lower bound and 1

as upper bound.

End keyword The End keyword terminates the LP file.

The following example shows a small LP format file:

Minimize F: -x1 +3 x2 -5 x3

Subject to:

const1: x1 +2 x2 >= 5

const2: x3 -2 x2 <= 1

Bounds

1 <= x1 <= 3

x2 free

x3 free

Integer

x2

x3

End

2.3 Used Hardware Configuration

For our experiments and benchmarks, we use more or less standard desktop machines.

Although some computations are made on computer clusters, only one processor can

be used at the same time. Table 2.1 on the facing page summarizes the available

machines and their configurations. Some machines have multiprocessor configuration,

but all Sat-solvers are single-threaded and thus only one processor can be used for a

single problem instance.

12

2.3
U

sed
H

ard
w
are

C
on

fi
gu

ration

alias processor
CPU speed

GHz
memory

GB
cache
kB

OS kernel

iMac Intel Core Duo 2 2 2048 OS X 10.4.7 Darwin 8.7.1
wall AMD Athlon XP 2600+ 1.9 1 512 GNU/Linux 2.6.16-2-k7
roof AMD Athlon XP 2600+ 1.9 1 512 GNU/Linux 2.6.16-2-k7
hand Intel Pentium 4 CPU 3.20GHz 3.2 3 512 GNU/Linux 2.6.16-2-686-smp
head Intel Pentium 4 CPU 3.20GHz 3.2 3 512 GNU/Linux 2.6.15-1-686-smp
mind Intel Pentium 4 CPU 3.20GHz 2.8 3 1024 GNU/Linux 2.6.15-1-686-smp
king AMD Athlon XP 2400+ 1.99 1 256 GNU/Linux 2.6.16-2-k7
guru AMD Athlon XP 2400+ 1.99 1 256 GNU/Linux 2.6.16-2-k7
lord AMD Athlon XP 2400+ 1.99 1 256 GNU/Linux 2.6.16-2-k7
lady AMD Athlon XP 2400+ 1.99 1 256 GNU/Linux 2.6.16-2-k7
opt01 AMD Opteron 850 2.4 8 1024 GNU/Linux 2.6.5-7.147-smp
opt33 AMD Opteron 850 2.4 8 1024 GNU/Linux 2.6.5-7.147-smp

rayhalle1 Sun-Fire-880 UltraSPARC III (8x) 0.9 16 8192 SunOS 5.10 118833-20
condor Sun-Fire-880 UltraSPARC III (8x) 0.9 32 8192 SunOS 5.9 117171-10

Table 2.1: Used hardware configuration

1
3

Chapter 3

Chromatic Numbers

3.1 Introduction

Solving NP-complete decision problems is the natural application of Sat-solvers:

such problems require a yes/no answer on their respective query. In the yes-case, the

solver also delivers a satisfying assignment. Therefore, by formulating optimization

problems as a series of decision problems, it is possible to solve optimization problems

by employing Sat-solvers. In the following, we are going to use the MinColoring

problem as optimization problem.

Definition 11 (MinColoring problem).

Instance: Given a graph G.

Query: Find the minimum number of colors with which G can be colored.

This value is called the chromatic number χ. One way to compute χ, is it check

all possible colorings exhaustively and to search for the one with the least number

of colors. To check all possible bounds is of course the most naive way—we will use

binary search to optimize the search procedure. So better approaches deserve study.

3.2 Reduction to Sat

In this section, we are going to present a reduction from the k-Coloring problem

to Sat. By solving a corresponding Sat formula, we find out whether a given graph

instance is k-colorable or not. As we will see in Section 3.3 on page 16, we are using

a binary search approach to search for the chromatic number. In this way, we are

able to find the chromatic number χ of a graph, i.e., the minimum number of colors

needed to color the graph.

14

3.2 Reduction to Sat

The following reduction transforms any given instance consisting of a graph G =

(V,E) and an integer k, i.e. 〈G, k〉, into a corresponding CNF formula, i.e. k-

Coloring ≤p Sat. The resulting formula ψ has to ensure some properties:

First of all, each node of the graph has to be colored by one of the k colors. We

introduce variables vk
i with the following meaning: vk

i is assigned true if and only if

vertex i is colored with color k. To enforce that each vertex is assigned a color, we

introduce formula ϕ1. This is a conjunction of the clauses (v1
i ∨ v2

i ∨ . . .∨ vk
i) for each

vertex vi ∈ V , 1 ≤ i ≤ |V |.

ϕ1 ≡
∧

vi∈V

(

v1
i ∨ v2

i ∨ . . . ∨ vk
i

)

(3.1)

The second step is to ensure, that no two adjacent vertices vi, vj have the same

coloring. Let ϕ2 be the conjunction of the formula ¬(v1
i ∧v1

j)∧¬(v2
i ∧v2

j)∧. . .∧¬(vk
i ∧vk

j)

for each edge (vi, vj) in the graph G. By applying DeMorgan’s law we get the following

formula in CNF:

ϕ2 ≡
∧

(vi,vj)∈E

(¬v1
i ∨ ¬v1

j) ∧ (¬v2
i ∨ ¬v2

j) ∧ . . . ∧ (¬vk
i ∨ ¬vk

j) (3.2)

The resulting formula ψ in CNF is:

ψ ≡ ϕ1 ∧ ϕ2 (3.3)

Graph G is k-colorable if and only if the formula ψ is satisfiable.

3.2.1 Mapping from variables to integers and back

In the Formulae (3.1) and (3.2) we use variables vl
i, 1 ≤ i ≤ |V |, l ∈ {1, . . . , k}

specifying the color of each vertex of G. The DIMACS format specifies, that variables

have to be expressed as integer values. Therefore, it is necessary to encode variables

as integer values, which is done in the following way. Let us consider Table 3.1 on

the following page: columns represent the k possible colors and the rows encode the

vertex index. Let

f : {vl
i | i ∈ {1, . . . |V |} is the vertex index and l ∈ {1, . . . , k} is a color} −→ N+

be the mapping function:

f(vl
i) = (i− 1) · k + l (3.4)

As soon as a DIMACS compatible Sat-solver returns a satisfying result, our next

task is the interpretation of this result. For that, we use the inverse mapping to obtain

a solution for the original problem. We need two such functions, since we encoded

15

Chapter 3 Chromatic Numbers

1 2 . . . k

1 1 2 . . . k

2 k + 1 k + 2 . . . 2 · k
...
i (i− 1) · k + 1 (i− 1) · k + 2 . . . i · k

Table 3.1: Mapping from colored vertices to integer values.

two distinct values into a single variable, namely the vertex index and the possible

coloring: the first one, π, identifies the vertex index which is represented by variable

vl
i and the second one, β, determines the coloring for variable vl

i.

π(i, k) =

⌈

i

k

⌉

(3.5)

β(i, k) =

{

i mod k if i (modk) 6= 0

k else.
(3.6)

With the introduced method it is possible to use Sat-solvers as a decision routine

to check whether a graph is k-colorable or not. This observation will be used in the

following sections. There, we are going to enhance this idea to deal with solving opti-

mization problems. As consequential continuation, we are using the MinColoring

problem.

3.3 MinColoring as Optimization Problem

It is obvious, that if a graph G is not k-colorable then it is not l-colorable for 1 ≤
l ≤ k − 1. A k-colorable graph is naturally j-colorable for k + 1 ≤ j ≤ |V |. We use

these two observations to develop an algorithm to find a MinColoring which uses

a binary-search approach.

3.3.1 Binary Search Algorithm

The idea of the binary search approach is the following: find a pivot element p, for

example by taking the middle of the range of possible colorings: p = ⌊ |V |
2 ⌋. If G is

p-colorable, then apply this procedure recursively to the range [1; p − 1], otherwise

continue search in the interval [p+ 1; |V |]. In this vain, χ(G) will be more and more

encircled until the procedure terminates and χ(G) has been found. On Figure 3.1 on

page 18, we can see for the graph instance queen8_8 1 the steps of the binary search

1All graph instances are taken from [40, 31]

16

3.4 Experimental Results

Algorithm 1 MinColorSearch

Require: UpperBound = LastKnownColoring← |V |
1: call Search(1, |V |, |V |);

2: procedure Search(LowerBound, UpperBound, LastKnownColoring)
3: if (LowerBound = UpperBound) then

4: if (Colorable(LowerBound)) then

5: return LowerBound;
6: else

7: return LastKnownColoring;
8: end if

9: end if

10: m←
⌊

LowerBound+UpperBound
2

⌋

;

11: if (Colorable(m)) then

12: Search(LowerBound, m− 1, m);
13: else

14: Search(m + 1, UpperBound, LastKnownColoring);
15: end if

16: end procedure

algorithm. A solid arc going from one state to the next state, indicates that the graph

can be colored by the color written in the source state. Dashed arcs, on the other hand,

indicate that the appropriate graph cannot be colored by the source state label. E.g.,

the given graph is not 6-colorable, thus we have a dashed arc going from “6” to “9”. We

can see a red dashed arc going from state “8” to state “9”. This tells us that χ(G) must

be 9, as G is not 8-colorable but 9-colorable. Table 3.2 on page 19 shows for queen8_8

the time needed to check whether a Sat-formula encoding an instance 〈queen8_8, k〉
is satisfiable or not. The measurements are made using different Sat-solvers on hand.

For a detailed description of the machine configurations, cf. Section 2.3 on page 12.

The closer the algorithm encircles the chromatic number χ, the longer the run-time is

to check whether the graph can be colored with the currently used number of colors.

To illustrate the growth in a reasonable way, we use a logarithmic scale on the y-axis.

The result can be seen in Figure 3.2 on the following page.

3.4 Experimental Results

In the following, we summarize our experiments on determining the chromatic number

of hard graph instances. All computations are made with the above-named binary

search algorithm. Most of them are taken from the Second DIMACS Implementation

Challenge in 1992-1993. In addition to Michael Trick’s graph benchmark instances

17

Chapter 3 Chromatic Numbers

9 6 4 8 2 4 1 2 69 78
S A TU N S A T

Figure 3.1: Example to illustrate in what way the chromatic number χ(G) can be found
using a binary search approach. The used example instance is queen8_8.

Figure 3.2: Run-time of different Sat-solver to find χ(queen8_8)

18

3.4 Experimental Results

status colors minisat [sec] compsat [sec] zChaff [sec] limmat [sec]

SAT 96 0.036 0.06 0.008 0.15
SAT 48 0.016 0.02 0.004 0.07
SAT 24 0.008 0.01 0.004 0.04
SAT 12 0.008 0.01 0.044 0.21
SAT 9 23.282 24.55 1042.660 ∞

UNSAT 8 segfault segfault 47385.2 ∞
UNSAT 7 0.136 0.03 0.148 0.31
UNSAT 6 0.012 0.01 0.024 0.08

Table 3.2: Run-times needed to check whether queen8_8 can be colored with the given
number of colors. In this test, the following Sat-solvers were used: minisat [15], compsat [4,
6], zChaff [26] and limmat [2, 4]. ∞ indicates, that computations were manually terminated
due to too long run-times.

[40], we also use instances from ThanhVu H. Nguyen [31] which coincide in large parts,

whereas the latter compilation seems to be more up-to-date.

Table 3.3 summarizes the experimental results. Apart from graph details like number

of vertices and edges, the density and the determined chromatic number χ, we also

state the CPU-time needed on the specified machine always using minisat as Sat-

solver.

Table 3.3: Chromatic numbers for hard graph instances

graph V E density χ CPU [sec] machine

le450_5a 450 5714 6 % 5 622.767341 king

le450_5c 450 9803 10 % 5 5.436327 king

le450_5d 450 9757 10 % 5 8.280522 king

anna 138 493 5 % 11 78.740903 guru

david 87 406 11 % 11 66.115174 guru

huck 74 301 11 % 11 125.672010 guru

jean 80 254 8 % 10 5.013015 guru

queen5_5 25 160 51 % 5 0.024000 guru

queen6_6 36 290 45 % 7 1.868116 guru

queen7_7 49 476 40 % 7 0.060001 guru

myciel3 11 20 33 % 4 0.006609 iMac

myciel4 23 71 27 % 5 0.059093 iMac

myciel5 47 236 21 % 6 256.655792 iMac

mugg88_1 88 146 4 % 4 0.052001 king

mugg88_25 88 146 4 % 4 0.044000 king

continued on the next page

19

Chapter 3 Chromatic Numbers

graph V E density χ CPU [sec] machine

mugg100_1 100 166 3 % 4 0.056001 king

mugg100_25 100 166 3 % 4 0.052000 king

ash331GPIA 662 4185 2 % 4 4.504785 iMac

ash608GPIA 1216 7844 1 % 4 15.742970 iMac

abb313GPIA 1557 53356 4 % 9 52129.585358 iMac

will199GPIA 701 6772 3 % 7 6.408402 hand

(*) 1-Insertions_4 67 232 10 % 5 238.114507 iMac

2-Insertions_3 37 72 11 % 4 0.026668 iMac

3-Insertions_3 56 110 14 % 4 0.188895 iMac

(*) 4-Insertions_3 79 156 5 % 4 1.527256 iMac

1-FullIns_3 30 100 23 % 4 0.013447 iMac

1-FullIns_4 93 593 14 % 5 0.089279 iMac

1-FullIns_5 282 3247 8 % 6 12.347805 iMac

2-FullIns_3 52 201 15 % 5 0.024153 iMac

2-FullIns_4 212 1621 7 % 6 0.523934 iMac

3-FullIns_3 80 346 11 % 6 0.054105 iMac

3-FullIns_4 405 3524 4 % 7 4.841855 iMac

3-FullIns_5 2030 33751 2 % 8 35739.492569 iMac

4-FullIns_3 114 541 8 % 7 0.147497 iMac

4-FullIns_4 690 6650 3 % 8 90.528823 iMac

5-FullIns_3 154 792 7 % 8 0.772256 iMac

5-FullIns_4 1085 11395 2 % 9 1620.407509 iMac

DSJC125.1 125 1472 19 % 5 0.304403 king

Note, results for marked instances (*) differ from the results stated in [31, 40]. Further

information on the run-times of the steps of the binary search procedure are provided

in Appendix A on page 61.

Table 3.4 gives bounds for the chromatic number. For these graphs, the minimal

coloring has not been found yet, but the computations are still running.

Table 3.4: Bounds for chromatic numbers for hard graph instances

graph V E density χ ∈ [. . .] CPU [sec] machine

1-Insertions_5 202 1227 6 % [4;6] N/A iMac

1-Insertions_6 607 6337 3 % [1;10] N/A lord

2-Insertions_4 149 541 5 % [4;5] N/A head

2-Insertions_5 597 3936 2 % [4;6] N/A iMac

continued on the next page

20

3.4 Experimental Results

graph V E density χ ∈ [. . .] CPU [sec] machine

3-Insertions_4 281 1046 3 % [4;5] N/A mind

3-Insertions_5 1406 9695 1 % [4;6] N/A wall

4-Insertions_4 475 1795 2 % [4;5] N/A roof

4-FullIns_5 4146 77305 1 % [8;9] N/A duke

DSJC125.5 125 7782 99 % [9;12] N/A bath

le450_25d 450 17425 17 % [1;29] N/A fort

queen10_10 100 2940 59 % [10;13] N/A king+opt33

latin_square 900 307350 76 % [10;900] N/A condor

To conclude this Chapter, we give a last survey of our new results that—as far as we

know—have not been published yet.

Table 3.5: New, not published results for chromatic numbers

graph V E density χ ∈ [. . .] CPU [sec] machine

DSJC125.5 125 7782 99 % [9;12] N/A bath

abb313GPIA 1557 53356 4 % [9;9] 52129.585358 iMac

will199GPIA 701 6772 3 % [7;7] 6.408402 hand

4-FullIns_5 4146 77305 1 % [8;9] N/A duke

5-FullIns_4 1085 11395 2 % [9;9] 1620.407509 iMac

latin_square 900 307350 76 % [10;900] N/A condor

21

Chapter 4

RNA Problems

Ribonucleic acid (RNA) plays a central role within living cells performing a variety

of tasks. The tree-dimensional structure of polymers determines their functions. The

computation of the secondary structure is used as a simplified model of the real

nucleic acid structure. In the following, we regard a secondary structure as a set of

base pairs.

Nucleic acid molecules may have alternative non-native conformations, i.e., alterna-

tive spatial structures with high energy barriers separating them. These meta-stable

conformations can fulfill functions completely different to those of the native struc-

ture. This important feature is used in nature to implement molecular switches [1].

In the following we introduce a method to calculate RNA sequences that are compat-

ible with any number of secondary structures.

4.1 Introduction

A secondary structure is defined as a set Ω of base pairs. We assume that the sequence

positions are numbered consecutively from 1 to n. In the example (a) on Figure 4.2

on page 24 we have

Ω = {(1, 20), (2, 19), (3, 18), (6, 16), (7, 15), (8, 14), (9, 13)}

as secondary structure. Base pairs in secondary structure have to satisfy two con-

straints:

1. A base may participate in at most one base pair.

2. Base pairs may not cross, i.e., we cannot have two base pairs (i, j) and (k, l)

with i < k < j < l. This condition excludes so called pseudo-knots.

22

4.1 Introduction

5

10

15

201

In this case we have:
i = 4, j = 11, k = 8 and l = 16
which is not allowed.

Figure 4.1: Example for a pseudo-knot configuration.

The base pairing rule allows only 6 types of base pairs out of 16 possible combinations.

These 6 pairs consist out of four Watson-Crick pairs [45] AU, UA, GC, CG and the two

so-called “wobble” pairs GU, UG. In the following, we use the alphabet A of nucleic

acids and pairing rules B. The succeeding considerations can be adapted to arbitrary

alphabets and general pairing rules. For the biophysical alphabet we have:

A = {A, G, C, U} B = {AU, UA, CG, GC, GU, UG} (4.1)

One way to represent RNA secondary structures is the so-called “bracket notation” .

Hereby, a secondary structure is composed of symbols “(”, “)” and “.” representing

nucleotides that are paired with a partner towards the 3’ end, towards the 5’ end,

and that are unpaired, respectively.

The basic module of ribonucleic acid are the nucleotides which consist of a ribose

molecule (sugar), a hydroxyl and a phosphate group. Each of the five C-atoms (car-

bon) of the ribose is numbered from 1 to 5, referred to as 1’ to 5’. If the hydroxyl

group attached to the 3’ carbon of one base attaches to the phosphate group attached

to the 5’ carbon of the next base, the polarity (orientation) of this strand is 5’-3’.

Pairs of matching parentheses therefore indicate base pairs, whereas a dot indicates

that a base is unpaired. In Figure 4.2 on the next page we see among the bracket-dot

representation of RNA secondary structure, three other forms of representation: at

the circular representation (a), we organize the nucleotides in form of a circle and

draw lines between them in the case of a base pairing. For large structures the so-

called mountain representation (c) is very handy. A secondary structure is plotted in

a two dimensional graph, in which the x-coordinate is the position k of a base in the

sequence and the y-coordinate the number m(k) of base pairs that enclose nucleotide

k. In the following, we will use the circular representation which is an undirected

graph G = (V,E). V is the set of numbered base positions (vertices) and E is the set

of edges indicated by red lines. Each edge e = (i, j), e ∈ E symbolizes that we have

a base pairing between the bases i and j.

Definition 12 (RNA folding problem). The RNA folding problem is to find a secondary

structure Ω of a given RNA sequence σ.

23

Chapter 4 RNA Problems

5

10

15

201

(a) (b) (c)

(((. . ((((. . .)))) .)))

G A C U C G C A G G C U U U G U U G U C

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 4.2: Different representations of secondary structure. (a) Circular plot, (b) conven-
tional secondary structure graph and (c) mountain plot. Below, the structure is shown in the
so-called “bracket notation”.

It has been shown in [48, 47, 29] that this problem can be solved in an efficient way by

using dynamic programming. On the other hand, the inverse RNA folding problem

is defined as follows:

Definition 13 (Inverse RNA folding problem). The inverse RNA folding problem is to

find a base sequence σ which folds into a prescribed secondary structure Ω.

In the following, we will turn our attention to the inverse RNA folding problem and

develop a way to accomplish the problem with Sat- and LP techniques.

4.2 Reduction to SAT

In this section, we are going to present a reduction of the inverse RNA folding problem

to Sat. This process will not use a single step, in fact we will first describe the problem

from a graph theoretic point of view. Afterwards we give the actual translation into

a Satisfiability problem.

The idea of solving the inverse RNA folding problem is as follows. As mentioned in

Section 4.1 there are different ways to represent RNA secondary structures. In par-

ticular, we are interested in the circular representation which resembles the problem

of coloring a graph.

Definition 14 (Graph). An undirected graph G is the ordered pair (V,E), where V is a

non-empty set of vertices and E is a set of 2-element subsets of V . A pair {u, v} ∈ E
is called an edge.

24

4.2 Reduction to SAT

Definition 15 (k-Coloring [18]). Given a graph G = (V,E) and a positive integer

k ≤ |V |. The question is whether G is k-colorable, i.e., does there exist a function

f : V → {1, 2, . . . , k} such that f(u) 6= f(v) whenever {u, v} ∈ E?

In our case, we are looking for a 4-Coloring due to the four bases A, G, C and U. So

the question is, whether we can find a base-assignment that is compatible to a given

secondary structure. In this context, compatible means that only the 6 types of base

pairs (AU, UA, CG, GC, GU and UG) occur.

Our new approach uses at this point the capability of Sat-solvers instead of using

coloring heuristics or other methods of bio-informatics. To be able to use these tools,

we have to translate the Coloring problem into a formula in conjunctive normal

form (CNF, for short) which serves as input.

Hence we can formulate the reduction (transformation) from the inverse RNA folding

problem to Sat in two steps: in the first step, we transform an instance of the inverse

RNA folding problem into an instance of the Coloring problem, then in the second

step, we translate the constraint that restricts all possible pairings to the set of allowed

pairings.

4.2.1 Interpretation as Coloring Problem

In the following, each consecutive position in the RNA strand corresponds to a vertex

in the circular representation of the secondary structure. The first base position in

the RNA strand corresponds to vertex v1, the second with v2, and so on. Each base-

position vi ∈ V is either colored by A, G, C or U. We introduce the variables vB
i ,

B ∈ {A, G, C, U}, where vB
i means that on vertex i we have nucleotide B.

∧

vi∈V

(

vA
i ∨ vG

i ∨ vC
i ∨ vU

i

)

(4.2)

Formula (4.2) guarantees, that each position is occupied by at least one of the bases.

But it is possible that a single position is assigned multiple bases. To exclude this

case, we have to add the following clauses which prohibit that a position is assigned

to more than one base simultaneously.

∧

vi∈V

¬
(

vA
i ∧ vG

i

)

∧ ¬
(

vA
i ∧ vC

i

)

∧ ¬
(

vA
i ∧ vU

i

)

∧

¬
(

vG
i ∧ vC

i

)

∧ ¬
(

vG
i ∧ vU

i

)

∧ ¬
(

vC
i ∧ vU

i

)

(4.3)

25

Chapter 4 RNA Problems

The following formula ensures that no two paired base-positions (vj, vj) ∈ E are

assigned the same base.

∧

(vi,vj)∈E

(

¬vA
i ∨ ¬vA

j

)

∧
(

¬vG
i ∨ ¬vG

j

)

∧
(

¬vC
i ∨ ¬vC

j

)

∧
(

¬vU
i ∨ ¬vU

j

)

(4.4)

4.2.2 Biological Constraints

In addition, we have to ensure that only allowed base-pairings B occur:

A = {A, G, C, U} B = {AU, UA, CG, GC, GU, UG}

This formula restricts all possible pairings to only the allowed ones.

∧

(vi,vj)∈E

(

vA
i → vU

j

)

∧
(

vG
i →

(

vC
j ∨ vU

j

))

∧
(

vC
i → vG

j

)

∧
(

vU
i →

(

vA
j ∨ vG

j

))

(4.5)

Note that Formula (4.5) is not in CNF, yet. But it can easily be rewritten in CNF

using De Morgan’s laws and rewriting rules from Boolean algebra. The conjunction of

the four stated formulae is the result of the reduction from an inverse RNA instance

to a Sat instance ϕ. Given a RNA secondary structure, the CNF formula ϕ is

satisfiable if and only if there exists at least one base assignment that fulfills the base-

pairing constraints. So far, we solve the inverse RNA folding problem which means

that we have given exactly one RNA secondary structure and are looking for a base

assignment.

4.2.3 Mapping from Variables to Integers and back

In the Formulae (4.2) to (4.5) we use variables specifying the base that a specific

RNA position is assigned to. The problem at this point is, that the DIMACS CNF

encoding format expects as input only integers. Thus, we use a transformation that

maps possible base assignments represented by cbi , 1 ≤ i ≤ |Ω|, b ∈ A to integers. Let

us consider Table 4.1 on the facing page: columns represent the four bases and the

rows encode the base position. Note that for arbitrary base alphabets this procedure

has to be adopted. We used the standard alphabet A for RNA for the example shown

in the table. Let

f : {vb
i | i ∈ N+ is the base position and b ∈ A is the base assignment} −→ N+

be the mapping function:

f(vb
i) = (i− 1) · |A|+ b (4.6)

where A corresponds to 1, G to 2, C to 3 and U to 4. As soon as a DIMACS compatible

26

4.2 Reduction to SAT

A G C U

1 1 2 . . . |A| = k = 4
2 k + 1 k + 2 . . . 2 · k
...
i (i− 1) · k + 1 (i− 1) · k + 2 . . . i · k

Table 4.1: Mapping from coded based positions to integer values.

Sat-solver returns a satisfying result our next task is the interpretation of this result.

Hence, the mapping which has just been introduced has to be inverted in order to

obtain a solution for the original problem. We need two such functions, since we

encoded two distinct values into a single Boolean variable, namely the position and a

possible base assignment: the first one, π, identifies the position which is represented

by variable vb
i and the second one, β, determines the base assignment for a variable

vb
i .

π(i, |A|) =

⌈

i

|A|

⌉

(4.7)

β(i, |A|) =

{

i mod |A| if i (mod|A|) 6= 0

|A| else.
(4.8)

Once the Sat-solver’s result has been interpreted, we have one of possibly many valid

assignments. The solution at hand is chosen non-deterministically in the sense that

different Sat-solvers may traverse the search space in different ways or even with

some probabilistic methods. Thus, we cannot give any guarantee on the quality of

the result with respect to metrics that may be interesting for biologists or chemists.

In Section 4.4 on page 31 we get back to this consideration and introduce a simplified

energy model which addresses the quality of a result namely for one RNA secondary

structure. But let us come back to an example which illustrates the necessary steps

to transfer a secondary structure to a valid base assignment.

Example 2. Let us assume that the secondary structure for the yeast tRNAPhe molecule
is given and we ask for a compatible base assignment, i.e., only base pairs from B
appear. To simplify matters, we choose a relatively small secondary structure, but
this works in the same manner for large secondary structures.

(((((((..((((........)))).(((((.......))))).....(((((.......))))))))))))....

By parsing this input string conveniently we get a corresponding circular representa-

tion depicted on image (a) of Figure 4.3 on the following page. The idea of the parsing

algorithm is outlined in Algorithm 2 on page 29. The different types of representation

can be obtained from Figure 4.3 on the following page. In order to obtain a formula

27

Chapter 4 RNA Problems

5

10

15

20

25

30

35 40

45

50

55

60

65

70

751

(a)

G
C
G
G
A
U
UU

A
GCUC

AGU
U
G
G G A

G A G C
G

C
C
A

G
AC

U
G

A A
G
A

U
C
U
G
GAGGU

C
C U G U G

U U C
G
A

UC
CACAG

A
A
U
U
C
G
C

A
C

CA

(b)

(c)

Figure 4.3: Example for yeast tRNAPhe: (a) shows the circular representation whereas (b)
displays the common representation for the secondary structure. On image (c) we can see a
3D representation of the sample structure. This image is ray-traced by PyMOL [13] using
the input file http://www.biosci.ki.se/groups/ljo/software/phe_trna.pse.gz (visited on July
1st)

which provides a basis for Sat-solvers, we have to apply Formulae (4.2) through (4.5)

to graph G. The resulting formula is listed in Appendix B.1 on page 76. After map-

ping the Sat-solver’s result back to integers we get the base assignment shown in the

second line of Figure 4.4 on the facing page. Note that * stands for arbitrary base

assignment because no constraints were made for unpaired base positions. This result

looks forced, but of course is a valid assignment using limmat [2]. The third line shows

the base assignment for the yeast tRNAPhe molecule as it occurs in nature. We can

indeed find alternative base assignments as displayed in the last line. For example, the

assignment shown in the second line is produced by limmat while the one of the third

line is a biologically relevant one [46]. This is deeply rooted in the matter of fact,

that limmat as the first used Sat-solver returns only one of possibly many results.

28

4.3 Molecular Switch

(((((((..((((........)))).(((((.......))))).....(((((.......))))))))))))....

UUUUUUU**UUUU********GGGG*UUUUU*******GGGGG*****UUUUU*******GGGGGGGGGGGG****

GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA

Figure 4.4: Result for yeast tRNAPhe: first line: Bracket notation for the secondary struc-
ture, second line: interpretation of the solver’s result, third line: alternative result.

But, as another example satzoo [16] finds way above 240.000 satisfying models for

the Sat-formula before interrupting further computations.

Algorithm 2 SecondaryStructureToCircularRepresentation

1: Input: Secondary structure Ω in bracket notation where n = |Ω|
2: Output: Graph G = (V,E) where each v ∈ V is a base position and each e ∈ E

represents an opening and closing bracket pair
3: for i ← 1 to n do

4: V ← V ∪ {i}
5: if Ω[i] = ’(’ then

6: push i

7: end if

8: if Ω[i] = ’)’ then

9: startV ertex← pop

10: endV ertex← i

11: E ← E ∪ {(startV ertex, endV ertex)}
12: end if

13: end for

14: return G

4.3 Molecular Switch

As mentioned above, RNA can fold into multiple non-native conformation, separated

by an energy barrier and hence acts as a molecular switch: we can change confor-

mation from one RNA secondary structure to another one just by increasing the

temperature a little bit or other external events such as binding of another molecule.

In the event of mutually exclusive alternatives where one corresponds to an active

and the other one to an in-active conformation of the transcript, this can be used to

switch between them and thus regulate gene expression. But note that each of the

alternative structures has the same original base assignment. We can consider this

problem for any number of secondary structures, however, currently no biological oc-

currence of an n-way switch for n > 2 is known. Interestingly, for any two secondary

structures there exist sequences that are compatible with both structures, i.e. that

29

Chapter 4 RNA Problems

5

10

15

201

(a)

5

10

15

201

(b)

5

10

15

201

(c)

Figure 4.5: Dependency graph Ψ. (a) Circle representation of secondary structure 1. (b)
Circle representation of secondary structure 2. (c) The dependency graph Ψ is constructed
by super-imposing the circle representation of the two structures. Pairings that appear in
both structures are colored blue. This example is according to [17].

can form both structures in principle [37]. To take account of this feature, we have

to adopt and expand the graph coloring approach, conveniently.

We have an edge in a circular representation of a secondary structure if and only if

the adjacent vertices form a base-pairing and thus must satisfy the base-pairing rules.

Hence, this circular representation can be seen as a set of constraints for a single

secondary structure’s base assignment.

Definition 16 (RNA Switch Problem). Given a set of RNA secondary structures Γ =

{Ω1,Ω2, . . . ,Ωn}. The question is whether there is a base assignment which is com-

patible to each Ωi ∈ Γ, 1 ≤ i ≤ n.

Now, a base assignment which should be compatible to each Ωi, therefore has to

comply all constraints of each single secondary structure. So it suggests itself to

construct a so-called dependency graph Ψ which results from super-imposing every

secondary structure graph.

We can solve the RNA switch problem for any number of secondary structures if

and only if we can find a valid coloring for the dependency graph Ψ = (VΨ, EΨ)

with VΨ = V1 = V2 = . . . = Vn where n is the number of secondary structures, and

EΨ =
⋃n

i=1Ei. If there exists such a coloring, then this assignment encodes a base-

assignment which is compatible with each given secondary structure Ωi in its circular

representation Gi = (Vi, Ei) for 1 ≤ i ≤ n.

Example 3. On the images (a) and (b) shown in Figure 4.5 we see two secondary

structure graphs. To simplifie matters, we only use two structures, but this can be

expanded to any number in this vein. For this new, super-imposed graph Ψ shown on

image (c) we have to perform the reduction as specified above. A satisfiable resulting

30

4.4 Energy Parameters

CG GC GU UG AU UA

CG −2.4 −3.3 −2.1 −1.4 −2.1 −2.1

GC −3.3 −3.4 −2.5 −1.5 −2.2 −2.4

GU −2.1 −2.5 1.3 −0.5 −1.4 −1.3
UG −1.4 −1.5 −0.5 0.3 −0.6 −1.0
AU −2.1 −2.2 −1.4 −0.6 −1.1 −0.9

UA −2.1 −2.4 −1.3 −1.0 −0.9 −1.3

Figure 4.6: Free energies for stacked pairs in kcal/mol. Note that both base pairs have to
be read in 5’-3’ direction.

formula means, that we can color the dependency graph with the four bases A, G, C

and U and therefore get a base-assignment that is compatible for each of the given

RNA secondary structures.

4.4 Energy Parameters

Now, we consider again just a single secondary structure. A secondary structure

corresponds not only to one conformation but also to a so-called ensemble of con-

formation compatible with a certain base pairing pattern. In the following, we use

a simplified version of the “loop-based” energy model. In [21, 46], the authors state,

that each secondary structure can be uniquely decomposed into loops, stacked base

pairs are treated as loops of zero size. We can visualize a base stacking as a rectangle

bordered by four bases. By twos opposing bases are paired, compare the right image

of Figure 4.6. Different kinds of loops can be distinguished, whereas, in our approach

we only use loops of size zero, i.e., stacked base pairs. The sum of all energy contribut-

ing loops (base stackings) is the secondary structure’s energy due to the additivity of

energy contributions. There are other approaches which use dynamic programming

to calculate the minimum free energy recursively [44].

On the right image of Figure 4.6 wee see an example of a stacking pair that has an

energy contribution of −2.4 kcal/mol [21]. The free energy of stacked pairs is listed

in the table on the left hand side. Emphasized cells correspond to the example. Note

that each base pair has to be read in 5’-3’ direction which means for our example that

we have to look up the corresponding energy value by reading a stacked base pair in

clock-wise direction indicated by the dashed arrow: G-C and then U-A. The table is

symmetric and thus can be used equivalently in the other direction.

In general, we find for a given secondary structure multiple compatible base assign-

ments. But most desirable is an assignment which has the least free energy. Let us

have a look at the following example.

31

Chapter 4 RNA Problems

Figure 4.7: Example secondary structure with highlighted base stackings and contributing
energies.

Example 4. Assume secondary structure (((.((.....))))) is given . A compatible

base assignment would be AUGACCUUAUUGGCGU. Figure 4.7 shows the structure.

In the example above the red colored base stackings sum up to an energy value of

-6.1 kcal/mol. The question is, whether this is the least free energy we can find for

this example. In order to give an answer we have to solve in principle an optimization

problem which would be in this case a minimization. This leads us directly to the

next section.

4.5 RNA and Linear Programming

In a similar fashion as described in Section 4, we can give a reduction from the inverse

RNA folding problem to Integer Programming (IP). In this section, we evaluate

the practical feasibility of this approach. IP is preferable to Sat, since optimization

problems can be formulated in a more straightforward way. In our case, we want to

minimize the free energy of the RNA molecule and thus have to solve an optimization

problem. In the following, we first introduce Integer Programming and then use

IP to search for optimal solutions for the inverse RNA folding problem.

4.5.1 Introduction

Optimization in general deals with finding minima or maxima of a function f over

a domain X. In our case, we are looking for the minimum free energy during the

32

4.5 RNA and Linear Programming

simplified version of the loop decomposition. Thus, we are doing a minimization.

Formally we can write a minimization problem as follows:

min f(x)

subject to x ∈ X

where f(x) is the objective function and x ∈ X is a constraint specifying the domain

of x.

A special case where only linear optimization functions as well as linear constraints

over the real numbers are allowed is referred to as a Linear optimization problem or

better known as Linear Programming.

Definition 17 (Linear Programming Problem).

Instance:

minimize
∑n

j=1 cjxj

subject to
∑n

j=1 aijxj ≤ bi, 1 ≤ i ≤ m

where the bi’s, cj ’s, and aij are fixed real constants, and xj’s are variables over

the real numbers.

Query: The problem is to find a vector of xj which satisfies
∑n

j=1 aijxj ≤ bi, 1 ≤ i ≤ m
and minimizes

∑n
j=1 cjxj.

We used as example in the definition minimization, but we could have written equiv-

alently maximization just as well, because both can be rewritten into each other.

Often, the problem is expressed in matrix form as follows:

minimize
[

c1 c2 · · · cn
]

·

x1

x2
...

xn

subject to

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

·

x1

x2
...

xn

≤

b1
b2
...

bm

or shorten:

minimize c
T
x

subject to Ax ≤ b , x ≥ 0

33

Chapter 4 RNA Problems

In 1947, Georg Dantzig introduced the so-called simplex algorithm [10] to solve Lin-

ear Programming problems. Either the simplex algorithm finds a solution within a

finite number of steps or it states the infeasibility of the problem. When requiring all

variables to be integers, we call the problem an Integer Programming (IP) problem.

Definition 18 (Integer Programming).

Instance:

minimize c
T
x

subject to Ax ≤ b , x ≥ 0

where the bi’s, cj ’s, and aij are fixed real constants, and xj’s are integer vari-

ables.

Query: The problem is to find the vector xj which satisfies Ax ≤ b,x ≥ 0 and mini-

mizes c
T
x.

A special case of an IP problem is the 0-1 Integer Programming problem which is

also known as Pseudo Boolean Optimization problem (PBO). Hereby, variables

are required to be either 0 or 1. In the following we are using the notation Pseudo

Boolean Optimization.

Definition 19 (Pseudo Boolean Optimization (PBO)).

Instance:

minimize c
T
x

subject to Ax ≤ b , x ≥ 0

where the bi’s, cj ’s, and aij are fixed real constants, xj ’s are integer variables,

which can either be 0 or 1.

Query: The problem is to find the vector xj which satisfies Ax ≤ b,x ≥ 0 and mini-

mizes c
T
x.

The complexity of LP and IP is different, although the problems appear to be quite

similar: for LP problems, a solution can be found in general within polynomial time

and in fact, LP is P-complete. Khachiyan’s ellipsoid method [24] was the first algo-

rithm which solved LP in polynomial time. A more recent algorithm by Narendra

Karmarkar seems to be much more promising in practice [22]. However, the simplex

algorithm is the standard algorithm for LP although it has exponential run-time in

the worst case.

However, IP as well as PBO are NP-complete [33]. As one of the most central

NP-complete problems, 0-1 Integer Programming was one of Richard Karp’s

34

4.5 RNA and Linear Programming

21 NP-complete problems which he published in his landmark paper “Reducibility

Among Combinatorial Problems” [23].

In the following, we are going to confine ourselves to PBO problems which we are

using to solve the inverse RNA optimization problem.

4.5.2 Pseudo-Boolean Representation

After having presented the required definitions, we transform Formulae (4.2) to (4.5)

into a corresponding formulation in the CPLEX format for PBO problems. To do so,

let us give a stepwise comparison between both representations. We have to mention,

that the input instance remains the same as in the case of CNF—we have given a

RNA secondary structure σ.

We write
⊕

D C for a set of constraints C over a domain D which are written line-

by-line in the CPLEX-format file. Let us give a short example to clarify this new

notation.

Example 5. In this example, an undirected graph G = (V,E) with V = {v1, v2, . . . , vn}
is given. Edges are not of interest. Vertices can be colored either black or white. We

ask for a vertex coloring, such that more than half of the vertices are colored black. In

this case, domain D is V . We need constraints to ensure, that each vertex is assigned

a single color and that most vertices are black. The color is denoted by • and ◦. For

each vertex vi ∈ V we have the following constraint: +1 ∗ v•i + 1 ∗ v◦i = 1;.

+1 ∗ v•1 + 1 ∗ v◦1 = 1;

+1 ∗ v•2 + 1 ∗ v◦2 = 1;

...

+1 ∗ v•n + 1 ∗ v◦n = 1;

With our notation, we write:

⊕

vi∈V

+1 ∗ v•i + 1 ∗ v◦i = 1; (4.9)

To satisfy the second part of the requirements we finally add as last constraint:

+1 ∗ v•1 + 1 ∗ v•2 + . . .+ 1 ∗ v•n >
n

2
; (4.10)

Recall, that Formulae (4.2) and (4.3) ensure, that each RNA position is taken by ex-

actly one base. Multiple assignments are not allowed. This property can be expressed

35

Chapter 4 RNA Problems

vi vi+1

vjvj+1

vi−1 vi+2

vj−1vj+2

5′

3′

3′

5′

sl−1 sl sl+1

Figure 4.8: Each base stacking can hold one of 36 energy values.

by the following constraints.

⊕

vi∈V

+1 ∗ vA
i + 1 ∗ vG

i + 1 ∗ vC
i + 1 ∗ vU

i = 1; (4.11)

Now, the next step is to forbid that at a pairing participating base positions are

assigned the same base.

⊕

(vi,vj)∈E

+1 ∗ vA
i + 1 ∗ vA

j ≤ 1;

+1 ∗ vG
i + 1 ∗ vG

j ≤ 1;

+1 ∗ vC
i + 1 ∗ vC

j ≤ 1;

+1 ∗ vU
i + 1 ∗ vU

j ≤ 1;

(4.12)

Next, the base pairing constraints (B = {AU, UA, CG, GC, GU, UG}) which describe

the set of possible pairings have to be encoded.

⊕

(vi,vj)∈E

−1 ∗ vA
i + 1 ∗ vU

j ≥ 0;

−1 ∗ vG
i + 1 ∗ vC

j + 1 ∗ vU
j ≥ 0;

−1 ∗ vC
i + 1 ∗ vG

j ≥ 0;

−1 ∗ vU
i + 1 ∗ vA

j + 1 ∗ vG
j ≥ 0;

(4.13)

By then, the transformation does exactly the same as in the CNF case. Now, to do

the optimization of the energy level we have to consider the values given in Table 4.6

on page 31 (referred to as T). Figure 4.8 shows, that each base stacking is enclosed

by four bases. Defined by these four bases, each of these rectangles contributes to the

overall energy level one of the 36 constant values C1, C2, . . . , C36 listed in the table.

To obtain integer coefficients, we multiply in the following each value Ci by 10. Let us

traverse the table line-by-line starting with C1 to obtain a consecutive numbering. For

later considerations, it is necessary to distinguish between energy contributions, which

come from different base-stackings of the instance at hand. Let S = {s1, s2 . . . , sk}
be the set of all such stacked rectangles with 1 ≤ i < i+ 1 < j < j + 1 ≤ n. Further

considerations have to ensure two important points:

1. Each base-stacking rectangle is allowed to hold exactly one of the 36 energy

values.

36

4.5 RNA and Linear Programming

2. The overall energy value, i.e., the summation of energy values of all base-stacking

rectangles, has to be minimized.

These two points are ensured by dint of the following deliberations.

Each rectangle can hold one of the Ci’s as energy value. Let us introduce new indicator

variables Ai+36(l−1) with 1 ≤ i ≤ 36, 1 ≤ l ≤ k. Ai+36(l−1) becomes true if and only

if base-stacking l contributes with energy value Ci to the overall energy level. These

indicator variables have to be chosen in a way that for each base-stacking sl only one of

them becomes true. Thus, it is guaranteed that each stacking contributes precisely

one energy value. So, it remains to choose the indicator variables adequately and

therewith the base assignment, such that the overall energy is minimized.

In the following, we give a stepwise transformation from a Boolean formula into a

formula in the PBO format. This is done using an example which can then be

generalized. The following formula expresses that indicator variable A32+36(l−1) is

true if and only if positions vi, vi+1, vj, and vj+1 of base-stacking sl are assigned

the bases G, A, U and C respectively:

(

vG
i ∧ vA

i+1 ∧ vU
j ∧ vC

j+1

)

↔ A32+36(l−1) (4.14)

In order to transform this Boolean formula into the PBO format, we first decompose

the equivalence into two implications, this yields:

(

vG
i ∧ vA

i+1 ∧ vU
j ∧ vC

j+1

)

→ A32+36(l−1) ∧ A32+36(l−1) →
(

vG
i ∧ vA

i+1 ∧ vU
j ∧ vC

j+1

)

(4.15)

Rewriting the implication of both sub formulae leads to two constraints in the PBO

problem definition.

[

¬
(

vG
i ∧ vA

i+1 ∧ vU
j ∧ vC

j+1

)

∨A32+36(l−1)

]

∧
[

¬A32+36(l−1) ∨
(

vG
i ∧ vA

i+1 ∧ vU
j ∧ vC

j+1

)]

(4.16)

The formula on the left hand side of the logical AND as well as the formula on the

right hand side lead to a constraints in the PBO problem definition. The first formula

is for the left sub-formula, the second for the right one, respectively.

−1 ∗ vG
i − 1 ∗ vA

i+1 − 1 ∗ vU
j − 1 ∗ vC

j+1 + 1 ∗ A32+36(l−1) > −4;

−4 ∗A32+36(l−1) + 1 ∗ vG
i + 1 ∗ vA

i+1 + 1 ∗ vU
j + 1 ∗ vC

j+1 ≥ 0;
(4.17)

Now, we can give a formula for the general case. As aforesaid, each such stacking can

hold one of the 36 energy values. Hence, we have to make the transformation step

stated in Formula (4.17) for each stacking in S as well as for each combination of row

base-pair and column base-pair. Let T r(p) and Tc(p) c, r ∈ {1, 2, . . . , 6}, p ∈ {1, 2}
be either the first or the second base-position p of a row r or a column c of table T .

The following example clarifies the situation.

37

Chapter 4 RNA Problems

Example 6. Let us have a look on the table already introduced above.

T2(1) T2(2)

ց ւ
CG GC GU UG AU UA

CG −2.4 −3.3 −2.1 −1.4 −2.1 −2.1

GC −3.3 −3.4 −2.5 −1.5 −2.2 −2.4

GU −2.1 −2.5 1.3 −0.5 −1.4 −1.3

UG −1.4 −1.5 −0.5 0.3 −0.6 −1.0

AU −2.1 −2.2 −1.4 −0.6 −1.1 −0.9

UA −2.1 −2.4 −1.3 −1.0 −0.9 −1.3

ր տ
T 6(1) T 6(2)

Referring to example base stacking of Figure 4.6 on page 31, we box the value of

interest - 2.4 kcal/mol. Variables are assigned as follows: T2(1) = G, T2(2) = C,

T 6(1) = U and T 6(2) = A.

π(sl, p) with p = {i, i+1, j, j+1} returns the position in the RNA secondary structure

sequence σ of the base which participates in base-stacking sl with label p. Note, i,

i + 1, j, and j + 1 are only labels to identify the four corners of a base-stacking

rectangle. The actual position of these four bases in the RNA sequence is obtained

by π(sl, p). Figure 4.9 on the facing page gives an example.

It follows the generalized version of Formula (4.17).

⊕

sl∈S
1≤r,c≤6

(

−1 ∗ vTc(1)
π(sl,i)

− 1 ∗ vT r(2)
π(sl,i+1) − 1 ∗ vT r(1)

π(sl,j)
− 1 ∗ vTc(2)

π(sl,j+1) + 1 ∗ A6(r−1)+c+36(l−1) > −4;

−4 ∗ A6(r−1)+c+36(l−1) + 1 ∗ vTc(1)
π(sl,i)

+ 1 ∗ vT r(2)
π(sl,i+1) + 1 ∗ vT r(1)

π(sl,j)
+ 1 ∗ vTc(2)

π(sl,j+1) ≥ 0;

)

(4.18)

As we said, each stacking can only hold one of the values of table T . We can formulate

this like:

⊕

sl∈S

(

+1 ∗ A1+36(l−1) + 1 ∗A2+36(l−1) + . . . + 1 ∗ A36+36(l−1) = 1
)

(4.19)

The Formulae (4.11) (4.12), (4.13), (4.18) and (4.19) are all constraints we need to

express all constraints to solve the inverse RNA folding problem by PBO. The next

step is to declare all variables to be binary. This is done because we use these variables

as indicator variables which are either true or false or 1 and 0 respectively. Variables

declared in the binary section of a CPLEX file are restricted to 0 or 1. Formula (4.20)

38

4.5 RNA and Linear Programming

σ C AG A GU C U. . . (((())))i i + 1j + 1 j2 8 2 9 3 0 3 1 3 2 3 3 3 4 3 53 63 73 83 94 04 14 2

GCGGAUUUAGCUCAGUUG G G A G A G C G CCAGACU G A A G AU C U G G A G G U C C U G U G U U C GAUCCACAGA A U U C G C ACCA

s11 s12

π(s13, i) = 30

π(s13, i+ 1) = 31

π(s13, j) = 39

π(s13, j + 1) = 40

Figure 4.9: Example showing the usage of π(sl, p): use function π to determine the position
of a base in secondary structure σ, which is defined by its label p and the base-stacking
rectangle sl to which it belongs.

restricts variables encoding vertices to 0 and 1 whereas Formula (4.21) is responsible

for the restriction of indicator variables Ai+36(l−1).

⊕

sl∈S
b∈B

vb
π(sl,i)

vb
π(sl,i+1)

vb
π(sl,j)

vb
π(sl,j+1)

(4.20)

⊕

sl∈S

A1+36(l−1)

A2+36(l−1)
...

A36+36(l−1)

(4.21)

Finally, we add the optimization function: in order to formulate a proper optimization

function, it is necessary to refer to the energy values. We denote with T (r, c) the

energy values as described by the table, where r stands for the row and c for the

column of the entry.
∑

sl∈S
1≤r,c≤6

T (r, c) ∗ A6(r−1)+c+36(l−1) (4.22)

In Appendix B.2 on page 79 we see an example CPLEX file which is the translation

of the base stacking similar to those seen in Figure 4.6 on page 31. There are only two

base-pairings, thus we are looking for the minimal energy value of just one rectangle.

39

Chapter 4 RNA Problems

When using the introduced transformation for the secondary structure of tRNAPhe,

which has been introduced in Figure 4.4 on page 29, we get a 107 kB large file and

therefor it is not listed in this thesis. CPLEX was able to find a solution within 1.08

seconds on rayhalle1. The optimal found solution has energy level -56.5 kcal/mol

after dividing by 10. Figure 4.10 completes Figure 4.4 by adding the found solution.

The first line shows the RNA secondary structure, the second line a solution found

by using a Sat-solver followed by the biologically relevant base assignment. Finally,

in line four we see the solution found using PBO methods.

(((((((..((((........)))).(((((.......))))).....(((((.......))))))))))))....

UUUUUUU**UUUU********GGGG*UUUUU*******GGGGG*****UUUUU*******GGGGGGGGGGGG****

GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA

GGGGGGC**GCCC********GGGC*GGGGC*******GCCCC*****GCCCC*******GGGGCGCCCCCC****

Figure 4.10: Result for yeast tRNAPhe: First line: Bracket notation for the secondary
structure, second line: interpretation of the Sat-solver’s result, third line: alternative result
and finally in the last line the optimal solution found by CPLEX.

40

Chapter 5

Ramsey Numbers

Imagine an alien force, vastly more powerful than us landing on Earth

and demanding the value of R(5, 5) or they will destroy our planet. In

that case, we should marshal all our computers and all our mathematicians

and attempt to find the value. But suppose, instead, that they asked for

R(6, 6), we should attempt to destroy the aliens. – Paul Erdős

5.1 Introduction

To describe intuitively what the Ramsey Numbers are, usually the so-called party

problem is consulted. Thus, we want to maintain this proven method. Suppose, we

are organizing a party of six people then there are at least three people who know each

other, or three people who do not know each other. We can formulate the general

case as follows: how many people do we need to invite to have at least m people to

know each other, or n people who do not know each other. Frank P. Ramsey, after

whom the Ramsey Theory is named, showed in 1930 that the size of the group is

finite [36]. Since a group of constant size solving this (m,n)-constraint must exist,

there must be an effective algorithm to find this value R(m,n). Note, that we are

not talking about an efficient way to calculate k with R(m,n) = k. However, we just

said that there must be a procedure which finally gives us the value k.

5.2 Interpretation as Graph Theoretic Problem

The values R(m,n) are called Ramsey numbers and describe in more abstract terms

the minimal size of a graph, such that either at least m nodes are pairwise connected

or at least n nodes are independent. Formally, we use the following definitions.

Definition 20 (Subgraph). A subgraph G′ = (V ′, E′) of a graph (V,E) is a graph for

which V ′ ⊆ V and E′ = E ∩ V ′ × V ′ holds.

41

Chapter 5 Ramsey Numbers

Definition 21 (Complete graph). A complete graph is a graph where an edge connects

every pair of vertices. A complete graph on n vertices is denoted by Kn.

Definition 22 (Independent graph). An independent graph is a graph without edges.

An Independent graph on n vertices is denoted by In.

Definition 23 (Clique). A clique of a graph G of size k is a subgraph G′ of G such

that G′ is isomorphic to Kk.

Definition 24 (Independent Set). An independent set of a graph G of size k is a

subgraph G′ of G such that G′ is isomorphic to Ik.

Let us give some more definitions in order to be able to define the central problem of

this chapter in an easy formal way.

Definition 25 (m-Clique).

Instance: Given a graph G and an integer m: 〈G,m〉

Query: Does G has a Clique of size m as subgraph?

Definition 26 (n-IndependentSet).

Instance: Given a graph G and an integer n: 〈G,n〉

Query: Does G has an IndependentSet of size n as subgraph?

Definition 27 (Ramsey).

Instance: Given are three integers m, n and k: 〈m,n, k〉

Query: Does R(m,n) > k hold? That is neither a m-Clique nor an n-IndependentSet

is contained in G.

Now, the Ramsey problem will be stated as follows. For all graphs of size k, is it

possible, either to find a m-Clique or an n-IndependentSet?

Definition 28 (Ramsey Number Problem). R(m,n) = k if k is the smallest number

such that all graphs G of size k contain either a m-Clique or an n-IndependentSet.

If we want to check this property for a given k, we have to enumerate all possible

graphs of size k and check whether a m-Clique or an n-IndependentSet is in-

cluded. Let us consider the complexity of this rather naive approach. First, we begin

with the number of different undirected graphs of size k. We have n(n−1)
2 potential

edges. Each of them can either exist or not. Hence, for the number of different

undirected graphs of size k the following holds:

number of different graphs of size k = 2

“

n(n−1)
2

”

(5.1)

42

5.2 Interpretation as Graph Theoretic Problem

Next, one has to check whether these graphs have am-Clique or an n-IndependentSet.

Then, given a graph G, one has to check, whether Km or In is isomorphic to a sub-

graph of G.

Definition 29 (Sub-Graph Isomorphism).

Instance: Given are two graphs G1 and G2.

Query: Is G1 isomorphic to an arbitrary subgraph of G2?

This problem is known to be NP-complete. Let us summarize the previous observa-

tions. The problem of finding R(m,n) turns out—at best in such a direct approach—

to require an exponential number of instances of the NP-complete problem. This

fact will be addressed a little bit later in this chapter.

We can express the problem in another way, too: In lieu of talking about a property

that has to hold for every subgraph, we can equivalently say that there is no subgraph

that violates the property.

In the following, we use the abbreviations

• C(〈G,m〉) ≡ G has a m-Clique,

• I(〈G,n〉) ≡ G has an n-IndependentSet and

• Gk is the set of all graphs of size k.

So, our problem can be formulated like:

∀G ∈ Gk : ∃ (C(〈G,m〉) ∨ I(〈G,n〉)) (5.2)

This is equivalent to

∄G ∈ Gk : ¬ (C(〈G,m〉) ∨ I(〈G,n〉)) (5.3)

An algorithm to find a minimal k can use this fact. It can ask, whether it is possible

to find a graph of size k in which neither C(〈G,m〉) nor I(〈G,n〉) holds. If such a

graph of size k exists, we know that R(m,n) > k. We repeat the test using each

time a new k′ = k + 1 until it is no longer possible to find such a graph. Then, we

have found the minimal k that satisfies R(m,n) = k. From this idea we can state

Algorithm 3 on the next page.

43

Chapter 5 Ramsey Numbers

Algorithm 3 CoRamsey

Input: 〈m,n〉
Output: minimal k such that C(〈G,m〉) ∨ I(〈G,n〉) holds for all graphs G of size
k.
k ← 3
found← true

repeat

for each graph G of size k do

if not (SubGraphIso(Km, G) ∧ SubGraphIso(In, G)) then

found← true

break

else

found← false

end if

end for each

if found then

k ← k + 1
end if

until not found

return k

5.2.1 Complexity Considerations

Remarks on the algorithm’s complexity

In a graph of size k, we have to consider all
(

k
m

)

subgraphs of size m which can form

a Clique, in the case of an IndependentSet
(

k
n

)

, respectively. When n is large

enough, n! can be estimated quite accurately using Stirling ’s [39] approximation:

Sentence 1 (Stirling approximation). (Without proof)

√
2πn

(n

e

)n

≤ n! ≤
√

2πn
(n

e

)n

· e 1
12n (5.4)

When using Sentence 1, we can formulate the binomial coefficient in the following

way:
(

n

k

)

=
n!

(n− k)! · k! ≤
√
n
(

n
e

)n (n−k
e

)k
e

1
12n

√

2πk(n− k)
(

n−k
e

)n (k
e

)k
e

1
12(n−k) e

1
12k

(5.5)

As an upper bound, we can say that
(

n
k

)

∈ O(nn). On Figure 5.1 on the next page,

we recognize the rapid growth of the binomial coefficient. For our purpose, we have

to consider both
(

k
m

)

and
(

k
n

)

. Thus for the upper bound for the number of subgraphs

44

5.2 Interpretation as Graph Theoretic Problem

n
1 e + 1 0

. 1 e 2 1 0. 1 e 5. 1 e 4 9 0 1 0 08 06 04 03 02 0

1 e + 1 5
1 e + 0 7

. 1 e 31 e + 0 6
1 .

n o v e r k
7 0

1 e + 1 3

5 0
1 e + 1 11 e + 1 21 e + 0 9
1 e + 1 4
1 e + 0 81 e + 0 5 k = 3k = 4k = 5k = 6k = 7k = 8k = 9k = 1 0n ^ n

Figure 5.1: We can see
(

n

k

)

for 1 ≤ n ≤ 100 and k = 3, 4, . . . , 10 on a logarithmic y-axis.

which form a Clique or an IndependentSet, we obtain:

f(k,m, n) ≤ 1

2π

(√
2πk(k

e)
k
e

1
12k

√
m(k−m)(m

e)
m

e
1

12m (k−m
e)

k−m
e

1
12(k−m)

+

√
2πk(k

e)
k
e

1
12k

√
n(k−n)(n

e)
n
e

1
12n (k−n

e)
k−n

e
1

12(k−n)

)

(5.6)

Remarks on the problem’s complexity

The stated algorithm terminates in every case, because in [36] Ramsey proved that

the number of people we have to invite to our party—or from the mathematical point

of view, the minimal number of vertices k of a graph G = (V,E) such that C(〈G,m〉)
or I(〈G,n〉) holds—is finite. Thus, we just have to try consecutively each value for

k.

Recall the formal definitions expressed in Formulae (5.2) and (5.3). For all G ∈ Gk

either the relation C(〈G,m〉) or the relation I(〈G,n〉) holds. As we can see, we have

a quantifier alternation ∀−∃. Problems that are characterized in this way are located

in Πp
2 which is on the second level of the Polynomial Hierarchy (PH for short). To

define PH, we introduce briefly oracle computations: Up to now, the basis for all our

considerations was that no computation whatsoever is for free. That is, we have to

pay a certain amount of time and space in order to be able to run a computation. Let

us assume for a moment, that it is possible to solve a number of problems without

resource penalty. It might be possible to solve NP problems effortless with the help

of some magic computational device, i.e., in just one computational step. With other

45

Chapter 5 Ramsey Numbers

words, we could use this powerful device as an oracle (or one can call it as well a

very powerful sub-routine). But that is exactly what has already been mentioned

above: The call of a sub-routine for a NP problem. This is, of course, a special case.

Generally we can say that the complexity class of decision problems solvable by an

algorithm in class C with an oracle for a problem in class O is written CO, e.g., PNP

is the set of problems which can be solved by a poly-time machine with access to an

NP oracle. Oracles can be used to define the polynomial hierarchy.

Definition 30 (Polynomial Hierarchy). The polynomial hierarchy is the following set

of recursively defined classes: First, ∆P
0 = ΣP

0 = ΠP
0 = P. For all i ≥ 0 we have

∆P
i+1 := P

ΣP
i

ΣP
i+1 := NP

ΣP
i

ΠP
i+1 := coNP

ΣP
i

In the case of Ramsey computation, we observe a quantifier alternation ∀–∃. This

translates directly into a coNPNP formulation. The ∀ quantification expresses that a

property has to hold on any possible computation path, whereas the ∃ quantification

says that there must exist at least one path with a special property. This is the same

behavior of coNP and NP.

Hence, we know, that the Ramsey problem is in coNPNP. For further details on

the connection between the Polynomial Hierarchy and Ramsey numbers and other

Ramsey types, refer to Marcus Schaefer [38].

5.2.2 Reduction to Sat

In the following, we are going to develop a straightforward translation from the de-

cision problem Ramsey (m,n, k) to the satisfiability problem for Boolean formu-

lae. Remark, that the corresponding Sat-formula is satisfiable if and only if it is

possible to find a Graph G of size k which contains neither a m-Clique nor an

n-IndependentSet. So, let us give for both properties an alternative characteriza-

tion:

1. A graph G does not contain a m-Clique if and only if at least one edge is

missing in each subgraph G′ such that it is not isomorphic to Km.

2. A graph G does not contain a n-IndependentSet if and only each subgraph

G′ contains at least one edge such that is is not isomorphic to In.

Both characterizations find their direct transformation into a CNF formula in the

following way. We introduce variables E(i, j) with 1 ≤ i < j ≤ |V |. E(i, j) is

46

5.2 Interpretation as Graph Theoretic Problem

assigned true if and only if in graph G there is an edge between vertices i to j. Let

us begin with the translation of the first named property.

¬E(1, 2) ∨ ¬E(1, 3) ∨ . . . ∨ ¬E(1,m) ∨
¬E(2, 3) ∨ . . . ∨ ¬E(2,m) ∨

...

¬E(m− 1,m)

In short we can write:

NonClique (V ′, E) ≡
∨

i<j∈V ′

¬E(i, j) V ′ ⊆ V, |V ′| = m (5.7)

In the same manner, a CNF formula encoding a graph with n nodes including at least

a single edge would be:

E(1, 2) ∨E(1, 3) . . . ∨ E(1, n) ∨
E(2, 3) ∨ . . . ∨ E(2, n) ∨

...

E(n − 1, n)

And short:

NonIndependentSet (V ′, E) ≡
∨

i<j∈V ′

E(i, j) V ′ ⊆ V, |V ′| = n (5.8)

Now, we have the characterization, that a graph of size m has no m-Clique and a

graph of size n has no n-IndependentSet. In the next step, we have to put these

pieces together.

∃
|V |=k

〈V,E〉
∧

V ′⊆V
|V ′|=m

NonClique (V ′, E) ∧
∧

V ′⊆V
|V ′|=n

NonIndependentSet (V ′, E) (5.9)

This formula is satisfiable if and only if graph G neither contains a m-Clique nor an

n-IndependentSet. At this point—again, a mapping between variables E(i, j), 1 ≤
i, j ≤ |V | and integers has to be provided. We use f(E(i, j)) = (j − 1) · |V | + i and

47

Chapter 5 Ramsey Numbers

correspondingly

α(E(i, j)) =

{

E(i, j) mod |V | if E(i, j) (mod|V |) 6= 0

|V | else.
(5.10)

β(E(i, j)) =

⌈

E(i, j)

|V |

⌉

(5.11)

The process of encoding, back-transforming and analyzing of the Sat-solver’s result

works in the same way as already described in the previous two chapters.

The following example shows the resulting clause set for R(3, 3).

Example 7. Let us start with k = 4, smaller k are trivial as we shall see later.

k denotes the number of vertices the graph should have. Hence G = (V,E) with

V = {1, 2, 3, 4}. An instance for this problem consists of the two values for m and n

and the just mentioned k. Our reduction provides the following CNF formula:

p cnf 16 8

-5 -9 -10 0

-5 -13 -14 0

-9 -13 -15 0

-10 -14 -15 0

5 9 10 0

5 13 14 0

9 13 15 0

10 14 15 0

← CNF formula with 16 variables and 8 clauses

← V ′ = {1, 2, 3} is not a clique

← V ′ = {1, 2, 4} is not a clique

← V ′ = {1, 3, 4} is not a clique

← V ′ = {2, 3, 4} is not a clique

← V ′ = {1, 2, 3} is not an independent set

← V ′ = {1, 2, 4} is not an independent set

← V ′ = {1, 3, 4} is not an independent set

← V ′ = {2, 3, 4} is not an independent set

The first four lines after the problem definition represent the NonClique (V ′, E)

part, whereas the last four lines define the NonIndependentSet (V ′, E) part.

limmat for example, returns the following satisfying assignment for the given CNF

formula: -5 -9 10 13 -14 -15. When transforming this result back, we obtain, that

E(2, 3) and E(1, 4) are contained in G, other edges are not present. In this case,

other results are possible. When repeating these two steps with k = 5, a satisfying as-

signment computed by limmat is -6 -11 12 16 -17 18 21 22 -23 -24 with E(1, 4),

E(1, 5), E(2, 3), E(2, 5) and E(3, 4) as available edges. As a consequent next step, we

use k = 6. But now, it is not possible to find a satisfying assignment for the CNF for-

mula. Thus we know that k = 6 is the number of vertices such that for each such graph

of size 6 it is always possible to find either a m-Clique or an n-IndependentSet

and we are done. Figure 5.2 on the facing page shows the counterexamples generated

by the Sat-solver. Image (a) depicts a graph with 4 vertices, image (b) on the right

hand side a graph with 5 vertices. Indeed, both graphs show the existence of a k such

that neither the 3-Clique nor the 3-IndependentSet condition are satisfied.

48

5.2 Interpretation as Graph Theoretic Problem

(a) (b)

Figure 5.2: (a) Counterexamples for the assumptions R(3, 3) = 4 and (b) R(3, 3) = 5.

So the general procedure is as follows: We begin testing with a small k and check

whether the corresponding Sat formula, as above mentioned, is satisfiable or not. If

we get a positive assignment, we try the next greater k′ = k+1 until we find a k such

that Ramsey (m,n, k) does not hold and then R(m,n) = k. To minimize the number

of necessary tests, one should start with good lower (and upper) bounds. Therefore,

we are using some observations:

R(m,n) = R(n,m) is true by symmetry. (5.12)

R(m, 1) = R(1, n) = 1 (5.13)

R(m, 2) = m (5.14)

R(m,n) ≤ R(m− 1, n) +R(m,n− 1) with strict inequality when both (5.15)

terms on the right hand side are even [20]

R(m,m) ≤ 4R(m,m− 2) + 2 [43] (5.16)

R(m,n) ≥ R(m,n− 1) + 2m− 3 for m,n ≥ 3 [7] (5.17)

These observations alone are sufficient to solve R(3, 3) as the next example shows.

Example 8.

R(3, 3)
(5.16)

≤ 4R(3, 1) + 2

(5.13)

≤ 4 · 1 + 2

≤ 6

49

Chapter 5 Ramsey Numbers

On the other hand:

R(3, 3)
(5.17)

≥ R(3, 2) + 2 · 3− 3

(5.14)

≥ 3 + 2 · 3− 3

≥ 6

Combining both results yields:

6 ≤ R(3, 3) ≤ 6 (5.18)

In general, it is not sufficient to apply these (in)equalities to determine the desired

Ramsey number R(m,n). Nevertheless, we can use them to restrict the interval, in

which R(m,n) has to be.

5.3 Algorithm to determine Bounds for R(m, n)

Using Formulae (5.12) to (5.17), a recursive algorithm, which gives bounds for R(m,n),

can be stated. Obviously, for smaller Ramsey numbers, there are either exact val-

ues for R(m,n), or there exist at least quite sharp bounds [35] on the possible val-

ues of R(m,n). Algorithm 4 on the next page implements the above introduced

(in)equalities in the form of a recursive procedure. Hereby, RLB(m,n) provides the

lower bound and RUB(m,n) the upper bound of the interval, in which the correct re-

sult for R(m,n) is. It is obvious, that this simple algorithm is not capable to provide

as tight results as stated in [35] and reproduced in Table 5.1 on page 52. However this

algorithm can be used to obtain bounds for even large values for m,n ≥ 15 at ease.

Table 5.2 on page 53 summarizes the bounds for the same combinations of m and n

obtained by applying Algorithm 4. We can even improve these bounds by adding the

already known optimal values as hard coded values into our algorithm. These better

bounds are given in Table 5.3 on page 54.

For bounds with larger m,n, we refer to Appendix C on page 83.

5.4 Graphs with neither a Clique nor an IndependentSet

In the last section, we introduced both, an algorithm to determine the exact value of

the Ramsey number R(m,n) and an algorithm to obtain bounds for R(m,n). In this

section, we give examples for graphs, whose number of vertices is set to R(m,n)− 1,

i.e. these graphs have neither a m-Clique nor an n-IndependentSet. For small

instances, i.e., m,n ∈ {3, 4} we can draw the graph in a clearly arranged way. In

images (a) and (b) on Figure 5.3 on page 55 we can see example graphs for G(a) =

50

5.4 Graphs with neither a Clique nor an IndependentSet

Algorithm 4 RamseyBounds

Require: m,n ≥ 1
1: procedure RUB(m,n)
2: if ((m = 1)||(n = 1)) then

3: return 1
4: end if

5: if (m = 2) then

6: return n

7: end if

8: if (n = 2) then

9: return m

10: end if

11: if (m = n) then

12: return 4 · RUB(m,m− 2) + 2
13: end if

14: return RUB(m− 1, n) +RUB(m,n− 1)
15: end procedure

Require: m,n ≥ 1
16: procedure RLB(m,n)
17: if ((m = 1)||(n = 1)) then

18: return 1
19: end if

20: if (m = 2) then

21: return n

22: end if

23: if (n = 2) then

24: return m

25: end if

26: return 4 ·RLB(m,m− 1) + 2 ·m− 3
27: end procedure

51

C
h
ap

te
r

5
R
am

se
y

N
u
m

b
er

s

m,n 3 4 5 6 7 8 9 10 11 12 13 14 15

3 6 9 14 18 23 28 36
40
43

46
51

52
59

59
69

66
78

73
88

4 18 25
35
41

49
61

56
84

73
115

92
149

97
191

128
238

133
291

141
349

153
417

5
43
49

58
87

80
143

101
216

125
316

143
442

159 185
848

209 235
1461

265

6
102
165

113
298

127
495

169
780

179
1171

253 262
2566

317
5033

401

7
205
540

216
1031

233
1713

289
2826

405
4553

416
6954

511
10581 15263 22116

8
282
1870

317
3583 6090 10630 16944

817
27490 41525

861
63620

9
565
6588

580
12677 22325 39025 64871 89203

10
798

23556 81200
1265

Table 5.1: Values and bounds for two color Ramsey numbers R(m,n) = R(m,n; 2) [35].

5
2

5.4
G
rap

h
s

w
ith

n
eith

er
a

C
l
iq

u
e

n
or

an
In

d
e
p
e
n
d
e
n
t
S
e
t

m,n 3 4 5 6 7 8 9 10 11 12 13 14 15

3
6
6

9
10

12
15

15
21

18
28

21
36

24
45

27
55

30
66

33
78

36
91

39
105

42
120

4
14
18

19
33

24
54

29
82

34
118

39
163

44
218

49
284

54
362

59
453

64
558

69
678

5
26
62

33
116

40
198

47
316

54
479

61
697

68
981

75
1343

82
1796

89
2354

96
3032

6
42
218

51
416

60
732

69
1211

78
1908

87
2889

96
4232

105
6028

114
8382

123
11414

7
62
794

73
1526

84
2737

95
4645

106
7534

117
11766

128
17794

139
26176

150
37590

8
86

2930
99

5667
112

10312
125

17846
138

29612
151

47406
164

73582
177

111172

9
114

10950
129

21262
144

39108
159

68720
174

116126
189

189708
204

300880

10
146

41250
163

80358
180

149078
197

265204
214

454912
231

755792

Table 5.2: Bounds for R(m,n) calculated by Algorithm 4 on page 51

5
3

C
h
ap

te
r

5
R
am

se
y

N
u
m

b
er

s

m,n 3 4 5 6 7 8 9 10 11 12 13 14 15

3
6
6

9
9

14
14

18
18

23
23

28
28

36
36

39
46

42
57

45
69

48
82

51
96

54
111

4
18
18

25
25

30
43

35
66

40
94

45
130

50
176

55
233

60
302

65
384

70
480

75
591

5
32
58

39
101

46
167

53
261

60
391

67
567

74
800

81
1102

88
1486

95
1966

102
2557

6
45
174

54
341

63
602

72
993

81
1560

90
2360

99
3462

108
4948

117
6914

126
9471

7
67
670

78
1272

89
2265

100
3825

111
6185

122
9647

133
14595

144
21509

155
30980

8
93

2410
106
4675

119
8500

132
14685

145
24332

158
38927

171
60436

184
91416

9
126
9062

141
17562

156
32247

171
56579

186
95506

201
155942

216
247358

10
146

34002
163

66249
180

122828
197

218334
214

374276
231

621634

Table 5.3: Better bounds for R(m,n) calculated by Algorithm 4 on page 51 by adding knowledge about already known values.

5
4

5.4 Graphs with neither a Clique nor an IndependentSet

(V(a), E(a)) with |V(a)| = 5 < R(3, 3) = 6 and G(b) = (V(b), E(b)) with |V(b)| = 8 <

R(3, 4) = 9. For larger values for m and n, we give examples seen on Figure 5.4,

23 145
(a) |V | = 5 < R(3, 3) = 6

132 45
6

8
7

(b) |V | = 8 < R(3, 4) = 9

Figure 5.3: Graphs of small size without a Clique and an IndependentSet of corre-
sponding size.

too. However, these graphs are quite large and thus they cannot be visualized as

concisely.

1 46
27 9

1 11 3
31 01 2

5
8

(a) |V | = 13 < R(3, 5) = 14

12
5 9

1 0

1 11 3

1 4

1 5
1 6

3
4

71 2 1 7

6 8
(b) |V | = 17 < R(3, 6) = 18

Figure 5.4: Graphs of larger size without a Clique and an IndependentSet of corre-
sponding size.

55

Chapter 5 Ramsey Numbers

5.5 Estimation of the Instance Size

In the following, we give a short estimation of the size of an instance of Ramsey

(m,n, k). We know that an undirected graph G of size k has
(

k
m

)

subgraphs of size

m. Each of them has a subset of up to m(m−1)
2 edges. In the above introduced

reduction, we use for each edge a single variable E(i, j). Each subgraph is encoded

in the CNF file as a clause having m(m−1)
2 literals. We can give as a first estimation

of the size of the CNF file the number of used literals occurrences:

number of literals =

(

k

m

)

· m(m− 1)

2
+

(

k

n

)

· n(n− 1)

2
(5.19)

In CNF, literals are separated by a space symbol and clauses are separated by “0”.

Thus, we have for each clause m(m−1)
2 +1 additional bytes (m(m−1)

2 for the spaces and

one for the separating “0”). As we said, edges are encoded by integer values. The

largest occurring value can be k2. As we present an upper bound for the file size,

let us assume that each literal has the value k2. The representation of integer value

k2 needs log10 k
2 bytes. To encode negative literals, an additional “-” sign is needed.

Together, we obtain:

(

k

m

)[

m(m− 1)

2

(

log10 k
2 + 2

)

+ 1

]

+

(

k

n

)[

n(n− 1)

2

(

log10 k
2 + 1

)

+ 1

]

(5.20)

The following Figure 5.5 on the facing page shows the dramatic growth of the instance

file size. Note, the y-axis is in GiB-scale!

5.6 Experimental Results

In this section, we use our Sat-based approach to find the value for the Ramsey

number R(m,n). This approach is feasible at least for small values for m and n. On

Figure 5.6 on page 58, we can see the run-times needed to find the exact value for

R(m,n). For these experiments, we use minisat on iMac. As we can see, the major

part of the overall run-time is always the last step, i.e., to show that it is not possible to

find a graph with R(m,n) vertices with no m-Clique and no n-IndependentSet.

56

5.6 Experimental Results

10910

0

8

2

9

4

78

6

n

8

7 6

m

6 55 44 33

Figure 5.5: Ramsey instance files size for k = 43 and 3 ≤ m,n ≤ 10.

57

Chapter 5 Ramsey Numbers

(a) R(3, 3) = 6

(b) R(3, 4) = 9

(c) R(3, 5) = 14

Figure 5.6: Run-times to find small Ramsey numbers R(m,n).

58

Chapter 6

Conclusion and Future Work

The goal of the presented thesis was the evaluation of Sat as a general search tech-

nique for arbitrary NP-hard search and optimization problems. In the course of this

thesis, we elaborated our methods on three example problems, namely graph color-

ing, inverse RNA folding, and the Ramsey numbers. Because such problems appear

in thousands of real world applications, it is important to have tools at hand to solve

them generically and efficiently—exactly this generality and efficiency is available in

terms of today’s highly optimized Sat-solvers. As these problems occur in totally

different disciplines from biology, chemical synthesis, medical applications going to

problems in physics, statistics, finance and many more, we chose our three problems

each from a different discipline.

In the case of graph coloring and finding the chromatic number of a graph, our

approach using binary search turned out to be very promising. We were able to find

some new chromatic numbers of graph instances, introduced in the second DIMACS

Implementation Challenge in 1992. We presented these results as well as new bounds

for instances whose chromatic number is still unknown. Besides those new bounds

and exact solutions for chromatic numbers, we were also able to verify a number

of already known results. In particular, we were able to recompute many of these

bounds within fractions of a second—confirming thereby the practical applicability

of our generic approach.

Finding a solution for the inverse RNA folding problem with Sat-solvers proved to

be practically successful. In general there is more than one feasible solution for a

given RNA secondary structure. In this case, we are interested in a solution with a

certain property, namely with a so-called minimal energy level. This energy level is

obtained by a simplified energy model. This has been done using Pseudo Boolean

Optimization. A Solution for the yeast tRNAPhe could be found within a second.

This method shall be used in future experiments for larger RNA secondary structures

to prove its capability.

As the last application area for Sat-solvers analyzed in this thesis we chose the Ram-

sey numbers R(m,n). It turned out, that this problem sets limits to the applicability

59

Chapter 6 Conclusion and Future Work

of Sat-solvers. Only instances with very small values for m and n could be solved.

To achieve further progress, one could try to optimize the encoding into a smaller

Sat formula, or one could use random edge assignments to try to break symmetry.

In this case, not only extremely long run-times, but also high memory consumption

proved to be limiting the applicability of the approach.

We believe, that the resource efficient usage of clusters is a key to further proliferate

the broad and generic application of Sat decision procedures as fundamental search

technology. While highly promising, current parallel Sat-solvers are not capable to

outperform solvers running on a single processor and therefore it is a challenge for

further research and development to provide techniques for parallel Sat-solvers. The

common availability of dual and quad core processors and prototypes with 80 cores

and even more stresses the increasing importance of viable parallel and multi-threaded

Sat-solvers.

60

Appendix A

Chromatic Numbers

This chapter summarizes our experimental results on finding chromatic numbers for

hard graph instances. We give for each benchmarking the found solution and the

run-times during the binary-search steps in graphical as well as in tabular form.

status colors minisat [sec]

SAT 67 0.012288
SAT 34 0.006770
SAT 17 0.004404
SAT 9 0.003195

SAT 5 0.002372
UNSAT 4 238.080000
UNSAT 3 0.005478

Figure A.1: 1-Insertions_4 is 5-colorable (computed on iMac)

status colors minisat [sec]

SAT 37 0.001746
SAT 19 0.001866
SAT 10 0.001766
SAT 5 0.001812

SAT 4 0.001765
UNSAT 3 0.017713

Figure A.2: 2-Insertions_3 is 4-colorable (computed on iMac)

61

Appendix A Chromatic Numbers

status colors minisat [sec]

SAT 56 0.006484
SAT 28 0.003976
SAT 14 0.002742
SAT 7 0.002166

SAT 4 0.001902
UNSAT 3 0.169933
UNSAT 2 0.001692

Figure A.3: 3-Insertions_3 is 4-colorable (computed on iMac)

status colors minisat [sec]

SAT 79 0.011652
SAT 40 0.006631
SAT 20 0.004012
SAT 10 0.002996
SAT 5 0.002172

SAT 4 0.002043
UNSAT 3 1.497750

Figure A.4: 4-Insertions_3 is 4-colorable (computed on iMac)

status colors minisat [sec]

SAT 125 0.064004
SAT 63 0.028001
SAT 32 0.016001
SAT 16 0.008000
SAT 8 0.004000
SAT 6 0.004396

SAT 5 0.176001
UNSAT 4 0.004000

Figure A.5: DSJC125.1 is 5-colorable (computed on king)

62

status colors minisat [sec]

SAT 30 0.003519
SAT 15 0.002551
SAT 8 0.002087

SAT 4 0.001846
UNSAT 3 0.001788
UNSAT 2 0.001656

status colors minisat [sec]

SAT 93 0.035103
SAT 47 0.018479
SAT 24 0.010059
SAT 12 0.005733
SAT 6 0.003660

SAT 5 0.003308
UNSAT 4 0.010206
UNSAT 3 0.002731

status colors minisat [sec]

SAT 282 0.557016
SAT 141 0.272599
SAT 71 0.134908
SAT 36 0.067766
SAT 18 0.034013
SAT 9 0.017436
SAT 7 0.013972

SAT 6 0.012195
UNSAT 5 11.237900

Figure A.6: From top to bottom: 1-FullIns_3 is 4-colorable, 1-FullIns_4 is 5-colorable
and 1-FullIns_5 is 6-colorable (computed on iMac)

63

Appendix A Chromatic Numbers

status colors minisat [sec]

SAT 52 0.008487
SAT 26 0.004909
SAT 13 0.003264
SAT 7 0.002465

SAT 5 0.002191
UNSAT 4 0.002837

status colors minisat [sec]

SAT 212 0.217651
SAT 106 0.106713
SAT 53 0.053727
SAT 27 0.027580
SAT 14 0.015056
SAT 7 0.008321

SAT 6 0.007312
UNSAT 5 0.081009
UNSAT 4 0.006565

Figure A.7: From top to bottom: 2-FullIns_3 is 5-colorable and 2-FullIns_4 is 6-colorable
(computed on iMac)

64

status colors minisat [sec]

SAT 80 0.019407
SAT 40 0.010563
SAT 20 0.006041
SAT 10 0.003827
SAT 7 0.003148

SAT 6 0.002916
UNSAT 5 0.008203

status colors minisat [sec]

SAT 405 0.928001
SAT 203 0.446317
SAT 102 0.216340
SAT 51 0.108868
SAT 26 0.055244
SAT 13 0.027829

SAT 7 0.015836
UNSAT 6 3.013120
UNSAT 5 0.020250
UNSAT 4 0.010050

status colors minisat [sec]

SAT 2030 96.947400
SAT 1015 34.434200
SAT 508 13.929700
SAT 254 6.239500
SAT 127 2.899730
SAT 64 1.374400
SAT 32 0.647355
SAT 16 0.310409

SAT 8 0.151738
UNSAT 7 35579.000000
UNSAT 6 3.484290
UNSAT 4 0.073847

Figure A.8: From top to bottom: 3-FullIns_3 is 6-colorable, 3-FullIns_4 is 7-colorable
and 3-FullIns_5 is 8-colorable (computed on iMac)

65

Appendix A Chromatic Numbers

status colors minisat [sec]

SAT 114 0.041553
SAT 57 0.021437
SAT 29 0.014470
SAT 15 0.006897
SAT 8 0.004266

SAT 7 0.003960
UNSAT 6 0.051844
UNSAT 4 0.003070

status colors minisat [sec]

SAT 690 3.312490
SAT 345 1.524620
SAT 173 0.727888
SAT 87 0.353407
SAT 44 0.171217
SAT 22 0.085097
SAT 11 0.043256

SAT 8 0.032056
UNSAT 7 84.190000
UNSAT 6 0.088792

Figure A.9: From top to bottom: 4-FullIns_3 is 7-colorable and 4-FullIns_4 is 8-colorable
(computed on iMac)

66

status colors minisat [sec]

SAT 154 0.078513
SAT 77 0.039564
SAT 39 0.020594
SAT 20 0.011220
SAT 10 0.006484

SAT 8 0.005430
UNSAT 7 0.604928
UNSAT 5 0.005523

status colors minisat [sec]

SAT 1085 10.370000
SAT 543 4.608960
SAT 272 2.120130
SAT 136 1.003980
SAT 68 0.482396
SAT 34 0.233021
SAT 17 0.115439

SAT 9 0.059600
UNSAT 8 1600.710000
UNSAT 7 0.665806
UNSAT 5 0.038177

Figure A.10: From top to bottom: 5-FullIns_3 is 8-colorable and 5-FullIns_4 is 9-colorable
(computed on iMac)

67

Appendix A Chromatic Numbers

status colors minisat [sec]

SAT 450 1.636100
SAT 225 0.840052
SAT 113 0.408025
SAT 57 0.204012
SAT 29 0.104006
SAT 15 0.048003
SAT 8 2.116130
SAT 6 617.199000

SAT 5 0.196012
UNSAT 4 0.016001

status colors minisat [sec]

SAT 450 2.620160
SAT 225 1.372080
SAT 113 0.680042
SAT 57 0.356022
SAT 29 0.148009
SAT 15 0.068004
SAT 8 0.080005
SAT 6 0.056003

SAT 5 0.028001
UNSAT 4 0.028001

status colors minisat [sec]

SAT 450 2.720170
SAT 225 1.384090
SAT 113 0.656041
SAT 57 0.344021
SAT 29 0.180011
SAT 15 0.076004
SAT 8 2.828180
SAT 6 0.044002

SAT 5 0.032002
UNSAT 4 0.016001

Figure A.11: From top to bottom: le450_5a is 5-colorable, le450_5c is 5-colorable and
le450_5d is 5-colorable (computed on king)

68

status colors minisat [sec]

SAT 138 0.044002
SAT 69 0.020001
SAT 35 0.008000
SAT 18 0.004000
SAT 13 0.004000

SAT 11 0.008000
UNSAT 10 78.652900
UNSAT 9 22.409400

status colors minisat [sec]

SAT 87 0.020001
SAT 44 0.012000
SAT 22 0.007052

SAT 11 0.008000
UNSAT 10 57.715600
UNSAT 9 6.376400
UNSAT 8 1.960120
UNSAT 6 0.0160010

Figure A.12: From top to bottom: anna is 11-colorable and david is 11-colorable (computed
on guru)

69

Appendix A Chromatic Numbers

status colors minisat [sec]

SAT 74 0.020010
SAT 37 0.012000
SAT 19 0.008000
SAT 14 0.004000
SAT 12 0.004000

SAT 11 0.004000
UNSAT 10 125.620000

status colors minisat [sec]

SAT 80 0.016001
SAT 40 0.012000
SAT 20 0.008708

SAT 10 0.008000
UNSAT 9 4.224260
UNSAT 8 0.624039
UNSAT 7 0.116007
UNSAT 5 0.004000

Figure A.13: From top to bottom: huck is 11-colorable and jean is 10-colorable (computed
on guru)

70

status colors minisat [sec]

SAT 25 0.008000
SAT 13 0.004000
SAT 7 0.004000

SAT 5 0.004000
UNSAT 4 0.004000

status colors minisat [sec]

SAT 36 0.008000
SAT 18 0.004000
SAT 9 0.004000

SAT 7 0.096006
UNSAT 6 1.748110
UNSAT 5 0.008000

status colors minisat [sec]

SAT 49 0.020001
SAT 25 0.008000
SAT 13 0.004000

SAT 7 0.004000
UNSAT 6 0.012000
UNSAT 5 0.008000
UNSAT 4 0.004000

Figure A.14: From top to bottom: queen5_5 is 5-colorable, queen6_6 is 7-colorable and
queen7_7 is 7-colorable (computed on guru)

71

Appendix A Chromatic Numbers

status colors minisat [sec]

SAT 11 0.001686
SAT 6 0.001621

SAT 4 0.001591
UNSAT 3 0.001711

status colors minisat [sec]

SAT 23 0.002628
SAT 12 0.002120
SAT 6 0.001814

SAT 5 0.001774
UNSAT 4 0.048822
UNSAT 3 0.001935

status colors minisat [sec]

SAT 47 0.008390
SAT 24 0.004976
SAT 12 0.003288

SAT 6 0.002424
UNSAT 5 256.559000
UNSAT 4 0.075293
UNSAT 3 0.002421

Figure A.15: From top to bottom: myciel3 is 4-colorable, myciel4 is 5-colorable and myciel5

is 6-colorable (computed on iMac)

72

status colors minisat [sec]

SAT 662 2.631570
SAT 331 0.941934
SAT 166 0.460195
SAT 83 0.230059
SAT 42 0.113496
SAT 21 0.057146
SAT 11 0.030606
SAT 6 0.018060

SAT 4 0.012377
UNSAT 3 0.009342

status colors minisat [sec]

SAT 1216 8.562010
SAT 608 3.775940
SAT 304 1.762980
SAT 152 0.835178
SAT 76 0.395088
SAT 38 0.197153
SAT 19 0.097316
SAT 10 0.051611
SAT 5 0.026939

SAT 4 0.022488
UNSAT 3 0.016267

status colors minisat [sec]

SAT 701 3.136200
SAT 351 1.584100
SAT 176 0.792049
SAT 88 0.412025
SAT 44 0.176011
SAT 22 0.100006
SAT 11 0.056003
SAT 8 0.036002

SAT 7 0.028001
UNSAT 6 0.088005

Figure A.16: From top to bottom: ash331GPIA is 4-colorable, ash608GPIA is 4-colorable
(both computed on iMac) and will199GPIA is 7-colorable (computed on hand)

73

Appendix A Chromatic Numbers

status colors minisat [sec]

SAT 88 0.016001
SAT 44 0.012000
SAT 22 0.004000
SAT 11 0.004000
SAT 6 0.004000

SAT 4 0.004000
UNSAT 3 0.008000

status colors minisat [sec]

SAT 88 0.012000
SAT 44 0.012000
SAT 22 0.004000
SAT 11 0.004000
SAT 6 0.004000

SAT 4 0.004000
UNSAT 3 0.004000

Figure A.17: From top to bottom: mugg88_1 is 4-colorable and mugg88_25 is 4-colorable
(computed on king)

74

status colors minisat [sec]

SAT 100 0.020001
SAT 50 0.008000
SAT 25 0.004000
SAT 13 0.004000
SAT 7 0.004000

SAT 4 0.004000
UNSAT 3 0.008000
UNSAT 2 0.004000

status colors minisat [sec]

SAT 100 0.012000
SAT 50 0.008000
SAT 25 0.008000
SAT 13 0.004000
SAT 7 0.004000

SAT 4 0.004000
UNSAT 3 0.008000
UNSAT 2 0.004000

Figure A.18: From top to bottom: mugg100_1 is 4-colorable and mugg100_25 is 4-
colorable (computed on king)

status colors minisat [sec]

SAT 1557 86.522000
SAT 779 33.209600
SAT 390 14.239800
SAT 195 6.527260
SAT 98 3.038340
SAT 49 1.437560
SAT 25 0.706871
SAT 13 0.356490
SAT 10 0.648647

SAT 9 7.321030
UNSAT 8 51974.900000
UNSAT 7 0.677760

Figure A.19: abb313GPIA is 9-colorable (computed on iMac)

75

Appendix B

RNA Encodings

In the following two sections, we see the transformation results after applying the
respective reduction to the input instance. First we use tRNAPhe as input to obtain
a corresponding CNF representation.

(((((((..((((........)))).(((((.......))))).....(((((.......))))))))))))....

Since the description of tRNAPhe in PBO format is too large to be imprinted in this

thesis we use the multiple smaller example:

(())

B.1 Example CNF Encoding for the tRNAPhe Molecule

p cnf 288 462

49 50 51 52 0

85 86 87 88 0

45 46 47 48 0

89 90 91 92 0

41 42 43 44 0

93 94 95 96 0

37 38 39 40 0

97 98 99 100 0

121 122 123 124 0

153 154 155 156 0

117 118 119 120 0

157 158 159 160 0

113 114 115 116 0

161 162 163 164 0

109 110 111 112 0

165 166 167 168 0

105 106 107 108 0

169 170 171 172 0

209 210 211 212 0

241 242 243 244 0

205 206 207 208 0

245 246 247 248 0

201 202 203 204 0

249 250 251 252 0

197 198 199 200 0

253 254 255 256 0

193 194 195 196 0

257 258 259 260 0

25 26 27 28 0

261 262 263 264 0

21 22 23 24 0

265 266 267 268 0

17 18 19 20 0

269 270 271 272 0

13 14 15 16 0

273 274 275 276 0

9 10 11 12 0

277 278 279 280 0

5 6 7 8 0

281 282 283 284 0

1 2 3 4 0

285 286 287 288 0

-49 -50 0

-49 -51 0

-49 -52 0

-50 -51 0

-50 -52 0

-51 -52 0

-85 -86 0

-85 -87 0

-85 -88 0

-86 -87 0

-86 -88 0

-87 -88 0

-45 -46 0

-45 -47 0

-45 -48 0

-46 -47 0

-46 -48 0

-47 -48 0

-89 -90 0

-89 -91 0

-89 -92 0

76

B.1 Example CNF Encoding for the tRNAPhe Molecule

-90 -91 0

-90 -92 0

-91 -92 0

-41 -42 0

-41 -43 0

-41 -44 0

-42 -43 0

-42 -44 0

-43 -44 0

-93 -94 0

-93 -95 0

-93 -96 0

-94 -95 0

-94 -96 0

-95 -96 0

-37 -38 0

-37 -39 0

-37 -40 0

-38 -39 0

-38 -40 0

-39 -40 0

-97 -98 0

-97 -99 0

-97 -100 0

-98 -99 0

-98 -100 0

-99 -100 0

-121 -122 0

-121 -123 0

-121 -124 0

-122 -123 0

-122 -124 0

-123 -124 0

-153 -154 0

-153 -155 0

-153 -156 0

-154 -155 0

-154 -156 0

-155 -156 0

-117 -118 0

-117 -119 0

-117 -120 0

-118 -119 0

-118 -120 0

-119 -120 0

-157 -158 0

-157 -159 0

-157 -160 0

-158 -159 0

-158 -160 0

-159 -160 0

-113 -114 0

-113 -115 0

-113 -116 0

-114 -115 0

-114 -116 0

-115 -116 0

-161 -162 0

-161 -163 0

-161 -164 0

-162 -163 0

-162 -164 0

-163 -164 0

-109 -110 0

-109 -111 0

-109 -112 0

-110 -111 0

-110 -112 0

-111 -112 0

-165 -166 0

-165 -167 0

-165 -168 0

-166 -167 0

-166 -168 0

-167 -168 0

-105 -106 0

-105 -107 0

-105 -108 0

-106 -107 0

-106 -108 0

-107 -108 0

-169 -170 0

-169 -171 0

-169 -172 0

-170 -171 0

-170 -172 0

-171 -172 0

-209 -210 0

-209 -211 0

-209 -212 0

-210 -211 0

-210 -212 0

-211 -212 0

-241 -242 0

-241 -243 0

-241 -244 0

-242 -243 0

-242 -244 0

-243 -244 0

-205 -206 0

-205 -207 0

-205 -208 0

-206 -207 0

-206 -208 0

-207 -208 0

-245 -246 0

-245 -247 0

-245 -248 0

-246 -247 0

-246 -248 0

-247 -248 0

-201 -202 0

-201 -203 0

-201 -204 0

-202 -203 0

-202 -204 0

-203 -204 0

-249 -250 0

-249 -251 0

-249 -252 0

-250 -251 0

-250 -252 0

-251 -252 0

-197 -198 0

-197 -199 0

-197 -200 0

-198 -199 0

-198 -200 0

-199 -200 0

-253 -254 0

-253 -255 0

-253 -256 0

-254 -255 0

-254 -256 0

-255 -256 0

-193 -194 0

-193 -195 0

-193 -196 0

-194 -195 0

-194 -196 0

-195 -196 0

-257 -258 0

-257 -259 0

-257 -260 0

-258 -259 0

-258 -260 0

-259 -260 0

-25 -26 0

-25 -27 0

-25 -28 0

-26 -27 0

-26 -28 0

-27 -28 0

-261 -262 0

-261 -263 0

-261 -264 0

-262 -263 0

-262 -264 0

-263 -264 0

-21 -22 0

-21 -23 0

-21 -24 0

-22 -23 0

-22 -24 0

77

Appendix B RNA Encodings

-23 -24 0

-265 -266 0

-265 -267 0

-265 -268 0

-266 -267 0

-266 -268 0

-267 -268 0

-17 -18 0

-17 -19 0

-17 -20 0

-18 -19 0

-18 -20 0

-19 -20 0

-269 -270 0

-269 -271 0

-269 -272 0

-270 -271 0

-270 -272 0

-271 -272 0

-13 -14 0

-13 -15 0

-13 -16 0

-14 -15 0

-14 -16 0

-15 -16 0

-273 -274 0

-273 -275 0

-273 -276 0

-274 -275 0

-274 -276 0

-275 -276 0

-9 -10 0

-9 -11 0

-9 -12 0

-10 -11 0

-10 -12 0

-11 -12 0

-277 -278 0

-277 -279 0

-277 -280 0

-278 -279 0

-278 -280 0

-279 -280 0

-5 -6 0

-5 -7 0

-5 -8 0

-6 -7 0

-6 -8 0

-7 -8 0

-281 -282 0

-281 -283 0

-281 -284 0

-282 -283 0

-282 -284 0

-283 -284 0

-1 -2 0

-1 -3 0

-1 -4 0

-2 -3 0

-2 -4 0

-3 -4 0

-285 -286 0

-285 -287 0

-285 -288 0

-286 -287 0

-286 -288 0

-287 -288 0

-49 -85 0

-50 -86 0

-51 -87 0

-52 -88 0

-45 -89 0

-46 -90 0

-47 -91 0

-48 -92 0

-41 -93 0

-42 -94 0

-43 -95 0

-44 -96 0

-37 -97 0

-38 -98 0

-39 -99 0

-40 -100 0

-121 -153 0

-122 -154 0

-123 -155 0

-124 -156 0

-117 -157 0

-118 -158 0

-119 -159 0

-120 -160 0

-113 -161 0

-114 -162 0

-115 -163 0

-116 -164 0

-109 -165 0

-110 -166 0

-111 -167 0

-112 -168 0

-105 -169 0

-106 -170 0

-107 -171 0

-108 -172 0

-209 -241 0

-210 -242 0

-211 -243 0

-212 -244 0

-205 -245 0

-206 -246 0

-207 -247 0

-208 -248 0

-201 -249 0

-202 -250 0

-203 -251 0

-204 -252 0

-197 -253 0

-198 -254 0

-199 -255 0

-200 -256 0

-193 -257 0

-194 -258 0

-195 -259 0

-196 -260 0

-25 -261 0

-26 -262 0

-27 -263 0

-28 -264 0

-21 -265 0

-22 -266 0

-23 -267 0

-24 -268 0

-17 -269 0

-18 -270 0

-19 -271 0

-20 -272 0

-13 -273 0

-14 -274 0

-15 -275 0

-16 -276 0

-9 -277 0

-10 -278 0

-11 -279 0

-12 -280 0

-5 -281 0

-6 -282 0

-7 -283 0

-8 -284 0

-1 -285 0

-2 -286 0

-3 -287 0

-4 -288 0

-49 88 0

-51 86 0

-50 87 88 0

-52 85 86 0

-45 92 0

-47 90 0

-46 91 92 0

-48 89 90 0

-41 96 0

-43 94 0

-42 95 96 0

-44 93 94 0

-37 100 0

78

B.2 Example IP Encoding for only one Base Stacking

-39 98 0

-38 99 100 0

-40 97 98 0

-121 156 0

-123 154 0

-122 155 156 0

-124 153 154 0

-117 160 0

-119 158 0

-118 159 160 0

-120 157 158 0

-113 164 0

-115 162 0

-114 163 164 0

-116 161 162 0

-109 168 0

-111 166 0

-110 167 168 0

-112 165 166 0

-105 172 0

-107 170 0

-106 171 172 0

-108 169 170 0

-209 244 0

-211 242 0

-210 243 244 0

-212 241 242 0

-205 248 0

-207 246 0

-206 247 248 0

-208 245 246 0

-201 252 0

-203 250 0

-202 251 252 0

-204 249 250 0

-197 256 0

-199 254 0

-198 255 256 0

-200 253 254 0

-193 260 0

-195 258 0

-194 259 260 0

-196 257 258 0

-25 264 0

-27 262 0

-26 263 264 0

-28 261 262 0

-21 268 0

-23 266 0

-22 267 268 0

-24 265 266 0

-17 272 0

-19 270 0

-18 271 272 0

-20 269 270 0

-13 276 0

-15 274 0

-14 275 276 0

-16 273 274 0

-9 280 0

-11 278 0

-10 279 280 0

-12 277 278 0

-5 284 0

-7 282 0

-6 283 284 0

-8 281 282 0

-1 288 0

-3 286 0

-2 287 288 0

-4 285 286 0

B.2 Example IP Encoding for only one Base Stacking

It follows the transformation of (()) into the CPLEX format. It consists of the

following parts:

1. Function to be minimize.

2. A set of constraints.

3. Definition of variables which are used as indicators and thus have to restricted

to be either 0 or 1.

Minimize F:

- 24 A1 - 33 A2 - 21 A3 - 14 A4 - 21 A5 -21 A 6

- 33 A7 - 34 A8 - 25 A9 - 15 A10 - 22 A11 - 24 A12

- 21 A13 - 25 A14 + 13 A15 - 5 A16 - 14 A17 - 13 A18

- 14 A19 - 15 A20 - 5 A21 + 3 A22 - 6 A23 - 10 A24

- 21 A25 - 22 A26 - 14 A27 - 6 A28 - 11 A29 - 9 A30

- 21 A31 - 24 A32 - 33 A33 - 10 A34 - 9 A35 - 13 A36

Subject To

constraint1: + 1 x13 + 1 x14 + 1 x15 + 1 x16 = 1

constraint2: + 1 x29 + 1 x30 + 1 x31 + 1 x32 = 1

79

Appendix B RNA Encodings

constraint3: + 1 x9 + 1 x10 + 1 x11 + 1 x12 = 1

constraint4: + 1 x33 + 1 x34 + 1 x35 + 1 x36 = 1

constraint5: + 1 x13 + 1 x29 <= 1

constraint6: + 1 x9 + 1 x33 <= 1

constraint7: + 1 x14 + 1 x30 <= 1

constraint8: + 1 x10 + 1 x34 <= 1

constraint9: + 1 x15 + 1 x31 <= 1

constraint10: + 1 x11 + 1 x35 <= 1

constraint11: + 1 x16 + 1 x32 <= 1

constraint12: + 1 x12 + 1 x36 <= 1

constraint13: - 1 x13 + 1 x32 >= 0

constraint14: - 1 x14 + 1 x31 + 1 x32 >= 0

constraint15: - 1 x15 + 1 x30 >= 0

constraint16: - 1 x16 + 1 x29 + 1 x30 >= 0

constraint17: - 1 x9 + 1 x36 >= 0

constraint18: - 1 x10 + 1 x35 + 1 x36 >= 0

constraint19: - 1 x11 + 1 x34 >= 0

constraint20: - 1 x12 + 1 x33 + 1 x34 >= 0

constraint21: - 1 x11 - 1 x34 - 1 x31 - 1 x14 + 1 A1 > -4

constraint22: - 4 A1 + 1 x11 + 1 x34 + 1 x31 + 1 x14 >= 0

constraint22: - 1 x10 - 1 x35 - 1 x31 - 1 x14 + 1 A2 > -4

constraint23: - 4 A2 + 1 x10 + 1 x35 + 1 x31 + 1 x14 >= 0

constraint23: - 1 x10 - 1 x36 - 1 x31 - 1 x14 + 1 A3 > -4

constraint24: - 4 A3 + 1 x11 + 1 x34 + 1 x31 + 1 x14 >= 0

constraint25: - 1 x12 - 1 x34 - 1 x31 - 1 x14 + 1 A4 > -4

constraint26: - 4 A4 + 1 x12 + 1 x34 + 1 x31 + 1 x14 >= 0

constraint27: - 1 x9 - 1 x36 - 1 x31 - 1 x14 + 1 A5 > -4

constraint28: - 4 A5 + 1 x9 + 1 x36 + 1 x31 + 1 x14 >= 0

constraint29: - 1 x12 - 1 x33 - 1 x31 - 1 x14 + 1 A6 > -4

constraint30: - 4 A6 + 1 x12 + 1 x33 + 1 x31 + 1 x14 >= 0

constraint31: - 1 x11 - 1 x34 - 1 x30 - 1 x15 + 1 A7 > -4

constraint32: - 4 A7 + 1 x11 + 1 x34 + 1 x30 + 1 x15 >= 0

constraint33: - 1 x10 - 1 x35 - 1 x30 - 1 x15 + 1 A8 > -4

constraint34: - 4 A8 + 1 x10 + 1 x35 + 1 x30 + 1 x15 >= 0

constraint35: - 1 x10 - 1 x36 - 1 x30 - 1 x15 + 1 A9 > -4

constraint36: - 4 A9 + 1 x10 + 1 x36 + 1 x30 + 1 x15 >= 0

constraint37: - 1 x12 - 1 x34 - 1 x30 - 1 x15 + 1 A10 > -4

constraint38: - 4 A10 + 1 x12 + 1 x34 + 1 x30 + 1 x15 >= 0

constraint39: - 1 x9 - 1 x36 - 1 x30 - 1 x15 + 1 A11 > -4

constraint40: - 4 A11 + 1 x9 + 1 x36 + 1 x30 + 1 x15 >= 0

constraint41: - 1 x12 - 1 x33 - 1 x30 - 1 x15 + 1 A12 > -4

80

B.2 Example IP Encoding for only one Base Stacking

constraint42: - 4 A12 + 1 x12 + 1 x33 + 1 x30 + 1 x15 >= 0

constraint43: - 1 x11 - 1 x34 - 1 x30 - 1 x16 + 1 A13 > -4

constraint44: - 4 A13 + 1 x11 + 1 x34 + 1 x30 + 1 x16 >= 0

constraint45: - 1 x10 - 1 x35 - 1 x30 - 1 x16 + 1 A14 > -4

constraint46: - 4 A14 + 1 x10 + 1 x35 + 1 x30 + 1 x16 >= 0

constraint47: - 1 x10 - 1 x36 - 1 x30 - 1 x16 + 1 A15 > -4

constraint48: - 4 A15 + 1 x10 + 1 x36 + 1 x30 + 1 x16 >= 0

constraint49: - 1 x12 - 1 x34 - 1 x30 - 1 x16 + 1 A16 > -4

constraint50: - 4 A16 + 1 x12 + 1 x34 + 1 x30 + 1 x16 >= 0

constraint51: - 1 x9 - 1 x36 - 1 x30 - 1 x16 + 1 A17 > -4

constraint52: - 4 A17 + 1 x9 + 1 x36 + 1 x30 + 1 x16 >= 0

constraint53: - 1 x12 - 1 x33 - 1 x30 - 1 x16 + 1 A18 > -4

constraint54: - 4 A18 + 1 x12 + 1 x33 + 1 x30 + 1 x16 >= 0

constraint55: - 1 x11 - 1 x34 - 1 x32 - 1 x14 + 1 A19 > -4

constraint56: - 4 A19 + 1 x11 + 1 x34 + 1 x32 + 1 x14 >= 0

constraint57: - 1 x10 - 1 x35 - 1 x32 - 1 x14 + 1 A20 > -4

constraint58: - 4 A20 + 1 x10 + 1 x35 + 1 x32 + 1 x14 >= 0

constraint59: - 1 x10 - 1 x36 - 1 x32 - 1 x14 + 1 A21 > -4

constraint60: - 4 A21 + 1 x10 + 1 x36 + 1 x32 + 1 x14 >= 0

constraint61: - 1 x12 - 1 x34 - 1 x32 - 1 x14 + 1 A22 > -4

constraint62: - 4 A22 + 1 x12 + 1 x34 + 1 x32 + 1 x14 >= 0

constraint63: - 1 x9 - 1 x36 - 1 x32 - 1 x14 + 1 A23 > -4

constraint64: - 4 A23 + 1 x9 + 1 x36 + 1 x32 + 1 x14 >= 0

constraint65: - 1 x12 - 1 x33 - 1 x32 - 1 x14 + 1 A24 > -4

constraint66: - 4 A24 + 1 x12 + 1 x33 + 1 x32 + 1 x14 >= 0

constraint67: - 1 x11 - 1 x34 - 1 x29 - 1 x16 + 1 A25 > -4

constraint68: - 4 A25 + 1 x11 + 1 x34 + 1 x29 + 1 x16 >= 0

constraint69: - 1 x10 - 1 x35 - 1 x29 - 1 x16 + 1 A26 > -4

constraint70: - 4 A26 + 1 x10 + 1 x35 + 1 x29 + 1 x16 >= 0

constraint71: - 1 x10 - 1 x36 - 1 x29 - 1 x16 + 1 A27 > -4

constraint72: - 4 A27 + 1 x10 + 1 x36 + 1 x29 + 1 x16 >= 0

constraint73: - 1 x12 - 1 x34 - 1 x29 - 1 x16 + 1 A28 > -4

constraint74: - 4 A28 + 1 x12 + 1 x34 + 1 x29 + 1 x16 >= 0

constraint75: - 1 x9 - 1 x36 - 1 x29 - 1 x16 + 1 A29 > -4

constraint76: - 4 A29 + 1 x9 + 1 x36 + 1 x29 + 1 x16 >= 0

constraint77: - 1 x12 - 1 x33 - 1 x29 - 1 x16 + 1 A30 > -4

constraint78: - 4 A30 + 1 x12 + 1 x33 + 1 x29 + 1 x16 >= 0

constraint79: - 1 x11 - 1 x34 - 1 x32 - 1 x13 + 1 A31 > -4

constraint80: - 4 A31 + 1 x11 + 1 x34 + 1 x32 + 1 x13 >= 0

constraint81: - 1 x10 - 1 x35 - 1 x32 - 1 x13 + 1 A32 > -4

constraint82: - 4 A32 + 1 x10 + 1 x35 + 1 x32 + 1 x13 >= 0

81

Appendix B RNA Encodings

constraint83: - 1 x10 - 1 x36 - 1 x32 - 1 x13 + 1 A33 > -4

constraint84: - 4 A33 + 1 x10 + 1 x36 + 1 x32 + 1 x13 >= 0

constraint85: - 1 x12 - 1 x34 - 1 x32 - 1 x13 + 1 A34 > -4

constraint86: - 4 A34 + 1 x12 + 1 x34 + 1 x32 + 1 x13 >= 0

constraint87: - 1 x9 - 1 x36 - 1 x32 - 1 x13 + 1 A35 > -4

constraint88: - 4 A35 + 1 x9 + 1 x36 + 1 x32 + 1 x13 >= 0

constraint89: - 1 x12 - 1 x33 - 1 x32 - 1 x13 + 1 A36 > -4

constraint90: - 4 A36 + 1 x12 + 1 x33 + 1 x32 + 1 x13 >= 0

constraint91: + 1 A1 + 1 A2 + 1 A3 + 1 A4 + 1 A5 + 1 A6 + 1 A7

+ 1 A8 + 1 A9 + 1 A10 + 1 A11 + 1 A12 + 1 A13

+ 1 A14 + 1 A15 + 1 A16 + 1 A17 + 1 A18 + 1 A19

+ 1 A20 + 1 A21 + 1 A22 + 1 A23 + 1 A24 + 1 A25

+ 1 A26 + 1 A27 + 1 A28 + 1 A29 + 1 A30 + 1 A31

+ 1 A32 + 1 A33 + 1 A34 + 1 A35 + 1 A36 = 1

Binary

x13

x29

x9

x33

x14

x30

x10

x34

x15

x31

x11

x35

x16

x32

x12

x36

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

A16

A17

A18

A19

A20

A21

A22

A23

A24

A25

A26

A27

A28

A29

A30

A31

A32

A33

A34

A35

A36

82

Appendix C

Ramsey Numbers

Our recursive procedure to find upper and lower bounds for Ramsey numbers R(m,n)

is not only capable to give bounds for small values for m and n but also provides

bounds for values m,n ≥ 15. In Table C.1 bounds for 3 ≤ m ≤ 10 and 16 ≤ n ≤ 20

are presented.

m,n 16 17 18 19 20

3
45
136

48
153

51
171

54
190

57
210

4
74
814

79
967

84
1138

89
1328

94
1538

5
103
3846

110
4813

117
5951

124
7279

131
8817

6
132

15260
141

20073
150

26024
159

33303
168

42120

7
161

52850
172

72923
183

98947
194

132250
205

174370

8
190

164022
203

236945
216

335892
229

468142
242

642512

9
219

464902
234

701847
249

1037739
264

1505881
279

2148393

10
248

1220694
265

1922541
282

2960280
299

4466161
316

6614554

Table C.1: Bounds for R(m,n) with 3 ≤ m ≤ 10 and 16 ≤ n ≤ 20 calculated by Algorithm 4
on page 51.

The following compilation of bounds for R(m,n) seen in Table C.2 on the next page

shows results for even larger values for m and n.

83

A
p
p
en

d
ix

C
R
am

se
y

N
u
m

b
er

s

m,n 20 21 22 23 24 25

15
501

606415993
528

1040259091
555

1748018179
582

2881883262
609

4668162874
636

7438754716

16
538

1355953974
567

2396213065
596

4144231244
625

7026114506
654

11694277380
683

19133032096

17
575

2925749175
606

5321962240
637

9466193484
668

16492307990
699

28186585370
730

47319617466

18
612

6111061458
645

11433023698
678

20899217182
711

37391525172
744

65578110542
777

112897728008

19
649

12390242264
684

23823265962
719

44722483144
754

82114008316
789

147692118858
824

260589846866

20
686

24444245834
723

48267511796
760

92989994940
797

175104003256
834

322796122114
871

583385968980

21
723

48267511796
762

95293063850
801

188283058790
840

363387062046
879

686183184160
918

1269569153140

22
760

92989994940
801

188283058790
842

371959979762
883

735347041808
924

1421530225968
965

2691099379108

23
797

175104003256
840

363387062046
883

735347041808
926

1453548248186
969

2875078474154
1012

5566177853262

24
834

322796122114
879

686183184160
924

1421530225968
969

2875078474154
1014

5686120903874
1059

11252298757136

25
871

583385968980
918

1269569153140
965

2691099379108
1012

5566177853262
1059

11252298757136
1106

22264711413050

Table C.2: Bounds for larger R(m,n) calculated by Algorithm 4 on page 51 by adding knowledge about already known values.

8
4

List of Figures

1.1 Reduction from B to A: B ≤p A . 3

1.2 Schema how to use Sat-solvers to solve arbitrary NP problems 4

1.3 Interpretation of a Boolean formula as a Boolean circuit 6

3.1 Example: Binary search to find χ(G) 18

3.2 Run-time of different Sat-solver to find χ(queen8_8). 18

4.1 Example for a pseudo-knot configuration 23

4.2 Different representations of secondary structure 24

4.3 Secondary structure representations of yeast tRNAPhe 28

4.4 Yeast tRNAPhe’s inverse folding result 29

4.5 Dependency graph Ψ for multiple secondary structures 30

4.6 Free energies for stacked pairs . 31

4.7 Example secondary structure with contributing energies 32

4.8 Each base stacking can hold one of 36 energy values. 36

4.9 Example showing the usage of π(sl, p) 39

4.10 Yeast tRNAPhe’s inverse folding result using CPLEX 40

5.1 Plot of
(

n
k

)

for 1 ≤ n ≤ 100 and k = 3, 4, . . . , 10 45

5.2 R(3, 3) 6= 4 and R(3, 3) 6= 5 . 49

5.3 Small graphs without a Clique and an IndependentSet 55

5.4 Larger graphs without a Clique and an IndependentSet 55

5.5 Ramsey instance files size for k = 43 and 3 ≤ m,n ≤ 10. 57

5.6 Run-times to find small Ramsey numbers R(m,n) 58

A.1 1-Insertions_4 is 5-colorable . 61

A.2 2-Insertions_3 is 4-colorable . 61

A.3 3-Insertions_3 is 4-colorable . 62

A.4 4-Insertions_3 is 4-colorable . 62

A.5 DSJC125.1 is 5-colorable . 62

A.6 1-FullIns_3 is 4-colorable, 1-FullIns_4 is 5-colorable and 1-FullIns_5

is 6-colorable . 63

A.7 2-FullIns_3 is 5-colorable and 2-FullIns_4 is 6-colorable 64

A.8 3-FullIns_3 is 6-colorable, 3-FullIns_4 is 7-colorable and 3-FullIns_5

is 8-colorable . 65

85

List of Figures

A.9 4-FullIns_3 is 7-colorable and 4-FullIns_4 is 8-colorable 66

A.10 5-FullIns_3 is 8-colorable and 5-FullIns_4 67

A.11 le450_5a is 5-colorable, le450_5c is 5-colorable and le450_5d is 5-

colorable . 68

A.12 anna is 11-colorable and david is 11-colorable 69

A.13 huck is 11-colorable and jean is 10-colorable 70

A.14 queen5_5 is 5-colorable, queen6_6 is 7-colorable and queen7_7 is 7-

colorable . 71

A.15 myciel3 is 4-colorable, myciel4 is 5-colorable and myciel5 is 6-colorable 72

A.16 ash331GPIA is 4-colorable, ash608GPIA is 4-colorable and will199GPIA

is 7-colorable . 73

A.17 mugg88_1 is 4-colorable and mugg88_25 is 4-colorable 74

A.18 mugg100_1 is 4-colorable and mugg100_25 is 4-colorable 75

A.19 abb313GPIA is 9-colorable . 75

86

List of Tables

2.1 Used hardware configuration . 13

3.1 Mapping from colored vertices to integer values. 16

3.2 Run-times to find χ for queen8_8 . 19

3.3 Chromatic numbers for hard graph instances 19

3.4 Bounds for chromatic numbers for hard graph instances 20

3.5 New, not published results for chromatic numbers 21

4.1 Mapping from coded based positions to integer values. 27

5.1 Values and bounds for Ramsey numbers R(m,n) 52

5.2 Bounds for R(m,n) calculated by Algorithm 4 53

5.3 Improved bounds for R(m,n) using already known values 54

C.1 Bounds for R(m,n) with 3 ≤ m ≤ 10 and 16 ≤ n ≤ 20 83

C.2 Bounds for larger R(m,n) . 84

87

List of Algorithms

1 MinColorSearch . 17

2 SecondaryStructureToCircularRepresentation 29

3 CoRamsey . 44

4 RamseyBounds . 51

88

Bibliography

[1] I. G. Abfalter, C. Flamm, and P. F. Stadler, Design of multi-stable nu-

cleid acid sequences., in German Conference on Bioinformatics, 2003, pp. 1–7.

[2] A. Biere, Limmat, Computer Systems Institute ETH Zürich.

[3] , Limboole, Computer Systems Institute ETH Zürich, 2003.

[4] , The Evolution from Limmat to Nanosat, Tech. Rep. 444, Dept. of Com-

puter Science, ETH Zürich, 2004.

[5] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, Symbolic Model Checking

without BDDs., in TACAS, 1999, pp. 193–207.

[6] A. Biere and C. Sinz, Decomposing SAT Problems into Connected Compo-

nents, Journal on Satisfiability, Boolean Modeling and Computation, (2006).

Accepted for publication.

[7] S. A. Burr, P. Erdös, R. J. Faudree, and R. H. Schelp, On the difference

between consecutive Ramsey numbers., Utilitas Mathematica, 35 (1989), pp. 115–

118.

[8] A. Cobham, The intrinsic computational difficulty of functions, in Proc. 1964 In-

ternational Congress for Logic, Methodology, and Philosophy of Science, Y. Bar-

Hillel, ed., North-Holland, Amsterdam, 1964, pp. 24–30.

[9] S. A. Cook, The complexity of theorem-proving procedures, in Proceedings of

the Third IEEE Symposium on the Foundations of Computer Science, 1971,

pp. 151–158.

[10] G. B. Dantzig, Linear Programming and Extensions, Princeton University

Press, (1963).

[11] M. Davis, G. Logemann, and D. Loveland, A machine program for theorem

proving, Communications of the ACM, 5 (1962), pp. 394–397.

[12] M. Davis and H. Putnam, A computing procedure for quantification theory,

Journal of the ACM, 7 (1960), pp. 201–215.

[13] W. DeLano, The PyMOL Molecular Graphics System (2002) DeLano Scientific,

San Carlos, CA, USA., 2002.

89

Bibliography

[14] J. Edmonds, Paths, trees, and flowers, Can. J. Math., 17 (1965), pp. 449–467.

[15] N. Eén and N. Sörensson, An Extensible SAT-solver., in SAT, E. Giunchiglia

and A. Tacchella, eds., vol. 2919 of Lecture Notes in Computer Science, Springer,

2003, pp. 502–518.

[16] , An Extensible SAT-solver, Notes in Computer Science, 2919 (2004),

pp. 502–518.

[17] C. Flamm, I. L. Hofacker, S. Maurer-Stroh, P. F. Stadler, and

M. Zehl, Design of multistable RNA molecules., RNA, 7 (2001), pp. 254–265.

[18] M. R. Garey and D. S. Johnson, Computers and Intractability (A Guide to

Theory of NP-Completeness), Freeman, San Francisco, 1979.

[19] K. Gödel, letters to von Neuman, 1956.

[20] R. E. Greenwood and A. M. Gleason, Combinatorial relations and chro-

matic graphs, Canadian Journal of Mathematics, 7 (1955), pp. 1–7.

[21] I. L. Hofacker and P. F. Stadler, RNA Secondary Structure.

[22] N. Karmarkar, A New Polynomial-Time Algorithm for Linear Programming,

in STOC, 1984, pp. 302–311.

[23] R. M. Karp, Reducibility among combinatorial problems, in Complexity of Com-

puter Computations, R. E. Miller and J. W. Thatcher, eds., Plenum Press, 1972,

pp. 85–103.

[24] L. G. Khachiyan, A Polynomial Algorithm in Linear Programming, Soviet

Mathematics Doklady, 20 (1979), pp. 191–194.

[25] L. A. Levin, Universal search problems, Problemi Peredachi Informatsii, 9

(1973), pp. 265–266.

[26] Y. S. Mahajan, Z. Fu, and S. Malik, zchaff2004: An Efficient SAT Solver.,

in SAT (Selected Papers, 2004, pp. 360–375.

[27] J. P. Marques-Silva and K. A. Sakallah, GRASP - A New Search Algo-

rithm for Satisfiability, in Proceedings of IEEE/ACM International Conference

on Computer-Aided Design, 1996, pp. 220–227.

[28] J. P. Marques-Silva and K. A. Sakallah, GRASP: A Search Algorithm for

Propositional Satisfiability, in IEEE Transactions on Computers, vol. 48, 1999,

pp. 506–521.

[29] J. S. McCaskill, The equilibrium partition function and base pair binding prob-

abilities for RNA secondary structure., Biopolymers, 29 (1990), pp. 1105–1119.

90

Bibliography

[30] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,

Chaff: Engineering an Efficient SAT Solver, in Proceedings of the 38th Design

Automation Conference (DAC’01), June 2001.

[31] T. H. Nguyen, Graph Coloring Benchmark Instances. On-line at

http://cs.hbg.psu.edu/txn131/INSTANCES/graphcoloring.html.

[32] J. Oberhofer, The architecture of SAT solvers and their applicability to NP-

complete problems, Master’s thesis, Technische Universität Wien, 2003.

[33] C. H. Papadimitriou, On the complexity of integer programming., J. ACM, 28

(1981), pp. 765–768.

[34] C. M. Papadimitriou, Computational complexity, Addison-Wesley Publishing

Company, Inc., 1994.

[35] S. P. Radziszowski, Small Ramsey Numbers, Dynamic Survey DS1 Revision

11, August 1, 2006, Electronic Journal of Combinatorics, (1994).

[36] F. P. Ramsey, On a problem in formal logic, Proceedings of the London Math-

ematical Society (3), 30 (1930), pp. 264–286.

[37] C. Reidys, P. F. Stadler, and P. Schuster, Genric Properties of Combi-

natory Maps: Neutral Networks of RNA Secondary Structures., Bull Math Biol,

59 (1997), pp. 339–397.

[38] M. Schaefer, Graph Ramsey Theory and the Polynomial Hierarchy., in STOC,

1999, pp. 592–601.

[39] J. Stirling, Methodus Differentialis: sive Tractatus de Summatione et Interpo-

latione Serierum Infinitarum, 1730.

[40] M. Trick, Network Ressources for Coloring a Graph. On-line at

http://mat.gsia.cmu.edu/COLOR/color.html.

[41] G. Tseitin, On the complexity of derivation in propositional calculus, Studies

in Constructive Mathematics and Mathematical Logic, (1968), pp. 115–125.

[42] A. M. Turing, On Computable Numbers, with an application to the Entschei-

dungsproblem, Proc. London Math. Soc., 2 (1936), pp. 230–265.

[43] K. Walker, Dichromatic Graphs and Ramsey Numbers, Journal of Combinato-

rial Theory, 5 (1968), pp. 238–243.

[44] M. S. Waterman and T. F. Smith, RNA secondary structure: A complete

mathematical analysis., Mathematical Biosciences, 42 (1978), pp. 257–266.

[45] J. D. Watson and F. H. C. Crick, Molecular Structure of Nucleic Acids: A

Structure for Deoxyribose Nucleic Acid, Nature, 171 (1953), pp. 737–738.

91

Bibliography

[46] G. Weberndorfer, Computational Models of the Genetic Code Evolution

Based on Empirical Potentials, PhD thesis, Fakultät für Naturwissenschaften

und Mathematik der Universität Wien, 2002.

[47] M. Zuker, On finding all suboptimal foldings of an RNA molecule., Science, 244

(1989), pp. 48–52.

[48] M. Zuker and P. Stiegler, Optimal computer folding of large RNA sequences

using thermodynamics and auxiliary information., Nucleic Acids Res, 9 (1981),

pp. 133–148.

92

Index

coNPNP, 46

m-Clique, 42

n-IndependentSet, 42

0-1 Integer Programming, 34

AU, UA, CG, GC, GU, UG, 23

Boolean Satisfiability, 5

A, G, C, U, 23

CircuitSat, 5

Coloring problem, 25

IP, see Integer Programming

Integer Programming, 10, 32, 34

LP, see Linear Programming, see

Linear Programming

LP format, 10

Linear Programming, 10, 33

MinColoring, 14, 16

NP, 1, 2

P, 1, 2

PBO, 10, see Pseudo Boolean Op-

timization

PH, see Polynomial Hierarchy

Pseudo Boolean Optimization, 34

Ramsey, 42

Sat, see Boolean Satisfiability

Sat-solver, 4

Satisfiability problem, 5

compsat, 19

k-Coloring, 25

limmat, 19, 28

minisat, 19

zChaff, 19

binary search, 16

BMC, see Bounded Model Checking

Bounded Model Checking, 4

bracket notation, 23

chromatic number χ, 14

circular representation, 23

CNF, see conjunctive normal form

complete graph, 42

completeness, 3

NP-completeness, 6, 7

conformation, 22

meta-stable, 22

non-native, 22, 29

conjunctive normal form, 5, 9

Cook’s theorem, 6

CPLEX, 10

decision problem, 1

dependency graph, 30

DIMACS, 9

energy barrier, 22

energy parameter, 31

ensemble, 31

graph, 24

complete graph, 42

independent graph, 42

subgraph, 41

undirected, 24

graph Coloring, 24

hardness, 3

hydroxyl group, 23

independent graph, 42

inverse RNA folding problem, 24

93

Index

Karp’s 21 problems, 34

literal, 9

loop, 31

loop-based energy model, 31

minimum free energy, 31

molecular switch, 22, 29

mountain representation (plot), 23

nucleotide, 23

objective function, 10

optimization problem, 32

oracle, 45

phosphate group, 23

polymer, 22

Polynomial Hierarchy, 45, 46

pseudo-knots, 22

quantifier alternation, 45, 46

Reduction

Karp Reduction, 2

ribonucleic acid, 22

ribose, 23

RNA, see ribonucleic acid

RNA folding problem, 23

RNA switch problem, 30

satisfiability, 4

satisfiable expression, 4

satzoo, 29

secondary structure, 22

circular representation, 23

mountain representation (plot), 23

simplex algorithm, 34

stacked base pairs, 31

subgraph, 41

subgraph isomorphism, 43

tRNAPhe, 27

Turing machine

deterministic, 2

non-deterministic, 2

Watson-Crick, 23

wobble pairs, 23

94

