Optimizing Automatic Deployment Using
Non-Functional Requirement Annotations

Stefan Kugele'2, Wolfgang Haberl', Michael Tautschnig?, and Martin Wechs?

! Institut fiir Informatik
Technische Universitdt Miinchen
Boltzmannstr. 3, 85748 Garching b. Miinchen, Germany
2 Institut fiir Informatik
Technische Universitat Darmstadt
Hochschulstr. 10, 64289 Darmstadt, Germany
3 BMW Forschung und Technik GmbH
Hanauer Strafle 46, 80992 Miinchen, Germany

Abstract Model-driven development has become common practice in
design of safety-critical real-time systems. High-level modeling constructs
help to reduce the overall system complexity apparent to developers.
This abstraction caters for fewer implementation errors in the resulting
systems. In order to retain correctness of the model down to the software
executed on a concrete platform, human faults during implementation
must be avoided. This calls for an automatic, unattended deployment
process including allocation, scheduling, and platform configuration.

In this paper we introduce the concept of a systems compiler using non-
functional requirements (NFR) as a guidance for deployment of real-time
systems. The postulated requirements are then used to optimize the al-
location decision, i. e., the process of mapping model entities to available
computing nodes, as well as the subsequent generation of schedules.

1 Introduction

By far the largest part of computer systems today is used in embedded systems
(98%) [1]. These are integrated in laundry machines, medical systems, cars, and
aircrafts, just to name a few. In this paper we focus on large scale distributed
embedded systems, built up from dozens or even hundreds of computing nodes,
interconnected by various bus systems. Such systems contain or constitute life-
critical electronic resources. Faults, of any kind, thus may be fatal. Even if not
fatal, they bare large warranty costs for the designers and integrators of the
product. The design methodology described in this paper tries to reduce the
error rate of problems resulting from implementation errors. We do not consider
bugs in specifications or byzantine software failures due to hardware errors, but
extensions proposed to alleviate such issues may well be integrated.

Today, model driven development (MDD) is an established means of tackling
the enormous complexity involved in designing distributed embedded systems.
The large scale prohibits engineers from grasping the entire system at once.

Rather, a hierarchy of abstractions is applied to attain manageability at each
given level of abstraction. Pretschner et al. [2] for example consider three layers
of abstraction: a model of system features (requirements), a logical view (system
behavior), and a technical architecture (description of the target platform).

At higher levels of abstraction, even full formal verification, e.g., using model
checking, can be applied to guarantee adherence to a set of properties. Then,
proper behavior at model level may be guaranteed. In case of embedded real-time
systems, however, the target platform to operate on likely invalidates several as-
sumptions made at model level, or exposes properties that are not captured by
functional /behavioral modeling. We call such properties non-functional require-
ments, which includes the description of the target platform, or supplier specific
artifacts (see Section 3).

The complexity of the modeled system not only necessitates proper abstrac-
tions, but also calls for automation to take a model to an executable object, and
later to a functional integrated system. An automated translation likely reduces
errors and further guarantees reproducible results, and thus improves overall
quality. Such an automatism, however, must be made aware of all requirements
concerning the translation, which to a large extend involves non-functional re-
quirements.

In this paper we describe concepts and implementation, both for specification
of non-functional requirements and the automated translation from behavioral
models down to the effective runnable. The process of translation is best com-
pared to that of a software compiler. Given a functional model, usually as a piece
of source code, a runnable entity is produced. Compiler and linker will be given
all constraints imposed by the operating system and the target hardware plat-
form to obtain an appropriate piece of software. Apart from the straightforward
translation, a fundamental job of today’s compilers is optimization in terms of
size and execution speed.

In embedded systems, we will call this process systems compilation, since
the compilation will be accomplished for the overall system model where the in-
volved software and hardware components may be of various types. Here, both

Non-functional
requirements

Functional
model

Cluslering>—>[ger?eori?ion }b[Allocation }D[Scheduling }DECOE;SLOF;TOHJ

Figure 1. Systems compilation steps

translation and optimization are by no means straightforward. As per transla-
tion, a heterogenous heap of models and requirements must be considered to
obtain a valid runnable entity (cf. [3]). Today, a certain level of black magic
performed by engineers is required to fit the software and hardware components

into the targeted vehicle. In this paper, additional non-functional requirements
are considered with the objective of a cost optimized system.

In Figure 1 we outline the process of automated systems compilation as
described in this paper. We propose non-functional requirements be annotated
to the functional models. The obtained executables are tailored towards the
specific platform and require no further manual intervention.

1.1 Related Work

Annotation of non-functional requirements and a notation of platform capabil-
ities was described by Dinkel and Baumgarten [4]. Their goal, however, was
the dynamic system reconfiguration at run-time. We not only model these non-
functional requirements and capabilities, but describe a fully automatic deploy-
ment process. This process ranges from a system design modeled in the language
COLA (Component Language) [5], to determination of optimal allocation with
respect to an optimization goal and pre-runtime scheduling.

Wuyts and Ducasse instrument components, with non-functional require-
ments, specified in Comes (a general Component Meta-Model) [6]. In Comes,
components are seen as black boxes annotated with properties. This may be
sufficient for allocation and scheduling, but lacks the information necessary
for model-checking and other verification techniques. In COLA, each level of
abstraction—from a very high-level system design down to the low implementa-
tion level—offers a white-box view and therefore provides all necessary informa-
tion.

The UML profile MARTE (Modeling and Analysis of Real-Time and Em-
bedded Systems) [7] is currently in the course of standards definition. Therefore,
Espinoza et al. proposed an annotation of UML models with non-functional
properties [8]. UML, however, is a general purpose language, which does not
cater for the specific needs of the sub-domains of embedded systems design, like
automotive or avionics industry. In [1], Broy objects and favors the use of do-
main specific languages and architectures to improve the state of the art. We
present COLA as such a domain specific language, which, in contrast to UML,
also features a unique formal semantics.

Moreover, Matic et al. [9] take platform specifications, e.g., power modes of
the micro-controller, into account, as well as application specific information like
periods of tasks, in order to generate an optimal scheduling. Compared to our
approach, their work starts from having tasks to schedule. Our approach, how-
ever, supports an integrated development process of distributed hard real-time
systems from requirements engineering (system features) over the design phase
to the actual code generation, task allocation and scheduling in a consistent
modeling formalism. Furthermore, we optimize an objective function subject to
certain constraints stemming from non-functional requirements.

Regarding the overall design process, the DECOS project [10] is closest to
our approach. Unlike COLA, however, they do not use a consistent modeling
formalism, but rather resort to various techniques.

1.2 Organization

The rest of the paper is structured as follows. The next section gives a brief
introduction to the Component Language (COLA). In Section 3, we discuss
different non-functional requirements. Section 4 introduces the platform model
used throughout this paper with its annotated requirements and capabilities. The
optimized automatic deployment process is described in Section 5. Allocation
and scheduling are mentioned as well as the concluding platform configuration.
Finally, conclusions of the presented work are given in Section 6.

2 COLA—The Component Language

During the past years, synchronous data-flow languages have become increas-
ingly popular tools for the description and design of safety-critical embedded
control-systems. Like MATLAB/Simulink [11], the industry standard CASE-
tool, or SCADE by Esterel Technologies (A380, FCS) [12], COLA uses data-flow
networks to describe complex automotive and avionics systems. Approaches for
model-based development and design for embedded control systems based on
the synchronous paradigm have been described in [13,14]. In synchronous data-
flow languages, components work in parallel with respect to data dependen-
cies and process their input and output values at clock ticks, i.e., discrete time
points. In COLA, similar to other approaches following the hypothesis of perfect
synchrony [15] it is assumed that communication of data via connections—in
COLA, they are called channels—as well as computation of data-flow networks
elapse infinitely fast and therefore take no time. In this paper we use the syn-
chronous data-flow language COLA, which supports both a graphical and tex-
tual syntax and is based on a rigorous semantics.

The key concept of COLA are units. Units are at the very heart of the
COLA syntax definition because all COLA models are built up by units and
form data-flow networks. A unit itself can further be decomposed into sub-units
in a hierarchical fashion and build up complex networks. The lowest level of
those hierarchical networks consist only of so-called basic blocks that provide
basic arithmetic and comparison operators. Environmental interaction is given
via typed ports. In addition to basic blocks and networks, units can be decom-
posed into automata, i.e., finite state machines similar to Statecharts [16]. The
behavior in each state is again determined by units corresponding to each of the
states. This capability is well suited to express disjoint system modes, also called
operating modes (cf. [13,17,18]). Figure 2 shows a COLA system implementing
parts of an ignition with its states ignition on and ignition off. The state ignition
on is further decomposed in this example. Furthermore, COLA includes a spe-
cial unit, called delay, to retain data for one clock tick. In this way, memories
and feedback-loops can be realized.

To make distributed execution of COLA models possible, a partitioning into
runnable software components has to be accomplished. These components are
referred to as clusters in the context of COLA.

ignition

ignition ignition
off on

ignition on

Figure 2. Fictive ignition modeled in COLA using operating modes

3 Non-Functional Requirements

In requirements engineering of software systems, we distinguish functional and
non-functional requirements. Functional requirements cover all requisites neces-
sary for the correct evaluation of the specified algorithms, i. e., the mathematical
functions. These mainly depend on the availability of input data. Contrariwise,
non-functional requirements cover all additional demands, which are specified
for a piece of software and which do not directly influence the resulting output
data. They are measurable such that their compliance can be checked.

In this paper, we further distinguish two kinds of non-functional require-
ments: first, non-functional requirements that are essential for a correct opera-
tion of the specified system are considered. If at least one of these requirements is
not satisfied, an error-free operation of the overall system cannot be guaranteed.
Second, we consider non-functional requirements that are not necessary for the
system to operate, but rather improve a system’s quality regarding timely ex-
ecution (i.e., preservation of deadlines), resource usage, redundancy, etc. Some
possible quality requirements are given in ISO 9126. For example, it could be
beneficial to allocate safety-critical tasks onto processors on different, redun-
dant electronic control units (ECU). Another requirement might be to allocate
all tasks implemented by the same third-party supplier onto the same ECU,
resulting in a simplified maintenance process.

We use the terms processor and processing unit interchangeably and mean a
CPU or DSP without RAM, ROM, etc., whereas an FCU may include several
processors, RAM, ROM, and is connected to sensors, actuators and buses (cf.
Figure 4).

The NFRs mentioned here are intended to show the use of our methodology.
Of course, more than the discussed NFRs can be taken into account and easily
integrated in both the described model and the used allocation and scheduling
algorithms.

3.1 Essential Non-Functional Requirements

In the following, we briefly outline those NFRs that are essential for a correct
operation of the overall system.

Computing power: Each cluster needs a certain amount of computing power
for execution. This amount is annotated to the cluster embodying its worst-
case requirement. Hence this requirement can be checked against the given
platform. If more clusters are allocated onto a single processing unit than it
can handle, not all clusters are guaranteed be be evaluated.

Memory: Similarly to computing power, a cluster needs a minimum amount of
available memory. Two forms of memory are consumed: first, the binary file
generated for a cluster has to be stored in the permanent storage (ROM) of
the ECU. Second, the code generated for the cluster has demands regarding
the RAM available during execution.

Power state: Typically, embedded systems are bound to limited power supply.

Hence huge efforts are put into research and development of power sav-
ing technologies. For distributed embedded systems like cars, this can be
achieved through the definition of different power states. According to the
actual state of the car, e.g. locked, ignition off, ignition on, a varying number
of ECUs might be active. Other nodes are shut down at the same time to
avoid a waste of power.
To distinguish power states, a state hierarchy is given. Each power state
defines the set of ECUs running in it. Each higher state contains the same
ECUs, and at least one additional more. Therefore the relation Sy C S1 C
So C S3 indicates four power states which Sy being the lowest state and S
being the highest state in that example.

3.2 Auxiliary Non-functional Requirements

In addition to the mentioned essential NFRs, we also address auxiliary NFRs.
These are not necessary for correct operation, but raise further demands on the
system that, e.g., lower its cost or improve its efficiency.

Supplier: Large scale embedded systems are often the result of a cooperation
of several partners in industry. When defining a model for the whole system,
the definition of work packages for the different team partners is desirable.
These could consist of several clusters each in case of COLA. To allow for
this partitioning the designated partner can be annotated to each cluster
of the model. The supplier information can then be used to allocate tasks
implemented by a single supplier exclusively onto the same ECU(s). This
approach enables the partners to retain their current work-sharing where
each partner implements a piece of hardware, e.g., an ECU, together with
the corresponding software.

Redundancy: Dealing with safety-critical hard real-time systems, demands for
the implementation of error correcting techniques in case of a system node’s
failure emerge. A frequently used technique for error masking is the use of

redundant software components, specified using clusters in our case. The
specification of a redundancy requirement defines the number of redundant
cluster copies to use in the system, i.e., on how many different ECUs a
cluster should be deployed.

Processor architecture: If a cluster’s implementation is dependent on a spe-
cific processor’s capabilities, e.g. a digital signal processor (DSP), the cluster
has to be placed accordingly. This might be necessary for implementations
of algorithms requiring a large amount of processing power without violating
given deadlines.

Cost: From an economical point of view, one of the most important NFRs are
costs. In the automotive domain, for example, manufacturers operate in a
highly competitive mass market with strong cost pressure. Therefore, the
major part of the presented optimization approach is guided by costs. In
this paper cost is seen from the manufacturer’s point of view. In some cases
it may be beneficial to assemble more processors than needed to fulfill the
desired functionality, only to reduce the overall system costs. It is due to the
optimization process to decide on the most economic solution.

4 Requirements and Capabilities Meta-Models

In order to allow for an automatic transformation of the modeled COLA system
into an executable system, algorithms for allocation and scheduling of clusters
are needed. Their evaluation is influenced by the NFRs specified in the COLA
model. Thus each cluster of the COLA model may be annotated with several
NFRs. In the following we detail on the meta-model for specification of cluster
requirements and platform capabilities.

Requirements Specification Cluster requirements are captured as annota-
tions in the system model. These annotations occur in two forms: first, annota-
tions like power states, call frequency, etc. can be set. The values given for these
requirements are fixed independent of the processor the cluster is deployed.
Second, cluster requirements annotations that are specific for each processing
unit the cluster is deployed to, can be defined. For example, consider the number
of computing cycles and the memory consumption. In contrast to simple NFRs,
these requirements are specific for each processor on an ECU, because the val-
ues differ for the processor architecture, memory segmentation, etc. used on the
ECU in question. Therefore, these values have to be defined for each possible
allocation target. Thus these requirements are given for the cluster as a set of
tuples, each tuple consisting of the addressed node and the according value of
the requirement for that node. A class diagram of the meta-model for clusters
and their requirement annotations is given in Figure 3. As depicted, the require-
ments presented in Section 3 are covered in this meta-model. Simple annotations
are added to the clusters as attributes. In order to allow for a matching of these
requirements and the platform capabilities, a unit for the requirement has to be
chosen for each value. For example, the redundancy requirement for a cluster

Cluster
call_periode : int
replicas : int
supplier : String
pu_type : String
power_state : int

ECU

deadline : int '
NFR
AV roq | o| ssabstrct>
(_req.i
ROM._req : int cpu_cycles :int

Figure 3. Cluster annotation model

is specified by giving the number of needed copies. Other values may be repre-
sented by sets, e.g., the specification of clusters implemented by a single supplier.
Besides these simple requirements, node specific requirements are covered by the
meta-model. As their values differ according to each node the cluster might be
deployed to, the requirements are stored in an association class. Therefore, dis-
tinct values are stored for each possible cluster allocation onto a system’s node.
A complete list as well as an explanation for the attributes covered in Figure 3
is given in Table 1.

Capabilities Specification In order to calculate allocation and scheduling
decisions, the capabilities of the platform have to be given. These capabilities are

Table 1. Table of NFRs and capabilities

Requirement Unit Description

cpu-cycles (ID, cycles) The amount of processing cycles needed is specific for every proces-
sor in question. Thus the value is specified as a tuple mapping the
processor ID to a number of cycles.

RAM_req kByte The dynamic memory demand during task execution.
ROM_req kByte The memory needed for binary file storage.
power_state Name Name of the lowest power state in which this task is active.
supplier Name The name of the supplier implementing this cluster.
replicas Instances The number of copies distributed over the system for redundancy
reasons.
pu_type Set<Arch.> The names of valid processor architectures.
deadline ms Specifies a deadline within a cluster has to be executed.
Capability Unit Description
cost Euro The cost generated by using this hardware component.
ROM _cap kByte The amount of permanent memory available on the node.
RAM _cap kByte The working memory available on the node.
os_overhead ms For every called task, a certain amount of operating system over-
head is generated for dispatching, memory management, etc.
power_state State An ECU is active in the specified power state and all higher power
states.
supplier Name The name of the supplier building this piece of hardware.
pu_arch Name Processing units differ by their respective processor architecture.
Thus general purpose processors, DSPs and others can be distin-
guished.
proc_cycles Cycles/ms To state the amount of processing power available, the number of

cycles per milliseconds is given.

stored as an extension of the platform model, which include hardware, software
and other aspects. The algorithms described in Section 5 rely on the availability
of this information. While most capabilities are used as constraints for choosing
valid allocation and scheduling schemes, the cost attribute has to be handled
differently. It allows for an optimization of the resulting allocation and scheduling
plan by calculating the most economic system architecture.

The complete list of platform model attributes, and an explanation of these,
is given in Table 1. The attributes are taken from the COLA platform meta-
model, which can be seen in Figure 4

1.% Bus

cost : int

connectedTo

ECU

_ _ ROM_cap : long
|—ProcessingUnit | . 4 RAM_cap : long 11 Businterface

pu_arch : Str_lr)g @/ os_overhead : int

procic_:ycles sint power_state : int -

cost : int supplier : String

cost :int
1 1
[Sensor] [Actuator]

[] J

Figure 4. Platform model

5 Deployment Process

The aim of a fully automatic deployment process is bridging the gap between
the system description—in our case, in a model-based fashion—and the target
platform without a need for human interaction. As the system is modeled with-
out taking distribution aspects into account, a division of software components
into cluster—the model representation of software tasks—and an allocation of
these onto processing units is defined. A clustering is derived from an optimized
software architecture w.r.t. reusability, maintainability, design guidelines, docu-
mentation and others (cf. [19]).

Subsequently, a static schedule for the tasks on each node is defined and
the appertaining C code is generated. Finally, the execution platform has to
be configured, regarding addressing of messages, buffer allocation, etc. In the
following, we will briefly introduce these steps.

5.1 Allocation

Our approach focuses on an optimized automatic deployment process for embed-
ded hard real-time systems w.r.t. a set of given non-functional requirements. In

Section 4, we introduced a meta-model for annotating systems with NFRs. These
requirements are now taken into account by the presented allocation algorithm.
Similar to Zheng et al. [20] and Matic et al. [9] we use an integer linear program-
ming (ILP) approach and therefore chose a similar nomenclature. In addition
to Zheng et al., Metzner and Herde [21] who are using a SAT-based approach
for the task allocation problem, our approach takes non-functional requirements
during the deployment process into account. Before listing a set of constraints
and defining the optimization function, we introduce the notation used in this
section.

Notation Let T denote the set of all clusters (tasks), and let P be the set of all
processing units. In the following, we use the indicator variable a; , where t € T
is a task and p € P is a processing unit to indicate where a task is deployed to:

1 if task ¢ is allocated to processor p
a =
P 0 otherwise.

Furthermore, as abbreviating notation for the set {¢ | t € T A ¢(t)}, where ¢ is
some predicate over model attributes, we write ¢|¢, €.2., Pjsupplier=s = {plpce
P Asupplier(p) = s}. Variable names written in sans serif font refer to attributes of
the platform model shown in Figure 4 and the cluster annotation model depicted
in Figure 3, respectively.

In the following, we refer to several sets of model artifacts: ECU (electronic
control units), P (processing units), PA (processor architectures), T (tasks), PS
(power states), and S (suppliers).

Constraints
1. The following essential NFRs have to be met:
(a) Computing power: For all processing units p € P it holds
Z at,p - (cpu_cycles(t, p) + os_overhead(p)) - ¢ < proc_cycles(p)
teT

where o defines the number of task invocations per time unit.
(b) Memory consumption: For all ECUs e € ECU it holds

> 3 ar, - RAM_req(t, p) < RAM_cap(p)
p€Eproc(e) teT

> > i, ROM_req(t, p) < ROM_cap(p)

p€Eproc(e) teT

where proc(e) returns a set of processors present at ECU e.
(c) Power states: For all power states ps € PS and all tasks #|power_state—ps it

holds:
Z Qt.p = N

P|power._state>ps

2. Auxiliary non-functional requirements:

(a)

(b)

Supplier: For all suppliers s € S and all tasks ¢|sypplier—s holds:

Z Qt.p = N

P|supplier=s

Redundancy: Each cluster has to be deployed onto N processing units.
If no redundancy annotation is given, then N = 1, otherwise N =
replicas(t). This holds for all tasks ¢t € T

Zatﬂp =N

peEP

Processor architecture: For all processor architectures pa € PA and all
tasks ?|pu_arch=pa it holds:

Z at,.p = N

P|pu-arch=pa

Communication costs: Inter- and intra-processor communication may
be important in a real-time system to guarantee certain deadlines. We
introduce indicator variables aij gf which are 1, if task task ¢; is deployed
onto processor p,, and task t; onto processor p,, and 0 otherwise. It holds:
aij :53 < at,p, N ai;p,. Formulated as linear constraints we get for
all1 <i,7 <|T|and 1 <u,v <|P|:

tj,pv

tj)pv
—Qt;p, — Qtyp, Ty, > =2 and —2a;," +ag,p, +ayp, >0

These indicator variables are then multiplied by measured costs for inter-
and intra-ECU communication. These costs include, amongst others, the
communication frequency. Both, indicator variables and costs form the
basis for a possible metric in the optimization function.

Costs: Hardware is an important expense factor. Hence unused compo-
nents like controllers, buses and connection interfaces are only assembled
if for example the costs for future extensions are then reduced. If a bus
is exclusively used by unnecessary nodes, i.e., no tasks are mapped onto
them, it can be economized. This scenario, which is representative for
similar dependencies, can be expressed as follows:

VteTVpeP —ayp+cp>-—1

where ¢, € {0,1} indicates that the expense for processor p has to be
taken into account during the optimization process. This decision im-
plies that costs for the involved connection interfaces etc. have to be
considered:

VpeP —cp+oc>-—1

where ¢, € {0,1} is an indicator for the costs due to processor p being
connected to the bus b via a connection interface.

(f) Fixed allocation for some other reason: If a task ¢ € T has to be allocated
onto a special processor p, then a;), = 1 has to be added as constraint.

All the mentioned constraints, and other conceivable constraint extensions have
to be fulfilled such that it is possible to find an (optimal) solution. Additional
requirements include for example maintainability, extensibility and locality of in-
put/output hardware. Maintainability demands for a placement of related tasks
onto the same or a small number of ECUs. This results in fewer system nodes
involved in software maintenance activities. Considering future functionality im-
provements, it may be beneficial to include some spare system capacity. This
can be achieved by introducing dummy clusters. Regarding bus communication,
it is convenient to place tasks involved in environmental interaction on the ECU
the respective sensors and actuators are connected to. To allow for optimization,
in the following an objective function is given.

Optimization Function Beside the given constraints, it is mandatory to define
an optimization function. It consists of the two main components costs and met-
rics. Costs characterize actual expenses whereas metrics subsume non-functional
optimization factors like memory, CPU time, or communication costs.

minimize

ot Z Aj - cost; + Z L - metricy
. - -

E.g., the costs for processors costp o sum up to: costy,oc = Zpep Ccp - Kp, Where
Kp is the cost per unit obtained from the bill of material (BOM). By setting an
upper and a lower bound for cost; and metricy, outliers during optimization are
avoided. Metrics can be gained in a similar way. The distinct but fixed weight-
ings A; and py, enable to characterize OEM’s optimization criteria. Criteria for
this parameter selection will be subject to subsequent work. Hereby, statistical
processes as well as methods from financial mathematics are involved.

5.2 Scheduling

In this paper we describe a static, i. e., offline approach, which is comparable to
the work of Schild and Wiirz [22], but in contrast, our approach optimizes the
result w.r.t. costs and other metrics.

To realize the modeled system, the assumption we made on the logical
architecture—the complete system is evaluated in zero time and operate at dis-
crete ticks—is replaced by deadlines specified in the model. As long as all active
clusters are evaluated and all their deadlines are met, the time assumption can
be seen as fulfilled. Hardware interaction has to be handled in a specific way
to converge towards the synchrony assumption. Assuming this hypothesis, all
sensors and actuators are read from or written to, respectively, at the same in-
stant of time. In a car, however, this cannot be achieved, as a parallel reading
of several sensors connected to the same ECU is technically impossible. For ex-
ample, consider the four wheel speed sensors providing rotation values used for

the electronic stability control task. A lag in reading times beyond a certain
threshold would lead to malfunction. Therefore, we propose a scheduling cycle
starting with reading all sensors, subsequent execution of application tasks, and
finally the writing of all actuators. This conforms to the described scenario as
close as possible. Figure 5 illustrates such a scheduling cycle. The generation of

read write
Sensors actuators
ECU,--- —
ECU2 R R
ECU3 . R

~
scheduling cycle

Figure 5. Scheduling cycle

schedules is—among other prerequisites—guided by the causal order of clusters.
This causality can be derived from the data-flow defined in the COLA model
and depicted in a cluster dependency graph (CDG), as described in [19].

Since allocation and scheduling are separated, the scheduler already knows
about task distribution. This separation may result in a worse result compared
to a combined approach, but seems to be more feasible. The challenge remains
to find an optimal schedule for the complete system, preserving the model se-
mantics. The objective is to minimize:

f: Z te(t)

where tc(t) defines the completion time of task t taken from the set of all tasks T'.
Our algorithm is implemented in a way that all tasks of the distributed system
are scheduled to have their completion times as early as possible w.r.t. possible
data dependencies. This procedure causes a compaction of tasks at the beginning
of the schedule cycle. The possibly remaining cycle time can be used in future
extensions to schedule aperiodic and sporadic tasks.

5.3 Platform Configuration and Execution

Subsequent to scheduling, C code for the modeled system is generated. As men-
tioned before, a cluster is the model representation of a task. Thus a single source
file is generated for each cluster by our code generator [23]. The automatic gen-
eration of code guarantees the conformance of the C code to the COLA model.

Comparing the overall system model designed in COLA and its realization in
software, obviously a mapping from COLA channels to communication between
tasks has to be defined. In a distributed system this may be local communication
as well as bus communication. The data dependencies are captured in a task
graph [19] in the COLA modeling process. It is our intention to allow for a
flexible distribution of tasks without defining static communication addresses.
This is realized using a communication middleware for all task interactions as
well as task state storage. Additionally, the middleware is responsible for the
dispatching of tasks according to the calculated schedule. The dispatching plan,
as well as the task to address mapping is generated unattended, and therefore
avoids manual faults. We employ our middleware [24] for mapping channels to
communication.

6 Conclusions

In this paper, we introduced an integrated model-driven development process
for embedded real-time systems. We outlined the necessary steps for getting
from a functional system design modeled with COLA to a runnable entity. The
metaphor of a systems compiler best describes this process. First, the model is
cut into clusters which are subsequently allocated onto the available processing
units. Afterwards, an optimal schedule for the complete system is calculated. By
annotating the model with non-functional requirements, we were able not only
to find a feasible solution, but even an optimal solution for both task alloca-
tion and task scheduling, respectively, w.r.t. the given NFRs. The unattended
platform configuration tops the process off. Using this deployment process, an
adaptive cruise control system (ACC) was realized on the LEGO Mindstorms
platform as well as a parking assistance using several interconnected gumstix
microcontrollers with a RTOS installed.

References

1. Broy, M.: Automotive software and systems engineering (panel). In: MEMOCODE.
(2005) 143-149

2. Pretschner, A., Broy, M., Kriiger, I.H., Stauner, T.: Software engineering for au-
tomotive systems: A roadmap. In: FOSE ’07. (2007) 5571

3. Henzinger, T.A., Sifakis, J.: The discipline of embedded systems design. IEEE
Computer 40(10) (2007) 32—40

4. Dinkel, M., Baumgarten, U.: Modeling nonfunctional requirements: a basis for
dynamic systems management. SIGSOFT Softw. Eng. Notes 30(4) (2005) 1-8

5. Kugele, S., Tautschnig, M., Bauer, A., Schallhart, C., Merenda, S., Haberl, W.,
Kiihnel, C., Miiller, F., Wang, Z., Wild, D., Rittmann, S., Wechs, M.: COLA -
The component language. Technical Report TUM-10714, Institut fiir Informatik,
Technische Universitdt Miinchen (September 2007)

6. Wuyts, R., Ducasse, S.: Non-functional requirements in a component model for
embedded systems. In: SAVCBS 2001. (2001)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Object Management Group: Uml profile for modeling and analysis of real-time
and embedded systems (marte). OMG document: ptc/07-08-04 (2007)

Espinoza, H., Dubois, H., Gérard, S., Pasaje, J.L.M., Petriu, D.C., Woodside, C.M.:
Annotating uml models with non-functional properties for quantitative analysis.
In: MoDELS Satellite Events. (2005) 79-90

Matic, S., Goraczko, M., Liu, J., Lymberopoulos, D., Priyantha, B., Zhao, F.:
Resource modeling and scheduling for extensible embedded platforms. Technical
Report MSR-TR-2006-176, Microsoft Reasearch, One Microsoft Way, Redmond,
WA, USA (2006)

Kopetz, H., Obermaisser, R., Peti, P., Suri, N.: From a federated to an integrated
architecture for dependable embedded real-time systems. Technical Report 22,
Technische Universitdt Wien, Institut fiir Technische Informatik, Austria (2004)
The MathWorks Inc.: Using Simulink. (2000)

Berry, G., Gonthier, G.: The esterel synchronous programming language: design,
semantics, implementation. Sci. Comput. Program. 19(2) (1992) 87-152

Bauer, A., Broy, M., Romberg, J., Schitz, B., Braun, P., Freund, U., Mata, N.,
Sandner, R., Ziegenbein, D.: AutoMoDe— Notations, Methods, and Tools for
Model-Based Development of Automotive Software. In: Proceedings of the SAE
2005 World Congress, Detroit, MI, Society of Automotive Engineers (April 2005)
Caspi, P., Curic, A., Maignan, A., Sofronis, C., Tripakis, S., Niebert, P.: From
simulink to SCADE/lustre to TTA: a layered approach for distributed embedded
applications. In: LCTES, ACM (2003) 153-162

Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data-flow
programming language LUSTRE. Proceedings of the IEEE 79(9) (September 1991)
1305-1320

Booch, G., Rumbaugh, J., Jacobson, I.. The Unified Modeling Language User
Guide. Addison-Wesley (1998)

IEEE: IEEE Std 830-1998: IEEE Recommended Practice for Software Require-
ments Specifications. Institute of Electrical and Electronics Engineers (1998)
Maraninchi, F., Rémond, Y.: Mode-automata: a new domain-specific construct for
the development of safe critical systems. Science of Computer Programming 46(3)
(2003) 219254

Kugele, S., Haberl, W.: Mapping Data-Flow Dependencies onto Distributed Em-
bedded Systems. In: SERP 2008, Las Vegas, Nevada, USA (July 2008)

Zheng, W., Zhu, Q., Natale, M.D., Vincentelli, A.S.: Definition of task alloca-
tion and priority assignment in hard real-time distributed systems. In: RTSS ’07,
Washington, DC, USA, IEEE Computer Society (2007) 161-170

Metzner, A., Herde, C.: Rtsat—an optimal and efficient approach to the task allo-
cation problem in distributed architectures. In: RTSS. (2006) 147-158

Schild, K., Wiirtz, J.: Off-line scheduling of a real-time system. Proceedings of the
1998 ACM symposium on Applied Computing (Jan 1998)

Haberl, W., Tautschnig, M., Baumgarten, U.: Running COLA on Embedded Sys-
tems. In: IMECS 2008. (March 2008)

Haberl, W., Baumgarten, U., Birke, J.: A Middleware for Model-Based Embedded
Systems. In: ESA 2008, Las Vegas, Nevada, USA (July 2008)

