
Towards Resource Consumption-aware
Programming

Andreas Holzer
Technische Universität Darmstadt

Formal Methods in Systems Engineering
Darmstadt, Germany

Email: holzer@forsyte.de

Visar Januzaj
Technische Universität Darmstadt

Formal Methods in Systems Engineering
Darmstadt, Germany

Email: januzaj@forsyte.de

Stefan Kugele
Technische Universität München

Institut für Informatik
Garching bei München, Germany

Email: kugele@in.tum.de

Abstract—In order to check the fulfilment of non-functional re-
quirements at an early system design and development stage, we
provide a framework that facilitates the combination of platform-
independent and platform-specific information in a query-based
manner to calculate estimates for the resource consumption of
the software under investigation at fine grained levels of code.
Based on an already optimised intermediate representation of the
source code, using a testing infrastructure for C code, we count
the occurrence of instructions during program executions in a
platform-independent manner. These instruction counters can be
determined at program or function level. By combining these
counters with cost information of a hardware platform we can
provide resource consumption estimates. This allows the software
developer to tailor the code steadily towards the non-functional
characteristics of the software.
Index Terms—Code Instrumentation, Embedded Systems, Ex-

ecution Time

I. INTRODUCTION

Non-functional system properties, like execution time and
power consumption, are of importance in many application
areas. They range from computer games to safety-critical
embedded real-time systems such as those heavily used in the
automotive and avionics domain. During the last decade, the
development of the latter system domains has been affected
by the paradigm of model-driven development (MDD) which
is gaining in importance. Nevertheless, in many cases source
code for those systems is still either completely handwritten,
due to contractual provision, or the code is generated in a
MDD fashion and afterwards optimised by system engineers.
Therefore, code inspection is still indispensable during the
development process of safety-critical systems.
Unlike the rather easier understanding of functional as-

pects, it is usually hard for a software developer to get an
intuition of the non-functional characteristic of source code.
We want to improve this situation by providing a framework
that facilitates an efficient estimation of the non-functional
behaviour of the whole software system or even only of
certain parts of it. In this manner, developers can be tool-
supported right at the outset of the overall development
process, by providing them with various estimation types
such as performance estimations for a piece of code. Thus,
real-time requirements can roughly be checked immediately
at design time and therefore enable their traceability which

is considered as a challenge in the automotive domain [1].
Given specific requirements, a software developer can ask
questions about the code at hand by writing queries in an
SQL-like fashion. The envisioned framework responds to such
queries (questions) with a resource consumption estimate for
the specified source code. In this way one can check whether
the code of interest meets its non-functional requirements.
Such queries can amount to complex interactions between
functions reflecting, e. g., operating modes [2], [3] as used in
embedded systems. By allowing to query for non-functional
properties of specific parts of the software system, a systematic
analysis of the impact of single code fragments on the non-
functional behaviour of the overall system is possible.
Furthermore, the separate treatment of hardware and soft-

ware in our approach opens the possibility to tailor the
hardware and software in an easy way in order to meet the
specified non-functional requirements. To achieve this goal,
one can either optimise the software in order to meet the
non-functional requirements or choose a different hardware
platform or combine both choices. In this way our framework
enables the reduction of the gap between requirements, design,
and implementation of a system.
We introduce our framework in Section II. In Section III

we describe related approaches. Finally, in Section IV we
conclude our work and give some ideas for future work.

II. FRAMEWORK

Figure 1 shows the skeleton of our framework. A user gives
as input a resource cost estimation (RCE) query, e. g.,

ESTIMATE time
OF foo IN bar.c
ON PPC

Such a query refers to source code (function foo in source
file bar.c), to a resource type (time) and the platform
configuration (PPC) the software is considered to run on. For
the given query a resource consumption estimate will be cal-
culated. The query processing module analyses the query and
retrieves the resource cost information for the given platform
from the resource cost repository, cf. II-D. These resource cost
information are essentially weights for variables that count the
occurrence of instructions during a program execution. Thus,

FQL Command

Test Cases

RCE Query

C
Source
Files

Resource
Cost

Repository

FShell

Test Harness

Resource
Consumption
Estimator

Estimated
Resource

Consumption

Resource Cost
Information

Instruction
Counter Values

WHERE < >

Query
Processing

Code
Instrumentation

Instrumented
Bytecode
Program

WITH < >

Figure 1. Resource Consumption Estimation Framework.

to calculate an estimate we have to determine the number
of executions for each instruction type, e. g., ADD, MULT,
JMP, and CALL. The distinction between instruction types is
reasonable, since instructions of different classes contribute
with varying weights to the overall non-functional behaviour.
This means, that in the case of the timing behaviour of a
program a division affects the runtime significantly more, i. e.,
its execution needs more cycles than an addition and therefore
these instructions are considered separately. To determine
the number of occurrences for each instruction type, counter
variables are added to the source files that are used in the
query. Every time an instruction is executed the corresponding
counter variable is incremented. The values for the counter
variables are then determined in a test-based manner, i. e.,
the test harness executes the instrumented program on some
reference platform with test inputs. For this purpose, the test
harness builds a wrapper around the code to ensure that the
program can be executed with given test inputs, e. g., it creates
a main function that calls a function foo with its necessary
input data. Finally, by combining the instruction counters and
the resource cost information of the designated target platform
a resource consumption estimate is calculated. The time the
program needs to run on the reference platform is irrelevant
for the resource consumption estimate, since only the counter
values are of interest.

A. Query Processing
An RCE query has the following form:

ESTIMATE <resource type>
OF <source range information>
ON <platform descriptor>
(WITH <test cases> | WHERE <constraints>)

The information given by the resource type, e. g., time or
power, and the platform descriptor, e. g., ARM or PPC,
are used to determine which information should be loaded

from the resource cost repository. In order to run the test
harness it is necessary to provide test cases. This can be
done either by directly specifying test cases in the query
using the WITH keyword or by giving constraints with the
WHERE keyword. Both keywords cannot be used together and
both are optional, i. e., in case neither WITH nor WHERE is
given, the query is considered to have no constraints on the
source code. In case no test cases are given directly, the source
range information, e. g., foo IN bar.c or line 5 IN
bar.c, and the given constraints, e. g., operation mode
== parking, are used to form an FQL [4] command that
is delegated to the FShell [5] test case generator, see II-C.

B. Code Instrumentation
We use the LLVM compiler framework [6] for code in-

strumentation to perform a translation of the source code into
LLVM bytecode intermediate representation. This intermedi-
ate representation, compared to C, has a reduced RISC-like
instruction set and its instructions are of a three-address-code
form. LLVM offers a modified version of the gcc compiler that
allows the inclusion of platform-independent optimisations
during the translation step. Hence improving the resource
consumption estimate by narrowing the gap between high-
level C code and the instructions that are actually executed
on the machine. On the LLVM bytecode level we introduce
counter variables that keep track of the number of instruction
executions for each instruction type. Currently, these counters
can be recorded for each function invocation, i. e., the number
of the executed instructions for each function run is tracked
separately. The source code location, where the instrumenta-
tion has to take place, is derived from the source code fragment
information given in an RCE query.

C. Testing Environment
There are two ways test cases are derived for executing

the instrumented program. First, the user can give test cases
directly as part of a query (WITH), and second, the query

processing generates an FQL command (WHERE) for the
FShell tool. FShell is an automatic test case generator for
C code that can handle complex specifications of test suites.
For example, one can ask for test cases that yield a certain
execution order on function calls or can fix some variable
values at some certain point of code. This allows to query for
test cases that cover certain execution modes of the software
under investigation. Given a test suite, a test harness executes
the program (code fragment) for each test case and determines
the counter values for the program (code fragment) execution.

D. Resource Consumption Estimation

Once the occurrences for each LLVM bytecode instruction
type are determined, these counter values are then multiplied
with the corresponding weight and summed up, similar to the
approach presented in [7]. The weights are the resource cost
information taken from the resource cost repository and are
specific for each instruction type.
The resource cost repository can be filled in different ways:

one way is to determine the resource cost information from
datasheets [8]. This approach is practical for the timing (cycle)
information of existing processors but remains problematic for
other kinds of resources, e. g., power consumption, where such
information is not available with respect to single instructions.
Another way to get the resource cost information is by running
benchmark programs on the hardware of interest, cf. [7], [8].

III. RELATED WORK

Closest to the spirit of our approach is [7], where the LLVM
framework is used to perform code instrumentation in order to
extract the structure of the given source code and to calculate
its estimated execution time, so called software analysis. In
addition they perform a separate test-based hardware analysis
by applying a number of benchmarks. These measurements are
stored in the corresponding hardware profile. However, their
main focus is the system deployment analysis. In contrast to
their approach we facilitate a more integrated framework in
order to automatically analyse specific software runs.
In [8] every basic block of some given source code is trans-

lated into values that count a corresponding number of execu-
tions of virtual processor instructions. Their virtual processor
instruction set can have two different interpretations: one that
accurately models a specific combination of a compiler and
a CPU, which leads to accurate timing estimations, and a
second one, that estimates the timing behaviour by roughly
modelling the processor platform. The second interpretation
is close to the approach with LLVM that we are currently
using in our framework. They determine the timing estimation
by executing the program on some platform retrieving the
execution counts for different kinds of virtual instructions.
The authors provide different methods to derive a timing
estimate from the determined counter values. Either one takes
cycle information for a virtual instruction from the processor
data sheet, or one estimates the cycles from previously ran
benchmark programs, as was also done in [7].

Wang et al. [9] describe a software performance estimation
framework that is related to the work described in [7], [8] as
well as to ours. For every instruction in the source code the
number of cycles that are needed for executing the machine
instructions that result from compiling the sources for some
specific processor are determined. Then, the original source
code is instrumented. In principle they introduce a counter
variable that counts the number of cycles that are executed
so far. For each source code instruction the corresponding
increment is added to the counter variable. Next, they compile
the instrumented sources together with a detailed microarchi-
tecture model and run the program using test data. By this, they
get an estimate of the number of cycles the program needs
for execution. Their approach is limited to timing analysis
and lacks an flexible querying mechanism. Furthermore, the
increment for the counter variable for every instruction has to
be determined for every compiler/processor combination.

IV. CONCLUSION AND FUTURE WORK

We have presented a framework for query-driven resource
consumption estimation. Its flexible querying mechanism fa-
cilitates an efficient tracing of requirements throughout the
development process of the software. Therefor, for a given re-
quirement, the software developer can select the corresponding
piece of source code and a corresponding RCE source range
information is generated fully automatically. This technique
offers a very easy tracing functionality, which is desired by
the industry. Being still under development, our framework
cannot be automatically tested to the full extent. However,
we prepared and manually ran some tests, since parts of
the framework are already implemented. We can currently
perform code instrumentation (cf. II-B), resource consumption
estimation (cf. II-D) and establish a resource cost repository,
as proposed in [7]. In order to be able to put together the whole
tool chain of our framework, query processing (cf. II-A) and
the testing environment (cf. II-C) need to get implemented.
Our framework can serve as a building block for a system

deployment analysis, where the system analyst queries for
timing estimates of a given software regarding different hard-
ware platforms. In this way, one can define possible mappings
between hardware and software. These mappings are then used
for the calculation of a feasible system deployment, cf. [7].
The modified gcc compiler of the LLVM framework pro-

vides frontends for a multitude of languages and the extension
of our framework to more languages would be a natural
next step. The code instrumentation of our framework would
remain unchanged, whereas only the test case generation and
the test harness would be those parts that need to be extended
and adapted to the new languages.
The envisioned framework is motivated by real-time con-

straints, such as deadlines, found in requirement specification
documents of safety-critical embedded systems. Since the
presented framework is designed to be extensible, we believe
that our approach is also feasible for other application domains
as well as for other non-functional properties, e. g., power

consumption, which will be evaluated in more detail in future
work.
In principle, the application of a static code analysis instead

of a dynamic analysis, i. e., the analysis of all possible execu-
tion paths by looking at the source code instead of executing
the software on a reference platform, is an interesting point
for future work. This would completely decouple the resource
estimation from actual program executions on hardware, en-
abling trade-offs between the precision of an estimate (a quick
coarse static analysis versus a path-sensitive detailed analysis
or actual program runs) and the calculation cost. For instance,
at the beginning of the software development process a quick
coarse estimation of the execution time would suffice to get
an idea of how the program will behave on a chosen hardware
platform, in order to be sure that the development moves
towards a suitable end product. This would also support design
decisions at an early stage of development which could lead
to cost reductions by preventing wrong architectural decisions.
The static analysis would replace the test case generation and
test execution parts in our framework.
Using a more complex platform-independent and platform-

specific model than counters and weights could improve the
estimates that our framework produces.

REFERENCES

[1] P. Braun, M. Broy, M. V. Cengarle, J. Philipps, W. Prenninger,
A. Pretschner, M. Rappl, and R. Sandner, The automotive CASE. Wiley,
2003, pp. 211 – 228.

[2] A. Bauer, M. Broy, J. Romberg, B. Schätz, P. Braun, U. Freund, N. Mata,
R. Sandner, and D. Ziegenbein, “AutoMoDe—Notations, Methods, and
Tools for Model-Based Development of Automotive Software,” in Pro-
ceedings of the SAE 2005 World Congress. Detroit, MI, USA: Society
of Automotive Engineers, April 2005.

[3] F. Maraninchi and Y. Rémond, “Mode-automata: a new domain-specific
construct for the development of safe critical systems,” Science of
Computer Programming, vol. 46, no. 3, pp. 219–254, 2003.

[4] A. Holzer, C. Schallhart, M. Tautschnig, and H. Veith, “Query-Driven Pro-
gram Testing,” in Proceedings of the Tenth International Conference on
Verif ication, Model Checking, and Abstract Interpretation (VMCAI 2009),
ser. Lecture Notes in Computer Science, N. D. Jones and M. Müller-Olm,
Eds., vol. 5403. Savannah, GA, USA: Springer, Jan. 2009, pp. 151–166.

[5] ——, “FShell: Systematic Test Case Generation for Dynamic Analysis
and Measurement,” in Proceedings of the 20th International Conference
on Computer Aided Verif ication (CAV 2008), ser. Lecture Notes in
Computer Science, vol. 5123. Princeton, NJ, USA: Springer, Jul. 2008,
pp. 209–213.

[6] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,” in CGO ’04: Proceedings of
the International Symposium on Code Generation and Optimization.
Washington, DC, USA: IEEE Computer Society, 2004, p. 75.

[7] V. Januzaj, R. Mauersberger, and F. Biechele, “Performance Modelling
for Avionics Systems,” in Proceedings of EUROCAST 2009, to appear,
2009.

[8] P. Giusto, G. Martin, and E. Harcourt, “Reliable estimation of execution
time of embedded software,” in DATE ’01: Proceedings of the Conference
on Design, Automation and Test in Europe. Piscataway, NJ, USA: IEEE
Press, 2001, pp. 580–589.

[9] Z. Wang, A. Sanchez, and A. Herkersdorf, “Scisim: a software perfor-
mance estimation framework using source code instrumentation,” in Pro-
ceedings of the 7th International Workshop on Software and Performance
(WOSP ’08). New York, NY, USA: ACM, 2008, pp. 33–42.

