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Abstract

Monotone systems of polynomial equations (MSPES) are systemslgidixe equations(; = f1(X1,..., X,),
o Xn = fu(Xy, ..., X)) where eachf; is a polynomial with positive real coefficients. The question of com-
puting the least non-negative solution of a given MSPE= f(X) arises naturally in the analysis of stochastic
models like stochastic context-free grammars, probabilistic pushdowmaii# and back-button processes. Etes-
sami and Yannakakis have recently adapted Newton'’s iterative metho8R&ES In a previous paper we have
proved for strongly connected MSPEs the existence of a threghotdich that afterk iterations of Newton'’s
method each new iteration computes at least 1 new bit of the solution. ldowe proof was purely existential.
In this paper we give an upper bound fb§ as a function of the maximal and minimal components of the least
fixed-pointy f of f(X). Using this result we show that is at most single exponential resp. linear for strongly
connected MSPEs derived from probabilistic pushdown automata resp.bfagk-button processes. Further, we
prove the existence of a threshold for arbitrary MSPEs after which eashitegation computes at leagt/w2"
new bits of the solution, whete, h are the width and height of the DAG of strongly connected components.

1 Introduction

A monotone system of polynomial equati@SPE for short) has the form

X1 = fi(Xq,...,Xy)

Xn = fn(Xh- . 7Xn)

where fy,..., f, are polynomials withpositivereal coefficients. In vector form we denote an MSPEXy—=
f(X). We call MSPEs monotone becauXe < X' implies f(X) < f(X') for X, X’ € RZ,. MSPEs ap-
pear naturally in the analysis of many stochastic models, like context-fremgaes (with numerous applications
to natural language processing [19, 15], and computational biology4[23, 17]), probabilistic programs with
procedures [6, 2, 10, 8, 7, 9, 11], and web-surfing models with batthns [13, 14].

By Kleene’s theorem, a feasible MSPE = f(X) (i.e., an MSPE with at least one solution) has a least solution
wf; this solution can be irrational and non-expressible by radicals. GiReMSPE and a vectos encoded in

*This work was supported by the projeigorithms for Software Model Checking the Deutsche Forschungsgemeinschaft (DFG)
fPart of this work was done at the UniveigiStuttgart.



binary, the problem whetherf < v holds is in PSPACE and at least as hard as the SQUARE-ROOT-SUM
problem, a well-known problem of computational geometry ([10, 12] forenmtails).

For the applications mentioned above the most important question is the efficimerical approximation of
the least solution. Finding the least solution of a feasible sysXem f(X) amounts to finding the least solution
of F(X) = 0for F(X) = f(X) — X. For this we can apply (the multivariate version bgwton’s method
[20]: starting at some:(?) € R” (we use uppercase to denote variables and lowercase to denote vednesiite
the sequence

w(k+1) — :B(k) . (F/(w(k)))le(x(k))

whereF’(X) is the Jacobian matrix of partial derivatives.

While in general the method may not even be defir@t(a(;(k)) may be singular for somg), Etessami and
Yannakakis proved in [10, 12] that this is not the case for a more stedttaethod, calle®ecomposed Newton’s
method (DNM)that decomposes the MSPE istmongly connected compone&CCs}. We explain this method
in some more detail. In order to define the SCCs of an MSPE, associgteatgraph having the variables
Xi,...,X, as nodes, and the paifX;, X;) such thatX; appears iry; as edges. A subset of equationsfa an
SCC if its associated subgraph is an SCC of the whole graph. DNM startsfgutingk iterations of Newton’s
method for each bottom SCC of the system. The values obtained for thelgardihese SCCs are then “frozen”,
and their corresponding equations removed. The same procedure expihlead to the new bottom SCCs, again
with k iterations, until all SCCs have been processed. Etessami and Yampkale the following properties of
DNM:

(&) The Jacobian matrices of all the SCCs remain invertible all the way thooitigh
(b) The vectoe:*) delivered by the method convergesit$ whenk — oo even ifz(® =0 = (0,...,0)".

Property (b) is in sharp contrast with the non-monotone case, whereoNewnethod may not converge or may
exhibit onlylocal convergence, i.e., the method may converge only in a small neighborholoel zéro.

The results of [10, 12] provide no information on the number of iteratiorsle@ to compute valid bits of
uf, i.e., to compute a vectar such thatjuf; — v;| / |uf;| < 27" for everyl < j < n. In a former paper [16]
we have obtained a first positive result on this problem. We have proa¢ébthevery strongly connected MSPE
f there exists a thresholde such that for every > 0 the ¢ + 4)-th iteration of Newton’s method has at least
valid bits of ., f. Loosely speaking, after reaching the threshold DNM is guaranteedipute at least 1 new bit
of the solution per iteration; we say that DNM convergigearly with rate 1

The problem with this result is that its proof provides no informationkgrother than its existence. In this
paper we prove that the threshdi@ can be chosen as

kg = 3n*m + 2n? [log fumin|

wheren is the number of equations of the MSRE s such that all coefficients of the MSPE can be given as ratios
of m-bit integers, angimin is the minimal component of the least solutiofi.

It can be objected thdty depends onf, which is precisely what Newton's method should compute. How-
ever, for MSPEs coming from probabilistic models as the ones listed aboeanvdo far better. The following
observations and results help to deal withn:

¢ We obtain a syntactic bound @imin for probabilistic programs with procedures (having stochastic context-
free grammars and back-button stochastic processes as specialéajt@md prove that in this cagg <
n2"+2m.

IMore precisely, the proof also requires the MSPE talean see Section 2 for details.



e We show that if every procedure has a non-zero probability of terminatiegk y < 3nm. This condition
always holds in the special case of back-button processes [131&dte, our result shows thavalid bits
can be computed in im@((nm + i) - n?) in the unit cost model of Blum, Shub and Smale [1], where
each single arithmetic operation over the reals can be carried out exattily @mnstant time. It was proved
in [13, 14] by a reduction to a semidefinite programming problem thatlid bits can be computed in
poly(i, n, m)-time in the classical (Turing-machine based) computation model. We will not iragias
result, because we do not have a proof that round-off errors (wdrie inevitable on Turing-machine based
models) do not crucially affect the convergence of Newton’s methodt oBuresult sheds light on the
convergence of a practical method to compufe

e Finally, sincex®) < x(*+1) </ f holds for everyk > 0, as Newton’s method proceeds it provides better
and better lower bounds foimiy and thus forky. To demonstrate this, in the paper we exhibit a concrete
MSPE and after a few iterations use our theorem to prove that no contpafrtte solution will reach the
value 1 (which no further number of iterations can prove by itself).

The paper contains two further results. In [16] we left open the proklether DNM converges linearly for
non-strongly-connected MSPEs. We prove that this is the case. Bubtirergence rate is poorer:fifandw are
the height and width of the graph of SCCsjfthen there is a thresholgr such thaﬂcf + i -w - 2" iterations
of DNM compute at least valid bits of . f. We also give an example where DNM needs at least iterations
for 7 valid bits.

The final result of the paper brings us back to Etessami and Yannakaigi:ial motivation for DNM. They
introduced the decomposition into SCCs as a tool for proving well-defirssdribey showed that the Jacobian
exists for all SCCs, which implies that DNM is always defined. Here weetbat the Jacobian of the whole
MSPE is guaranteed to exist, whether the MSPE is strongly connected dksiatconsequence, one can safely
replace DNM by the standard Newton’s method. Still, since DNM can be fag efficient (its iterations concern
only SCCs, which can be much smaller than the whole MSPE), and since 3&Carpimportant part in our
threshold analysis, we have formulated our results in terms of DNM.

The paper is structured as follows. In Section 2 we state preliminaries sadggme background on New-
ton’s method applied to MSPEs. Sections 3, 5, and 6 contain the three rdsiléspaper. Section 4 contains
applications of our main result. We conclude in Section 7. Missing proofeedound in an appendix.

2 Preliminaries

In this section we introduce our notation used in the following and formalize dheepts mentioned in the
introduction.

2.1 Notation

As usual R andN denote the set of real, respectively natural numbers. We asswamg. R™ denotes the set
of n-dimensional real valuedolumnvectors andR%, the subset of vectors with non-negative components. We
use bold letters for vectors, e.g.€ R, where we assume thathas the components,, . .., z,,. Similarly, the
i component of a functiof : R” — R” is denoted byf;.

R™*" denotes the set of matrices havingows and» columns. The transpose of a vector or matrix is indicated
by the superscript. The identity matrix ofR”*" is denoted byd.

Theformal Neumann seriesf A € R™*™ is defined byAd* = >, .\, A". Itis well-known thatA* exists if and
only if the spectral radius ofl is less thari, i.e. max{|A| | C > A is an eigenvalue ofi} < 1. In the case that*
exists, we havel* = (Id — A)~!. The converse does not hold.



The partial ordex onR" is defined as usual by setting< y if x; < y; forall 1 <14 < n. Similarly,x < y if
x < y andx # y. Finally, we writex < y if z; < y; forall 1 <i < n, i.e., if every component ot is smaller
than the corresponding componentof

We useXy,..., X, as variable identifiers and arrange them into the ve&or In the following n always
denotes the number of variables, i.e. the dimensioXofWhile x, y, . .. denote arbitrary elements ", resp.
RZ,, we write X if we want to emphasize that a function is given w.r.t. these variables. Hgnde) represents
the function itself, whereag(z) denotes its value for some c R”.

If Y is a set of variables angt a vector, then byry we mean the vector obtained by restrictingo the
components iy,

TheJacobianof a functionf (X)) with f : R™ — R™ is the matrixf’(X) defined by

Ofr Of1
0X1 90X,
f(X)=1 : :
Ofm Ofm
0X1 Tt 090X

2.2 Monotone Systems of Polynomials

Definition 1. A function f(X) with f : R%, — RZ, is a monotone system of polynomials (MSH) every
componentf;(X) is a polynomial in the variableX;, . .., X,, with coefficients ifR>,. We call an MSPf(X)
feasibleif y = f(y) for somey € RY,,.

Fact 2. Every MSPf is monotone ofR%, i.e. for0 < z < y we havef(z) < f(y).
Since every MSP is continuous, Kleene'’s fixed-point theorem (segl8]y.applies.

Theorem 3 (Kleene’s fixed-point theorem)Every feasible MSH (X)) has a least fixed pointf in RZ i.e.,

wf = f(uf)and, in additiony = f(y) impliesuf < y. Moreover, the sequencﬁ&(f’“))keN with m(fk) = f*(0)

is monotonically increasing with respect1o(i.e. n(fk) < ;-c(fk“)) and converges tp f.

In the following we call(n;’“))keN the Kleene sequenaef f(X), and drop the subscript whenevgiis clear

from the context. Similarly, we sometimes wrpeinstead ofu f.
A variable X; of an MSPf(X) is productiveif /fgk) > 0 for somek € N. An MSP iscleanif all its variables
are productive. It is easy to see that we haﬁ/@ = 0forall k£ € Nif ,@f.") = 0. Just as in the case of context-free
grammars we can determine all productive variables in time linear in the sjge of

Notation 4. In the following, we always assume that an MBRs clean and feasible. I.e., whenever we write
“MSP”, we mean “clean and feasible MSP”, unless explicitly stated otherwise

For the formal definition of th®ecomposed Newton Method (DNgge also Section 1) we need the notion of
dependencbetween variables.

Definition 5. Let f(X) be an MSP.X; depends directlyn X}, denoted byX; < Xj, if a)fék (X) is not the
zero-polynomial.X; dependon X, if X; <* X}, where<* is the reflexive transitive closure &f. An MSP is

strongly connecte¢short: anscMSH if all its variables depend on each other.

Any MSP can be decomposed into strongly connected components (S@@sg an SCG' is a maximal set
of variables such that each variableSndepends on each other variabledn The following result for strongly
connected MSPs was proved in [10, 12]:



Theorem 6. Let f(X') be an scMSP and define the Newton opera{gras follows
Np(X) = X + (Id = f/(X) " (f(X) - X) .
We have:

(1) Ny(z) is defined for alld < = < uf (e, (Id — f'(x))~! exists). Moreoverf'(z)* = >, f(x)F
exists for allo < = < pf, and soV¢(X) = X + f/(X)*(f(X) — X).

(2) The Newton sequen@e}k))keN with (%) = /\/’]’E(O) is monotonically increasing, bounded from above by
pf (i.e.v® < f(w®) < v*+H) < 4 f), and converges tp f.

DNM works by substituting the variables of lower SCCs by correspondiegthin approximations that were
obtained earlier.

3 A Threshold for scMSPs

In this section we obtain a threshold after which DNM is guaranteed to cgeieearly with rate 1.

We showed in [16] that for worst-case results on the convergencewfdw’s method it is enough to consider
quadraticMSPs, i.e., MSPs whose monomials have degree at most 2. The reasorig/tNSP (resp. sScCMSH)
can be transformed into a quadratic MSP (resp. scMSB) introducing auxiliary variables. This transformation
is very similar to the transformation of a context-free grammar into Chomsky hdomma. The transformation
does not accelerate DNM, i.e., DNM ghis at least as fast (in a formal sense) as DNM fnand so for a
worst-case analysis, it suffices to consider quadratic systems. Weirefeader to [16] for detalils.

We start by defining the notion of “valid bits”.

Definition 7. Let f(X) be an MSP. A vectar hasi valid bitsof the least fixed pointf if |.f; — v;| / |uf;| <
27" for everyl < j < n.

In the rest of the section we prove the following:

Theorem 8. Let f(X) be a quadratic SCMSP. Let, be the smallest nonzero coefficientfoénd letmin and
1max be the minimal and maximal componenjgf, respectively. Let

Hmax
Cmin * Umin * min{ﬂmin, 1}

kf=mn-log

Thenu (%7149 has; valid bits of . f for everyi > 0.

Loosely speaking, the theorem states that affeiterations of Newton's method, every subsequent iteration
guarantees at least one more valid bit. It may be objectedithdepends on the least fixed popf, which is
precisely what Newton’s method should compute. However, in the nekibsage show that there are impor-
tant classes of MSPs (in fact, those which motivated our investigationyyHah bounds onumin, can be easily
obtained.

The following corollary is weaker, but less technical in that it avoids addpnce ommax andcmin.

Corollary 9. Let f(X) be a quadratic sScMSP of dimensianwhose coefficients are given as ratiosrofbit
integers. Lefumin be the minimal component pff. Let

ky= 3n2m + 2n? [log fumin| -

Thenv (k7149 has at least valid bits of . f for everyi > 0.
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Corollary 9 follows from Theorem 8 by a suitable boundugixin terms ofcyin andumin, and by the inequation
cmin > 1/2™, see the appendix.

In the rest of the section we sketch the proof of Theorem 8. The prokésnarucial use of the vectots- 0
such thatd > f'(uf)d. We call a vector satisfying these two conditionsame vector off or, whenf is clear
from the context, just a cone vector. To a cone vedos (dy,...,d,) we associate two parameters, namely
the maximum and the minimum of the ratio§, /d1, ufs/do, ..., uf,,/dn, Wwhich we denote by\max and Amin,
respectively.

In a previous paper we have shown thaldf— f’(uf) is singular, therf has a cone vectaf ([16], Lemmata
4 and 8). As a first step towards the proof of Theorem 8 we show theviokgpstronger proposition.

Proposition 10. Any scMSP has a cone vector.

The second step consists of showing (Proposition 12) that given aveoted, the threshold ¢ 4 = log(Amax/ Amin)
satisfies the same property/asin Theorem 8, i.e([¥.41%%) hasi valid bits of u f for everyi > 0.

For that we need the following fundamental property of cone vectorsna eector leads to an upper bound on
the error of Newton’s method.

Lemma 11. Letd be a cone vector of an MSPand let\max = max{ “d{i }. Then

uf — v < 27F\nad.

Proof Idea (see Appendix A for a full prooflf. we track the rayg(t) = puf — td starting inu f and headed in
the direction—d (the dashed line in the picture below), thef\max) is the intersection o with an axis which is
located farthest fromy f. One observes that the cenmr%)\max) of g(Amax) @andpf is always less than or equal
to the first Newton iterate(!). This is the first step of the proof.

As soon as this fact is proven, we proceed by repeatedly reallocatiogi¢ie into the next Newton iterate and
applying the same argument. By induction, one obtgif®s ¥ \max) < v*) forall k € N.

The following picture shows the Newton iterate®) for 0 < k < 2 (shape:x) and the corresponding points
9(2 % \max) (shape:+) located on the ray. Notice that(®) > g(27F\nax). O

Now we easily obtain:
Proposition 12. Let f(X) be an scMSP and lef be a cone vector of. Letks g = log iﬁx where\may =

max; “d—j;j and Amin = min; % Thenv([¥r.a1+9) has at least valid bits of .. f for everyi > 0.
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We now proceed to the third and final step. We have the problemithatdepends on the cone vectdy
about which we only know that it exists (Proposition 10). We now sketet tooobtain the threshold, from
Theorem 8, which is independent of any cone vectors, see Appenifaixahfull proof.

Consider Proposition 12 and |18fax = "f andAnmin = fﬂ Then thek ¢ g given there equalleg (Z—j . /‘:;)
Notice that this gets large whefhgets small compared t6. JBy Proposition 10 the componegitcannot be) i f
is strongly connected. However, MSPs that@oestrongly connected can have vectdrs 0 with f/(uf)d < d
s.t. some components aeOne can mak% > 0 arbitrarily large also for strongly connected MSPs. But when
doing this, one can show that the strong connectedness “decreaseshénsense, i.e., there are variabiesd”
such thatX depends ofY” only via a monomial that has a very small coefficient. %ocan be bounded in terms

Of Cmin-

4 Stochastic Models

As mentioned in the introduction, several problems concerning stochastielsrmah be reduced to problems
about the least solutionf of an MSPEf. In these cases;f is a vector of probabilities, and ganax < 1.
Moreover, we can obtain information @m,n, which leads to bounds on the threshbld

4.1 Probabilistic Pushdown Automata

Our study of MSPs was initially motivated by the verification of probabilistic plesim automata. Arobabilis-
tic pushdown automaton (pPDA)a tupleP = (Q, T, §, Prob) where( is a finite set otontrol statesI" is a finite
stack alphabet C @ xI" x Q x I'* is a finitetransition relation(we writep X — g« instead of(p, X, ¢, a) € 9),
and Prob is a function which to each transitignX — g« assigns its probabilityProb(pX — ga) € (0,1]
so thatforallp € Q andX € T" we haveZpX_,qa Prob(pX — ga) = 1. We writepX A go instead of
Prob(pX — qa) = x. A configurationof P is a pairqw, whereq is a control state ana < I'* is astack content
A probabilistic pushdown automatdn naturally induces a possibly infinite Markov chain with the configurations
as states and transitions given ByX 3 <> qa/3 for every3 € I'* iff pX <> ga. We assume w.l.o.g. that if
pX < gais a transition thef| < 2.

pPDAs and the equivalent model of recursive Markov chains hase ery thoroughly studied [6, 2, 10, 8, 7,
9, 11]. This work has shown that the key to the analysis of pPDAs areetiménation probabilitiegp X ¢], where
p andq are states, andl is a stack letter, defined as follows (see e.g. [6] for a more formal defijitipX ¢] is the
probability that, starting at the configuratipX, the pPDA eventually reaches the configuratgeriempty stack).

It is not difficult to show that the vector of these probabilities is the leastlifp@nt of the MSPE containing the

equation
wXq)= > xS 0Y)-(tZg) + Y a-(Ye) + > @

pX"—>rYZ teQ pXiM"Y pX"—T>qs

for each triple(p, X, ¢). Call this quadratic MSPE thermination MSPEof the pPDA (we assume that termi-
nation MSPEs are clean, and it is easy to see that they are always feagilimmediately have that if is a
termination MSP, thepmax < 1. We also obtain a lower bound @min:

Lemma 13. Let f be a termination MSP with variables. Thefmin > c,(ﬁ;H_l)
Together with Theorem 8 we get an exponential bound for

Proposition 14. Let f be a strongly connected termination MSP withvariables and whose coefficients are
expressed as ratios af-bit numbers. Theks < n2""?m



We conjecture that there is a lower boundignwhich is exponential im for the following reason. We know a

family (f("))n:173,57_._ of strongly connected MSPs withvariables and irrational coefficients such thﬁlﬁ] = %
for all n andu,(:iz1 is double-exponentially small in. Experiments suggest théX(2™) iterations are needed for

the first bit of . f ™, but we do not have a proof.

4.2 Strict pPDAs and Back-Button Processes

A pPDA is strictif for all pX € @ x I" and allg € @ the transition relation contains a pop-rygé& < qe
for somex > 0. Essentially, strict pPDAs model programs in which every proceduratiasast one terminating
execution that does not call any other procedure. The termination M&Bta€t pPDA is of the fornb (X, X) +
IX + cfore > 0. Sowe have.f > ¢, which impliesumin > cmin. Together with Theorem 8 we get:

Proposition 15. Let f be a strongly connected termination MSP withvariables and whose coefficients are
expressed as ratios af-bit numbers. Iff is derived from a strict pPDA, thely < 3nm.

Since in most applications is small, we obtain an excellent convergence threshold.

In [13, 14] a class of stochastic processes is introduced to model tla@ibebf web-surfers which from the
current webpagel can decide either to follow a link to another page, $aywith probabilityl 45, or to press
the “back button” with nonzero probability. These back-button processes correspond to a very special tlass o

. . I . : b
pPDAs having one single control state (which in the following we omit), andsrafehe formA N (press

the back button fromd) or A B, g (follow the link from A to B, rememberingd as destination of pressing
the back button aBB). The termination probabilities, calledvocationprobabilities in [13, 14], are given by the
MSPE containing the equation

(A) = ba+ > lapB)A) = ba+(4) Y lap(B)

laB laB
A——BA A——BA

for every webpaged. Notice that the revocation probability of a padeas the probability that, when currently
visiting an instance of webpagé with HyH- ... H,_1 H,, the browser history of previously visited pageés,(
being the startpage of the random user), during the further randoloratipn of webpages starting frov the
random user eventually returns to webpafjewith HyH; ... H,,_1 being the remaining browser history.

4.3 An Example

As an example of application of Theorem 8 consider the following ScMXPE f(X).

X1 0.4X5X, 4+ 0.6
Xo |l = [03X1X9+0.4X3X5 4+ 0.3
X3 0.3X1X3+0.7

The least solution of the system gives the revocation probabilities of allagtdn process with three web-
pages. For instance, if the surfer is at page 2 it can choose betwémsmirig links to pages 1 and 3 with proba-
bilities 0.3 and 0.4, respectively, or pressing the back button with probabi8ity O

We wish to know if any of the revocation probabilities is equal to 1. Performihilewton steps (e.g. with
Maple) yields an approximation'%) to the termination probabilities with

0.98 0.99
097 | <v < [ 0.98
0.992 0.993



We havecmin = 0.3. In addition, since Newton's method converges:tp from below, we knowumin > 0.97.
Moreover,umax < 1, asl = f(1) and souf < 1. Henceks < 3 log 55-c559- < 6. Theorem 8 then implies
thatr(1%) has (at least) 8 valid bits ¢ff. As ;uf < 1, the absolute errors are bounded by the relative errors, and

since2~% < 0.004 we know:
28 0.994 1
pf <M 4 28] < |0984] < |1
98 0.997 1

So Theorem 8 gives us a proof that all three revocation probabilitiestiactly smaller thar.
Notice also that Newton’s method converges much faster than “Kleenediaet (f’(O))ieN. We have
k(1 < (0.89,0.83,0.96) ', sox(1Y) has no more thar valid bits in any component, wherea$'¥) has more
y p
than30 valid bits in each component.

5 Linear Convergence of the Decomposed Newton’s Method

When using Newton’s method for approximating the least fixed pgfndf an scMSPf, Theorem 8 states that,
afterk, preparatory iterations of Newton’s method, we have at lebis if additional: iterations are performed.
We call this linear convergence with rate Now we show that DNM, which handles non-strongly-connected
MSPs, converges linearly as well. We will also give an explicit convergeate.

Let f(X) be any quadratic MSP (again we assuguadratic MSPs throughout this section), and fetf)
denote the height of the DAG of strongly connected components (SC@s)dnvergence rate of DNM crucially
depends on this height: In the worst case one needs asymptoéait{f)) iterations in each component per bit,
assuming one performs the same number of iterations in each component.

To get a sharper result, we suggest to perform a different numhbtgrafions in each SCC, depending on its
depth The depth of an SCG is the length of the longest path in the DAG of SCCs fr6rto a top SCC.

In addition, we use the following notation. For a depthve denote byomp(t) the set of SCCs of depth
Furthermore we defin€'(t) :=J comp(t) andC (t) := U,~, C(t') and, analogously,'- (). We will sometimes
write v; for v () andwvs, for ve, () andv<; for ve_ 4y, Wherew is any vector.

Figure 1 shows the Decomposed Newton’s Method (DNM) for computingparoaimationy for p f, where
f(X) is any quadratic MSP. The authors of [10] recommend to run Newton’s ddeith each SCCS' until
“approximate solutions fof are considered ‘good enough’ ”. Here we suggest to run Newtor¥hdtl in each
SCCS for a number of steps that depends (exponentially) on the deptheold (linearly) on a parametgrthat
controls the precision (see Figure 1).

function DNM (£, j)

[* The paramete)j controls the precision?®/

for t from h(f) downto 0

forall S € comp(t) I* all SCCsS of deptht */

v ::J\/}jt(o) [* j - 2! iterations*/
/* applyvg in the depending SCC¥
fa(X) = f (X)X s/vs]

return v

Figure 1. Decomposed Newton’s Method (DNM) for computing an approximation v of pf (cf. [10])

Recall thath(f) was defined as the height of the DAG of SCCs. Similarly we define the widf) to be
max; |comp(t)|. Notice thatf has at mosth(f) + 1) - w(f) SCCs. We have the following bound on the number
of iterations run by DNM.



Proposition 16. The functioDNM (£, ) of Fig. 1 runs at mosj - w(f) - 2"/)*1 iterations of Newton’s method.

We will now analyze the convergence behavior of DNM asymptotically (fayda). LetAg) denote the error

in S when running DNM with parameter, i.e.,A(Sj) =g — I/qu). Observe that the ermﬂsﬁj) can be understood
as the sum of two errors: "
J

— Vv

ING () _

— = v? = (- ,9) + (i, )

Whereﬁt(j) = u(ft(X)[X>t/u(>j2]), i.e.,ﬁt(j) is the least fixed point of, after the approximations from the
lower SCCs have been applied. Shgj) consists of theropagation error(u, — ﬁt(j)) and the newly inflicted
approximation error(ﬁt(j) - ugj)).

The following lemma, technically non-trivial to prove, gives a bound on tlopggation error.

Lemma 17 (Propagation error)There is a constant > 0 such that

e = pll < ey /llpsy — vsi

holds for allv~; with 0 < v~ < p,, wherep, = pu(f(X)[ X 5t /vs4]).

Intuitively, Lemma 17 states thatif-; hask valid bits of - ,, theny, has roughlyk /2 valid bits of y4,. In
other words, (at most) one half of the valid bits are lost on each level @A due to the propagation error.

The following theorem assures that after combining the propagationamtbthe approximation error, DNM
still converges linearly.

Theorem 18. Let f be a quadratic MSP. Lar") denote the result of callin@NM(f, j) (see Figure 1). Then
there is ak ¢ € N such thatv(¥7+9) has at least valid bits of . f for everyi > 0.

We conclude that increasiridy one gives us asymptotically at least one additional bit in each companéent
by Proposition 16, costs( f) - 2"(f)+1 additional Newton iterations.

The bound above is essentially optimal in the sense that an exponentidlf(jh number of iterations is in
general needed to obtain an additional bit. To see this consider the foll@xamgple that we also used in a
previous paper [16] for a slightly different purpose.

%Xg + %X()Xl + %X%

X = f(X) = (1)

iX}Qlfl +1%Xh1—1‘§h + %Xf%
7 t3X;
The only solution ofX = f(X)is(1,...,1)". Notice thatf hash + 1 SCCs:{ Xy}, ..., {Xn}, where{X;}
has depthy. The DNM starts at the bottom SCCX}, } and works its way up t§ X }. Itis easy to show (see [16])

that the propagation error on levdk at least - \/Agr)l. The approximation error on IevelequalsAﬁLj) =2-52"

if DNM is called with paramete)j. So, by induction we geﬁﬁj) > 272" for 0 < t < h. We conclude that at
least2” Newton steps per bit are needed. Notice that this holds even when waxapate only the bottom SCC
% + %X EL with Newton’s method and solve the other SCCs exactly. Therefore, anypd#tht approximates (1)
suffers from an “exponential” amplification of the propagation error.otimer words, this example shows that
computingu f is in general aill-conditionedproblem.
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6 Newton’s Method for General MSPs

Etessami and Yannakakis [10] introduced DNM because they could #ieivwthe matrix inverses used by
Newton’s method exist if Newton’s method is run on each SCC separately (srem 6).

In this section we show, maybe surprisingly, that the matrix inverses usiéuton’s method exist even if the
MSP isnotdecomposed. More precisely we show the following theorem.

Theorem 19. Let f(X) be any MSP, not necessarily strongly connected. Let the Newtontopéra be defined
as before:
Np(X) = X + (Id - f(X)) "' (f(X) - X)

Then the Newton sequer(oéf))keN with (k) = J\/}“(O) is well-defined (i.e., the matrix inverses exist), monoton-
ically increasing, bounded from above p¥ (i.e. v*) < p(*+1) < ;1 f), and converges to f.

Theorem 19 relies on a generalized Newton’s method for solving fixed pgumtions over commutative-
continuous semirings, introduced in [5]. The semiring over the nonnega&#ls Sg. , = (R>qU{oo}, +,-,0, 1),
is such a semiring. IR, , the operations- and- are defined as in the reals with straightforward extensions to
o0, in particulard - co = 0 anda - 0o = oo if @ > 0. If an infinite sum does not converge to a real number, it is
defined to bex. So, for a matrix4A € ]R;”OX’”, the formal Neumann serie$* is always defined i ,, some
entries ofA* may bec. B -

A theorem of [5] applied to the semiringk_, yields the following proposition.

Proposition 20 (follows from [5], Theorem 3) Let f(X) be an MSP. Let the Newton operat/t?rf be defined as
follows: ~
Ni(X) =X+ f(X)"(f(X) - X),

where f'(X)* is computed inSg.., (i.€., may havex as an entry). Then the Newton seque(ﬁ(ff))keN with
k) = /\71’3(0) is monotonically increasing, bounded from above.fyand converges tp f.

Additive inverses are, strictly speaking, not defined. Thereforerapdsition 20, instead of (X) — X we
should rather write “a vecta¥(X) such thatX + §(X) = f(X)". But the simpler formulation causes no trouble
here, becausg(z*) — o*) is positive in each component [5].

In order to show that the Newton scheme from Theorem 19 coincides witNetwon scheme from Propo-
sition 20 we need to show thgt (v(®))* = (Id — f'(v(*)))~1. It is sufficient to show thaf’(v*))* does not
haveco entries, because then cleag(v*))*(Id — f'(¢*))) = Id. Notice that this is not a trivial consequence
of Proposition 20: it could be that’(Z*))* hasco entries, but the’*) and ;.f do not because the entries
of '(v™)* are cancelled out by matchirigentries of f(2*)) — o(¥). What remains to show for Theorem 19
is that this is not the case alj’d(ﬁ(k))* has noco entries. The rest of the proof of Theorem 19 can be found in
Appendix D.1.

6.1 Convergence Speed
As we now know that Newton’s method convergesutp for any MSP f, we address again the question of

convergencapeed By exploiting Theorem 18 and Theorem 19 one can show:

Theorem 21. Let f be any quadratic MSP. Then the Newton sequeﬁné’é))keN is well-defined and converges
linearly to ..f. More precisely, there is &7 € N such thaty (ks +i-(h(H)+1)-2"") hag at least valid bits of . f for
everyi > 0.

A proof is given in Appendix D.2. Again, the exponential facto2if¥) cannot be avoided in general. This
follows from the example and the discussion at the end of Section 5.
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7 Conclusions

We have proved a thresholg: for strongly connected MSPEs. Aftér + i steps of DNM we have bits of
accuracy. The threshold; depends on the representation sizefaind on the least solutionf. Although this
latter dependence might seem to be a problem, lower and upper boupgisoam be easily derived for stochastic
models (probabilistic programs with procedures, stochastic context+faemgars and back-button processes). In
particular, this allows us to show thiag depends linearly on the representation size for back-button proc#&¥ses
have also shown by means of an example that the threghaltproves when the number of iterations of DNM
increases.

In [16] we left the problem whether DNM converges linearly for nomsily-connected MSPEs open. We
have proven that this is the case, although the convergence rate is:fgbérandw are the height and width of
the graph of SCCs of, then there is a thresholg: such that s + i - w - 2"+ iterations of DNM compute at least
i valid bits of . f. We have also given an example in which DNM needs at liea®t iterations fori valid bits.

Finally, we have shown that the Jacobian of the whole MSPE is guarantesdstp whether the MSPE is
strongly connected or not.

Acknowledgment. The authors wish to thank Kousha Etessami for very valuable comments.
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A Proofs of Section 3
A.1 Proof of Proposition 10

Here is a restatement of Proposition 10.
Proposition 10. Any scMSP has a cone vector.

Let f be an scMSP. As mentioned before, it was proved in [16] hags a cone vector ifd — f'(uf) is
singular.

So, it remains to show that has a cone vectat in the non-singular case, too. In a first step we show that we
can relax the requiremedt> 0 tod > 0.

Lemma 22. Let f be an scMSP and let > 0 with f'(f)d < d. Thend is a cone vector, i.ed > 0.

Proof. Sincef is an MSP, every component ¢f(..f) is nonnegative. So,

0< f(ufH"d< f(uf)"'d<...< f(uf)d < d.

Letw.l.o.g.d; > 0. As f is strongly connected, there is for glith 1 < j <nanr; <ns.t.(f'(uf)7); > 0.
Hence,(f'(uf)"7d); > 0 for all j. With above inequation chain, it follows thdf > (f'(uf)"7d); > 0. So,
d - 0. ]

Now we can show that there is a cone vector also in the non-singular case.
Lemma 23. Let f be an scMSP. Ifld — f'(uf))~! exists, thenf has a cone vector.

Proof. By Lemma 22 it suffices to find a vectat > 0 such thatf’'(uf)d < d. Take anye = 0 and set
d:= (Id— f'(uf)) ‘e. Clearly f'(uf)d < d, and so it remains to shod > 0. Sincee > 0, it suffices to prove
that every entry ofId — f/(uf))~! is nonnegative, which we denote bid — f'(uf))~! > 0. For this recall
that(Id — f'(z))"' = f/(z)* onG = {xz | 0 < = < pf}, and, hencelld — f'(z))"! > 0forz € G.

We now make use of the fact that for every € {1,...,n} we may write(Id — f’(X))Z.‘j1 as a rational

functionr;;(X) = "df(%) whered(X) is the determinant ofld — f/(X)), andn;;(X) is obtained by (1)
canceling thej” row andi"* column of (Id — f/(X)), (2) taking the determinant of the resulting submatrix,
and (3) multiplying by(—1)“*7. Asd(uf) # 0, the functions-;;(X) are continuous at least on an open Igall
centered atf. Now, asG N O # (), we have(Id — f/(x))~! > 0 for everyz € G, and ther;; are continuous,

we get(Id — f/(uf))~! > 0. O

This finishes the proof of Proposition 10.
A.2 Proof of Lemma 11

Here is a restatement of Lemma 11.

Lemma 11. Letd be a cone vector of an MSPand let\nax = max{“d—’:i}. Then

pf —v® <27 \pad.

We handle the base cake= 1 of Lemma 11 in the following separate lemma.

14



Lemma 24. Letd be a cone vector of a (not necessarily clean) MSR.et \max = max{“d—{i}. Then

1
pf — v < 5)\maxd-
Proof. We write f(X) as a sum

X)=c+) LiX,... X)X

whereD is the degree of, and everyL is a(k — 1)-linear map from(R™)¥~! to R"*", Notice thatf’(X) =
Zszl k- Li(X,...,X). We simply writeL for L,, andh(X) for f(X) — LX — c.

Amax
= 2ma([*d — L*Ld) (L* =1d+ L*L)
> 2ue(L*f'(uf)d — L*Ld) (f'(uf)d < d)
= AR (uf)d (f(@) = b/ (@) + L)
= L3k (uf) Amaxd
> L7 lh/(/‘f)ﬂ.f (by def. of Amax Amaxd > 11.f)
= L“ ook Lu(uf, .. pf)uf
> L*Zszsz(uf,.--,uf)uf
= L*h(pf)
= L*(f(uf) —Lpf —c) (f(z) = h(z) + Lz + o)
= L'pf—L'Luf - L*c (f(nf) = pf)
= uf—L*c (L* =1d + L*L)
= uf —vW () = L*¢)

O

By means of a suitable induction we can extend this last Lemma 24 to an arbitraben of iterations, yielding
the proof of Lemma 11:

Proof. For everyk > 0, defineg, (X) = f(X + v®)) — v(*), We first show thag,, is an MSP (not necessarily
clean) for everyt > 0. The only coefficients of, that could be negative are those of degree 0. But we have
9.(0) = f(v™®) — v(*) > 0, and so these coefficients are also nonnegative.

Moreover, it follows immediately from the definition thaf — v(*) > 0 is the least fixed point of,. Finally,
g, satisfiesg!, (uf — u(k))d < d, and sad is also a cone vector @f;..

Let A\ = max{~"—— “f } in particular,\g = Amax. We proceed to prove the lemma by induction /an

For k = 0 we have by definition/(® = 0 anduf < Amaxd, and we are done. Now lét > 0 and assume
puf —v®) <27\ d. We have

A = max{“f —v," }
< maX{Q )\Od}
= 27F),.

Sinced is a cone vector of;,, we can apply Lemma 24 i, and get:

(uf — 1) ~vf) < SN,
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whereugk) denotes the first iteration of Newton’s method appliegtoBut we have

v = F(®)*(g,(0) - 0)
= pk+1) _ (k)

and so )
pf — D < Sk < 2~ D \od. O

A.3 Proof of Proposition 12

Here is a restatement of Proposition 12.

Proposition 12. Let f(X) be an scMSP and lef be a cone vector of. Letkyq = log ﬁmax where\max =

max; -3 25 and Amin = min; -7 “F5 Thenw(*s.41+9) has at least valid bits of . f for everyi > 0.
J J

Proof. For all1 < j < n the following holds.

(/’Lf _ V({kf,d‘“’i))j S 27([kf‘d]+i))\maxdj
< 27kf’dii/\m‘axdj
= )\mindj : Z_Z
<wf;j-270 O

A.4 Proof of Theorem 8

Here is a restatement of Theorem 8.

Theorem 8. Let f(X) be a quadratic SCMSP. Lety, be the smallest nonzero coefficientfond letymin and
tmax be the minimal and maximal componenigf, respectively. Let

Hmax
Cmin * Umin * min{ﬂmin, 1}

kf=mn-log

Thenv (k7149 hasi valid bits of . f for everyi > 0.

Proof. In what follows we shortem f to p. Letd be a cone vector of (which exists by Proposition 10). Let
\j = ﬂ forall1 < j < nandassumew.l.o.gy > A2 > ... > \,. By Lemma 11 we have®) > p — 275\ d.

Letk; = log Al Then we have

S 1 k‘j+i i
I/quj-H_) Z Mj — <> )‘1dj = ,u,j — 2 Zuj

(149
and% < 27%. So it remains to show,, < ky.

J

We claim the existence of indicast with 1 < s,¢ < n such thatf/,(u) # 0 andlog 3 AS > 1kn. To prove that
suchs, t exist, we use the fact that is strongly connected, i.e., that there is a sequdneerl,rg, L Tg =1
with ¢ < n andf; (z) # 0. Sincep - 0, we also havef; . (n) # 0. It follows

TiTj4+1
)\1 )\7’1 )\7"71

— =~—-——,andso
An o Ay Ar,

Al )\ Ay‘,

1 =log 2L 4 ... 4 log —2=L

%N, BN, TR



So there must exist As.t.

r; 1 V!
1 —>—71 > —ky,
8 ripgn =1 og)\n n
and one can choose= r; andt = ;1.
Now, f1,(pn)d < d implies f,(p)d; < ds, and so
ds At s _ Hmax
1) < D= DB o gka/n | Hmax 2
Jalw) < dy As  Ht Hmin @)

On the other hand, singgis quadraticf’ is a linear mapping such that

fle() =2(by - g + -+ + by - ) +1

whereby, ..., b, andl are coefficients of quadratic, respectively linear, monomialg.ofs f/, () # 0, at least
one of these coefficients must be nonzero and so greater than ot@egwyal It follows

f;t(ﬂ) 2 Cmin min{,Uminy 1} )
which together with equation (2) yields

2kn/n < Hmax
~ Cmin * Umin * min{ﬂmin, 1}
Hmax O
Cmin * Mmin ° min{,“«mim 1}

, and so

kn <n-log

A.5 Proof of Corollary 9

Here is a restatement of Corollary 9.

Corollary 9. Let f(X) be a quadratic SCMSP of dimensienwhose coefficients are given as ratiosrofbit
integers. Lelumin be the minimal component pff. Let

ky = 3nm + 2n? [log tmin| -
Thenv (%7149 has at least valid bits of . f for everyi > 0.

First we check the case whefds linear, i.e., all monomials itff have degree at most In this case, Newton’s
method reacheg f after one iteration, so the theorem holds. Consequently, we can assuredafdtving that
f is strictly quadratic meaning thaff is quadratic and there is a polynomialfrof degree2.

In the following lemma we give a bound @aax in terms ofzumin, cmin @andn. Notice thafog pimaxis polynomial
in terms of those parameters.

Lemma 25. Let the preconditions of Theorem 8 hold, andfdbe strictly quadratic, i.e., nonlinear. Then

1

“min(ud %, 1)

/~Lmax S 3n—2
min

Furthermore cmin < 1.
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Proof. Let w.l.0.g. umax = (nf)1. The proof is based on the idea th¥t indirectly depends quadratically on
itself. More precisely, by the strong connectedness,depends (indirectly) on some variable, s&y., such
that f, contains a degree-2-monomial. The variables in that monomial, in turn, depeRd. This gives an

inequation of the fornfuf); > C - (uf)1%, implying (uf); < 1/C.
We give the details in the following. Using the strong connectedness th&ts exsequence of variables

Xiy,--.,X;, and a sequence of monomiails, , ..., m;, (1 <r < n)with the following properties:
- X =Xy,
- m;, IS amonomial appearing ifi; (I1<u<r),
- my, = C, ~X7;u+1 (1 SUST),
- my, = ¢, - X, - Xj, for some variables(;, , Xj, .

Notice that

pmax = (Lf)1 > ¢ciy - ... - ¢y, - (Nf)jd (1S )y
> min(crr:ﬂm 1) : (:u.f)jl ’ (:u.f)k:l :

Again by strong connectedness, there exists a sequence of varigbles. , X; and a sequence of monomials

®3)

mj,,...,mj,_, (I <s < n)with the following properties:
- X]s = X17
— my, is amonomial appearing ifi; (I1<u<s—1),
= mj, =¢j, - Xj ., 0rmy, = cj, - Xj,,, - X forsomevariableX;, =~ (1<u<s-—1).
Notice that
(:uf)ﬁ 2 Cjy e Gy 'min(ufn_inl’ 1) ) (N-f)l (4)
> min(cp', 1) - min(ppins 1) - (1)1 -
Similarly, there exists a sequence of variablgs, . . ., Xj, (1 <t < n)with X, = X; showing
(f)r, = min(epin', 1) - min(upmy', 1) - ()1 - (5)
Combining (3) with (4) and (5) yields
Hmax = min(cﬁ“ﬁn_Qv 1)- min(:“?n?n_za 1)- Nr271aX7
which implies
1
Hmax < (6)

min(cﬁﬁn—Q, 1)- min(uﬁﬁ;Q, 1) ’

Now the second statement of the lemma implies the first one. In order to progedbed statement, assume
for contradictioncmin > 1. This impliesumin > 1 due to the following reason. Consider the Kleene sequence
0, £(0), £3(0),...Foralll < i < nletb; be the smallest natural number such t(nﬁf(o))i > 0. The numbers;
exist because is clean and the Kleene sequence convergagtoMe show by induction ob; that(fbi (0))1, >1
which, by the monotonicity of the Kleene sequence, impligs > 1. For the inductive step notice that the value
(fbi (O))i = f.(f%7%(0)) is computed as a sum of products of numbers which are either coefficiefitéand
hence by assumption greater thgror of the form(fbi‘l(o))j for somej. By induction and by the monotonicity
of the Kleene sequence, a number of the latter form is eltlogrgreater than. So, (f”i (0))i itself must bed or
greater thani. By definition ofb; it cannot be).

So we havermin > 1 andumin > 1. Plugging this into (6) yield$imax < 1. This implieSpmax < tmin,
contradicting the definition gfimax and pimin. O
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Now we can complete the proof of Corollary 9. By Theorem 8 it sufficefitovs

n -log ,Uma'x < 3n’m + 2n? [log temin| -
Cmin * Ymin * mln{Mmim 1}
We have
n - log Hmax
Cmin * Kmin * min{ﬂmina 1}
1
<n-log —+— - — (by Lemma 25)
Con -+ pomin - 10 ("%, 1)
< 3n? - (—log cmin) — 1 log(pmin - min(p2n =2, 1)) (by Lemma 25:¢min < 1)
< 3n’m — nlog(pmin - min(pat %, 1)) (cmin>2"").
If fimin > 1 we have—n log(pmin - min(p2t-2,1)) = —nlog imin < 0, SO we are done in this case. in < 1

2n—1
min

2n—

we have—n log(pimin - min (i 2.1)) = —nlogp
the proof of Corollary 9.

= n(2n — 1) |log umin| < 2n? |log fimin|. This completes

B Proofs of Section 4
B.1 Proof of Lemma 13

Here is a restatement of Lemma 13.

Lemma 13. Let f be a termination MSP with variables. Thenumin > c,(.fizﬂfl)

Proof. We prove a stronger result. Forevérg {1,...,n}, f hask variablesXy, ..., X suchthapf,, ..., uf, >
2k+1_q
min "
We proceed by induction olr Fork = 1, observe that, since the MSP is cleaX, — q¢e is a transition of the
pPDA for some(pX¢), and sopXq] > x > cmin. We call(pX¢) a sink.
Fork > 1, let Xy,..., X1 be variables such thatf,,...,uf,_; > cﬁfigl. We show that there is a

variable X, such thatuf, > c?nki:‘l Let? be the MSP obtained by replacing every occurrenc&pby

wf,; for everyi € {1,...,k — 1}, it is easy to see tha} is also a termination MSP withfk = uf, and

k_ k+1_ . -~
2 -1)2 — 2 ~1 S0 we can choose any sink gffor X. O

Cmin 2 Cmin(cmin — “min

B.2 Proof of Proposition 14

Here is a restatement of Proposition 14.

Proposition 14. Let f be a strongly connected termination MSP withvariables and whose coefficients are
expressed as ratios af-bit numbers. Theky < n2"+2m,

Proof.
ky =nlog Cmmﬂmin%‘gf; (oY (Theorem 8)
< —nlog(pZin - cmin) (termination MSP)
< -n log(c?r;i(n?nﬂ_l) - ¢min) (Lemma 13)
< —n2"*2 log cmin
< n2"2m (cmin > 1/2™) O
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C Proofs of Section 5
C.1 Proof of Proposition 16

Here is a restatement of Proposition 16.

Proposition 16. The functiorDNM of Figure 1 runs at most - w(f) - 2*(f)+1 iterations of Newton’s method.

Proof. The number of iterations of the DNM E?ifo) |comp(t)| - j - 2t. This can be bounded as follows.
S [comp(@)] -2 < w(f)i-Tpd 2
<w(f)-j-2MH O
C.2 Proof of Lemma 17

Before proving Lemma 17, we show the following proposition which covesscise of a quadratic, clean, and
feasible scMSP
f(X) =b(X,X)+1U(X) +c

whereb(X,Y) is a bilinear map{(X) is linear, and: is constant.

Proposition 26. Let f (X ) satisfy the conditions stated above witfi its least fixed-point. Then there is a constant
C such thatforalld < é < uf it holds

C-18]13 < [|(1d = #'(uf)) - 8 + (3, 8)]], -

Proof. We now discuss the three cases that either (cagki$) linear in X, or (case Il) f is non-linear and
(Id — f/(uf))~! exists, or (case lllY is non-linear andld — f'(u.f)) is singular.

Case I: We first consider the case, where the SCC representeglibyinear in X. Thenf'(X) = f/(0) is
constantp(X, X) = 0 and(Id — f')~! exists, as we consider an SCC. So, we get

[(Id — £(0))8]], = Amin(Id — £(0)) - [|8]], .

where we definé\,,i» (A) to be the smallest absolute value of an eigenvalue of a square Matrix

Case Il: Next, we consider the case whefecontains at least one quadratic termXnand (Id — f/(uf)) is
invertible. As shown in the proof of Lemma 23, we then héve— f/(1.f))~! > 0. So, we may write

(1 = £/(uf))8 + b5, 8)], W(d = F(uf)) - |6+ (1d = F'(uf) b5, 3)],

min (Id — f'(u )) 1912,

where we used in the last step tidat 0 and(Id — f'(uf))b(6,8)~ > 0.

> i
> A
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Case lll:  Finally, we consider the case whefedepends quadratically oK andId — f'(uf) is singular. As
f(X) is clean and feasible, i.e.f > 0, and quadratically depends d&, we know that the first Newton step is
well-defined, i.e.f'(0)* = (Id — f/(0))~! exists. We therefore may write

[(1d — £ (uf))0 +6(8,8)|[, = Aumin(Id = £(0)) [ £/(0)*((1d — f'(1f))d + b(8,9)) |,
= Amin(Id — £(0)) H Id—2b(,uf))6+b (8,8)) H2

whereb(X, X) := f/(0)*b(X, X). Thus, it is sufficient to show that there exist§'a> 0 with
| (1a =255+ b(8,8)) |, = €811, (7)

as we then may st := A\, (Id — £/(0)) - C.

We note thatf (X) and f(X) := b(X, X) + f'(0)*£(0) are equivalent in the sense that both functions have
the same set of fixed points, their Newton sequences and nullspakks g¢f (x*) andld — f’(:c*) are identical.
These properties are easily checked.

The reason for multiplying byf’(0)* is that this guarantees that no componenfy(oX,X) is the zero-
polynomial. We are going to need this property shortly.

First let us give an intuition why this property dfholds — we leave the technical details to the reader: as we
assume that is an SCC, every variable oX depends on every other variable &f w.rt. f. Hence, as we
consider the case whejecontains at least one quadratic term, every variable either directly dep@edtly on a
quadratic term, or there exists a sequence of varialflesX;,, ..., X;, such thatX; depends linearly oiX;,
and X;, itself depends directly on a quadratic term. All these “linear dependenaiessummarized irf’(0)*.
Multiplying by f’(0) propagates these to the remaining quadratic terms.

Let us introduce the norm

[yll,, g := max{

il
Remember, we consider a clean scMSP, thus we hgve 0, and||-| ,; is well-defined. It is straightforward to
check that this is indeed a norm. We then define the set of directions

D={deR"[d>0|d],, =1}
Then we are guaranteed that for evdisectiond € D the rayuf — r - d stays non-negative for < [0, 1], i.e
OSILLf—’I“dS,uf (TG[Oal])a

and, a0 < & < puf, we havery' -6 € Dforrs := 8[|, € [0,1].
We now will show that that there existsa> 0 — independent ofl — such that

Hr(Id ~F(uf))d + r2(d, d)H >0 2

forall r € [0, 1] andd € D, which implies Eq. 7.
We set

|raa — 7 upya + (. )|
- —HbddH (b(d, d), 1d—F (uf))d *H (1d — f'(uf) dH

U(r,d) := "

where(, -) is the Euclidean scalar-product. We further define

ofd) = i@ [, 5(d) = (bd, d), (10— F (uf))d), andn(d) = | (1~ F (uf)a.
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Note thatU/(r, d) > 0 on (0,1] x D, as otherwisg.f — rd would be a fixed-point off (X), resp. f(X), less
thanuf.
As D is compact and/(r, d) is continuous orf0, 1] x D, the function

9(r) i= inf U(r,d)

is non-negative and continuous ¢ 1], too. Set

G(R) = inf g(r)
for0 < R < 1. We then havé&Z(R) > 0 for 0 < R < 1 andG decreases monotonically wifR — 0.
Now, if we can show that7(0) = info<,<; g(r) > 0, our proof will be complete, as we will then have

|1a =7 uss +5s.6)| = G013 =G(0) - 1812, = Cl1613

by equivalence of norms di” for some appropriate constaft

We proceed by assuming the opposite, (:¢0) = inf,.cjo 1 g(r) = 0, and show that this leads to the contradic-
tion thaty. f is not the least fixed-point. With the assumptiefi.c(y 1; g(r) = 0, there has to exist a monotonically
decreasing sequenegconverging td) with g(r;) — 0 fori — oo.

As U(r,d) is continuous, and compact, we find for every; ad; € D with g(r;) = U(ri,d;). Asd; is a
sequence in the compact 9etC R", there exists a convergent subsequence, w.l.0.g. we therefore meweass
that the sequena#; already converges to soraé € D.

Now, we want to show first that we can refine the sequéngel;);cy in such a way that there is@, > 0 such
thatvy(d;) < C,r? for all i: By the Cauchy-Schwarz inequation we hagé)| < \/a(-)y(:), thus

2
0= gy > (m”‘“) >0,

Hence, there has to exist constants> 0 andi,, € N such that for ali > i.,:

< ¢y,

‘\/@_ V(di)

which in turn implies

v(d;)

Ti

<cy+oald) <cy + max Vva(d)=:C, ie. ~v(d;) < C’g -7,
€

Thus, we have to havg(d*) = 0, i.e. d* is located in the nullspace & — f’(uf), implying 3(d*) = 0 and
a(d*) > c¢> 0. Asd" € D, we haved® > 0 — see Lemma 22. Thus by the strong connectivity @X ) we have
d* = 0. Hence, there has to exist ansuch that for alk > iy, we haved; = 0, asd; converges tal* for all
i > i, asd; — d andb continuous.

We have already stated tH}a(tX, X) cannot be the zero-polynomial in any component, heE\((zlg” d)) -0
forall i > ig, too. So, there also exists a vectgrsuch thaﬁ(di, d;) = c¢; = 0.

Now, as we have ,

e,
2

g(ri) = H(Id - f/(uf))% +b(d;, d;)

(2

2If necessary, we may adjust suitably.
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there has to exist afyy such thaﬂ?(di,di) = ¢;, andg(r;) < (%minlgkgn(cl;)k)Q forall i« > Iy. This implies
(Id — f'(uf)) & < 0. )

Consider the vectad := dj,. Asr; > 0, we also havéld — f'(uf))d < 0.

Define

o min(t, i —09= P @)D

1<k<n (b(d, d))i

As (Id — ¥ (uf))d < 0 andb(d, d) = 0, we havep > 0. Now forall0 < r < p < 1

Flpf —rd)— (uf —rd) _
= r(Id— f (uf))d +r°b(d, d)
< 0.
This meansf (uf —rd) < pf —rd for 0 < r < p. But uf is the least solution of (X) < X overRZ, by
virtue of the Knaster-Tarski theorem. So we get the desired contradiction O
Now we can prove Lemma 17, restated here.

Lemma 17. There is a constant > 0 such that

e = el < ey fllpsy — v

holds for allv~; with 0 < v~; < p,, wherep, = pu(f (X)X 5t /vs4]).

Proof. Let S be an SCC at level i.e. S € comp(t). S itself does not need to depend on all variab¥s;. Thus,
let dedS) be the set of variables on whichreally depends on — excluding the variables corresponditty ie.
X 5. We may then write the MSFP g — corresponding t6' — asf ¢(X s, X geps))-

Now, let uger sy be the correct (non-negative) least fixed poinfgfy o) (X deps)), andrgeys) the part of the
approximatiornv; relevant toS. Let

€deqS) = Mdeps) — VdepS)
be the absolute error in the underlying SCCs relevast tbhe propagation error is then
05 = puf5(Xs, Baensy) — 1 s(X's, Vaeys))-

What we are going to show is that there i€'a > 0 such that

165] < Cs\/||€dens) |-

Note that this is sufficient to prove the lemma as

— 1t = ) < Cq - < Ca) - _
1t — el o sé&?ﬁé@)u slloo_sg(g%t)( s Hsdep(S)Hoo)_(Ser(g%t) 5) /sy = vsillo

Because of the equivalence of norms on any vector space of finite donemer R, we are guaranteed the
existence of an appropriate constant such that this holds in any other toar.
In the following, we therefore consider a fixed SGCand simplify the notation by setting:

e X := X g —the variables corresponding to the SGC

e Y := Xyeqs) —the variables corresponding to the SCCs(depn which.S depends,
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F(X,Y) := fg(X,Y) —the restriction of the given systefito the SCCS,

® Y = pgeys) — the restriction ofs = p f to the variabled”,

o "= pf g(Xs, fyeys)) — the least fixed point of (X, pgeys))-

® £ := gqeys) — the restriction of the approximation erro= p — v, and

e §:=d5—theerrorr™ — uf(X,vyeys)) introduced by replacing” by vgeys)-
So we consider the following parameterized MSP

F:R"xR™ - R": <Z> — F(z,y) with F(z,y) _B(<“’> : <m))+L (2) +oe,

Yy Yy

whereB is a bilinear map[ is a matrix, anc: is a vector.

As we assume that the whole MSP is “clean” and feasible, we da&vwe 0 andy* > 0.

We require some suitable approximatiogy, sy = y* —eof y*,i.e.0 < y* —e < y*". ASF(X,y" —¢) <
F(X,y"), the Kleene sequence &f(X,y* — ¢) is bounded from above by*. So, for the least fixed-point
pf(X,vgeys)) = x* — 6 of F(X,y* —¢) we haved < § < z*. Aswe assumg™ — ¢ > 0, F(X,y* —¢)
stays clean, hence* — § > 0, too.

We are now interested in boundifjg|| by ||e||. For this to do, let us rewrite the equation

2 6= Fla*— 8,y —e) as ' —d=F(a"y") - Fla"y") (g) + B(<6> , (5)).

g g

With =* = F(x*,y*), and by moving all terms containinjjon the right hand side, and the remaining terms on
the left hand side, we get

e (8]0 (ot (§) () ()20 (5
We remark that
aa- @) (p) +5(3) . (5)) = e —ow) - P+
— Flz*—6,y") - (a" — b).

AsO < z* -8 < x*, we have
F(z*—94,y") — (" —9) >0,

for > 0 — otherwiser* — § would be a fixed point less thari of F( X, y*).

Combining Eq. 8 WithB((ﬁ) , <g>) >0 and—B((?) , (2)) < 0, we get
0 < F(z*—46,y%) *

= (Id - F'(z*,y") :E
: (
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Thus we have

0<

aa-ra) (§) +2((3). ()] = [ (O) | <l vl

Now, if we succeed in showing that there is always a congtant0 such that

clor? < aa- i (3) + 2(5) . ()] ©

we will obtain a proof of Lemma 17.
Note that this last inequation does not dependcecamymore. Hence, it is sufficient to considgfX) :=
F(X,y*) in the following, forgetting about the underlying SCCs. We write

X X
vxx) = 5((5).(3 )
for the quadratic part of.

Then the preceding inequation Eq. 9 may be written as

Cll8]* < [|(1d — f'(2*))8 + b(8. )], (10)
where f” is now the Jacobian of, i.e. taken only w.r.t.X. Because of the equivalence of normsRih we may
turn to the Euclidean norm||, and apply Proposition 26 to conclude the proof. O

C.3 Proof of Theorem 18

Here is a restatement of Theorem 18.

Theorem 18. Let f be a quadratic MSP. Lar() denote the result of callinNM (£, j) (see Figure 1). Then
there is aky € N such thatv (s +9) has at least valid bits of .. f for everyi > 0.

We first prove the following lemma which gives a bound on the error on kevel
Lemma 27. There is a constant > 0 such that
HA?)H < 2079
Proof. It follows from Theorem 8 tha@vt(j) — ugj)), the approximation error at level decreases exponentially
in the number of iterations, i.e., there is a constant 0 such that

Now we can prove the theorem by inductiontonn the base case & h(f)) there is no propagation error, so the
claim of the lemma follows from (11). Let< h(f). Then

“Agj)‘) _ H“t 59 g0 ng)H
<] [ |
< | = 9| + 2752y @)
< AY)| 4 20-32"  (by Lemma 17)
< ey - V203=3 2T 4 9c1=52" (py induction hypothesis)

< 264—j'2t

<cy- ‘

for some constants, c3, ¢4 > 0. O
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From Lemma 27 we deduce that for each componeaftdeptht there is a constant. such that
(uf, —vD) uf, < 20079 <97

Letky > c.forall1 <r <n. Then
(ufy =) g, < 200D <279 O
D Proofs of Section 6

D.1 Rest of the Proof of Theorem 19

In the following, if M is a matrix we often write\/}, resp.)M, when we meafiM*) ;. resp.(M*) jx.

The following lemma assures that in order to show tffg1-(¥))* has noco entries, it suffices to consider the
diagonal elements of the matrix.

Lemma 28. Let A = (a;;) € RLS". Let A* have anco entry. Thend* also has aro entry on the diagonal, i.e.
A, = o forsomel <i<n.

Proof. By induction omn. The base case = 1 is clear. Fom > 1 assume w.l.0.g. that],, = co. We have
- All Z alj [2..m,2. n] jn ) (12)

where byAp ,, 2., We mean the square matrix obtained frotrby erasing the first row and the first column.
To see why (12) holds, think o}, as the sum of weights of paths frohto » in the complete graph over the
vertices{1,...,n}. The weight of a pattP is the product of the weight aP’s edges, anda;, ;, is the weight of
the edge fromi; to is. Each pathP from 1 to n can be divided into two sub-patl#y, P, as follows. The second
sub-pathP is the suffix of P leading from1 to n and not returning ta. The first sub-patt#®;, possibly empty, is
chosen such that = P, P,. Now, the sum of weights of all possiblg equalsA},, and the sum of weights of all
possibleP, equalszj:2 a1j(Ap..n2.n))jn- SO (12) holds.

As A7, = oo, it follows that eitherA}, or some(A[znng“n])jn equalsco. In the first case, we are done. In the
second case, by induction, there isiauch thal A}y ,, . ));; = oo. Butthen alsad}; = oo, because every entry
of (Aj2.n,2.n])" is less or equal the corresponding entry4ot O

So it remains to show that' (v(*) )i, #ooforalll < s < n. Thisis done in the proof of Proposition 32 below.
There, two cases are considered, dependlng on whether Newton'sdrtetminates in the-component or not.
The following lemma will be used for the nonterminating case.

Lemma 29. Let0 < v < f(v) < uf. LetS denote an SCC withrs < pf 5. Then the submatrix’(v)% does
not haveco as an entry.

Proof. Let L denote the set of variables which are nofSilbut on which a variable it depends. Ley(X s) :=
fs(X)[Xr/ufr]. Theng(Xg) is an scMSP withug = ufg. Asvg < ug, Theorem 6 (1) is applicable, so
g'(vg)* does not haveo as an entry. Witly'(vg)* = f'(v)%g, the lemma follows. O

The next lemma is a version of Taylor's theorem, which will be used in LemmaeRinb

Lemma 30(from [10]). Let0 < = < f(x) and letd, k1, k2 € Nwith k; > k;. Then

FrR (@) — f () = F(F (@) U2 () - 5 (2)
where byf"(X) we meanf (£ (X)) with fO(X) = X.
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Proof. The lemma follows from a generalized form of Taylor’s theorem stating:

For an MSPf andv, u > O:

Fv+u) > fv) + f'(v)"u .
For the sake of completeness we give a proof of this generalized foftaytdr's theorem, closely following the
proof of [10].

Ford = 1 (induction base) the statement is essentially Taylor's theorem (see §.gLE} > 1. Then, by
Taylor's theorem, we have:

fd—i-l (,v + u)
= F(F(v+uw)
> f(£4) + f (v)%u) (induction hypothesis)
> f5 N (0) + £(F40) f'(v)*u (Taylor)
> N (0) + f(v)
Lemma 30 itself follows withy = f*1(x) andu = f*2(x) — f* (). O

The following lemma will be used for the case in which Newton’s method terminatesnme componenk;.
It states that if Newton’s method terminatesXn it must have terminated before in some other component on
which X depends.

Lemma3l. Letl <s,l <n. Let f/(X)?, non-trivially depend onX;. Let0 < v < f(v) < uf andv, < uf,
andv; < pf;. ThenN (v)s < puf .

Proof. This proof follows closely a proof of [12]. Lef > 0 s.t. f/(X)<, depends non-trivially onX;. Let
m' > 0s.t.f™ (v); > 1. Such am’ exists because with Kleene’s theorem the sequéfiter)),cn converges
to uf. Choosen > m’ s.t. f™(v), > f™(v),. Such anm exists because the sequergé (v),)ren Never
reaches. f,. This is becaus&’; depends on itself (sincg'(X)*, is not constan), and so every increase of the
s-component results in an increase of theomponent in some later iteration of the Kleene sequence.
Now we have
fd+m+1(y) o fder(V)

> f'(fm @) (F T (v) - f7(v))  (Lemma 30)

>* fw) (T v) - f(v))

> f (W) ()™ (F(v) —v) (Lemma 30)

= f)"m(fv) -v).
The inequality marked witk is strict in thes-component — this is due to the choicedo&ndm above. So, with
b = d + m we have:

(W) = £ ))s > (F W) (F(v) = v))s (13)
For other choices df inequation (13) also holds, but with instead of>. Therefore:
pfs= (v +32(F* (v) - fi(v), (Kleene)

> v+ () (flv) —v)), (inequation (13))
= (V) O

S

Now we are ready for the central proposition of this proof of Theorém 1

Proposition 32. For all k > 0 the matrixf’(z*))* does not havec as entries.
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Proof. Using Lemma 28 it is enough to show trﬂ(A(k )i # oo forall s

Case 1:The sequenc@?S )keN does not terminate, i.ev ( < uf, forall £ > 0. Then obviously this holds for
all variables in the SCC ak. So Lemma 29 applies, henfé(u ’“) )is # o0.

Case 2:The sequence?s( )ken terminates, i.e., there isig > 1 such thapFs) = plFtl) =

k. be the smallest such number, i1 < y§ s) = plkstl) _
depends such that

.= punf,. Let
uf,. Sothereisa varlabla’u on which X

0 < fEHL (@) - o), <o,

where the latter inequality is implied by Proposition 20. This implies. f’ ( (ks — 1))Su < oo, therefore also
F'@* D) < oo, But with Lemma 31, any variabl&; on which f/(X)*, depends has already terminated

one step earlier, |eul(ks D= ﬁl(kS). Thereforef’ (p*s) )i = = (ks 1) < oo. As thel- component does
not change any further we ha\jé(ﬁ(k)):s < oo for all k > k,. Sincef'(X) is monotone andz*));cy is
monotonically increasing, this holds also foK &k < k. ]

Combining Proposition 32 with Proposition 20 and the comments below Propoditigiléds Theorem 19. [
D.2 Proof of Theorem 21

Here is a restatement of Theorem 21.

Theorem 21. Let f be any quadratic MSP. Then the Newton sequéné® )<y is well-defined and converges
linearly to ..f. More precisely, there is &7 € N such that (ks +i-(h(H)+1)-2"") hag at least valid bits of . f for
everyi > 0.

We argue that Theorem 18 assuring linear convergence for DNMtgsihecarries over to the “undecomposed”
method.

The following lemma states that a Newton step is not faster on an SCC, if thes\afitlee lower SCCs are
fixed.

Lemma 33. Let f be an MSP. Le0 < v < f(v) < puf. LetS denote an SCC of. Let L denote the set of
variables that are not irff, but on which a variable it depends. ThetW¢(v))s > Ny (x, /u,](¥s), Where

/\A/'f is defined as in Proposition 20.

Proof. R
N5(v))s
= (FW)*(fv) —v))g
= f'(W)ss(f(v) —v)s
+f ()5 (Fv) —v)L
Fw)ss(f(v) —v)s

(FslXr/ve))(ws)) (Fs[X1/vi)(vs) —vs)
_NfSXL/uL](VS> O

The following lemma states the monotonicity of Newton’s method and was provaéjin [
Lemma 34 (Monotonicity of Newton’s Method)Let f(X') be an MSP. Then
Ny(z) < Ng(y)forall0 < x <y < f(y) < uf.
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Lemma 33 and Lemma 34 can be combined to the following lemma stating-ttiatf) + 1) iterations of the
normal Newton’s method “dominate’iterations of a decomposed Newton’s method in each SCC.

Lemma 35. Let>Y denote the result of a decomposed Newton'’s method which perfatenations of Newton’s
method in each SCC. Let?) denote the result ofiterations of the normal “undecomposed” Newton’s method.
Theny (@ ((H+1) > 50,

Proof. Leth = h(f). LetC(t) resp.C(> t) denote the set of variables in an SCC of defptbsp.> ¢. We show
by induction on the depth
(i-(h(H)+1-1)) 5 ~()
Yo Z Ve
Induction baset = h(f). Clear, because for bottom SCCs the two methods are identical.
Let nowt < h(f). Then

(i-(h+1—1))
Yow
= /\/'}(V(z-(h—t)))c(t) o)
> N - e Lemma 33
o '>>1<”(C<t> ) )
> Nt . (v-(h=t)) induction hypothesis
— fow [X/Dg)(>t)](yc(t) ) ( P )
> N? . 0 Lemma 34
S [X/Dg2>t>]( S0), ( )
=v,
Now, the lemma itself follows by using Lemma 34 once more. O

As a side note, observe that above proof of Lemma 35 implicitly benefits frerfatit that SCCs of the same
depth are independent. So, SCCs with the same depth are handled in pgrétlel*undecomposed” Newton'’s
method. Thereforey(f), the width of f, is irrelevant here (cf. Proposition 16).

Now we can finish the proof of Theorem 21. ligtbe thek s of Theorem 18, and lét; = ko~ (h(f)+1)-2"(F).

Then we have:
p(kiti(h(F)+1)-2"(1)

= y((k2+i)-(h(f)+1).2h(f))

> pl(kati)-240) (Lemma 35)
The appl’OXimatiorf,((sz)-2h<f>) has at least as many bits as the approximation obtained from running
DNM(f, ko +i). This is because DNKJ, ks + i) runs at most(ky + i) - 2"(¥) iteration in every SCC and

Newton’s method converges monotonically. So, by Theoremu8;+i(h(f)+1)-2"")) hag at least valid bits of
pf. Therefore, Theorem 21 holds withy = k. O
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