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Abstract

Monotone systems of polynomial equations (MSPEs) are systems of fixed-point equationsX1 = f1(X1, . . . , Xn),
. . . , Xn = fn(X1, . . . , Xn) where eachfi is a polynomial with positive real coefficients. The question of com-
puting the least non-negative solution of a given MSPEX = f(X) arises naturally in the analysis of stochastic
models like stochastic context-free grammars, probabilistic pushdown automata, and back-button processes. Etes-
sami and Yannakakis have recently adapted Newton’s iterative method to MSPEs. In a previous paper we have
proved for strongly connected MSPEs the existence of a thresholdkf such that afterkf iterations of Newton’s
method each new iteration computes at least 1 new bit of the solution. However, the proof was purely existential.
In this paper we give an upper bound forkf as a function of the maximal and minimal components of the least
fixed-pointµf of f(X). Using this result we show thatkf is at most single exponential resp. linear for strongly
connected MSPEs derived from probabilistic pushdown automata resp. from back-button processes. Further, we
prove the existence of a threshold for arbitrary MSPEs after which each new iteration computes at least1/w2h

new bits of the solution, wherew, h are the width and height of the DAG of strongly connected components.

1 Introduction

A monotone system of polynomial equations(MSPE for short) has the form

X1 = f1(X1, . . . , Xn)
...

Xn = fn(X1, . . . , Xn)

wheref1, . . . , fn are polynomials withpositivereal coefficients. In vector form we denote an MSPE byX =
f(X). We call MSPEs monotone becauseX ≤ X ′ implies f(X) ≤ f(X ′) for X, X ′ ∈ R

n
≥0. MSPEs ap-

pear naturally in the analysis of many stochastic models, like context-free grammars (with numerous applications
to natural language processing [19, 15], and computational biology [21, 4, 3, 17]), probabilistic programs with
procedures [6, 2, 10, 8, 7, 9, 11], and web-surfing models with backbuttons [13, 14].

By Kleene’s theorem, a feasible MSPEX = f(X) (i.e., an MSPE with at least one solution) has a least solution
µf ; this solution can be irrational and non-expressible by radicals. Given an MSPE and a vectorv encoded in
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binary, the problem whetherµf ≤ v holds is in PSPACE and at least as hard as the SQUARE-ROOT-SUM
problem, a well-known problem of computational geometry ([10, 12] for more details).

For the applications mentioned above the most important question is the efficientnumerical approximation of
the least solution. Finding the least solution of a feasible systemX = f(X) amounts to finding the least solution
of F (X) = 0 for F (X) = f(X) −X. For this we can apply (the multivariate version of)Newton’s method
[20]: starting at somex(0) ∈ R

n (we use uppercase to denote variables and lowercase to denote values), compute
the sequence

x(k+1) := x(k) − (F ′(x(k)))−1F (x(k))

whereF ′(X) is the Jacobian matrix of partial derivatives.
While in general the method may not even be defined (F ′(x(k)) may be singular for somek), Etessami and

Yannakakis proved in [10, 12] that this is not the case for a more structured method, calledDecomposed Newton’s
method (DNM), that decomposes the MSPE intostrongly connected components(SCCs)1. We explain this method
in some more detail. In order to define the SCCs of an MSPE, associate tof a graph having the variables
X1, . . . , Xn as nodes, and the pairs(Xi, Xj) such thatXj appears infi as edges. A subset of equations off is an
SCC if its associated subgraph is an SCC of the whole graph. DNM starts by computingk iterations of Newton’s
method for each bottom SCC of the system. The values obtained for the variables of these SCCs are then “frozen”,
and their corresponding equations removed. The same procedure is thenapplied to the new bottom SCCs, again
with k iterations, until all SCCs have been processed. Etessami and Yannakakis prove the following properties of
DNM:

(a) The Jacobian matrices of all the SCCs remain invertible all the way throughout.

(b) The vectorx(k) delivered by the method converges toµf whenk →∞ even ifx(0) = 0 = (0, . . . , 0)⊤.

Property (b) is in sharp contrast with the non-monotone case, where Newton’s method may not converge or may
exhibit only local convergence, i.e., the method may converge only in a small neighborhood ofthe zero.

The results of [10, 12] provide no information on the number of iterations needed to computei valid bits of
µf , i.e., to compute a vectorν such that

∣∣µf j − νj

∣∣ /
∣∣µf j

∣∣ ≤ 2−i for every1 ≤ j ≤ n. In a former paper [16]
we have obtained a first positive result on this problem. We have proved that for every strongly connected MSPE
f there exists a thresholdkf such that for everyi ≥ 0 the (kf + i)-th iteration of Newton’s method has at leasti
valid bits ofµf . Loosely speaking, after reaching the threshold DNM is guaranteed to compute at least 1 new bit
of the solution per iteration; we say that DNM convergeslinearly with rate 1.

The problem with this result is that its proof provides no information onkf other than its existence. In this
paper we prove that the thresholdkf can be chosen as

kf = 3n2m + 2n2 |log µmin|

wheren is the number of equations of the MSPE,m is such that all coefficients of the MSPE can be given as ratios
of m-bit integers, andµmin is the minimal component of the least solutionµf .

It can be objected thatkf depends onµf , which is precisely what Newton’s method should compute. How-
ever, for MSPEs coming from probabilistic models as the ones listed above wecan do far better. The following
observations and results help to deal withµmin:

• We obtain a syntactic bound onµmin for probabilistic programs with procedures (having stochastic context-
free grammars and back-button stochastic processes as special instances) and prove that in this casekf ≤
n2n+2m.

1More precisely, the proof also requires the MSPE to beclean, see Section 2 for details.
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• We show that if every procedure has a non-zero probability of terminating, thenkf ≤ 3nm. This condition
always holds in the special case of back-button processes [13, 14].Hence, our result shows thati valid bits
can be computed in timeO((nm + i) · n3) in the unit cost model of Blum, Shub and Smale [1], where
each single arithmetic operation over the reals can be carried out exactly and in constant time. It was proved
in [13, 14] by a reduction to a semidefinite programming problem thati valid bits can be computed in
poly(i, n, m)-time in the classical (Turing-machine based) computation model. We will not improve this
result, because we do not have a proof that round-off errors (which are inevitable on Turing-machine based
models) do not crucially affect the convergence of Newton’s method. But our result sheds light on the
convergence of a practical method to computeµf .

• Finally, sincex(k) ≤ x(k+1) ≤ µf holds for everyk ≥ 0, as Newton’s method proceeds it provides better
and better lower bounds forµmin and thus forkf . To demonstrate this, in the paper we exhibit a concrete
MSPE and after a few iterations use our theorem to prove that no component of the solution will reach the
value 1 (which no further number of iterations can prove by itself).

The paper contains two further results. In [16] we left open the problemwhether DNM converges linearly for
non-strongly-connected MSPEs. We prove that this is the case. But the convergence rate is poorer: ifh andw are
the height and width of the graph of SCCs off , then there is a threshold̃kf such that̃kf + i · w · 2h+1 iterations
of DNM compute at leasti valid bits ofµf . We also give an example where DNM needs at leasti · 2h iterations
for i valid bits.

The final result of the paper brings us back to Etessami and Yannakakis’ original motivation for DNM. They
introduced the decomposition into SCCs as a tool for proving well-definedness: they showed that the Jacobian
exists for all SCCs, which implies that DNM is always defined. Here we prove that the Jacobian of the whole
MSPE is guaranteed to exist, whether the MSPE is strongly connected or not.As a consequence, one can safely
replace DNM by the standard Newton’s method. Still, since DNM can be far more efficient (its iterations concern
only SCCs, which can be much smaller than the whole MSPE), and since SCCs play an important part in our
threshold analysis, we have formulated our results in terms of DNM.

The paper is structured as follows. In Section 2 we state preliminaries and give some background on New-
ton’s method applied to MSPEs. Sections 3, 5, and 6 contain the three results of the paper. Section 4 contains
applications of our main result. We conclude in Section 7. Missing proofs canbe found in an appendix.

2 Preliminaries

In this section we introduce our notation used in the following and formalize the concepts mentioned in the
introduction.

2.1 Notation

As usual,R andN denote the set of real, respectively natural numbers. We assume0 ∈ N. R
n denotes the set

of n-dimensional real valuedcolumnvectors andRn
≥0 the subset of vectors with non-negative components. We

use bold letters for vectors, e.g.x ∈ R
n, where we assume thatx has the componentsx1, . . . , xn. Similarly, the

ith component of a functionf : R
n → R

n is denoted byfi.
R

m×n denotes the set of matrices havingm rows andn columns. The transpose of a vector or matrix is indicated
by the superscript⊤. The identity matrix ofRn×n is denoted byId.

Theformal Neumann seriesof A ∈ R
m×m is defined byA∗ =

∑
k∈N

Ak. It is well-known thatA∗ exists if and
only if the spectral radius ofA is less than1, i.e. max{|λ| | C ∋ λ is an eigenvalue ofA} < 1. In the case thatA∗

exists, we haveA∗ = (Id−A)−1. The converse does not hold.

3



The partial order≤ onR
n is defined as usual by settingx ≤ y if xi ≤ yi for all 1 ≤ i ≤ n. Similarly,x < y if

x ≤ y andx 6= y. Finally, we writex ≺ y if xi < yi for all 1 ≤ i ≤ n, i.e., if every component ofx is smaller
than the corresponding component ofy.

We useX1, . . . , Xn as variable identifiers and arrange them into the vectorX. In the following n always
denotes the number of variables, i.e. the dimension ofX. While x, y, . . . denote arbitrary elements inRn, resp.
R

n
≥0, we writeX if we want to emphasize that a function is given w.r.t. these variables. Hence, f(X) represents

the function itself, whereasf(x) denotes its value for somex ∈ R
n.

If Y is a set of variables andx a vector, then byxY we mean the vector obtained by restrictingx to the
components inY .

TheJacobianof a functionf(X) with f : R
n → R

m is the matrixf ′(X) defined by

f ′(X) =




∂f1

∂X1
. . . ∂f1

∂Xn

...
...

∂fm

∂X1
. . . ∂fm

∂Xn


 .

2.2 Monotone Systems of Polynomials

Definition 1. A functionf(X) with f : R
n
≥0 → R

n
≥0 is a monotone system of polynomials (MSP), if every

componentfi(X) is a polynomial in the variablesX1, . . . , Xn with coefficients inR≥0. We call an MSPf(X)
feasibleif y = f(y) for somey ∈ R

n
≥0.

Fact 2. Every MSPf is monotone onRn
≥0, i.e. for0 ≤ x ≤ y we havef(x) ≤ f(y).

Since every MSP is continuous, Kleene’s fixed-point theorem (see e.g.[18]) applies.

Theorem 3 (Kleene’s fixed-point theorem). Every feasible MSPf(X) has a least fixed pointµf in R
n
≥0 i.e.,

µf = f(µf) and, in addition,y = f(y) impliesµf ≤ y. Moreover, the sequence(κ(k)
f )k∈N with κ

(k)
f = fk(0)

is monotonically increasing with respect to≤ (i.e. κ(k)
f ≤ κ

(k+1)
f ) and converges toµf .

In the following we call(κ(k)
f )k∈N theKleene sequenceof f(X), and drop the subscript wheneverf is clear

from the context. Similarly, we sometimes writeµ instead ofµf .
A variableXi of an MSPf(X) is productiveif κ

(k)
i > 0 for somek ∈ N. An MSP iscleanif all its variables

are productive. It is easy to see that we haveκ
(k)
i = 0 for all k ∈ N if κ

(n)
i = 0. Just as in the case of context-free

grammars we can determine all productive variables in time linear in the size off .

Notation 4. In the following, we always assume that an MSPf is clean and feasible. I.e., whenever we write
“MSP”, we mean “clean and feasible MSP”, unless explicitly stated otherwise.

For the formal definition of theDecomposed Newton Method (DNM)(see also Section 1) we need the notion of
dependencebetween variables.

Definition 5. Let f(X) be an MSP.Xi depends directlyon Xk, denoted byXi E Xk, if ∂fi

∂Xk
(X) is not the

zero-polynomial.Xi dependson Xk if Xi E∗ Xk, whereE∗ is the reflexive transitive closure ofE. An MSP is
strongly connected(short: anscMSP) if all its variables depend on each other.

Any MSP can be decomposed into strongly connected components (SCCs),where an SCCS is a maximal set
of variables such that each variable inS depends on each other variable inS. The following result for strongly
connected MSPs was proved in [10, 12]:
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Theorem 6. Letf(X) be an scMSP and define the Newton operatorNf as follows

Nf(X) = X + (Id− f ′(X))−1(f(X)−X) .

We have:

(1) Nf(x) is defined for all0 ≤ x ≺ µf (i.e., (Id − f ′(x))−1 exists). Moreover,f ′(x)∗ =
∑

k∈N
f ′(x)k

exists for all0 ≤ x ≺ µf , and soNf(X) = X + f ′(X)∗(f(X)−X).

(2) The Newton sequence(ν(k)
f )k∈N with ν(k) = N k

f (0) is monotonically increasing, bounded from above by

µf (i.e. ν(k) ≤ f(ν(k)) ≤ ν(k+1) ≺ µf ), and converges toµf .

DNM works by substituting the variables of lower SCCs by corresponding Newton approximations that were
obtained earlier.

3 A Threshold for scMSPs

In this section we obtain a threshold after which DNM is guaranteed to converge linearly with rate 1.
We showed in [16] that for worst-case results on the convergence of Newton’s method it is enough to consider

quadraticMSPs, i.e., MSPs whose monomials have degree at most 2. The reason is thatany MSP (resp. scMSP)f
can be transformed into a quadratic MSP (resp. scMSP)f̃ by introducing auxiliary variables. This transformation
is very similar to the transformation of a context-free grammar into Chomsky normal form. The transformation
does not accelerate DNM, i.e., DNM onf is at least as fast (in a formal sense) as DNM onf̃ , and so for a
worst-case analysis, it suffices to consider quadratic systems. We refer the reader to [16] for details.

We start by defining the notion of “valid bits”.

Definition 7. Letf(X) be an MSP. A vectorν hasi valid bitsof the least fixed pointµf if
∣∣µf j − νj

∣∣ /
∣∣µf j

∣∣ ≤
2−i for every1 ≤ j ≤ n.

In the rest of the section we prove the following:

Theorem 8. Let f(X) be a quadratic scMSP. Letcmin be the smallest nonzero coefficient off and letµmin and
µmax be the minimal and maximal component ofµf , respectively. Let

kf = n · log
µmax

cmin · µmin ·min{µmin, 1}
.

Thenν(⌈kf ⌉+i) hasi valid bits ofµf for everyi ≥ 0.

Loosely speaking, the theorem states that afterkf iterations of Newton’s method, every subsequent iteration
guarantees at least one more valid bit. It may be objected thatkf depends on the least fixed pointµf , which is
precisely what Newton’s method should compute. However, in the next section we show that there are impor-
tant classes of MSPs (in fact, those which motivated our investigation), forwhich bounds onµmin can be easily
obtained.

The following corollary is weaker, but less technical in that it avoids a dependence onµmax andcmin.

Corollary 9. Let f(X) be a quadratic scMSP of dimensionn whose coefficients are given as ratios ofm-bit
integers. Letµmin be the minimal component ofµf . Let

kf = 3n2m + 2n2 |log µmin| .

Thenν(⌈kf ⌉+i) has at leasti valid bits ofµf for everyi ≥ 0.
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Corollary 9 follows from Theorem 8 by a suitable bound onµmax in terms ofcmin andµmin, and by the inequation
cmin ≥ 1/2m, see the appendix.

In the rest of the section we sketch the proof of Theorem 8. The proof makes crucial use of the vectorsd ≻ 0

such thatd ≥ f ′(µf)d. We call a vector satisfying these two conditions acone vector off or, whenf is clear
from the context, just a cone vector. To a cone vectord = (d1, . . . , dn) we associate two parameters, namely
the maximum and the minimum of the ratiosµf1/d1, µf2/d2, . . . , µfn/dn, which we denote byλmax andλmin,
respectively.

In a previous paper we have shown that ifId− f ′(µf) is singular, thenf has a cone vectord ([16], Lemmata
4 and 8). As a first step towards the proof of Theorem 8 we show the following stronger proposition.

Proposition 10. Any scMSP has a cone vector.

The second step consists of showing (Proposition 12) that given a conevectord, the thresholdkf,d = log(λmax/λmin)
satisfies the same property askf in Theorem 8, i.e.,ν(⌈kf ,d⌉+i) hasi valid bits ofµf for everyi ≥ 0.

For that we need the following fundamental property of cone vectors: a cone vector leads to an upper bound on
the error of Newton’s method.

Lemma 11. Letd be a cone vector of an MSPf and letλmax = max{µfi

di
}. Then

µf − ν(k) ≤ 2−kλmaxd.

Proof Idea (see Appendix A for a full proof).If we track the rayg(t) = µf − td starting inµf and headed in
the direction−d (the dashed line in the picture below), theng(λmax) is the intersection ofg with an axis which is
located farthest fromµf . One observes that the centerg(1

2λmax) of g(λmax) andµf is always less than or equal
to the first Newton iterateν(1). This is the first step of the proof.

As soon as this fact is proven, we proceed by repeatedly reallocating theorigin into the next Newton iterate and
applying the same argument. By induction, one obtainsg(2−kλmax) ≤ ν(k) for all k ∈ N.

The following picture shows the Newton iteratesν(k) for 0 ≤ k ≤ 2 (shape:×) and the corresponding points
g(2−kλmax) (shape:+) located on the rayg. Notice thatν(k) ≥ g(2−kλmax).

X1 = f1(X)

X2 = f2(X)
µf = g(0)

0

−0.4

−0.2

0.2 0.4 0.6

0.2

X1

X2

g(λmax)

Now we easily obtain:

Proposition 12. Let f(X) be an scMSP and letd be a cone vector off . Let kf,d = log λmax
λmin

, whereλmax =

maxj
µfj

dj
andλmin = minj

µfj

dj
. Thenν(⌈kf ,d⌉+i) has at leasti valid bits ofµf for everyi ≥ 0.
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We now proceed to the third and final step. We have the problem thatkf,d depends on the cone vectord,
about which we only know that it exists (Proposition 10). We now sketch how to obtain the thresholdkf from
Theorem 8, which is independent of any cone vectors, see Appendix Afor a full proof.

Consider Proposition 12 and letλmax = µfi

di
andλmin =

µfj

dj
. Then thekf,d given there equalslog

(
dj

di
· µfi

µfj

)
.

Notice that this gets large whendi gets small compared todj . By Proposition 10 the componentdi cannot be0 if f

is strongly connected. However, MSPs that arenotstrongly connected can have vectorsd ≥ 0 with f ′(µf)d ≤ d

s.t. some components are0. One can makedj

di
> 0 arbitrarily large also for strongly connected MSPs. But when

doing this, one can show that the strong connectedness “decreases” insome sense, i.e., there are variablesX, Y

such thatX depends onY only via a monomial that has a very small coefficient. So,dj

di
can be bounded in terms

of cmin.

4 Stochastic Models

As mentioned in the introduction, several problems concerning stochastic models can be reduced to problems
about the least solutionµf of an MSPEf . In these cases,µf is a vector of probabilities, and soµmax ≤ 1.
Moreover, we can obtain information onµmin, which leads to bounds on the thresholdkf .

4.1 Probabilistic Pushdown Automata

Our study of MSPs was initially motivated by the verification of probabilistic pushdown automata. Aprobabilis-
tic pushdown automaton (pPDA)is a tupleP = (Q,Γ, δ,Prob) whereQ is a finite set ofcontrol states, Γ is a finite
stack alphabet, δ ⊆ Q×Γ×Q×Γ∗ is a finitetransition relation(we writepX −֒→ qα instead of(p, X, q, α) ∈ δ),
andProb is a function which to each transitionpX −֒→ qα assigns its probabilityProb(pX −֒→ qα) ∈ (0, 1]

so that for allp ∈ Q andX ∈ Γ we have
∑

pX −֒→qα Prob(pX −֒→ qα) = 1. We writepX
x−֒→ qα instead of

Prob(pX −֒→ qα) = x. A configurationof P is a pairqw, whereq is a control state andw ∈ Γ∗ is astack content.
A probabilistic pushdown automatonP naturally induces a possibly infinite Markov chain with the configurations
as states and transitions given by:pXβ

x−֒→ qαβ for everyβ ∈ Γ∗ iff pX
x−֒→ qα. We assume w.l.o.g. that if

pX
x−֒→ qα is a transition then|α| ≤ 2.

pPDAs and the equivalent model of recursive Markov chains have been very thoroughly studied [6, 2, 10, 8, 7,
9, 11]. This work has shown that the key to the analysis of pPDAs are thetermination probabilities[pXq], where
p andq are states, andX is a stack letter, defined as follows (see e.g. [6] for a more formal definition): [pXq] is the
probability that, starting at the configurationpX, the pPDA eventually reaches the configurationqε (empty stack).
It is not difficult to show that the vector of these probabilities is the least fixed point of the MSPE containing the
equation

〈pXq〉 =
∑

pX
x−֒→rY Z

x ·
∑

t∈Q

〈rY t〉 · 〈tZq〉 +
∑

pX
x−֒→rY

x · 〈rY q〉 +
∑

pX
x−֒→qε

x

for each triple(p, X, q). Call this quadratic MSPE thetermination MSPEof the pPDA (we assume that termi-
nation MSPEs are clean, and it is easy to see that they are always feasible). We immediately have that iff is a
termination MSP, thenµmax≤ 1. We also obtain a lower bound onµmin:

Lemma 13. Letf be a termination MSP withn variables. Thenµmin ≥ c
(2n+1−1)
min .

Together with Theorem 8 we get an exponential bound forkf .

Proposition 14. Let f be a strongly connected termination MSP withn variables and whose coefficients are
expressed as ratios ofm-bit numbers. Thenkf ≤ n2n+2m.

7



We conjecture that there is a lower bound onkf which is exponential inn for the following reason. We know a

family (f (n))n=1,3,5,... of strongly connected MSPs withn variables and irrational coefficients such thatc
(n)
min = 1

4

for all n andµ
(n)
min is double-exponentially small inn. Experiments suggest thatΘ(2n) iterations are needed for

the first bit ofµf (n), but we do not have a proof.

4.2 Strict pPDAs and Back-Button Processes

A pPDA is strict if for all pX ∈ Q × Γ and allq ∈ Q the transition relation contains a pop-rulepX
x−֒→ qǫ

for somex > 0. Essentially, strict pPDAs model programs in which every procedure hasat least one terminating
execution that does not call any other procedure. The termination MSP ofa strict pPDA is of the formb(X, X)+
lX + c for c ≻ 0. So we haveµf ≥ c, which impliesµmin ≥ cmin. Together with Theorem 8 we get:

Proposition 15. Let f be a strongly connected termination MSP withn variables and whose coefficients are
expressed as ratios ofm-bit numbers. Iff is derived from a strict pPDA, thenkf ≤ 3nm.

Since in most applicationsm is small, we obtain an excellent convergence threshold.
In [13, 14] a class of stochastic processes is introduced to model the behavior of web-surfers which from the

current webpageA can decide either to follow a link to another page, sayB, with probability lAB, or to press
the “back button” with nonzero probabilitybA. These back-button processes correspond to a very special class of

pPDAs having one single control state (which in the following we omit), and rules of the formA
bA−֒→ ε (press

the back button fromA) or A
lAB−֒−→ BA (follow the link from A to B, rememberingA as destination of pressing

the back button atB). The termination probabilities, calledrevocationprobabilities in [13, 14], are given by the
MSPE containing the equation

〈A〉 = bA +
∑

A
lAB−֒−→BA

lAB〈B〉〈A〉 = bA + 〈A〉
∑

A
lAB−֒−→BA

lAB〈B〉

for every webpageA. Notice that the revocation probability of a pageA is the probability that, when currently
visiting an instance of webpageA with H0H1 . . .Hn−1Hn the browser history of previously visited pages (H0

being the startpage of the random user), during the further random exploration of webpages starting fromA the
random user eventually returns to webpageHn with H0H1 . . . Hn−1 being the remaining browser history.

4.3 An Example

As an example of application of Theorem 8 consider the following scMSPEX = f(X).



X1

X2

X3


 =




0.4X2X1 + 0.6
0.3X1X2 + 0.4X3X2 + 0.3

0.3X1X3 + 0.7




The least solution of the system gives the revocation probabilities of a back-button process with three web-
pages. For instance, if the surfer is at page 2 it can choose between following links to pages 1 and 3 with proba-
bilities 0.3 and 0.4, respectively, or pressing the back button with probability 0.3.

We wish to know if any of the revocation probabilities is equal to 1. Performing14 Newton steps (e.g. with
Maple) yields an approximationν(14) to the termination probabilities with




0.98
0.97
0.992


 ≤ ν(14) ≤




0.99
0.98
0.993


 .
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We havecmin = 0.3. In addition, since Newton’s method converges toµf from below, we knowµmin ≥ 0.97.
Moreover,µmax ≤ 1, as1 = f(1) and soµf ≤ 1. Hencekf ≤ 3 · log 1

0.97·0.3·0.97 ≤ 6. Theorem 8 then implies
thatν(14) has (at least) 8 valid bits ofµf . As µf ≤ 1, the absolute errors are bounded by the relative errors, and
since2−8 ≤ 0.004 we know:

µf ≺ ν(14) +




2−8

2−8

2−8


 ≺




0.994
0.984
0.997


 ≺




1
1
1




So Theorem 8 gives us a proof that all three revocation probabilities arestrictly smaller than1.
Notice also that Newton’s method converges much faster than “Kleene’s iteration”

(
f i(0)

)
i∈N

. We have

κ(14) ≺
(
0.89, 0.83, 0.96

)⊤
, soκ(14) has no more than4 valid bits in any component, whereasν(14) has more

than30 valid bits in each component.

5 Linear Convergence of the Decomposed Newton’s Method

When using Newton’s method for approximating the least fixed pointµf of an scMSPf , Theorem 8 states that,
afterkf preparatory iterations of Newton’s method, we have at leasti bits if additionali iterations are performed.
We call this linear convergence with rate1. Now we show that DNM, which handles non-strongly-connected
MSPs, converges linearly as well. We will also give an explicit convergence rate.

Let f(X) be any quadratic MSP (again we assumequadraticMSPs throughout this section), and leth(f)
denote the height of the DAG of strongly connected components (SCCs). The convergence rate of DNM crucially
depends on this height: In the worst case one needs asymptoticallyΘ(2h(f)) iterations in each component per bit,
assuming one performs the same number of iterations in each component.

To get a sharper result, we suggest to perform a different number ofiterations in each SCC, depending on its
depth. The depth of an SCCS is the length of the longest path in the DAG of SCCs fromS to a top SCC.

In addition, we use the following notation. For a deptht, we denote bycomp(t) the set of SCCs of deptht.
Furthermore we defineC(t) :=

⋃
comp(t) andC>(t) :=

⋃
t′>t C(t′) and, analogously,C<(t). We will sometimes

write vt for vC(t) andv>t for vC>(t) andv<t for vC<(t), wherev is any vector.
Figure 1 shows the Decomposed Newton’s Method (DNM) for computing an approximationν for µf , where

f(X) is any quadratic MSP. The authors of [10] recommend to run Newton’s Method in each SCCS until
“approximate solutions forS are considered ‘good enough’ ”. Here we suggest to run Newton’s Method in each
SCCS for a number of steps that depends (exponentially) on the depth ofS and (linearly) on a parameterj that
controls the precision (see Figure 1).

function DNM (f , j)
/* The parameterj controls the precision.*/
for t from h(f) downto 0

forall S ∈ comp(t) /* all SCCsS of deptht */

νS :=N j·2t

fS
(0) /* j · 2t iterations*/

/* applyνS in the depending SCCs*/
f<t(X) := f<t(X)[XS/νS ]

return ν

Figure 1. Decomposed Newton’s Method (DNM) for computing an approximation ν of µf (cf. [10])

Recall thath(f) was defined as the height of the DAG of SCCs. Similarly we define the widthw(f) to be
maxt |comp(t)|. Notice thatf has at most(h(f) + 1) ·w(f) SCCs. We have the following bound on the number
of iterations run by DNM.

9



Proposition 16. The functionDNM(f , j) of Fig. 1 runs at mostj ·w(f) · 2h(f)+1 iterations of Newton’s method.

We will now analyze the convergence behavior of DNM asymptotically (for largej). Let∆(j)
S denote the error

in S when running DNM with parameterj, i.e.,∆(j)
S := µS −ν

(j)
S . Observe that the error∆(j)

t can be understood
as the sum of two errors:

∆
(j)
t = µt − ν

(j)
t = (µt − µ̃t

(j)) + (µ̃t
(j) − ν

(j)
t ) ,

whereµ̃t
(j) := µ

(
f t(X)[X>t/ν

(j)
>t ]
)
, i.e., µ̃t

(j) is the least fixed point off t after the approximations from the

lower SCCs have been applied. So,∆
(j)
t consists of thepropagation error(µt − µ̃t

(j)) and the newly inflicted

approximation error(µ̃t
(j) − ν

(j)
t ).

The following lemma, technically non-trivial to prove, gives a bound on the propagation error.

Lemma 17(Propagation error). There is a constantc > 0 such that

‖µt − µ̃t‖ ≤ c ·
√
‖µ>t − ν>t‖

holds for allν>t with 0 ≤ ν>t ≤ µ>t, whereµ̃t = µ
(
f t(X)[X>t/ν>t]

)
.

Intuitively, Lemma 17 states that ifν>t hask valid bits ofµ>t, thenµ̃t has roughlyk/2 valid bits ofµt. In
other words, (at most) one half of the valid bits are lost on each level of theDAG due to the propagation error.

The following theorem assures that after combining the propagation errorand the approximation error, DNM
still converges linearly.

Theorem 18. Let f be a quadratic MSP. Letν(j) denote the result of callingDNM(f , j) (see Figure 1). Then
there is akf ∈ N such thatν(kf +i) has at leasti valid bits ofµf for everyi ≥ 0.

We conclude that increasingi by one gives us asymptotically at least one additional bit in each componentand,
by Proposition 16, costsw(f) · 2h(f)+1 additional Newton iterations.

The bound above is essentially optimal in the sense that an exponential (inh(f)) number of iterations is in
general needed to obtain an additional bit. To see this consider the followingexample that we also used in a
previous paper [16] for a slightly different purpose.

X = f(X) =




1
4X2

0 + 1
2X0X1 + 1

4X2
1

...
1
4X2

h−1 + 1
2Xh−1Xh + 1

4X2
h

1
2 + 1

2X2
h


 (1)

The only solution ofX = f(X) is (1, . . . , 1)⊤. Notice thatf hash + 1 SCCs:{X0}, . . . , {Xh}, where{Xj}
has depthj. The DNM starts at the bottom SCC{Xh} and works its way up to{X0}. It is easy to show (see [16])

that the propagation error on levelt is at least1 ·
√

∆
(j)
t+1. The approximation error on levelh equals∆(j)

h = 2−j·2h

if DNM is called with parameterj. So, by induction we get∆(j)
t ≥ 2−j·2t

for 0 ≤ t ≤ h. We conclude that at
least2h Newton steps per bit are needed. Notice that this holds even when we approximate only the bottom SCC
1
2 + 1

2X2
h with Newton’s method and solve the other SCCs exactly. Therefore, any method that approximates (1)

suffers from an “exponential” amplification of the propagation error. Inother words, this example shows that
computingµf is in general anill-conditionedproblem.
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6 Newton’s Method for General MSPs

Etessami and Yannakakis [10] introduced DNM because they could showthat the matrix inverses used by
Newton’s method exist if Newton’s method is run on each SCC separately (see Theorem 6).

In this section we show, maybe surprisingly, that the matrix inverses used byNewton’s method exist even if the
MSP isnotdecomposed. More precisely we show the following theorem.

Theorem 19. Letf(X) be any MSP, not necessarily strongly connected. Let the Newton operator Nf be defined
as before:

Nf(X) = X + (Id− f ′(X))−1(f(X)−X)

Then the Newton sequence(ν
(k)
f )k∈N with ν(k) = N k

f (0) is well-defined (i.e., the matrix inverses exist), monoton-

ically increasing, bounded from above byµf (i.e. ν(k) ≤ ν(k+1) ≺ µf ), and converges toµf .

Theorem 19 relies on a generalized Newton’s method for solving fixed point equations over commutativeω-
continuous semirings, introduced in [5]. The semiring over the nonnegative reals,SR≥0

= 〈R≥0∪{∞}, +, ·, 0, 1〉,
is such a semiring. InSR≥0

the operations+ and· are defined as in the reals with straightforward extensions to
∞, in particular0 · ∞ = 0 anda · ∞ = ∞ if a > 0. If an infinite sum does not converge to a real number, it is
defined to be∞. So, for a matrixA ∈ R

m×m
≥0 , the formal Neumann seriesA∗ is always defined inSR≥0

, some
entries ofA∗ may be∞.

A theorem of [5] applied to the semiringSR≥0
yields the following proposition.

Proposition 20(follows from [5], Theorem 3). Letf(X) be an MSP. Let the Newton operator̂Nf be defined as
follows:

N̂f(X) = X + f ′(X)∗(f(X)−X) ,

wheref ′(X)∗ is computed inSR≥0
(i.e., may have∞ as an entry). Then the Newton sequence(ν̂

(k)
f )k∈N with

ν̂(k) = N̂ k
f (0) is monotonically increasing, bounded from above byµf and converges toµf .

Additive inverses are, strictly speaking, not defined. Therefore, in Proposition 20, instead off(X) −X we
should rather write “a vectorδ(X) such thatX +δ(X) = f(X)”. But the simpler formulation causes no trouble
here, becausef(ν̂(k))− ν̂(k) is positive in each component [5].

In order to show that the Newton scheme from Theorem 19 coincides with theNewton scheme from Propo-
sition 20 we need to show thatf ′(ν(k))∗ = (Id − f ′(ν(k)))−1. It is sufficient to show thatf ′(ν(k))∗ does not
have∞ entries, because then clearlyf ′(ν(k))∗(Id− f ′(ν(k))) = Id. Notice that this is not a trivial consequence
of Proposition 20: it could be thatf ′(ν̂(k))∗ has∞ entries, but thêν(k) andµf do not because the∞ entries
of f ′(ν̂(k))∗ are cancelled out by matching0 entries off(ν̂(k)) − ν̂(k). What remains to show for Theorem 19
is that this is not the case andf ′(ν̂(k))∗ has no∞ entries. The rest of the proof of Theorem 19 can be found in
Appendix D.1.

6.1 Convergence Speed

As we now know that Newton’s method converges toµf for any MSPf , we address again the question of
convergencespeed. By exploiting Theorem 18 and Theorem 19 one can show:

Theorem 21. Let f be any quadratic MSP. Then the Newton sequence(ν(k))k∈N is well-defined and converges
linearly toµf . More precisely, there is akf ∈ N such thatν(kf +i·(h(f)+1)·2h(f )) has at leasti valid bits ofµf for
everyi ≥ 0.

A proof is given in Appendix D.2. Again, the exponential factor in2h(f) cannot be avoided in general. This
follows from the example and the discussion at the end of Section 5.
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7 Conclusions

We have proved a thresholdkf for strongly connected MSPEs. Afterkf + i steps of DNM we havei bits of
accuracy. The thresholdkf depends on the representation size off and on the least solutionµf . Although this
latter dependence might seem to be a problem, lower and upper bounds onµf can be easily derived for stochastic
models (probabilistic programs with procedures, stochastic context-free grammars and back-button processes). In
particular, this allows us to show thatkf depends linearly on the representation size for back-button processes. We
have also shown by means of an example that the thresholdkf improves when the number of iterations of DNM
increases.

In [16] we left the problem whether DNM converges linearly for non-strongly-connected MSPEs open. We
have proven that this is the case, although the convergence rate is poorer: if h andw are the height and width of
the graph of SCCs off , then there is a threshold̃kf such that̃kf + i ·w · 2h+1 iterations of DNM compute at least
i valid bits ofµf . We have also given an example in which DNM needs at leasti · 2h iterations fori valid bits.

Finally, we have shown that the Jacobian of the whole MSPE is guaranteed toexist, whether the MSPE is
strongly connected or not.

Acknowledgment. The authors wish to thank Kousha Etessami for very valuable comments.
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A Proofs of Section 3

A.1 Proof of Proposition 10

Here is a restatement of Proposition 10.

Proposition 10. Any scMSP has a cone vector.

Let f be an scMSP. As mentioned before, it was proved in [16] thatf has a cone vector ifId − f ′(µf) is
singular.

So, it remains to show thatf has a cone vectord in the non-singular case, too. In a first step we show that we
can relax the requirementd ≻ 0 to d > 0.

Lemma 22. Letf be an scMSP and letd > 0 with f ′(µf)d ≤ d. Thend is a cone vector, i.e.,d ≻ 0.

Proof. Sincef is an MSP, every component off ′(µf) is nonnegative. So,

0 ≤ f ′(µf)nd ≤ f ′(µf)n−1d ≤ . . . ≤ f ′(µf)d ≤ d.

Let w.l.o.g.d1 > 0. As f is strongly connected, there is for allj with 1 ≤ j ≤ n anrj ≤ n s.t.(f ′(µf)rj )j1 > 0.
Hence,(f ′(µf)rjd)j > 0 for all j. With above inequation chain, it follows thatdj ≥ (f ′(µf)rjd)j > 0. So,
d ≻ 0.

Now we can show that there is a cone vector also in the non-singular case.

Lemma 23. Letf be an scMSP. If(Id− f ′(µf))−1 exists, thenf has a cone vector.

Proof. By Lemma 22 it suffices to find a vectord > 0 such thatf ′(µf)d ≤ d. Take anye ≻ 0 and set
d := (Id−f ′(µf))−1e. Clearlyf ′(µf)d ≤ d, and so it remains to showd > 0. Sincee ≻ 0, it suffices to prove
that every entry of(Id − f ′(µf))−1 is nonnegative, which we denote by(Id − f ′(µf))−1 ≥ 0. For this recall
that(Id− f ′(x))−1 = f ′(x)∗ onG = {x | 0 ≤ x ≺ µf}, and, hence,(Id− f ′(x))−1 ≥ 0 for x ∈ G.

We now make use of the fact that for everyi, j ∈ {1, . . . , n} we may write(Id − f ′(X))−1
ij as a rational

function rij(X) =
nij(X)
d(X) , whered(X) is the determinant of(Id − f ′(X)), andnij(X) is obtained by (1)

canceling thejth row andith column of (Id − f ′(X)), (2) taking the determinant of the resulting submatrix,
and (3) multiplying by(−1)i+j . As d(µf) 6= 0, the functionsrij(X) are continuous at least on an open ballO
centered atµf . Now, asG ∩ O 6= ∅, we have(Id − f ′(x))−1 ≥ 0 for everyx ∈ G, and therij are continuous,
we get(Id− f ′(µf))−1 ≥ 0.

This finishes the proof of Proposition 10.

A.2 Proof of Lemma 11

Here is a restatement of Lemma 11.

Lemma 11. Letd be a cone vector of an MSPf and letλmax = max{µfi

di
}. Then

µf − ν(k) ≤ 2−kλmaxd.

We handle the base casek = 1 of Lemma 11 in the following separate lemma.
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Lemma 24. Letd be a cone vector of a (not necessarily clean) MSPf . Letλmax = max{µfi

di
}. Then

µf − ν(1) ≤ 1

2
λmaxd.

Proof. We writef(X) as a sum

f(X) = c +
D∑

k=1

Lk(X, . . . ,X)X

whereD is the degree off , and everyLk is a(k − 1)-linear map from(Rn)k−1 to R
n×n. Notice thatf ′(X) =∑D

k=1 k · Lk(X, . . . ,X). We simply writeL for L1, andh(X) for f(X)− LX − c.

λmax
2 d

= λmax
2 (L∗d− L∗Ld) (L∗ = Id + L∗L)

≥ λmax
2 (L∗f ′(µf)d− L∗Ld) (f ′(µf)d ≤ d)

= λmax
2 L∗h′(µf)d (f ′(x) = h′(x) + L)

= L∗ 1
2h′(µf)λmaxd

≥ L∗ 1
2h′(µf)µf (by def. ofλmax: λmaxd ≥ µf )

= L∗ 1
2

∑D
k=2 k · Lk(µf , . . . , µf)µf

≥ L∗
∑D

k=2 Lk(µf , . . . , µf)µf

= L∗h(µf)
= L∗(f(µf)− Lµf − c) (f(x) = h(x) + Lx + c)
= L∗µf − L∗Lµf − L∗c (f(µf) = µf )
= µf − L∗c (L∗ = Id + L∗L)
= µf − ν(1) (ν(1) = L∗c)

By means of a suitable induction we can extend this last Lemma 24 to an arbitrary number of iterations, yielding
the proof of Lemma 11:

Proof. For everyk ≥ 0, definegk(X) = f(X + ν(k))− ν(k). We first show thatgk is an MSP (not necessarily
clean) for everyk ≥ 0. The only coefficients ofgk that could be negative are those of degree 0. But we have
gk(0) = f(ν(k))− ν(k) ≥ 0, and so these coefficients are also nonnegative.

Moreover, it follows immediately from the definition thatµf − ν(k) ≥ 0 is the least fixed point ofgk. Finally,
gk satisfiesg′

k(µf − ν(k))d ≤ d, and sod is also a cone vector ofgk.

Let λk = max{µfi−ν
(k)
i

di
}; in particular,λ0 = λmax. We proceed to prove the lemma by induction onk.

For k = 0 we have by definitionν(0) = 0 andµf ≤ λmaxd, and we are done. Now letk ≥ 0 and assume
µf − ν(k) ≤ 2−kλ0d. We have

λk = max{µfi−ν
(k)
i

di
}

≤ max{2−kλ0di

di
}

= 2−kλ0.

.

Sinced is a cone vector ofgk, we can apply Lemma 24 togk and get:

(µf − ν(k))− ν
(1)
gk
≤ 1

2
λkd.
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whereν
(1)
gk

denotes the first iteration of Newton’s method applied togk. But we have

ν
(1)
gk

= f ′(ν(k))∗(gk(0)− 0)

= ν(k+1) − ν(k)

and so

µf − ν(k+1) ≤ 1

2
λkd ≤ 2−(k+1)λ0d.

A.3 Proof of Proposition 12

Here is a restatement of Proposition 12.

Proposition 12. Let f(X) be an scMSP and letd be a cone vector off . Let kf,d = log λmax
λmin

, whereλmax =

maxj
µfj

dj
andλmin = minj

µfj

dj
. Thenν(⌈kf ,d⌉+i) has at leasti valid bits ofµf for everyi ≥ 0.

Proof. For all1 ≤ j ≤ n the following holds.
(
µf − ν(⌈kf ,d⌉+i)

)
j
≤ 2−(⌈kf ,d⌉+i)λmaxdj

≤ 2−kf ,d−iλmaxdj

= λmindj · 2−i

≤ µf j · 2−i

A.4 Proof of Theorem 8

Here is a restatement of Theorem 8.

Theorem 8. Let f(X) be a quadratic scMSP. Letcmin be the smallest nonzero coefficient off and letµmin and
µmax be the minimal and maximal component ofµf , respectively. Let

kf = n · log
µmax

cmin · µmin ·min{µmin, 1}
.

Thenν(⌈kf ⌉+i) hasi valid bits ofµf for everyi ≥ 0.

Proof. In what follows we shortenµf to µ. Let d be a cone vector off (which exists by Proposition 10). Let
λj =

µj

dj
for all 1 ≤ j ≤ n and assume w.l.o.g.λ1 ≥ λ2 ≥ . . . ≥ λn. By Lemma 11 we haveν(k) ≥ µ− 2−kλ1d.

Let kj = log λ1
λj

. Then we have

ν
(⌈kj⌉+i)
j ≥ µj −

(
1

2

)kj+i

λ1dj = µj − 2−iµj

and
µj−ν

(⌈kj⌉+i)

j

µj
≤ 2−i. So it remains to showkn ≤ kf .

We claim the existence of indicess, t with 1 ≤ s, t ≤ n such thatf ′
st(µ) 6= 0 andlog λs

λt
≥ 1

nkn. To prove that
suchs, t exist, we use the fact thatf is strongly connected, i.e., that there is a sequence1 = r1, r2, . . . , rq = n
with q ≤ n andf ′

rjrj+1
(x) 6= 0. Sinceµ ≻ 0, we also havef ′

rjrj+1
(µ) 6= 0. It follows

λ1

λn
=

λr1

λr2

· · · λrq−1

λrq

, and so

log
λ1

λn
= log

λr1

λr2

+ · · ·+ log
λrq−1

λrq

.
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So there must exist aj s.t.

log
λrj

λrj+1

≥ 1

n− 1
log

λ1

λn
≥ 1

n
kn

and one can chooses = rj andt = rj+1.
Now, f ′

st(µ)d ≤ d impliesf ′
st(µ)dt ≤ ds, and so

f ′
st(µ) ≤ ds

dt
=

λt

λs
· µs

µt
≤ 2−kn/n · µmax

µmin
. (2)

On the other hand, sincef is quadratic,f ′ is a linear mapping such that

f ′
st(µ) = 2(b1 · µ1 + · · ·+ bn · µn) + l

whereb1, . . . , bn andl are coefficients of quadratic, respectively linear, monomials off . As f ′
st(µ) 6= 0, at least

one of these coefficients must be nonzero and so greater than or equalto cmin. It follows

f ′
st(µ) ≥ cmin ·min{µmin, 1} ,

which together with equation (2) yields

2kn/n ≤ µmax

cmin · µmin ·min{µmin, 1}
, and so

kn ≤ n · log
µmax

cmin · µmin ·min{µmin, 1}
.

A.5 Proof of Corollary 9

Here is a restatement of Corollary 9.

Corollary 9. Let f(X) be a quadratic scMSP of dimensionn whose coefficients are given as ratios ofm-bit
integers. Letµmin be the minimal component ofµf . Let

kf = 3n2m + 2n2 |log µmin| .

Thenν(⌈kf ⌉+i) has at leasti valid bits ofµf for everyi ≥ 0.

First we check the case wheref is linear, i.e., all monomials inf have degree at most1. In this case, Newton’s
method reachesµf after one iteration, so the theorem holds. Consequently, we can assume in the following that
f is strictly quadratic, meaning thatf is quadratic and there is a polynomial inf of degree2.

In the following lemma we give a bound onµmax in terms ofµmin, cmin andn. Notice thatlog µmax is polynomial
in terms of those parameters.

Lemma 25. Let the preconditions of Theorem 8 hold, and letf be strictly quadratic, i.e., nonlinear. Then

µmax≤
1

c3n−2
min ·min(µ2n−2

min , 1)
.

Furthermore,cmin ≤ 1.
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Proof. Let w.l.o.g.µmax = (µf)1. The proof is based on the idea thatX1 indirectly depends quadratically on
itself. More precisely, by the strong connectedness,X1 depends (indirectly) on some variable, sayXir , such
that f ir contains a degree-2-monomial. The variables in that monomial, in turn, dependon X1. This gives an
inequation of the form(µf)1 ≥ C · (µf)1

2, implying (µf)1 ≤ 1/C.
We give the details in the following. Using the strong connectedness there exists a sequence of variables

Xi1 , . . . , Xir and a sequence of monomialsmi1 , . . . , mir (1 ≤ r ≤ n) with the following properties:

– Xi1 = X1,
– miu is a monomial appearing inf iu (1 ≤ u ≤ r),
– miu = ciu ·Xiu+1 (1 ≤ u ≤ r),
– mir = cir ·Xj1 ·Xk1 for some variablesXj1 , Xk1 .

Notice that

µmax = (µf)1 ≥ ci1 · . . . · cir · (µf)j1 · (µf)k1

≥ min(cn
min, 1) · (µf)j1 · (µf)k1 .

(3)

Again by strong connectedness, there exists a sequence of variablesXj1 , . . . , Xjs and a sequence of monomials
mj1 , . . . , mjs−1 (1 ≤ s ≤ n) with the following properties:

– Xjs = X1,
– mju is a monomial appearing inf ju

(1 ≤ u ≤ s− 1),

– mju = cju ·Xju+1 or mju = cju ·Xju+1 ·Xj′u+1
for some variableXj′u+1

(1 ≤ u ≤ s− 1).

Notice that

(µf)j1 ≥ cj1 · . . . · cjs−1 ·min(µs−1
min , 1) · (µf)1

≥ min(cn−1
min , 1) ·min(µn−1

min , 1) · (µf)1 .
(4)

Similarly, there exists a sequence of variablesXk1 , . . . , Xkt
(1 ≤ t ≤ n) with Xkt

= X1 showing

(µf)k1 ≥ min(cn−1
min , 1) ·min(µn−1

min , 1) · (µf)1 . (5)

Combining (3) with (4) and (5) yields

µmax≥ min(c3n−2
min , 1) ·min(µ2n−2

min , 1) · µ2
max ,

which implies

µmax≤
1

min(c3n−2
min , 1) ·min(µ2n−2

min , 1)
. (6)

Now the second statement of the lemma implies the first one. In order to prove thesecond statement, assume
for contradictioncmin > 1. This impliesµmin > 1 due to the following reason. Consider the Kleene sequence
0, f(0), f2(0), . . . For all1 ≤ i ≤ n let bi be the smallest natural number such that

(
f bi(0)

)
i
> 0. The numbersbi

exist becausef is clean and the Kleene sequence converges toµf . We show by induction onbi that
(
f bi(0)

)
i
> 1

which, by the monotonicity of the Kleene sequence, impliesµmin > 1. For the inductive step notice that the value(
f bi(0)

)
i
= f i(f

bi−1(0)) is computed as a sum of products of numbers which are either coefficients of f (and

hence by assumption greater than1) or of the form
(
f bi−1(0)

)
j

for somej. By induction and by the monotonicity

of the Kleene sequence, a number of the latter form is either0 or greater than1. So,
(
f bi(0)

)
i

itself must be0 or
greater than1. By definition ofbi it cannot be0.

So we havecmin > 1 andµmin > 1. Plugging this into (6) yieldsµmax ≤ 1. This impliesµmax < µmin,
contradicting the definition ofµmax andµmin.
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Now we can complete the proof of Corollary 9. By Theorem 8 it suffices to show

n · log
µmax

cmin · µmin ·min{µmin, 1}
≤ 3n2m + 2n2 |log µmin| .

We have

n · log
µmax

cmin · µmin ·min{µmin, 1}
≤ n · log

1

c3n−1
min · µmin ·min(µ2n−2

min , 1)
(by Lemma 25)

≤ 3n2 · (− log cmin)− n log(µmin ·min(µ2n−2
min , 1)) (by Lemma 25:cmin ≤ 1)

≤ 3n2m− n log(µmin ·min(µ2n−2
min , 1)) (cmin ≥ 2−m) .

If µmin ≥ 1 we have−n log(µmin ·min(µ2n−2
min , 1)) = −n log µmin ≤ 0, so we are done in this case. Ifµmin ≤ 1

we have−n log(µmin ·min(µ2n−2
min , 1)) = −n log µ2n−1

min = n(2n− 1) |log µmin| ≤ 2n2 |log µmin|. This completes
the proof of Corollary 9.

B Proofs of Section 4

B.1 Proof of Lemma 13

Here is a restatement of Lemma 13.

Lemma 13. Letf be a termination MSP withn variables. Thenµmin ≥ c
(2n+1−1)
min .

Proof. We prove a stronger result. For everyk ∈ {1, . . . , n}, f hask variablesX1, . . . , Xk such thatµf1, . . . , µfk ≥
c2k+1−1

min .

We proceed by induction onk. Fork = 1, observe that, since the MSP is clean,pX
x−֒→ qε is a transition of the

pPDA for some〈pXq〉, and so[pXq] ≥ x ≥ cmin. We call〈pXq〉 a sink.

For k > 1, let X1, . . . , Xk−1 be variables such thatµf1, . . . , µfk−1 ≥ c2k−1
min . We show that there is a

variableXk such thatµfk ≥ c2k+1−1
min . Let f̂ be the MSP obtained by replacing every occurrence ofXi by

µf i for every i ∈ {1, . . . , k − 1}; it is easy to see that̂f is also a termination MSP withµf̂k = µfk and

ĉmin ≥ cmin(c
2k−1
min )2 = c2k+1−1

min . So we can choose any sink off̂ for Xk.

B.2 Proof of Proposition 14

Here is a restatement of Proposition 14.

Proposition 14. Let f be a strongly connected termination MSP withn variables and whose coefficients are
expressed as ratios ofm-bit numbers. Thenkf ≤ n2n+2m.

Proof.
kf = n log µmax

cmin·µmin·min{µmin,1}
(Theorem 8)

≤ −n log(µ2
min · cmin) (termination MSP)

≤ −n log(c
2·(2n+1−1)
min · cmin) (Lemma 13)

≤ −n2n+2 log cmin

≤ n2n+2m (cmin ≥ 1/2m)
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C Proofs of Section 5

C.1 Proof of Proposition 16

Here is a restatement of Proposition 16.

Proposition 16. The functionDNM of Figure 1 runs at mostj · w(f) · 2h(f)+1 iterations of Newton’s method.

Proof. The number of iterations of the DNM is
∑h(f)

t=0 |comp(t)| · j · 2t. This can be bounded as follows.

∑h(f)
t=0 |comp(t)| · j · 2t ≤ w(f) · j ·∑h(f)

t=0 2t

≤ w(f) · j · 2h(f)+1

C.2 Proof of Lemma 17

Before proving Lemma 17, we show the following proposition which covers the case of a quadratic, clean, and
feasible scMSP

f(X) = b(X, X) + l(X) + c,

whereb(X, Y ) is a bilinear map,l(X) is linear, andc is constant.

Proposition 26. Letf(X) satisfy the conditions stated above withµf its least fixed-point. Then there is a constant
C such that for all0 ≤ δ ≤ µf it holds

C · ‖δ‖22 ≤
∥∥(Id− f ′(µf)) · δ + b(δ, δ)

∥∥
2
.

Proof. We now discuss the three cases that either (case I)f is linear in X, or (case II)f is non-linear and
(Id− f ′(µf))−1 exists, or (case III)f is non-linear and(Id− f ′(µf)) is singular.

Case I: We first consider the case, where the SCC represented byf is linear inX. Thenf ′(X) ≡ f ′(0) is
constant,b(X, X) ≡ 0 and(Id− f ′)−1 exists, as we consider an SCC. So, we get

∥∥(Id− f ′(0))δ
∥∥

2
≥ λmin(Id− f ′(0)) · ‖δ‖2 ,

where we defineλmin(A) to be the smallest absolute value of an eigenvalue of a square matrixA.

Case II: Next, we consider the case wheref contains at least one quadratic term inX and(Id − f ′(µf)) is
invertible. As shown in the proof of Lemma 23, we then have(Id− f ′(µf))−1 ≥ 0. So, we may write

∥∥(Id− f ′(µf))δ + b(δ, δ)
∥∥

2
≥ λmin(Id− f ′(µf)) ·

∥∥δ + (Id− f ′(µf)−1b(δ, δ)
∥∥

2

≥ λmin(Id− f ′(µf)) · ‖δ‖2 ,

where we used in the last step thatδ ≥ 0 and(Id− f ′(µf))b(δ, δ)−1 ≥ 0.
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Case III: Finally, we consider the case wheref depends quadratically onX andId − f ′(µf) is singular. As
f(X) is clean and feasible, i.e.µf ≻ 0, and quadratically depends onX, we know that the first Newton step is
well-defined, i.e.f ′(0)∗ = (Id− f ′(0))−1 exists. We therefore may write

∥∥(Id− f ′(µf))δ + b(δ, δ)
∥∥

2
≥ λmin(Id− f ′(0))

∥∥f ′(0)∗((Id− f ′(µf))δ + b(δ, δ))
∥∥

2

= λmin(Id− f ′(0))
∥∥∥(Id− 2b̃(µf))δ + b̃(δ, δ))

∥∥∥
2
,

whereb̃(X, X) := f ′(0)∗b(X, X). Thus, it is sufficient to show that there exists aC̃ > 0 with
∥∥∥(Id− 2b̃(µ))δ + b̃(δ, δ))

∥∥∥
2
≥ C̃ ‖δ‖2 , (7)

as we then may setC := λmin(Id− f ′(0)) · C̃.
We note thatf(X) andf̃(X) := b̃(X, X) + f ′(0)∗f(0) are equivalent in the sense that both functions have

the same set of fixed points, their Newton sequences and nullspaces ofId− f ′(x∗) andId− f̃
′
(x∗) are identical.

These properties are easily checked.
The reason for multiplying byf ′(0)∗ is that this guarantees that no component ofb̃(X, X) is the zero-

polynomial. We are going to need this property shortly.
First let us give an intuition why this property ofb̃ holds – we leave the technical details to the reader: as we

assume thatS is an SCC, every variable ofX depends on every other variable ofX w.r.t. f . Hence, as we
consider the case wheref contains at least one quadratic term, every variable either directly depends directly on a
quadratic term, or there exists a sequence of variablesXi1 , Xi2 , . . . , Xik such thatXil depends linearly onXil+1

andXik itself depends directly on a quadratic term. All these “linear dependencies”are summarized inf ′(0)∗.
Multiplying by f ′(0) propagates these to the remaining quadratic terms.

Let us introduce the norm

‖y‖µf := max{
∣∣∣∣

yi

µfi

∣∣∣∣}.

Remember, we consider a clean scMSP, thus we haveµf ≻ 0, and‖·‖µf is well-defined. It is straightforward to
check that this is indeed a norm. We then define the set of directions

D = {d ∈ R
n | d ≥ 0, ‖d‖µf = 1}.

Then we are guaranteed that for everydirectiond ∈ D the rayµf − r · d stays non-negative forr ∈ [0, 1], i.e.

0 ≤ µf − r · d ≤ µf (r ∈ [0, 1]),

and, as0 < δ ≤ µf , we haver−1
δ · δ ∈ D for rδ := ‖δ‖µf ∈ [0, 1].

We now will show that that there exists ãC > 0 – independent ofd – such that
∥∥∥r(Id− f̃

′
(µf))d + r2b̃(d, d)

∥∥∥ ≥ C̃ · r2

for all r ∈ [0, 1] andd ∈ D, which implies Eq. 7.
We set

U(r, d) :=

∥∥∥r(Id− f̃
′
(µf))d + r2b̃(d, d)

∥∥∥
2

2

r4
=
∥∥∥b̃(d, d)

∥∥∥
2

2
+

2

r
〈b̃(d, d), (Id−f̃

′
(µf))d〉+ 1

r2

∥∥∥(Id− f̃
′
(µf))d

∥∥∥
2

2
,

where〈·, ·〉 is the Euclidean scalar-product. We further define

α(d) :=
∥∥∥b̃(d, d)

∥∥∥
2

2
, β(d) := 〈b̃(d, d), (Id− f̃

′
(µf))d〉, andγ(d) :=

∥∥∥(Id− f̃
′
(µf))d

∥∥∥
2

2
.
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Note thatU(r, d) > 0 on (0, 1] × D, as otherwiseµf − rd would be a fixed-point off(X), resp. f̃(X), less
thanµf .

As D is compact andU(r, d) is continuous on(0, 1]×D, the function

g(r) := inf
d∈D

U(r, d)

is non-negative and continuous on(0, 1], too. Set

G(R) := inf
R≤r≤1

g(r)

for 0 ≤ R ≤ 1. We then haveG(R) > 0 for 0 < R ≤ 1 andG decreases monotonically withR→ 0.
Now, if we can show thatG(0) = inf0≤r≤1 g(r) > 0, our proof will be complete, as we will then have

∥∥∥(Id− f̃
′
(µf))δ + b̃(δ, δ)

∥∥∥
2
≥ G(0) · r2

δ = G(0) · ‖δ‖2µf ≥ C̃ ‖δ‖22

by equivalence of norms onRn for some appropriate constantC̃.
We proceed by assuming the opposite, i.e.G(0) = infr∈[0,1] g(r) = 0, and show that this leads to the contradic-

tion thatµf is not the least fixed-point. With the assumptioninfr∈[0,1] g(r) = 0, there has to exist a monotonically
decreasing sequenceri converging to0 with g(ri)→ 0 for i→∞.

As U(r, d) is continuous, andD compact, we find for everyri a di ∈ D with g(ri) = U(ri, di). As di is a
sequence in the compact setD ⊆ R

n, there exists a convergent subsequence, w.l.o.g. we therefore may assume
that the sequencedi already converges to somed∗ ∈ D.

Now, we want to show first that we can refine the sequence(ri, di)i∈N in such a way that there is aCγ > 0 such
thatγ(di) ≤ Cγr2

i for all i: By the Cauchy-Schwarz inequation we have|β(·)| ≤
√

α(·)γ(·), thus

0
i→∞←−−− g(ri) ≥

(
√

α(di)−
√

γ(di)

ri

)2

≥ 0.

Hence, there has to exist constantscγ ≥ 0 andiγ ∈ N such that for alli ≥ iγ :
∣∣∣∣∣
√

α(di)−
√

γ(di)

ri

∣∣∣∣∣ ≤ cγ ,

which in turn implies
√

γ(di)

ri
≤ cγ + α(di) ≤ cγ + max

d∈D

√
α(d) =: Cγ i.e. γ(di) ≤ C2

γ · r2
i .

Thus, we have to haveγ(d∗) = 0, i.e. d∗ is located in the nullspace ofId − f ′(µf), implying β(d∗) = 0 and
α(d∗) ≥ c > 0. As d∗ ∈ D, we haved∗ > 0 – see Lemma 22. Thus by the strong connectivity off(X) we have
d∗ ≻ 0. Hence, there has to exist ani0 such that for alli ≥ i0, we havedi ≻ 0, asdi converges tod∗ for all
i ≥ i0, asdi → d andb̃ continuous2.

We have already stated thatb̃(X, X) cannot be the zero-polynomial in any component, hence,b̃(di, di) ≻ 0

for all i ≥ i0, too. So, there also exists a vectorcb̃ such that̃b(di, di) ≻ cb̃ ≻ 0.
Now, as we have

g(ri) =

∥∥∥∥(Id− f̃
′
(µf))

di

ri
+ b̃(di, di)

∥∥∥∥
2

2

i→∞−−−→ 0,

2If necessary, we may adjusti0 suitably.
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there has to exist anI0 such that̃b(di, di) ≻ cb̃, andg(ri) < (1
2 min1≤k≤n(cb̃)k)

2 for all i ≥ I0. This implies

(Id− f̃ ′(µf))di

ri
≺ 0.

Consider the vector̃d := dI0 . As ri > 0, we also have(Id− f̃ ′(µf))d̃ ≺ 0.
Define

ρ := min{1, min
1≤k≤n

−((Id− f̃
′
(µf))d̃)k

(b̃(d̃, d̃))k

}.

As (Id− f̃
′
(µf))d̃ ≺ 0 andb̃(d̃, d̃) ≻ 0, we haveρ > 0. Now for all 0 < r < ρ ≤ 1

f̃(µf − rd̃)− (µf − rd̃)

= r(Id− f̃
′
(µf))d̃ + r2b̃(d̃, d̃)

≺ 0.

This means̃f(µf − rd̃) ≤ µf − rd̃ for 0 < r < ρ. But µf is the least solution of̃f(X) ≤ X overR
n
≥0 by

virtue of the Knaster-Tarski theorem. So we get the desired contradiction.

Now we can prove Lemma 17, restated here.

Lemma 17. There is a constantc > 0 such that

‖µt − µ̃t‖ ≤ c ·
√
‖µ>t − ν>t‖

holds for allν>t with 0 ≤ ν>t ≤ µ>t, whereµ̃t = µ
(
f t(X)[X>t/ν>t]

)
.

Proof. Let S be an SCC at levelt, i.e. S ∈ comp(t). S itself does not need to depend on all variablesX>t. Thus,
let dep(S) be the set of variables on whichS really depends on – excluding the variables corresponding toS, i.e.
XS . We may then write the MSPfS – corresponding toS – asfS(XS , Xdep(S)).

Now, letµdep(S) be the correct (non-negative) least fixed point offdep(S)(Xdep(S)), andνdep(S) the part of the
approximationν>t relevant toS. Let

εdep(S) = µdep(S) − νdep(S)

be the absolute error in the underlying SCCs relevant toS. The propagation error is then

δS := µfS(Xs, µdep(S))− µfS(XS , νdep(S)).

What we are going to show is that there is aCS > 0 such that

‖δS‖ ≤ CS

√∥∥εdep(S)

∥∥.

Note that this is sufficient to prove the lemma as

‖µt − µ̃t‖∞ = max
S∈comp(t)

‖δS‖∞ ≤ max
S∈comp(t)

(CS ·
√∥∥εdep(S)

∥∥
∞

) ≤ ( max
S∈comp(t)

CS) ·
√
‖µ>t − ν>t‖∞

Because of the equivalence of norms on any vector space of finite dimension over R, we are guaranteed the
existence of an appropriate constant such that this holds in any other norm, too.

In the following, we therefore consider a fixed SCCS, and simplify the notation by setting:

• X := XS – the variables corresponding to the SCCS,

• Y := Xdep(S) – the variables corresponding to the SCCs dep(S) on whichS depends,
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• F (X, Y ) := fS(X, Y ) – the restriction of the given systemf to the SCCS,

• y∗ := µdep(S) – the restriction ofµ = µf to the variablesY ,

• x∗ := µfS(Xs, µdep(S)) – the least fixed point ofF (X, µdep(S)).

• ε := εdep(S) – the restriction of the approximation errorε = µ− ν, and

• δ := δS – the errorx∗ − µf(X, νdep(S)) introduced by replacingy∗ by νdep(S).

So we consider the following parameterized MSP

F : R
n × R

m → R
n :

(
x

y

)
7→ F (x, y) with F (x, y) = B(

(
x

y

)
,

(
x

y

)
) + L

(
x

y

)
+ c,

whereB is a bilinear map,L is a matrix, andc is a vector.
As we assume that the whole MSP is “clean” and feasible, we havex∗ ≻ 0 andy∗ ≻ 0.
We require some suitable approximationνdep(S) = y∗ − ε of y∗, i.e. 0 ≺ y∗ − ε ≤ y∗. As F (X, y∗ − ε) ≤

F (X, y∗), the Kleene sequence ofF (X, y∗ − ε) is bounded from above byx∗. So, for the least fixed-point
µf(X, νdep(S)) = x∗ − δ of F (X, y∗ − ε) we have0 ≤ δ ≤ x∗. As we assumey∗ − ε ≻ 0, F (X, y∗ − ε)
stays clean, hencex∗ − δ ≻ 0, too.

We are now interested in bounding‖δ‖ by ‖ε‖. For this to do, let us rewrite the equation

x∗ − δ = F (x∗ − δ, y∗ − ε) as x∗ − δ = F (x∗, y∗)− F ′(x∗, y∗)

(
δ

ε

)
+ B(

(
δ

ε

)
,

(
δ

ε

)
).

With x∗ = F (x∗, y∗), and by moving all terms containingδ on the right hand side, and the remaining terms on
the left hand side, we get

F ′(x∗, y∗)

(
0

ε

)
−B(

(
0

ε

)
,

(
0

ε

)
) = (Id− F ′(x∗, y∗))

(
δ

0

)
+ B(

(
δ

0

)
,

(
δ

0

)
) + 2B(

(
δ

0

)
,

(
0

ε

)
) (8)

We remark that

(Id− F ′(x∗, y∗))

(
δ

0

)
+ B(

(
δ

0

)
,

(
δ

0

)
) = F (x∗ − δ, y∗)− F (x∗, y∗) + δ

= F (x∗ − δ, y∗)− (x∗ − δ).

As 0 ≤ x∗ − δ ≤ x∗, we have
F (x∗ − δ, y∗)− (x∗ − δ) > 0,

for δ > 0 – otherwisex∗ − δ would be a fixed point less thanx∗ of F (X, y∗).

Combining Eq. 8 withB(

(
δ

0

)
,

(
0

ε

)
) ≥ 0 and−B(

(
0

δ

)
,

(
0

ε

)
) ≤ 0, we get

0 < F (x∗ − δ, y∗)− (x∗ − δ)

= (Id− F ′(x∗, y∗))

(
δ

0

)
+ B(

(
δ

0

)
,

(
δ

0

)
)

≤ (Id− F ′(x∗, y∗))

(
δ

0

)
+ B(

(
δ

0

)
,

(
δ

0

)
) + 2B(

(
δ

0

)
,

(
0

ε

)
)

= F ′(x∗, y∗)

(
0

ε

)
−B(

(
0

ε

)
,

(
0

ε

)
)

≤ F ′(x∗, y∗)

(
0

ε

)
.
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Thus we have

0 <

∥∥∥∥(Id− F ′(x∗, y∗))

(
δ

0

)
+ B(

(
δ

0

)
,

(
δ

0

)
)

∥∥∥∥ ≤
∥∥∥∥F

′(x∗, y∗)

(
0

ε

)∥∥∥∥ ≤
∥∥F ′(x∗, y∗)

∥∥ ‖ε‖ .

Now, if we succeed in showing that there is always a constantC > 0 such that

C ‖δ‖2 ≤
∥∥∥∥(Id− F ′(x∗, y∗))

(
δ

0

)
+ B(

(
δ

0

)
,

(
δ

0

)
)

∥∥∥∥ , (9)

we will obtain a proof of Lemma 17.
Note that this last inequation does not depend onε anymore. Hence, it is sufficient to considerf(X) :=

F (X, y∗) in the following, forgetting about the underlying SCCs. We write

b(X, X) = B(

(
X

0

)
,

(
X

0

)
)

for the quadratic part off .
Then the preceding inequation Eq. 9 may be written as

C ‖δ‖2 ≤
∥∥(Id− f ′(x∗))δ + b(δ, δ)

∥∥ , (10)

wheref ′ is now the Jacobian off , i.e. taken only w.r.t.X. Because of the equivalence of norms onR
n, we may

turn to the Euclidean norm‖·‖2 and apply Proposition 26 to conclude the proof.

C.3 Proof of Theorem 18

Here is a restatement of Theorem 18.

Theorem 18. Let f be a quadratic MSP. Letν(j) denote the result of callingDNM(f , j) (see Figure 1). Then
there is akf ∈ N such thatν(kf +i) has at leasti valid bits ofµf for everyi ≥ 0.

We first prove the following lemma which gives a bound on the error on levelt.

Lemma 27. There is a constantc > 0 such that∥∥∥∆(j)
t

∥∥∥ ≤ 2c−j·2t

.

Proof. It follows from Theorem 8 that(µ̃t
(j) − ν

(j)
t ), the approximation error at levelt, decreases exponentially

in the number of iterations, i.e., there is a constantc1 > 0 such that
∥∥∥µ̃t

(j) − ν
(j)
t

∥∥∥ ≤ 2c1−j·2t

. (11)

Now we can prove the theorem by induction ont. In the base case (t = h(f)) there is no propagation error, so the
claim of the lemma follows from (11). Lett < h(f). Then

∥∥∥∆(j)
t

∥∥∥ =
∥∥∥µt − µ̃t

(j) + µ̃t
(j) − ν

(j)
t

∥∥∥

≤
∥∥∥µt − µ̃t

(j)
∥∥∥+

∥∥∥µ̃t
(j) − ν

(j)
t

∥∥∥

≤
∥∥∥µt − µ̃t

(j)
∥∥∥+ 2c1−j·2t

(by (11))

≤ c2 ·
√∥∥∥∆(j)

>t

∥∥∥+ 2c1−j·2t
(by Lemma 17)

≤ c2 ·
√

2c3−j·2t+1 + 2c1−j·2t
(by induction hypothesis)

≤ 2c4−j·2t

for some constantsc2, c3, c4 > 0.
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From Lemma 27 we deduce that for each componentr of deptht there is a constantcr such that

(µf r − ν(j)
r )/µf r ≤ 2cr−j·2t ≤ 2cr−j .

Let kf ≥ cr for all 1 ≤ r ≤ n. Then

(µf r − ν
(j+kf )
r )/µf r ≤ 2cr−(j+kf ) ≤ 2−j .

D Proofs of Section 6

D.1 Rest of the Proof of Theorem 19

In the following, if M is a matrix we often writeM i
jk resp.M∗

jk when we mean(M i)jk resp.(M∗)jk.

The following lemma assures that in order to show thatf ′(ν(k))∗ has no∞ entries, it suffices to consider the
diagonal elements of the matrix.

Lemma 28. LetA = (aij) ∈ R
n×n
≥0 . LetA∗ have an∞ entry. ThenA∗ also has an∞ entry on the diagonal, i.e.

A∗
ii =∞ for some1 ≤ i ≤ n.

Proof. By induction onn. The base casen = 1 is clear. Forn > 1 assume w.l.o.g. thatA∗
1n =∞. We have

A∗
1n = A∗

11

n∑

j=2

a1j(A[2..n,2..n])
∗
jn , (12)

where byA[2..n,2..n] we mean the square matrix obtained fromA by erasing the first row and the first column.
To see why (12) holds, think ofA∗

1n as the sum of weights of paths from1 to n in the complete graph over the
vertices{1, . . . , n}. The weight of a pathP is the product of the weight ofP ’s edges, andai1i2 is the weight of
the edge fromi1 to i2. Each pathP from 1 to n can be divided into two sub-pathsP1, P2 as follows. The second
sub-pathP2 is the suffix ofP leading from1 to n and not returning to1. The first sub-pathP1, possibly empty, is
chosen such thatP = P1P2. Now, the sum of weights of all possibleP1 equalsA∗

11, and the sum of weights of all
possibleP2 equals

∑n
j=2 a1j(A[2..n,2..n])

∗
jn. So (12) holds.

As A∗
1n =∞, it follows that eitherA∗

11 or some(A[2..n,2..n])
∗
jn equals∞. In the first case, we are done. In the

second case, by induction, there is ani such that(A[2..n,2..n])
∗
ii =∞. But then alsoA∗

ii =∞, because every entry
of (A[2..n,2..n])

∗ is less or equal the corresponding entry ofA∗.

So it remains to show thatf ′(ν(k))∗ss 6=∞ for all 1 ≤ s ≤ n. This is done in the proof of Proposition 32 below.
There, two cases are considered, depending on whether Newton’s method terminates in thes-component or not.
The following lemma will be used for the nonterminating case.

Lemma 29. Let0 ≤ ν ≤ f(ν) ≤ µf . LetS denote an SCC withνS ≺ µfS . Then the submatrixf ′(ν)∗SS does
not have∞ as an entry.

Proof. Let L denote the set of variables which are not inS but on which a variable inS depends. Letg(XS) :=
fS(X)[XL/µfL]. Theng(XS) is an scMSP withµg = µfS . As νS ≺ µg, Theorem 6 (1) is applicable, so
g′(νS)∗ does not have∞ as an entry. Withg′(νS)∗ = f ′(ν)∗SS , the lemma follows.

The next lemma is a version of Taylor’s theorem, which will be used in Lemma 31 below.

Lemma 30(from [10]). Let0 ≤ x ≤ f(x) and letd, k1, k2 ∈ N with k2 ≥ k1. Then

fd+k2(x)− fd+k1(x) ≥ f ′(fk1(x))d(fk2(x)− fk1(x)) ,

where byf r(X) we meanf(f r−1(X)) with f0(X) = X.
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Proof. The lemma follows from a generalized form of Taylor’s theorem stating:

For an MSPf andv, u ≥ 0:
fd(v + u) ≥ fd(v) + f ′(v)du .

For the sake of completeness we give a proof of this generalized form ofTaylor’s theorem, closely following the
proof of [10].

For d = 1 (induction base) the statement is essentially Taylor’s theorem (see e.g. [5]). Let d ≥ 1. Then, by
Taylor’s theorem, we have:

fd+1(v + u)

= f(fd(v + u))

≥ f(fd(v) + f ′(v)du) (induction hypothesis)
≥ fd+1(v) + f ′(fd(v))f ′(v)du (Taylor)
≥ fd+1(v) + f ′(v)d+1u

Lemma 30 itself follows withv = fk1(x) andu = fk2(x)− fk1(x).

The following lemma will be used for the case in which Newton’s method terminates insome componentXs.
It states that if Newton’s method terminates inXs it must have terminated before in some other component on
whichXs depends.

Lemma 31. Let1 ≤ s, l ≤ n. Letf ′(X)∗ss non-trivially depend onXl. Let0 ≺ ν ≤ f(ν) ≤ µf andνs < µf s

andνl < µf l. ThenN̂ (ν)s < µf s.

Proof. This proof follows closely a proof of [12]. Letd ≥ 0 s.t. f ′(X)d
ss depends non-trivially onXl. Let

m′ ≥ 0 s.t.fm′
(ν)l > νl. Such anm′ exists because with Kleene’s theorem the sequence(fk(ν))k∈N converges

to µf . Choosem ≥ m′ s.t.fm+1(ν)s > fm(ν)s. Such anm exists because the sequence(fk(ν)s)k∈N never
reachesµf s. This is becauseXs depends on itself (sincef ′(X)∗ss is not constant0), and so every increase of the
s-component results in an increase of thes-component in some later iteration of the Kleene sequence.

Now we have
fd+m+1(ν)− fd+m(ν)
≥ f ′(fm(ν))d(fm+1(ν)− fm(ν)) (Lemma 30)
≥∗ f ′(ν)d(fm+1(ν)− fm(ν))
≥ f ′(ν)df ′(ν)m(f(ν)− ν) (Lemma 30)
= f ′(ν)d+m(f(ν)− ν) .

The inequality marked with∗ is strict in thes-component – this is due to the choice ofd andm above. So, with
b = d + m we have:

(f b+1(ν)− f b(ν))s > (f ′(ν)b(f(ν)− ν))s (13)

For other choices ofb inequation (13) also holds, but with≥ instead of>. Therefore:

µf s =
(
ν +

∑∞
i=0(f

i+1(ν)− f i(ν))
)
s

(Kleene)
>
(
ν + f ′(ν)∗(f(ν)− ν)

)
s

(inequation (13))
=
(
N̂ (ν)

)
s

Now we are ready for the central proposition of this proof of Theorem 19.

Proposition 32. For all k ≥ 0 the matrixf ′(ν̂(k))∗ does not have∞ as entries.
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Proof. Using Lemma 28 it is enough to show thatf ′(ν̂(k))∗ss 6=∞ for all s.

Case 1:The sequence(ν̂(k)
s )k∈N does not terminate, i.e.,̂ν(k)

s < µf s for all k ≥ 0. Then obviously this holds for
all variables in the SCC ofXs. So Lemma 29 applies, hencef ′(ν̂(k))∗ss 6=∞.

Case 2:The sequence(ν̂(k)
s )k∈N terminates, i.e., there is aks ≥ 1 such that̂ν(ks)

s = ν̂
(ks+1)
s = . . . = µf s. Let

ks be the smallest such number, i.e.,ν̂
(ks−1)
s < ν̂

(ks)
s = ν̂

(ks+1)
s = µf s. So there is a variableXu on whichXs

depends such that
0 < f ′(ν̂(ks−1))∗su(f(ν̂(ks−1))− ν̂(ks−1))u <∞ ,

where the latter inequality is implied by Proposition 20. This implies0 < f ′(ν̂(ks−1))∗su < ∞, therefore also
f ′(ν̂(ks−1))∗ss < ∞. But with Lemma 31, any variableXl on whichf ′(X)∗ss depends has already terminated

one step earlier, i.e.̂ν(ks−1)
l = ν̂

(ks)
l . Thereforef ′(ν̂(ks))∗ss = f ′(ν̂(ks−1))∗ss < ∞. As thel-component does

not change any further we havef ′(ν̂(k))∗ss < ∞ for all k ≥ ks. Sincef ′(X) is monotone and(ν̂(k))k∈N is
monotonically increasing, this holds also for0 ≤ k ≤ ks.

Combining Proposition 32 with Proposition 20 and the comments below Proposition 20 yields Theorem 19.

D.2 Proof of Theorem 21

Here is a restatement of Theorem 21.

Theorem 21. Let f be any quadratic MSP. Then the Newton sequence(ν(k))k∈N is well-defined and converges
linearly toµf . More precisely, there is akf ∈ N such thatν(kf +i·(h(f)+1)·2h(f )) has at leasti valid bits ofµf for
everyi ≥ 0.

We argue that Theorem 18 assuring linear convergence for DNM essentially carries over to the “undecomposed”
method.

The following lemma states that a Newton step is not faster on an SCC, if the values of the lower SCCs are
fixed.

Lemma 33. Let f be an MSP. Let0 ≤ ν ≤ f(ν) ≤ µf . Let S denote an SCC off . Let L denote the set of
variables that are not inS, but on which a variable inS depends. Then(N̂f(ν))S ≥ N̂fS [XL/νL](νS), where

N̂f is defined as in Proposition 20.

Proof.
(N̂f(ν))S

=
(
f ′(ν)∗(f(ν)− ν)

)
S

= f ′(ν)∗SS(f(ν)− ν)S

+f ′(ν)∗SL(f(ν)− ν)L

≥ f ′(ν)∗SS(f(ν)− ν)S

=
(
(fS [XL/νL])′(νS)

)∗
(fS [XL/νL](νS)− νS)

= N̂fS [XL/νL](νS)

The following lemma states the monotonicity of Newton’s method and was proved in [16].

Lemma 34(Monotonicity of Newton’s Method). Letf(X) be an MSP. Then

Nf(x) ≤ Nf(y) for all 0 ≤ x ≤ y ≤ f(y) ≤ µf .
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Lemma 33 and Lemma 34 can be combined to the following lemma stating thati · (h(f) + 1) iterations of the
normal Newton’s method “dominate”i iterations of a decomposed Newton’s method in each SCC.

Lemma 35. Let ν̃(i) denote the result of a decomposed Newton’s method which performsi iterations of Newton’s
method in each SCC. Letν(i) denote the result ofi iterations of the normal “undecomposed” Newton’s method.
Thenν(i·(h(f)+1)) ≥ ν̃(i).

Proof. Let h = h(f). Let C(t) resp.C(> t) denote the set of variables in an SCC of deptht resp.> t. We show
by induction on the deptht:

ν
(i·(h(f)+1−t))
C(t) ≥ ν̃

(i)
C(t)

Induction base:t = h(f). Clear, because for bottom SCCs the two methods are identical.
Let nowt < h(f). Then

ν
(i·(h+1−t))
C(t)

= N i
f(ν(i·(h−t)))C(t)

≥ N i

fC(t)[X/ν
(i·(h−t))
C(>t)

]
(ν

(i·(h−t))
C(t) ) (Lemma 33)

≥ N i

fC(t)[X/ν̃
(i)
C(>t)

]
(ν

(i·(h−t))
C(t) ) (induction hypothesis)

≥ N i

fC(t)[X/ν̃
(i)
C(>t)

]
(0C(t)) (Lemma 34)

= ν̃
(i)
t

Now, the lemma itself follows by using Lemma 34 once more.

As a side note, observe that above proof of Lemma 35 implicitly benefits from the fact that SCCs of the same
depth are independent. So, SCCs with the same depth are handled in parallelby the “undecomposed” Newton’s
method. Therefore,w(f), the width off , is irrelevant here (cf. Proposition 16).

Now we can finish the proof of Theorem 21. Letk2 be thekf of Theorem 18, and letk1 = k2 ·(h(f)+1)·2h(f).
Then we have:

ν(k1+i·(h(f)+1)·2h(f))

= ν((k2+i)·(h(f)+1)·2h(f ))

≥ ν̃((k2+i)·2h(f )) (Lemma 35)

The approximatioñν((k2+i)·2h(f )) has at least as many bits as the approximation obtained from running
DNM(f , k2 + i). This is because DNM(f , k2 + i) runs at most(k2 + i) · 2h(f) iteration in every SCC and
Newton’s method converges monotonically. So, by Theorem 18,ν(k1+i·(h(f)+1)·2h(f)) has at leasti valid bits of
µf . Therefore, Theorem 21 holds withkf = k1.
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