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ABSTRACT
Monotone systems of polynomial equations (MSPEs) are
systems of fixed-point equations
X1 = f1(X1, . . . , Xn), . . . , Xn = fn(X1, . . . , Xn) where each
fi is a polynomial with positive real coefficients. The ques-
tion of computing the least non-negative solution of a given
MSPE X = f(X) arises naturally in the analysis of stochas-
tic context-free grammars, recursive Markov chains, and
probabilistic pushdown automata. While the Kleene se-
quence f(0), f(f(0)), . . . always converges to the least so-
lution µf , if it exists, the number of iterations needed to
compute the first i bits of µf may grow exponentially in i.
Etessami and Yannakakis have recently adapted Newton’s
iterative method to MSPEs and proved that the Newton se-
quence converges at least as fast as the Kleene sequence and
exponentially faster in many cases. They conjecture that,
given an MSPE of size m, the number of Newton iterations
needed to obtain i accurate bits of µf grows polynomially
in i and m. In this paper we show that the number of iter-
ations grows linearly in i for strongly connected MSPEs and
may grow exponentially in m for general MSPEs.
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1. INTRODUCTION
A monotone system of polynomial equations (MSPE for

short) has the form

X1 = f1(X1, . . . , Xn)
X2 = f2(X1, . . . , Xn)

...
Xn = fn(X1, . . . , Xn)

where f1, . . . , fn are polynomials with positive real coeffi-
cients. In vector form we denote an MSPE by X = f(X).
We call MSPEs monotone because X ≤ X′ implies f(X) ≤
f(X′) for X,X′ ∈ R

n
≥0. MSPEs appear naturally in differ-

ent areas of computer science. One of them is the analysis
of stochastic context-free grammars, a model widely used
in natural language processing [20, 15] and more recently
in computational biology [25, 4, 3, 18]. The productions of
these grammars are assigned a probability, subject to the
restriction that for each variable X the sum of the probabil-
ities of all productions with X on the left-hand side is either
0 or 1. It is easy to see that the probabilities of many events
– like for instance the probability that the grammar gener-
ates a word containing some terminal or some factor – can be
expressed as the least solution of an MSPE. Another applica-
tion area is the probabilistic verification of recursive Markov
chains and probabilistic pushdown automata, two equivalent
formalisms combining probability and recursion. These for-
malisms can be used to analyze probabilistic programs with
procedures, and have been extensively studied [6, 1, 10, 8, 7,
9, 11]. Many verification problems for these models reduce
to computing the termination probabilities (roughly speak-
ing, the probability that the system terminates when started
in a certain configuration), which in turn can be expressed
as the least solution of an MSPE. A third example of appli-
cation is the stochastic process used in [13, 14] to model the
behaviour of web users in the presence of a ‘back’ button;
again, basic analysis problems about these processes reduce
to computing the least solution of an MSPE.

An MSPE can have zero, one, or many real solutions. We
call it feasible if it has at least one solution. Solutions can be
irrational and non-expressible by radicals. By monotonicity,
the set of solutions forms a lattice with respect to the point-
wise ordering on R

n
≥0 (this follows from Knaster-Tarski’s

theorem), and so a feasible system X = f(X) has a least
solution µf . In this paper we focus on the problem of nu-
merically computing the least solution of a feasible system.



Newton’s method.
MSPEs derived from recursive Markov chains or proba-

bilistic pushdown automata are always feasible [10]. Etes-
sami and Yannakakis have studied these systems in [10]
and extended some of the result to all feasible MSPEs in
[12]. They show that (the multivariate version of) Newton’s
method for finding zeros of differentiable functions can be
used to approximate the least solution. We now proceed to
explain this result in some more detail.

Finding the least solution of a feasible system X = f(X)
amounts to finding the least solution of F(X) = 0 for F(X) =
f(X) − X. For this we can apply the multivariate version

of Newton’s method [22]: starting at some x(0) ∈ R
n (we

use uppercase to denote variables and lowercase to denote
values), compute the sequence

x
(k+1) := x

(k) − (F′(x(k)))−1
F(x(k))

where F′(X) is the Jacobian matrix of partial derivatives.

Observe the method may not even be defined because F′(x(k))
may be singular for some k. It is shown in [10] that this prob-
lem can be avoided if (a) the MSPE is previously cleaned and
(b) the clean MSPE is decomposed into strongly connected
components (SCCs). We consider these two points in turn.
A feasible MSPE is clean if all the components of its least
solution are positive; an MSPE can be cleaned in linear time
by identifying the variables Xi for which the least solution
has value 0 and then removing all occurrences of Xi in f

together with the equation Xi = fi(X1, . . . , Xn). In order
to define the SCCs of an MSPE, associate to each subset
of equations of f a graph having the variables X1, . . . , Xn

as node, and the pairs (Xi, Xj) such that Xj appears in fi

as edges. We say that the subset is strongly connected if
its associated graph is strongly connected. It is easy to see
that every MSPE can be partitioned into SCCs, which can
be topologically ordered. Etessami and Yannakakis’ decom-
posed Newton’s method for a clean system starts by comput-
ing k iterations of Newton’s method for each bottom SCC
of the system. Then the values obtained for the variables of
these SCCs are “frozen” and their corresponding equations
are removed from the MSPE. This same procedure is then
applied to the new bottom SCCs, again with k iterations,
until all SCCs have been processed. Etessami and Yan-
nakakis prove the following properties of the decomposed
method:

• The Jacobian matrices of all the SCCs remain invert-
ible all the way throughout.

• The vector x(k) delivered by the method converges to
the least solution when k → ∞ even if x(0) = 0 =
(0, . . . , 0)>.

It is important to emphasize that this second property is
in sharp contrast with the non-monotone case, where New-
ton’s method may not converge or may exhibit only local
convergence, i.e., the method may converge only in a small
neighborhood of the zero. In particular, this means that in
order to compute the solution the method does not have to
guess an appropriate initial value.

While the decomposed Newton’s method converges for all
feasible MSPEs, almost nothing is known about its conver-
gence rate, i.e., about the number of accurate bits of x(k)

as a function of the number of iterations (see the section on
related work for a discussion), or, equivalently, of its inverse,

the number of iterations needed to compute a given number
of bits of the solution. This is the topic of this paper.

Results.
Let X = f(X) be a clean and feasible MSPE and let

µf be its least solution. Let iter f (i) be the least number

k such that
‚‚‚µf − x(k)

‚‚‚ / ‖µf‖ ≤ 2−i, where ‖·‖ is some

norm. Loosely speaking, iter f (i) is the number of iterations
needed to obtain the first i bits of the solution. Further, let
Iter (m, i) be the maximum of iter f (i) over all clean feasible
MSPEs f of size at most m. (As usual, the size of an MSPE
is the number of bits needed to describe the system with
coefficients in binary.) Our first and main result concerns
Iter (m, i) for strongly connected MSPEs (or, equivalently,
the number of iterations required to obtain i bits of accu-
racy when processing a SCC in the decomposed method).
We prove that for strongly connected MSPEs there is a
function g(m) such that Iter(m, i) ≤ c · i + g(m) for ev-
ery m, i ≥ 0. Actually, we even prove that one can choose
c = 1, i.e., after a certain number of iterations the method
computes 1 new bit of the solution per iteration.

Our second result investigates the threshold of the decom-
posed Newton’s method, defined as the function Thr(m) =
Iter (m, 1). In words, Thr(m) is the maximal number of it-
erations needed in order to compute the first bit of µf for
a system f of size m. We show that Thr (m) ∈ Ω(2d·m) for
some d > 0, i.e., in the worst case the threshold is at least
exponential in the size of the system.

Related work.
Etessami and Yannakakis study MSPEs in [10, 12]. They

show that the decomposed Newton’s method converges at
least as fast as the Kleene iteration scheme x(0) = 0 and
x(k+1) = f(x(k)). (The convergence of this scheme is guar-
anteed by Kleene’s theorem, see for instance [19].)1 How-
ever, as shown in [10], it is easy to construct examples (for
instance the monotone equation X = 1/2X2 + 1/2 with
1 as least solution) for which the convergence of Kleene’s
scheme is unacceptably slow, namely the number of itera-
tions needed to compute i bits of the solution is exponential
in i. In fact, this slowness is the motivation of [10] for study-
ing Newton’s method. In [12] Etessami and Yannakakis con-
jecture (Conjecture 26) that for the decomposed Newton’s
method the function Iter (m, i) is polynomial in both m and
i. Our second result refutes the conjecture, but our first and
main result proves part of it for strongly connected MSPEs.

There is a large literature on the convergence and conver-
gence rate of Newton’s method for arbitrary systems of dif-
ferentiable functions. A comprehensive reference is Ortega
and Rheinboldt’s book [22] (see also Chapter 8 of Ortega’s
course [21] or Chapter 5 of [17] for a brief summary). Sev-
eral theorems (for instance Theorem 8.1.10 of [21]) prove
that the number of accurate bits grows linearly, superlin-
early, or even exponentially in the number of iterations, but
only under the hypothesis that F′(x) is non-singular every-
where, in a neighborhood of µf , or at least at the point µf

itself. However, the matrix F′(µf) can be singular for an
MSPE; an example is again given by the equation above.

The general case in which F′(µf) is singular for the solu-

1In fact, this result is proved in [10] only for the MSPEs
derived from recursive Markov chains. The extension to
arbitrary MSPEs is considered in [12].



tion µf the method converges to has been thoroughly stud-
ied. In a seminal paper [24], Reddien shows that under
certain conditions, the main ones being that the kernel of
F′(µf) has dimension 1 and that the initial point is close
enough to the solution, Newton’s method gains 1 bit per
iteration. Decker and Kelly obtain results for kernels of ar-
bitrary dimension, but they require a certain linear map
B(X) to be non-singular for all x 6= 0 [2]. Griewank ob-
serves in [16] that the non-singularity of B(X) is in fact a
strong condition which, in particular, can only be satisfied
by kernels of even dimension. He presents a weaker suffi-
cient condition for linear convergence requiring B(X) to be

non-singular only at the initial point x(0), i.e., it only re-
quires to make “the right guess” for x(0). Unfortunately,
none of these results can be directly applied to arbitrary
MSPEs. The possible dimensions of the kernel of F′(µf) for
an MSPE f(X) are to the best of our knowledge unknown,
and deciding this question seems as hard as those related
to the convergence rate2. Griewank’s result does not ap-
ply to the decomposed Newton’s method either because the
mapping B(x(0)) is always singular for x(0) = 0.

Kantorovich’s famous theorem (see e.g. Theorem 8.2.6
of [22] and [23] for an improvement) guarantees global con-

vergence and only requires F′ to be non-singular at x(0).
However, it also requires to find a Lipschitz constant for F′

on a suitable region and some other bounds on F′. These
latter conditions are far too restrictive for the applications
mentioned above. For instance, the stochastic context-free
grammars whose associated MSPEs satisfy Kantorovich’s
conditions cannot exhibit two productions X → aY Z and
W → ε such that Prob(X → aY Z) · Prob(W → ε) ≥ 1/4.
This class of grammars is too contrived to be of use.

Organization of this paper.
The rest of this paper is structured as follows. In Sec-

tion 2 we give preliminaries and some technical background
on MSPEs. In Section 3 we state and prove our main re-
sult concerning the linear convergence of the decomposed
Newton’s method applied to strongly connected MSPEs. In
Section 4 we show that Thr (m) is not bounded by a poly-
nomial, which refutes the conjecture of [12]. We conclude in
Section 5.

2. PRELIMINARIES
In this section we introduce notations and formalize the

concepts mentioned in the introduction.

2.1 Notation
As usual, R and N denote the set of real and natural

numbers. We assume 0 ∈ N. R
n denotes the set of n di-

mensional real valued column vectors and R
n
≥0 the subset of

vectors with non-negative components. We use bold letters
for vectors, e.g. x ∈ R

n, where we assume that x has the
components x1, . . . , xn. Similarly, the ith component of a
function f : R

n → R
n is denoted by fi.

R
m×n denotes the set of matrices having m rows and n

columns. The transpose of a vector or matrix is indicated
by the superscript >. The canonical unit vectors of R

n are

2More precisely, MSPEs with kernels of arbitrary dimension
exist, but the cases we know of can be trivially reduced to
MSPEs with kernels of dimension 1.

denoted by e1, . . . , en, e.g. e1 = (1, 0, . . . , 0)>, and the iden-
tity matrix of R

n×n is Id.
We use ‖·‖ to denote any norm on R

n. In particular,
‖·‖∞ is the maximum norm, i.e. ‖x‖∞ = max1≤i≤n |xi|.
We recall the fact that all norms on R

n are equivalent as
for two norms ‖·‖a and ‖·‖b there always exist constants
c, C > 0 such that c ‖·‖a ≤ ‖·‖b ≤ C ‖·‖a. Finally, let ‖·‖a

be a norm on R
m and ‖·‖b be a norm on R

n, we then set
‖A‖b,a := maxx∈Rm,‖x‖a=1 ‖Ax‖b for A ∈ R

n×m. As {x ∈
R

m | ‖x‖a = 1} is compact and ‖Ax‖b is continuous, ‖A‖b,a

is always defined. We then have ‖Ax‖b ≤ ‖A‖b,a ‖x‖a.

The formal Neumann series of A ∈ R
m×m is defined by

A∗ =
P

k∈N
Ak. It is well-known that A∗ exists if and only

if the spectral radius of A is less than 1, i.e. max{|λ| | C 3
λ is an eigenvalue of A} < 1. In the case that A∗ exists, we
have A∗ = (Id−A)−1 (but the existence of (Id−A)−1 does
not imply the existence of A∗).

The partial order ≤ on R
n is defined as usual by setting

x ≤ y if xi ≤ yi for all i ∈ {1, . . . , n}. Similarly, x < y if
x ≤ y and x 6= y. Finally, we write x ≺ y if x1 < yi for all
i ∈ {1, . . . , n}, i.e., if every component of x is smaller than
the corresponding component of y.

We use X1, . . . , Xn as variable identifiers and arrange them
into the vector X. In the following n always denotes the
number of variables, i.e. the dimension of X. While x,y, . . .
denote arbitrary elements in R

n, resp. R
n
≥0, we write X

if we want to emphasize that a function is given w.r.t. to
these variables. Hence, f(X) represents the function itself,
whereas f(x) denotes its value for some x ∈ R

n.
The Jacobian of a function f(X) with f : R

n → R
m is the

matrix
0
BB@

∂f1
∂X1

. . . ∂f1
∂Xn

...
...

∂fm

∂X1
. . . ∂fm

∂Xn

1
CCA ,

for which we simply write f ′(X).

2.2 Monotone Systems of Polynomials

Definition 1. A function f(X) with f : R
n
≥0 → R

n
≥0 is a

monotone system of polynomials (MSP), if every component
fi(X) is a polynomial in the variables X1, . . . , Xn with co-
efficients in R≥0. We call an MSP f(X) feasible if f(y) = y

for some y ∈ R
n
≥0.

Fact 1. Every MSP f is monotone on R
n
≥0, i.e. for 0 ≤

x ≤ y we have f(x) ≤ f(y).

Since every MSP is continuous, Kleene’s fixed-point theorem
(see e.g. [19]) applies.

Theorem 1 (Kleene’s fixed-point theorem).
Every feasible MSP f(X) has a least fixed point µf in R

n
≥0

i.e., µf = f(µf) and, in addition, y = f(y) implies µf ≤ y.

Moreover, the sequence (κ
(k)
f )k∈N with κ

(k)
f = fk(0) is mono-

tonically increasing with respect to ≤ (i.e. κ
(k)
f ≤ κ

(k+1)
f )

and converges to µf .

In the following we call (κ
(k)
f )k∈N the Kleene sequence of

f(X), and drop the subscript whenever f is clear from the
context.

As mentioned in the introduction, the convergence of the
Kleene sequence can be extremely slow. For this reason in



[10] Etessami and Yannakakis present a decomposed New-
ton’s method, which we now define. We first introduce the
notions of clean and strongly connected MSPs.

Definition 2. A variable Xi of an MSP f(X) is productive

if κ
(k)
i > 0 for some k ∈ N. An MSP is clean if all its

variables are productive.

It is not hard to see that we have κ
(k)
i = 0 for all k ∈ N if

κ
(n)
i = 0. Just as in the case of context-free grammars we

can determine all productive variables in time linear in the
size of the MSP.

Definition 3. Let f(X) be an MSP. Xi depends directly

on Xk, denoted by Xi E Xk, if ∂fi

∂Xk
(X) is not the zero-

polynomial. Xi depends on Xk if Xi E
∗ Xk, where E

∗ is
the reflexive transitive closure of E. An MSP is strongly
connected (short: an scMSP) if all its variables depend on
each other.

The following result is proved in [10, 12]:

Theorem 2. Let f(X) be a clean feasible scMSP and de-
fine the Newton operator Nf as follows

Nf (X) = X + (Id − f
′(X))−1(f(X) − X) .

We have:

(1) Nf (x) is defined for all 0 ≤ x ≺ µf (i.e., (Id−f ′(x))−1

exists). Moreover, f ′(x)∗ =
P

k∈N
f ′(x)k exists for all

0 ≤ x ≺ µf , and so Nf (X) = X + f ′(X)∗(f(X) − X).

(2) The Newton sequence (ν
(k)
f )k∈N with ν

(k) = N k
f (0) is

monotonically increasing, bounded from above by µf

(i.e. ν
(k) ≤ ν

(k+1) ≺ µf), and converges to µf .

This result leads to the following decomposed Newton’s method
introduced in [10]. The method starts by decomposing the
MSP into strongly connected components (SCCs). Then,
the solution for each of the bottom SCCs is approximated
by means of a number k of iterations of Newton’s method
(this can be done by Theorem 2). For every variable Xi of
the bottom SCCs, we substitute every occurrence of Xi by

ν
(k)
i , iterate the procedure with the bottom SCCs of the re-

sulting MSP, and proceed like this until all SCCs have been
processed.

To show that this procedure indeed works, we have to
prove that the MSP obtained after the substitution also has
a least fixed point. For this, let fapp(X) and fµf (X) be the re-

sult of substituting every occurrence of Xi by ν
(k)
i and (µf)i,

respectively. Since ν
(k) ≤ µf , we have fapp(X) ≤ fµf (X),

hence the Kleene sequence of fapp is bounded from above by
that of fµf , and we can apply the following proposition:

Proposition 1. Let f(X) and g(X) be two MSPs. As-
sume that µf exists and g(x) ≤ f(x) for all 0 ≤ x ≤ µf .

Then κ
(k)
g ≤ κ

(k)
f , µg exists, and µg ≤ µf .

Proof. A straightforward induction shows κ
(k)
g ≤ κ

(k+1)
g

≤ κ
(k+1)
f ≤ µf for all k ∈ N. Hence, κ

(k)
g converges. The

limit must be µg.

We close this section with the important result that the New-
ton operator defined by a clean feasible scMSP is monotone,
too. This is crucial for several of our proofs.

Lemma 1 (Monotonicity of Newton’s Method).
Let f(X) be a clean feasible scMSP. Then

Nf (x) ≤ Nf (y) for all 0 ≤ x ≤ y ≤ f(y) ≺ µf .

Proof. Obviously, for x ≤ y we have f ′(x) ≤ f ′(y)
as every entry of f ′(x) is a monotone polynomial. Hence,
f ′(x)∗ ≤ f ′(y)∗, too. With this at hand we get:

Nf (y)

= y + f ′(y)∗(f(y) − y) (by Theorem 2)

≥ y + f ′(x)∗(f(y) − y)
(since x ≤ y ⇒ f ′(x)∗ ≤ f ′(y)∗)

≥ y + f ′(x)∗(f(x) + f ′(x)(y − x) − y)
(since f(y) ≥ f(x) + f ′(x)(y − x))

= y + f ′(x)∗((f(x) − x) − (Id − f ′(x))(y − x))

= y + f ′(x)∗(f(x) − x) − (y − x)
(since f ′(x)∗ = (Id − f ′(x))−1)

= Nf (x).

At the second inequation above we used a version of Taylor’s
theorem (see appendix, Lemma 9).

3. LINEAR CONVERGENCE FOR
STRONGLY CONNECTED MSPS

In this section we prove our main result: the number of
iterations needed by Newton’s method to compute the first
i bits of the least solution of a clean feasible scMSP grows
linearly in i. More precisely, we show the following theorem:

Theorem 3. Let f(X) be a clean feasible scMSP. There
exists a kf ∈ N such that

‚‚‚µf − ν
(l+kf )

‚‚‚
‖µf‖ ≤ 2−l for all l ∈ N.

The MSP f(X) = (X − 1)2 + X shows that this bound is

tight, as its Newton sequence is ν
(k) = 1 − 2−k.

We can easily reformulate the theorem to get the result
promised in the introduction:

Corollary 1. Let scMSPm be the set of all clean and
feasible scMSPs of size at most m. Then there is a func-
tion g : N → N such that Iter(m, i) := max{jf (i) | f ∈
scMSPm} ≤ g(m) + i.

Proof. For i ∈ N let jf (i) be the least number such that
‖µf−ν

(j
f
(i))‖

‖µf‖
≤ 2−i. By Theorem 3 we have jf (i) ≤ i+kf . As

scMSPm is finite, g(m) := max{kf | f ∈ scMSPm} exists for
all m ∈ N. Hence, Iter(m, i) ≤ max{i+kf | f ∈ scMSPm} =
i + g(m).

Theorem 3 implies that from some moment on the number
of bits of the current approximation which we know to be
correct grows at a rate of one bit per iteration. We say
that Newton’s method converges linearly if the expression
of Theorem 3 holds. Using the terms of [17], Theorem 3
states r-linear convergence, not q-linear convergence which
would require ||µf − ν

(l+1)|| ≤ c · ||µf −ν
(l)|| for some c < 1.

The rest of the section is devoted to the proof of Theorem
3. In Subsection 3.1 we show that it suffices to prove the
result for quadratic scMSPs. In Subsection 3.2 we first re-
call that Newton’s method converges quadratically3, if the
3q-quadratical convergence, see [17]



matrix (Id − f ′(µf))−1 exists, and then proceed to consider
the case in which (Id − f ′(µf)) is singular. We show that
in this case Newton’s method has linear convergence if the
kernel of (Id − f ′(µf)) contains some vector d � 0. Finally,
in Subsection 3.3 we prove that such a d always exists by
means of a perturbation method.

3.1 Reduction to Quadratic Polynomials
We reduce MSPs to quadratic MSPs, i.e., to MSPs in

which every polynomial fi(X) has degree at most 2, while
not improving the convergence rate of Newton’s method.

The idea to reduce the degree of our MSP f is to intro-
duce auxiliary variables that express quadratic subterms.
This can be done repeatedly until all polynomials in the
system have reached degree at most 2. The construction is
very similar to the one that transforms a context-free gram-
mar into another grammar in Chomsky normal form. The
following theorem shows that the transformation does not
accelerate the convergence of Newton’s method.

Theorem 4. Let f(X) be a clean feasible scMSP such
that fk(X) = g(X) + h(X)XiXj for some 1 ≤ i, j, k ≤ n,
where g(X) and h(X) are non-constant polynomials with

non-negative coefficients. Let ef (X, Y ) be the MSP given by

efl(X, Y ) = fl(X) for every l ∈ {1, . . . , k − 1}
efk(X, Y ) = g(X) + h(X)Y
efl(X, Y ) = fl(X) for every l ∈ {k + 1, . . . , n}

efn+1(X, Y ) = XiXj .

Then the function b : R
n → R

n+1 given by
b(x) = (x1, . . . , xn, xixj)

> is a bijection between the set

of fixed points of f(X) and ef (X, Y ). Moreover, eν(k) ≤
(ν

(k)
1 , . . . , ν

(k)
n , ν

(k)
i ν

(k)
j )> for all k ∈ N, where eν(k) and ν

(k)

are the Newton sequences of ef and f , respectively.

A proof of this theorem can be found in the appendix.
Since we want to characterize the worst-case behavior

of Newton’s method, it will therefore suffice to consider
quadratic systems in the following sections.

3.2 Properties of Newton’s Method for
Quadratic MSPs

In the following we assume that f(X) is a quadratic, clean,
and feasible scMSP, and use the following notations.

Notation 1. Let f(X) := B(X,X) + LX + c, where c =
f(0), L = f ′(0), and B : R

n × R
n → R

n is a symmet-
ric bilinear map with B(X,X) = f(X) − LX − c. We set
B(X)Y := B(X,Y). Hence, B(X)Y = B(Y)X, and, in
particular, f ′(X) = 2B(X) + L.

If the matrix (Id − f ′(µf)) is non-singular, it is well known
that Newton’s method converges quadratically (see e.g. [22]),
and so Theorem 3 holds. So we only need to consider the
case in which (Id− f ′(µf)) is singular. However, since most
of the proof of the quadratic convergence result is reused in
the singular case, we actually consider both cases.

Lemma 2. For 0 ≤ x ≺ µf we have

µf −Nf (x) = f
′(x)∗B(µf − x, µf − x).

Proof. Set d := µf − x.

µf −Nf (x)

= µf − x − f ′(x)∗(f(x) − x)

= d − f ′(x)∗(f(µf − d) − µf + d)
(since d = µf − x)

= d − f ′(x)∗(f(µf) − f ′(µf)d + B(d)d − µf + d)
(since f(X) = B(X)X + LX + c and B(X) linear)

= d − f ′(x)∗((Id − f ′(x))d − B(d)d)
(since f ′(µf) = f ′(x) + 2B(d))

= f ′(x)∗B(d)d
(since f ′(x)∗(Id − f ′(x)) = Id).

Since B is a symmetric bilinear map, we immediately obtain
the following proposition (see also e.g. [22]).

Proposition 2 (Quadratic convergence).
If (Id − f ′(µf))−1 exists, then there exists a constant c ∈
R>0 such that

‚‚‚µf − ν
(k+1)

‚‚‚ ≤ c
‚‚‚µf − ν

(k)
‚‚‚

2

, and so the

Newton sequence finally converges quadratically to µf . In
particular, if (Id − f ′(µf))−1 exists then Theorem 3 holds.

A proof of Proposition 2 is given in the appendix.
Assume now that (Id − f ′(µf)) is singular. In this case,

(Id − f ′(µf)) has a non-trivial kernel.

Definition 4. Let K denote the kernel of (Id−f ′(µf)), i.e.
K = {v ∈ R

n | f ′(µf)v = v}.

A first easy-to-prove but important observation is that New-
ton’s method converges linearly if it starts at a point in
µf + K. This is proved in the next lemma.

Lemma 3. Assume x ∈ K + µf with 0 ≤ x ≺ µf . Then
µf −N (x) = 1

2
(µf − x).

Proof. Set d = µf − x � 0. By Lemma 2 we have
µf−N (x) = (Id−f ′(x))−1B(d)d. Since 0 ≤ x ≺ µf we know
that (Id − f ′(x))−1 exists. Consider the following equation.

(Id − f ′(x))d
= (Id − f ′(µf) + 2B(d))d

(because f ′(x) = 2B(x) + L = f ′(µf) − 2B(µf − x))
= 2B(d)d

(because d ∈ K ⇒ (Id − f ′(µf))d = 0).

Therefore µf −N (x) = (Id − f ′(x))−1B(d)d = 1
2
d.

At this point we make crucial use of the monotonicity of
Newton’s method on scMSPs (Lemma 1) to prove the fol-
lowing sufficient condition for linear convergence.

Proposition 3. If there exists a d ∈ K with d � 0, then
Theorem 3 holds.

Proof. Let x = µf − d, so x ∈ µf + K. As K is a
vector space, we can assume w.l.o.g. that 0 ≤ x ≺ µf . Since
ν

(k) converges to µf , there exists some kf ∈ N such that
x ≤ ν

(kf ). We have

µf − ν
(l+kf ) = µf −N l(ν(kf ))

≤ µf −N l(x) (Lemma 1)
= 2−l(µf − x) (Lemma 3)
≤ 2−lµf (0 ≤ x ≺ µf).



3.3 A Perturbation Method to
Characterize the Kernel

In this subsection we show that the kernel K always con-
tains some vector d � 0. We start by showing that it suffices
to find a vector d > 0.

Lemma 4. Let 0 < d ∈ K for a clean feasible scMSP.
Then d � 0.

Proof. Let 0 < d ∈ K. If d � 0, we are done. Hence,
w.l.o.g., we assume d1 = . . . = ds = 0 and ds+1, . . . , dn > 0.
As we have f ′(µf)d = d, we get for i ∈ {1, . . . , s} that

f ′
i (µf)d = 0. Hence ∂fi

∂Xk
(µf) = 0 for k ∈ {s+1, . . . , n}. But

as 0 ≺ µf this can only be if ∂fi

∂Xk
is the null polynomial.

Therefore none of the variables X1, . . . , Xs depends on any
of the variables Xs+1, . . . , Xn, contradicting our assumption
that f is an scMSP.

To get an intuition of why the kernel indeed contains a d >
0, consider Fig. 1 (a). It shows the graph of the strongly
connected 2-dimensional system X = f(X) given by

X1 = 1
4
X2

2 + 1
4
X1X2 + 3

16
X2

1 + 5
16

X2 = 1
8
X2

2 + 1
4
X1X2 + 5

8
.

In this example, µf = (1, 1)> and the kernel K is the vector
space spanned by (2, 1)> � 0. The figure also illustrates
that, since K is the kernel of Id−f ′(µf), the straight line µf+
K is a tangent in µf to the quadrics corresponding to X1 =
f1(X) and X2 = f2(X). So K contains a vector d > 0 iff the
tangent has a positive slope. (In higher dimensions, iff the
tangent space is slanted towards non-negative coordinates.)

Consider what happens to the point µf when the coeffi-
cients of f2 are slightly decreased by some ε (Fig.1 (b) shows
the cases ε = 1/2, 1/4, 1/16). By monotonicity (Proposi-
tion 1) we know that no component of µf can increase. The
figure indeed suggests that when the quadric X2 = f2(X) is
scaled down, then the least fixed point µfε of the perturbed
system fε “slides down” along the curve X1 = f1(X). For
ε → 0, the vector uε := µf−µfε

‖µf−µfε‖
intuitively converges to the

slope of the tangent, and so to a vector d with 0 < d ∈ K,
as desired.

However, proving that uε converges to a vector in the tan-
gent space turns out to be surprisingly hard, and so we use
an indirect but technically easier method. Before explaining
it, it is convenient to introduce some notations.

Notation 2.

• Let fε(X) denote the system

fε(X) = f(X) − ε
fn(X)

(µf)n

en, where we assume 0 ≤ ε <

(µf)n. Notice that fε is still a clean feasible scMSP

with ‖f − fε‖ =
‚‚‚ε fn

(µf)n

‚‚‚ ≤ ε on [0, µf ]n.

• Let g(X) denote the system containing the first n − 1
equations of f(X) − X.
Notice that the kernel of g′(µf) contains the vectors
that are tangent to the first n − 1 quadrics.

• Let uε = µf−µfε
‖µf−µfε‖

. Notice that uε > 0.

The proof proceeds in three steps.

Step (1).
We show that ‖g′(µf)uε‖ ε→0−−−→ 0. Of course, this does

not prove that uε converges to some vector in the kernel of
g′(µf), i.e., to a tangent to the first n − 1 quadrics; for this
we would have to show additionally that limε→0 uε exists in
general.

Lemma 5. ‖g′(µf)uε‖ ε→0−−−→ 0.

A proof is given in the appendix.

Step (2).
We prove the existence of some vector vn ≥ 0 in the kernel

of g′(µf). For this, we need the following lemma.

Lemma 6. Let U, V be compact subsets of R
n, and let

dist(U,V ) = infu∈U,v∈V ‖u − v‖.
If dist(U, V ) = 0 then U ∩ V 6= ∅.

Lemma 6 can be easily shown using standard arguments
regarding compact sets of R

n, see the appendix for a proof.

Lemma 7. Let K̃ denote the kernel of g′(µf), i.e. K̃ =
{v ∈ R

n | g′(µf)v = 0}. Hence, K, the kernel of f ′(µf)−µf ,

is a subspace of K̃. Further, let S denote the unit sphere
{x ∈ R

n | ‖x‖ = 1} and let S≥0 = S ∩ R
n
≥0.

Then K̃ ∩ S≥0 6= ∅.

Proof Sketch (see appendix for a full proof). Let P be

the orthogonal projector that projects R
n onto K̃. From

Lemma 5 it follows for the complementary projector Id − P

that (Id − P )uε
ε→0−−−→ 0. Let BK̃ = {v ∈ K̃ | ‖v‖ ≤ 1}.

Then

dist(S≥0, BK̃) ≤ inf
0<ε<(µf)n

‖uε − Puε‖ = 0.

As both BK̃ and S≥0 are compact, we may apply Lemma 6

to conclude K̃ ∩ S≥0 6= ∅.

Step (3).
Step (1) and (2) prove that for i = n there exists a non-

negative vector vi tangent to all quadrics of f(X) − X but
the i-th. By reordering the quadrics of f , we immediately
obtain that the result holds not only for i = n but for every
i ∈ [1, n]. We show that this implies the existence of a non-
negative vector tangent to all quadrics.

Lemma 8. If Id − f ′(µf) is singular, then the kernel of
Id − f ′(µf) contains a vector d > 0.

Proof. Let vi be the vector obtained from Step (3) above.
Then the image of vi under Id − f ′(µf) is a multiple of ei.
Hence, if none of the vi is mapped onto 0 by Id − f ′(µf),
then their image is a set of n linearly independent vectors.
But this would contradict the assumption that Id − f ′(µf)
is singular.

By combining Proposition 3, Lemma 4 and Lemma 8 we
obtain a proof of Theorem 3.

4. A LOWER BOUND FOR THE
THRESHOLD

In the previous section we showed a strong asymptotic
convergence result for the case in which the MSP f consists
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Figure 1: The graph of a 2-dimensional equation system X = f(X).

of one single SCC: we eventually gain one bit per iteration.
In this section we consider – in some sense – the opposite
case: we give concrete systems which consist of n SCCs and
for which the decomposed Newton’s method converges very
badly initially. More precisely, we give a family {f(n) | n ≥
1} of MSPs with n variables, such that Ω(2n) iterations of
the decomposed Newton’s method are needed for the first
valid bit. Consider the following system.

X = f(X) =

0
BBB@

1
2

+ 1
2
X2

1
1
4
X2

1 + 1
2
X1X2 + 1

4
X2

2

...
1
4
X2

n−1 + 1
2
Xn−1Xn + 1

4
X2

n

1
CCCA (1)

The only solution of (1) is µf = (1, . . . , 1)>. The MSP f

has n SCCs. The decomposed Newton’s method starts with
the bottom SCC X1 = 1

2
+ 1

2
X2

1 . The associated Newton

sequence is 0, 1
2
, 3

4
, 7

8
, . . ., i.e., after 2n−1 iterations we have

an approximation x1 = 1 − 2−2n−1

, so the error is d =

2−2n−1

. Now, the decomposed Newton’s method continues
with the system X2 = 1

4
(1 − d)2 + 1

2
(1 − d)X2 + 1

4
X2

2 . The

least solution of this system is x2 = 1 + d − 2
√

d. Since
Newton’s method converges to x2 from below, we know that
the error in the Newton estimate will be at least 2

√
d −

d ≥
√

d = 2−2n−2

. Similarly, the error is amplified in all

components until the error in xn is at least 2−20

= 1
2
. In

conclusion, there is at most one valid bit in xn after 2n−1

iterations, or, in terms of the introduction, iter f (1) ≥ 2n−1.
Since the size of the coefficients of the MSP f does not grow
with n, we have Thr (m) ∈ 2Ω(m). This refutes a conjecture
of [12] (Conjecture 26).

5. SUMMARY AND FUTURE WORK
We have studied several aspects of the convergence of the

decomposed Newton’s method. On the one hand, in our
main theorem we have proved linear asymptotical conver-
gence for strongly connected MSPs at the rate of 1 bit per
iteration. On the other hand, we have refuted a conjec-
ture of Etessami and Yannakakis [12] by exhibiting (non-

strongly-connected) MSPs for which the decomposed New-
ton’s method fails to produce the first valid bit after 2n−1

iterations.
The proof of our linear convergence result relies heavily on

the assumption that the MSP is strongly connected. Etes-
sami and Yannakakis [10] showed that having a strongly con-
nected MSP is a sufficient condition for Newton’s method
to be well-defined. It can be shown that Newton’s method
for the example in Section 4 is well-defined, but for n > 1
one gains less than 1 bit per iteration asymptotically. We
believe that SCCs play a crucial role for the convergence
speed of Newton’s method for MSPs.

Our paper raises several questions for future work:

• Determine the convergence speed of the decomposed
Newton’s method for arbitrary MSPs.
We conjecture that the asymptotic convergence is still
linear. However, it is easy to deduce from the examples
in Section 4 that if the convergence is linear then the
rate must be smaller than 1 bit per iteration. We do
not know how the rate degrades with an increasing
number of SCCs, with n, and/or with the overall size
of the system.

• Give an upper bound for the threshold in general MSPs.
Some (non-systematic) experiments suggest that the

2Ω(m) lower bound could in fact become a 2Θ(m) tight
bound.

• Give an upper bound for the threshold in strongly con-
nected MSPs.
One can see from the example of Section 4 that the
threshold cannot be independent of the scMSP’s size,
but, again, some experiments suggest that the thresh-
old does not grow as fast with the size as in the general
case.

The ultimate goal of our work is to give upper bounds for
iter f (i) in terms of easily observable properties of the MSP
f . While this goal seems out of reach for general systems
of equations, we think that the very special shape of MSPs
gives us good success chances.
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APPENDIX

A. PROOFS

A.1 Proof of Proposition 2
Now we prove Proposition 2 assuring quadratic conver-

gence in the nonsingular case. It is restated here.

Proposition 2.
If (Id − f ′(µf))−1 exists, then there exists a constant c ∈
R>0 such that

‚‚‚µf − ν
(k+1)

‚‚‚ ≤ c
‚‚‚µf − ν

(k)
‚‚‚

2

, and so the

Newton sequence finally converges quadratically to µf . In
particular, if (Id − f ′(µf))−1 exists then Theorem 3 holds.

Proof. Let ‖·‖ be any norm on R
n. Then g(X) :=‚‚(Id − f ′(X))−1

‚‚ is a continuous map from [0, µf ] ⊆ R
n

to R. As [0, µf ]n is compact and R is Hausdorff, the im-
age g([0, µf ]) is compact, too. Hence, C := max{g(x)|x ∈
[0, µf ]} exists. Similarly, we find a constant c with ‖B(x)x‖ ≤
c ‖x‖2 for all x ∈ [0, µf ]. Hence, we have

‖µf −N (x)‖ ≤ Cc ‖µf − x‖2

for all x ∈ [0, µf ].
To prove that Theorem 3 holds in this case, notice that,

since ν
(k) converges to µf , there is a kf ∈ N such that‚‚‚µf − ν
(kf )
‚‚‚ ≤ 1

2Cc
. Then Cc

‚‚‚µf − ν
(kf )
‚‚‚

2

≤ 1

2

‚‚‚µf − ν
(kf )
‚‚‚

and Theorem 3 follows by induction on l.

A.2 Proof of Theorem 4
In this appendix we prove Theorem 4, which allows us to

focus on quadratic systems for a worst case analysis. First
we prove two technical lemmata.

The following lemma is a version of Taylor’s theorem for
MSPs.



Lemma 9 (Taylor). Let x,d ∈ R
n
≥0 and f(X) be an

MSP. Then

f(x) + f
′(x)d ≤ f(x + d) ≤ f(x) + f

′(x + d)d.

Proof. It suffices to show this for a multi-variate poly-
nomial f(X) with non-negative coefficients. Consider g(t) =
f(x + td). We then have

f(x + d) = g(1) = g(0) +

Z 1

0

g′(s)ds

= f(x) +

Z 1

0

f ′(x + sd)dds.

The result follows as f ′(x) ≤ f ′(x + sd) ≤ f ′(x + d) for
s ∈ [0, 1].

The following lemma can already be found in [5]. It is used
in several of our proofs.

Lemma 10. Let f(X) be a clean feasible scMSP. We have

κ
(k) ≤ ν

(k) ≤ f(ν(k)) for all k ∈ N.

Proof. For k = 0 this holds by definition. As ν
(k) ≤

ν
(k+1) and κ

(k) ≤ ν
(k) by induction, we get f(ν(k+1)) ≥

f(ν(k)) ≥ f(κ(k)) = κ
(k+1). By induction we have f(ν(k))−

ν
(k) ≥ 0, and so δf (ν

(k))
def
= f ′(ν(k))∗(f(ν(k)) − ν

(k)) ≥ 0.
Hence, we may apply Lemma 9 to get:

f(ν(k+1)) = f(ν(k) + δf (ν
(k)))

≥ f(ν(k)) + f ′(ν(k))δf (ν
(k))

= ν
(k) + (f(ν(k)) − ν

(k))

+ f ′(ν(k))f ′(ν(k))∗(f(ν(k)) − ν
(k))

= ν
(k+1).

Now we can prove Theorem 4.

Theorem 4. Let f(X) be a clean feasible scMSP such
that fk(X) = g(X) + h(X)XiXj for some 1 ≤ i, j, k ≤ n,
where g(X) and h(X) are non-constant polynomials with

non-negative coefficients. Let ef (X, Y ) be the MSP given by

efl(X, Y ) = fl(X) for every l ∈ {1, . . . , k − 1}
efk(X, Y ) = g(X) + h(X)Y
efl(X, Y ) = fl(X) for every l ∈ {k + 1, . . . , n}

efn+1(X, Y ) = XiXj .

Then the function b : R
n → R

n+1 given by
b(x) = (x1, . . . , xn, xixj)

> is a bijection between the set of

fixed points of f(X) and ef(X, Y ). Moreover,

eν(k) ≤ (ν
(k)
1 , . . . , ν

(k)
n , ν

(k)
i ν

(k)
j )> for all k ∈ N, where eν(k)

and ν
(k) are the Newton sequences of ef and f , respectively.

Proof. W.l.o.g. we may assume that k = 1. We first
show the claim regarding b: if x∗ is a fixed point of f , then

b(x∗) = (x∗, x∗
i · x∗

j ) is a fixed point of ef . Conversely, if

(x∗, y∗) is a fixed point of ef , then we have y∗ = x∗
i · x∗

j

implying that x∗ is a fixed point of f and b(x∗) = (x∗, y∗).

Therefore, the least fixed point µf of f determines µef , and
vice versa.

Now we show that the Newton sequence of f converges at

least as quickly as the Newton sequence of ef does.

Again, let δf (ν
(k))

def
= Nf (X) − X = f ′(ν(k))∗(f(ν(k)) −

ν
(k)) be the Newton update w.r.t. f . Similarly, let eδ def

= δef

be the Newton update for ef . For x ∈ R
n+1 an (n + 1)-

dimensional vector, we let x[1,n] denote its restriction to the

n first components, i.e. x[1,n] = (x1, . . . , xn)>. Then eδ is
the unique solution of this equation system:
 

Id − f ′(X) − ∂(Y −XiXj)h

∂X
e1 −h(X)e1

− ∂XiXj

∂X
1

!
·
 
eδ[1,n]

eδn+1

!

=

„
f(X) −X

XiXj − Y

«
+

„
(Y − XiXj) · h(X)

0

«
.

We may solve the last row for eδn+1 resulting in

eδn+1 =
∂XiXj

∂X
eδ[1,n] + XiXj − Y.

Substituting this into the first n equations, one gets
“
Id − f ′(X) − ∂(Y −XiXj)h

∂X
e1

”
eδ[1,n]

− h(X) ·
“

∂XiXj

∂X
eδ[1,n] + XiXj − Y

”
e1

=
“
Id − f ′(X) − (

∂(Y −XiXj)h

∂X
− ∂(Y −XiXj)

∂X
h)e1

”
eδ[1,n]

− h(X) (XiXj − Y ) e1

=
`
Id − f ′(X) + (XiXj − Y ) ∂h

∂X
e1

´ eδ[1,n]

− h(X)(XiXj − Y )e1

= f(X) −X + (Y − XiXj)h(X)e1,

or, after adding h(X)(XiXj − Y )e1 on both sides and then
multiplying by (Id − f ′(X))−1 from the left:
„

Id + (XiXj − Y )(Id − f
′(X))−1 ∂h

∂X
e1

«
eδ[1,n] = δf .

Note that the update eδ[1,n] becomes δf if XiXj = Y . Now,

we proceed by induction on k to show eν(k)

[1,n]
≤ ν

(k), where

eν(k) is the Newton sequence for ef . By definition of the New-
ton sequence this is true for k = 0. For the step we have:

eν(k+1)

[1,n] = Nef
(eν(k))[1,n]

∗

≤ Nef
(f̃ (eν(k)))[1,n]

= Nef
((eν(k)

[1,n], eν
(k)
i · eν(k)

j ))[1,n]

= eν(k)
[1,n] + eδ((eν(k)

[1,n], eν
(k)
i · eν(k)

j ))[1,n]

= eν(k)

[1,n] + δf (eν(k)

[1,n])

= Nf (eν(k)
[1,n]) ≤ Nf (ν

(k))

= ν
(k+1) .

At inequation (∗) we used the monotonicity of Nef
combined

with Lemma 10, which states eν(k) ≤ ef (eν(k)), hence in par-

ticular eν(k)
n+1 ≤ eν(k)

i eν(k)
j .

A.3 Proof of Lemma 5
We first prove the following lemma, which assures some

technical properties of fε as introduced in Notation 2.

Lemma 11. The least non-negative fixed point µfε of fε
exists. Further, for 0 ≤ ε ≤ ε′ < (µf)n we have µf ≥
µfε ≥ µfε′ . Moreover, µfε is continuous in ε = 0, i.e.

‖µf − µfε‖ ε→0→ 0.

Proof. The first two claims are consequences of Propo-
sition 1. For the continuity, consider any sequence (εi)i∈N



with εi ↘ 0. As µfεi
≤ µfεi+1 ≤ µf , the sequence (µfεi

)i∈N

has to converge to some µ̃f less than or equal to µf . But µ̃f

is a fixed point of f , as:

‖µfε − f(µfε)‖ = ‖µfε − fε(µfε) − (f(µfε) − fε(µfε))‖
= ‖f(µfε) − fε(µfε)‖ ≤ ε.

This shows that limε↘0 ‖µfε − f(µfε)‖ = 0.
As ‖X − f(X)‖ is continuous, we therefore have

0 = lim
ε↘0

‖µfε − f(µfε)‖ =
‚‚‚µ̃f − f(µ̃f )

‚‚‚ .

Hence, µ̃f = µf , i.e. µfε is continuous in ε = 0.

Now we can prove Lemma 5 which is restated here.

Lemma 5. ‖g′(µf)uε‖ ε→0→ 0.

Proof. Let g(X) = B̃(X)X+L̃X+ c̃. We have g(µfε) =
0 for all ε by definition of µfε. Hence,

0 = g(µfε) = g(µf − (µf − µfε))

= g(µf)| {z }
=0

−g′(µf)(µf − µfε) + B̃(µf − µfε, µf − µfε).

We therefore get

‖g′(µf)uε‖ =
‚‚‚g′(µf) µf−µfε

‖µf−µfε‖

‚‚‚ =
‖B̃(µf−µfε ,µf−µfε)‖

‖µf−µfε‖

≤ maxx∈[0,µf ]n

‚‚‚B̃
‚‚‚ ‖µf−µfε‖

2

‖µf−µfε‖

and this approaches 0 for ε → 0.

A.4 Proof of Lemma 6
We now prove Lemma 6 which is restated here.

Lemma 6. Let U, V be compact subsets of R
n, and let

dist(U, V ) = infu∈U,v∈V ‖u − v‖.
If dist(U, V ) = 0 then U ∩ V 6= ∅.

Proof. Assume U and V are disjoint. Let ‖·‖ be some
norm on R

n and let βr(x) = {x̃ ∈ R
n | ‖x − x̃‖ < r}

denote the open ball located at x with radius r > 0. Then
for each pair (x,y) ∈ U × V we have ‖x− y‖ > 0. Set
r(x,y) = 1

2
‖x − y‖. Every point x̃ ∈ U ∩ βr(x,y)(x) has

its distance to y bounded from below by r(x,y). Fix some
y ∈ V . Then {βr(x,y)(x) | x ∈ U} is an open covering of U .

As U is compact, only finitely many βr(x(i),y)(x
(i)) are needed

to cover U with x(i) ∈ U and i ∈ {1, . . . , K}. Hence, every
x ∈ U has at least the distance

m(y) := min
i∈{1,...,K}

{r(x(i),y)} > 0

to y. Set r(y) = 1
2
m(y). Then every ỹ ∈ V ∩ βr(y)(y) has

at least distance r(y) to every x ∈ U . We may use the same
construction to realize that there exists some d > 0 such
that the distance of every pair (x,y) ∈ U × V is bounded
from below by d, contradicting the assumption.

A.5 Full Proof of Lemma 7
Now we give a full proof of Lemma 7 which is restated

here.

Lemma 7. Let K̃ denote the kernel of g′(µf), i.e. K̃ =
{v ∈ R

n | g′(µf)v = 0}. Hence, K, the kernel of f ′(µf)−µf ,

is a subspace of K̃. Further, let S denote the unit sphere
{x ∈ R

n | ‖x‖ = 1} and let S≥0 = S ∩ R
n
≥0.

Then K̃ ∩ S≥0 6= ∅.
Proof. Set M = g′(µf)> and let mi be the ith col-

umn vector of M . Assume that M has rank r and that
m1, . . . ,mr are linearly independent, otherwise we apply
some permutation to g. Construct the vectors n1, . . . ,nr

by applying the Gram-Schmidt procedure to m1, . . . ,mn−1,
and arrange them into some matrix N = (n1, . . . ,nr) ∈
R

n×r. By the Gram-Schmidt procedure mi is a linear com-
bination of n1, . . . ,nmin{i,r} for 1 ≤ i ≤ n − 1. Hence, we

find some upper triangular matrix C ∈ R
r×n−1 such that

M = NC. In particular, both N and C have rank r, too.
Now, set P = Id − NN> and vε = Puε. We want to

show that ‖uε − vε‖ ε→0→ 0. First note that, by Lemma 5,

‖g′(µf)uε‖ =
‚‚C>N>uε

‚‚ ε→0→ 0. This implies N>uε
ε→0→ 0,

as C> has full rank r and thus represents an injective map
from R

r to R
n−1. We therefore get ‖uε − vε‖ =

‚‚NN>uε

‚‚ ≤
‖N‖

‚‚N>uε

‚‚ ε→0→ 0. Set BK̃ = {v ∈ K̃ | ‖v‖ ≤ 1}. We have
vε ∈ BK̃ for 0 < ε < (µf)n, because P is an orthogonal
projector. Hence,

dist(S≥0, BK̃) = infu∈S≥0,v∈B
K̃
‖u − v‖

≤ inf0<ε<(µf)n
‖uε − vε‖ = 0.

As both BK̃ and S≥0 are compact, we may apply Lemma 6

and conclude K̃ ∩ S≥0 6= ∅.


