
Derivation Tree Analysis for
Accelerated Fixed-Point Computation

Javier Esparza, Stefan Kiefer, Michael Luttenberger

Institut für Informatik, Technische Universität München, 85748 Garching, Germany
{esparza,kiefer,luttenbe}@model.in.tum.de

Abstract. We show that for several classes of idempotent semirings the least
fixed-point of a polynomial system of equationsX = f (X) is equal to the least
fixed-point of alinear system obtained by “linearizing” the polynomials off in
a certain way. Our proofs rely on derivation tree analysis, a proof principle that
combines methods from algebra, calculus, and formal language theory, and was
first used in [5] to show that Newton’s method over commutative and idempo-
tent semirings converges in a linear number of steps. Our results lead to efficient
generic algorithms for computing the least fixed-point. We use these algorithms
to derive several consequences, including anO(N3) algorithm for computing the
throughput of a context-free grammar (obtained by speeding up theO(N4) algo-
rithm of [2]), and a generalization of Courcelle’s result stating that the downward-
closed image of a context-free language is regular [3].

1 Introduction

SystemsX = f(X) of fixed-point equations, wheref is a system of polynomials,
appear naturally in semantics, interprocedural program analysis, language theory, and
in the study of probabilistic systems (see e.g. [6, 7, 9, 12]). In all these applications the
equations are interpreted overω-continuous semirings, an algebraic structure that guar-
antees the existence of a least solutionµf . The key algorithmic problem is to compute
or at least approximateµf .

In [5, 4] we generalized Newton’s method—the well-known method of numeri-
cal mathematics for approximating a zero of a differentiable function—to arbitrary
ω-continuous semirings. Given a polynomial systemf , our generalized method com-
putes a sequence of increasingly accurate approximations toµf , called Newton approx-
imants. We showed in [5] that then-th Newton approximant of a system ofn equations
over an idempotent (w.r.t. addition) and commutative (w.r.t. multiplication) semiring is
already equal toµf . This theorem leads to a generic computing procedure.

Our proof of this result uses a (to the best of our knowledge) novel technique, which
we call derivation tree analysis. The systemf induces a setT of derivation trees, a
generalization of the well-known derivation trees of context-free grammars. Each tree
can be naturally assigned a semiring element, called theyield of the tree. It is easy to
show thatµf is equal to the sum of the yields of all derivation trees. Derivation tree
analysis first identifies a subsetT ′ of derivation trees whose total yieldY(T ′) is easy
to compute in some sense, and then proves thatT ′ satisfies theembedding property:
Y(t) ⊑ Y(T ′) for every derivation treet. If the semiring is idempotent, the embedding

property impliesY(T) = Y(T ′), and soµf = Y(T ′). In [5], the setT ′ was chosen so
thatY(T ′) is equal to then-th Newton approximant, and the embedding property was
proved using some tree surgery and exploiting the commutativity of the semiring.

The computation of then-th Newton approximant can still require considerable
resources. In this paper we present a further application ofderivation tree analysis to
idempotent semirings, leading to more efficient computation algorithms. For this, we
define the setB of bamboosof a systemf . Loosely speaking, bamboos are derivation
trees with an arbitrarily long stem but only short branches.We first show thatY(B) is the
solution of a linear system of equations whose functions aresimilar (but not identical)
to the straightforward linearisation off . Then, we prove that the following three classes
of semirings satisfy the embedding property:
• Star-distributive semiringsare idempotent and commutative semirings satisfying the
additional axiom(a+b)∗ = a∗+b∗ (where∗ is the well-known Kleene iteration opera-
tor). The so-called “tropical”(min,+)-semiring over the reals (extended with+∞ and
−∞) is star-distributive. Our tree analysis leads to an algorithm for computingµf very
similar to the generalized Bellman-Ford algorithm of Gawlitza and Seidl [8]. We use it
to derive a new algorithm for computing the throughput of a context-free grammar, a
problem introduced and analyzed by Caucal et al. in [2]. Our algorithm runs inO(N3),
a factorN faster than the algorithm presented in [2].
• Lossy semiringsare idempotent semirings satisfying the additional axioma + 1 = a
where1 is the neutral element of multiplication. A natural model are downward-closed
languages with union and concatenation as operations. Lossy semirings find applica-
tion in the verification of lossy channel systems, a model of computation thoroughly
investigated by Abdulla et al. (see e.g. [1]). Our tree analysis leads to an algebraic proof
of Courcelle’s theorem stating that the downward closure ofa context-free language is
effectively regular [3].
• 1-bounded semiringsare idempotent semirings where the equationa+1 = 1 holds. A
natural example is the “maximum probability” semiring withthe interval[0, 1] as car-
rier, maximum as addition, and standard multiplication over the reals. Using derivation
tree analysis it is very easy to show that the least fixed-point µf of a polynomial system
f with n variables is given byfn(0), then-fold application off to 0.

The rest of the paper is organized as follows. After the preliminaries in Section 2 we
introduce derivation tree analysis in Section 3. Bamboos are defined in Section 4. In the
Sections 5, 6 and 7 we apply derivation tree analysis to the semiring classes mentioned
above. An appendix includes the missing proofs.

2 Preliminaries

As usual,N denotes the set of natural numbers including0.
An idempotent semiringS = 〈S,+, ·, 0, 1〉 consists of a commutative, idempotent

additive monoid〈S,+, 0〉, and a multiplicative monoid〈S, ·, 1〉. In the following we
often omit the dot· in products. Both algebraic structures are connected by left- and
right-distributivity, e.g.a(b + c) = ab + ac, and by the requirement that0 · a = 0 for
all a ∈ S. Thenatural-order relation⊑ S × S is defined bya ⊑ b ⇔ a + b = b. The
semiringS is naturally orderedif ⊑ is a partial order.

2

An idempotent, naturally ordered semiringS is ω-continuous, if countable summa-
tion

∑
i∈N

ai ∈ S is defined (withai ∈ S), and satisfies the following requirements:
(i) summation is continuous, i.e.,sup⊑{a0 + a1 + . . . + ak | k ∈ N} =

∑
i∈N

ai

for all sequencesa : N → S; (ii) distributivity extends in the natural way to count-
able summation; and (iii)

∑
j∈J

∑
i∈Ij

ai =
∑

i∈N
ai holds for all partitions(Ij)j∈J

of N. In every suchω-continuous semiring the Kleene-star operator∗ : S → S is well-
defined bya∗ :=

∑
k∈N

ak for all a ∈ S. In the following we consider only idempotent
ω-continuous semiringsS. We refer to them asio-semirings.

We fix a finite, non-empty setX of variablesfor the rest of the section, and usen to
denote|X | in the following. A map fromX to S is called avector. The set of all vectors
is denoted byV . We write bothv(X) andvX for the value of a vectorv at X ∈ X ,
also called theX-component ofv. Sum of vectors is defined componentwise: given a
countable setI and a vectorvi for everyi ∈ I, we denote by

∑
i∈I vi the vector given

by
(∑

i∈I vi

)
(X) =

∑
i∈I vi(X) for everyX ∈ X .

A monomial of degreek is a finite expressiona1X1a2 · · · akXkak+1 wherek ≥
0, a1, . . . , ak+1 ∈ S \ {0} andX1, . . . ,Xk ∈ X . A polynomialis an expression of
the formm1 + · · · + mk wherek ≥ 0 andm1, . . . ,mk are monomials. SinceS is
idempotent, we assume w.l.o.g. that all monomials of a polynomial are distinct. The
degree of a polynomial is the largest degree of its monomials. We letS[X] denote the
set of all polynomials.

Let f = α1X1α2 . . . Xkαk+1 be a monomial and letv be a vector. Theevaluation
of f at v, denoted byf(v), is the productα1vX1

α2 · · ·αkvXk
αk+1. We extend this to

any polynomial: iff =
∑k

i=1 mi, thenf(v) =
∑k

i=1 mi(v).
A system of polynomialsor polynomial system is a mapf : X → S[X]. We write

fX for f(X). Every polynomial system induces a map fromV to V by componentwise
evaluation of the polynomials:f(v)X := fX(v) for all v ∈ V, andX ∈ X . The
following proposition, which follows easily from Kleene’stheorem and the fact thatf

is a monotone and continuous mapping, shows that any polynomial systemf has a least
fixed-pointµf , which is by definition the least solution ofX = f(X).

Proposition 1. A polynomial systemf has a unique least fixed-pointµf , i.e., µf =
f(µf), andµf ⊑ v holds for allv with v = f(v). Further,µf is the supremum (w.r.t.
⊑) of theKleene sequence(f i(0))i∈N, wheref i denotes thei-fold application off .

3 Derivation Trees

We generalize the notion of derivation tree, as known from formal languages and gram-
mars. We identify a nodeu of a (ordered) treet with the subtree oft rooted atu. In
particular, we identify a tree with its root.

Let f be a polynomial system over a setX of variables. Aderivation treet of f is
an ordered (finite) tree whose nodes are labelled with both a variableX and a monomial
m of fX . We writeλv, resp.λm for the corresponding labelling-functions. Moreover,
if the monomial labelling of a nodeu is λm(u) = a1X1a2 . . . Xsas+1 for somes ≥ 0,
thenu has exactlys childrenu1, . . . , us, ordered from left to right, withλv(ui) = Xi

for all i = 1, . . . , s. A derivation treet is anX-treeif λv(t) = X. The set of allX-trees
of f is denoted byTf ,X , or just byTX if f is clear from the context.

3

The left part of Figure 1 shows a derivation tree of the systemf over the variables
X andY given byfX = aXY b+ c andfY = dX +Y e. The derivation trees off are
very similar to the derivation trees of the context-free grammar with productionsX →
aXY b|c andY → dX|Y e. For technical reasons, the nodes of “our” trees are labeled
by “productions” (for instance, the label(X, aXY b) corresponds to the production
X → aXY b). On the right of Figure 1 we show how the tree would look like according
to the standard definition. The heighth(t) of a derivation treet is the length of a longest

(X, aXY b)

(X, c) (Y, dX)

(X, c)

X

a X

c

Y

d X

c

b

Fig. 1.A derivation tree on the left, and its standard representation on the right

path from the root to a leaf. The set ofX-trees (off) of heightat mosth is denoted
by T

(h)
X . The yieldY(t) of a derivation treet with λm(t) = a1X1a2 · · ·Xsas+1 is

inductively defined to beY(t) = a1Y(t1)a2 · · ·Y(ts)as+1. We extend the definition
of Y to setsT ⊆ TX by settingY(T) :=

∑
t∈T Y(t). E.g., the systemf defined above

has exactly twoX-trees of height at most2: the tree consisting of a single node labeled
by (X, c), and the left tree of Figure 1. Their yields arec andacdcb, respectively, and
soY(T

(2)
X) = c+ acdcb. It follows Y(T

(2)
X) = f3(0)X , i.e., the yield of theX-trees of

height at most 2 is equal to the “Kleene approximant”f3(0)X from Proposition 1. The
following proposition, easy to prove [4], shows that this isnot a coincidence.

Proposition 2. For all h ∈ N andX ∈ X , we haveY(T
(h)

X) =
(
fh+1(0)

)
X

.

Together with Proposition 1 we get:

Corollary 1. µfX = Y(TX).

3.1 Derivation Tree Analysis

We say that a setTX of X-trees satisfies theembedding propertyif Y(t) ⊑ Y(TX) holds
for everyX-tree t. Loosely speaking, the yield of everyX-tree can be “embedded”
in the yield ofTX . As addition is idempotent, the embedding property immediately
implies thatY(TX) ⊑ Y(TX). Of course, asTX ⊆ TX , we also have the other direction,
which leads to the following result.

Proposition 3. Let f be a system of polynomials over an io-semiring, and letX be
a variable off . If a setTX of X-trees off satisfies the embedding property, then
µf = Y(TX).

4

This proposition suggests a technique for the design of efficient algorithms computing
µf : (1) define a setTX of derivation trees whose yield is “easy to compute” in some
io-semiring, and (2) identify “relevant” classes of io-semirings for whichTX satisfies
the embedding property. By Proposition 3,µf is “easy to compute” for these classes.
We call this techniquederivation tree analysis.

4 Bamboos and their Yield

The difficulty of derivation tree analysis lies in finding a set TX exhibiting a good
balance between the contradictory requirements “easy to compute” and “relevant”: if
TX = ∅ then the yield is trivial to compute, butTX does not satisfy the embedding
property in any interesting case. Conversely,TX = TX trivially satisfies the embedding
property for every io-semiring, but is not easy to compute. The main contribution of
this paper is the identification of a class of derivation trees, bamboos, exhibiting this
balance. In this section we define bamboos and show that theiryield is the least solution
of a system oflinear equations easily derivable fromf . The “easy to compute” part is
justified by the fact that in most semirings used in practice linear equations are far easier
to solve than polynomial equations (e.g. in the real semiring or the language semiring
with union and concatenation as operations). The “relevance” of bamboos is justified in
the next three sections.

Definition 1. Let f be a system of polynomials. A treet ∈ Tf ,X is an X-bambooif
there is a path leading from the root oft to some leaf oft, thestem, such that the height
of every subtree oft not containing a node of the stem is at mostn − 1. The set of all
X-bamboos off is denoted byBf,X , or just byBX if f is clear from the context.

: tree of height< n

: leaf

Fig. 2.A bamboo with its stem printed bold; on the right it is shown with its stem straightened.

In order to define the system of linear equations mentioned above we need the notion
of differential of a system of polynomials.

Definition 2. Letf ∈ S[X] be a polynomial and letv ∈ V be a vector. Thedifferential
of f atv w.r.t. a variableX is the mapDX f |v : V → S inductively defined as follows:

DX f |v(a) =





0 if f ∈ S or f ∈ X \ {X}
aX if f = X

DX g |v(a) · h(v) + g(v) · DX h|v(a) if f = g · h∑k

i=1 DXmi |v(a) if f =
∑k

i=1 mi.

5

Further, we define thedifferential off at v byDf |v(a) :=
∑

X∈X DX f |v(a). The dif-
ferential of a system of polynomialsf atv is defined componentwise by(Df |v(a))X :=
D(f

X
)|v(a) for all X ∈ X .

Example 1.Forf(X,Y) = a · X · X · Y · b, v = (vX , vY), c = (cX , cY) we have:

DX f |v(c) = a · cX · vX · vY · b + a · vX · cX · vY · b
DY f |v(c) = a · vX · vX · cY · b

Using differentials we define a particular linearization ofa polynomial system.

Definition 3. Let f be a system ofn polynomials. Thebamboo systemfB associated
to f is the linear systemfB(X) = Df |fn(0)(X) + f(0). The least solution of the
system of equationsX = fB(X) is denoted byµfB.

Now we can state the relation between bamboos and bamboo systems.

Theorem 1. Letf be a system of polynomials over an io-semiring. For every variable
X of f we haveY(BX) = (µfB)X , i.e., the yield of theX-bamboos is equal to the
X-component of the least solution of the bamboo system.

Together with Proposition 3 we get the following corollary.

Corollary 2 (derivation tree analysis for bamboos).Letf be a system of polynomials
over an io-semiring. IfBX satisfies the embedding property for allX, i.e., for all X-
treest it holdsY(t) ⊑ Y(BX), thenµf = µfB.

5 Star-Distributive Semirings

Definition 4. A commutative (w.r.t. multiplication) io-semiringS is star-distributiveif
(a + b)∗ = a∗ + b∗ holds for alla, b ∈ S.

A commutative io-semiring is star-distributive whenever the natural order⊑ is total:

Proposition 4. Any totally ordered commutative io-semiring is star-distributive.

Proof. Let w.l.o.g.a ⊑ b. Then(a + b)∗ = b∗ ⊑ a∗ + b∗ ⊑ (a + b)∗. ⊓⊔

In particular, the(min,+)-semiring over the integers or reals is star-distributive.
We have already considered commutative idempotent semirings in [5] where we

showed thatµf can be computed by solvingn linear equation systems by means of a
Newton-like method, improving theO(3n) bound of Hopkins and Kozen [11]. In this
section we improve this result even further for star-distributive semirings: One single
linear system, the bamboo systemfB, needs to be solved. This leads to an efficient
algorithm for computingµf in arbitrary star-distributive semirings. In Section 5.1 we
instantiate this algorithm for the(min,+)-semiring; in Section 5.2 we use it to improve
the algorithm of [2] for computing the throughput of a context-free grammar.
We start by stating two useful properties of star-distributive semirings.

Proposition 5. In any star-distributive semiring the following equationshold:
(1) a∗b∗ = a∗ + b∗, and (2) (ab∗)∗ = a∗ + ab∗.

6

We can now state and prove our result:

Theorem 2. µf = µfB holds for polynomial systemsf over star-distributive semirings.

Proof Sketch (see the appendix for a complete proof).The proof is by derivation tree
analysis. So it suffices to discharge the precondition of Corollary 2. More precisely we
show for anyX-treet thatY(t) ⊑ Y(BX) holds. It suffices to consider the case where
t is not anX-bamboo. Then the height oft is at leastn, and sot is “pumpable”, i.e.,
one can choose a pathp in t from the root to a leaf such that two different nodes on
the path share the same variable-label. Sot can be decomposed into three (partial) trees
with yieldsa, b, c, respectively, such thatY(t) = abc, see the left side of Figure 3(a).
Notice that, by commutativity of product,ab∗c is the yield of a set of trees obtained by

(a) a

c

b

a1

a2

a3 c

b

(b) a1

c

b

a1

a2

a3

a3 c

+

Fig. 3. “Unpumping” trees to make them bamboos

“pumping” t. We showab∗c ⊑ Y(BX) which impliesY(t) ⊑ Y(BX). As t is not anX-
bamboo,t has a pumpable subtree disjoint fromp. In this sketch we assume that it is a
subtree of that part oft whose yield isa, see the right side of Figure 3(a). Now we have
a = a1a2a3, and soab∗c = a1a2a3b

∗c ⊑ a1a
∗
2a3b

∗c = a1a3b
∗c + a1a

∗
2a3c, where

we used commutativity and Proposition 5(1) in the last step.Both summands in above
sum are yields of sets of trees obtained by pumping pumpable trees smaller thant, see
Figure 3(b). By an inductive argument those yields are both included inY(BX). ⊓⊔

5.1 The(min, +)-Semiring

Consider the “tropical” semiringR = (R ∪ {−∞,∞},∧,+R,∞, 0). By ∧ resp.+R

we mean minimum resp. addition over the reals. Observe that the natural order⊑ is
the order≥ on the reals.1 As R is totally ordered, Proposition 4 implies thatR is star-
distributive. Assume for the rest of this section thatf is a polynomial system overR
of degree at most2. We can apply Theorem 2, i.e.,µf = µfB holds. This immediately
suggests a polynomial algorithm to compute the least fixed-point: Computefn(∞) by

1 By symmetry, we could equivalently consider maximum instead of minimum.

7

performingn Kleene iterations, and solve the linear systemX = Df |fn(∞)(X) ∧
f(∞). The latter can be done by means of the Bellman-Ford algorithm.

Example 2.Consider the following equation system.

(
X, Y, Z

)
=
(
− 2 ∧ (Y +R Z), Z +R 1, X ∧ Y

)
=: f(X)

We havef(∞) = (−2,∞,∞),f2(∞) = (−2,∞,−2),f3(∞) = (−2,−1,−2).
The linear systemX = Df |fn(∞)(X) ∧ f(∞) = fB(X) looks as follows:

(
X, Y, Z

)
=
(
− 2 ∧ (−1 +R Z) ∧ (Y +R −2), Z +R 1, X ∧ Y

)
.

This equation system corresponds in a straightforward way to the following graph.

S X
−2

Y

−2

Z

+1

00

−1

We claim that theV -component ofµfB equals the least weight of any path fromS to
V whereV ∈ {X,Y,Z}. To see this, notice that(fk

B(∞))V corresponds to the least
weight of any path fromS to V of length at mostk. The claim follows by Kleene’s
theorem. So we can computeµfB with the Bellman-Ford algorithm. In our example,
X,Y,Z are all reachable fromS via a negative cycle, soµfB = (−∞,−∞,−∞). By
Theorem 2,µf = µfB = (−∞,−∞,−∞). ⊓⊔

The Bellman-Ford algorithm can be used here as it handles negative cycles correctly.
The overall runtime of our algorithm to computeµf is dominated by the Bellman-Ford
algorithm. Its runtime is inO(n · m), wherem is the number of monomials appearing
in f . We conclude that our algorithm has the same asymptotic complexity as the “gen-
eralized Bellman-Ford” algorithm of [8]. It is by a factor ofn faster than the algorithm
deducible from [5] because our new algorithm uses the Bellman-Ford algorithm only
once instead ofn times.

5.2 Throughput of Grammars

In [2], a polynomial algorithm for computing thethroughputof a context-free grammar
was given. Now we show that the algorithm can be both simplified and accelerated by
computing least fixed-points according to Theorem 2.

Let us define the problem following [2]. LetΣ be a finite alphabet andρ : Σ → N

a weight function. We extendρ to wordsa1 · · · ak ∈ Σ∗ by settingρ(a1 · · · ak) :=
ρ(a1) + . . . + ρ(ak).2 The mean weight of a non-empty wordw is defined asρ(w) :=
ρ(w)/|w|. The throughput of a non-empty languageL ⊆ Σ+ is defined as the infimum
of the mean weights of the words inL: tp(L) := inf{ρ(w) | w ∈ L}. Let G =
(Σ,X , P, S) be a context-free grammar andL = L(G) its language. The problem is to

2 We write+ for the addition of reals in this section.

8

computetp(L). As in [2] we assume thatG has at most 2 symbols on the right hand
side of every production and thatL is non-empty and contains only non-empty words.

Note that we cannot simply construct a polynomial system having tp(L) as its least
fixed-point, as the throughput of two non-terminals is not additive. In [2] an ingenious
algorithm is proposed to avoid this problem. Assume we already know a routine, the
comparing routine, that decides for a givent ∈ Q whethertp(L) ≥ t holds. Assume
further that this routine hasO(Nk) time complexity for somek. Using the comparing
routine we can approximatetp(L) up to any given accuracy by means of binary search.
Let d = maxa∈Σ ρ(a) − mina∈Σ ρ(a). A dichotomy result of [2] shows thatO(N +
log d) iterations of binary search suffice to approximatetp(L) up to anε that allows to
compute the exact value oftp(L) in timeO(N3). This is proved by showing that, once
a valuet has been determined such thatt − ε < tp(L) ≤ t, one can:

– transformG in O(N3) time into a grammarG′ of sizeO(N3) generating a finite
language, and having the same throughput asG (this construction does not yet
depend ontp(L));

– compute the throughput ofG′ in linear time in the size ofG′, i.e., inO(N3) time.

The full algorithm for the throughput runs then inO(Nk(N + log d)) + O(N3) time.
The algorithm of [2] and our new algorithm differ in the comparing routine. In the

routine of [2] the transformation ofG into the grammarG′ is donebeforetp(L) has
been determined. Then a linear time algorithm can be appliedto G′ to decide whether
tp(L) ≥ t holds. (This algorithm does not work for arbitrary context-free grammars,
and that is why one needs to transformG into G′.) SinceG′ has sizeO(N3), the
comparing routine hask = 3, and so the full algorithm runs inO(N4 +N3 log d) time.

We give a more efficient comparing routine withk = 2. Given a t ∈ Q, as-
sign to each wordw ∈ Σ+ its throughput balanceσt(w) = ρ(w) − |w| · t. Notice
that σt(w) ≥ 0 if and only if ρ(w) ≥ t. Further, for two wordsw, u we now have
σt(wu) = σt(w) + σt(u). So we can set up a polynomial systemX = f(X) over
the tropical semiringR wheref is constructed such that each variableX ∈ X in
the equation system corresponds to the minimum (infimum) throughput balance of the
words derivable fromX. More formally, define a mapm by settingm(a) = ρ(a) − t
for a ∈ Σ andm(X) = X for X ∈ X . Extendm to words in(Σ ∪ X)∗ by setting
m(α1 · · ·αk) = m(α1) + · · ·+ m(αk). Let PX be the productions ofG with X on the
left hand side. Then setfX(X) :=

∧
(X→w)∈PX

m(w). For instance, ifPX consists of
the rulesX → aXY andX → bZ, we havefX(X) = ρ(a)−t+X+Y ∧ρ(b)−t+Z.

It is easy to see that the relevant solution of the systemX = f(X) is the least one
w.r.t. ⊑, i.e., (µf)S ≥ 0 if and only if tp(L) ≥ t. So we can use the algorithm from
Section 5.1 as our comparing routine. This takes timeO(N2) whereN is the size of
the grammar. With that comparing routine we obtain an algorithm for computing the
throughput withO(N3 + N2 log d) runtime.

6 Lossy Semirings

Definition 5. An io-semiringS is calledlossyif 1 ⊑ a holds for alla 6= 0.

9

Note that by definition of natural order the requirement1 ⊑ a is equivalent toa = a+1.
In the free semiring generated by a finite alphabetΣ, and augmented by the equation
a = a + 1 (a ∈ S \ {0}), every languageL ⊆ Σ∗ is “downward closed”, i.e. for every
word w = a1a2 . . . al ∈ L all possible subwords{a′

1a
′
2 . . . a′

l | a′
i ∈ {ε, ai}} are also

included inL. By virtue of Higman’s lemma [10] the downward-closure of a context-
free language is regular. This has been used in [1] for an efficient analysis of systems
with unbounded, lossy FIFO channels. Downward closure was used there to model the
loss of messages due to transmission errors.

We say that a systemf of polynomials iscleanif µfX 6= 0 for all X ∈ X . Every
system can becleanedin linear time by removing the equations of all variablesX such
thatµfX = 0 and setting these variables to0 in the other equations (the procedure is
similar to the one that eliminates non-productive variables in context-free grammars).
We consider only clean systems, and introduce a normal form for them.

Definition 6. Letf ∈ S[X]X be a system of polynomials over a lossy semiring.f is in
quadratic normal formif every polynomialfX has the form

c +
∑

Y,Z∈X

aY,Z · Y · Z +
∑

Y ∈X

bl,Y · Y · br,Y

where (i)c ∈ S \ {0}, (ii) aY,Z ∈ {0, 1}, and (iii) if
∑

Z∈X aY,Z 6= 0, thenbl,Y 6=
0 6= br,Y for all Y,Z ∈ X .

Lemma 1. For every cleang ∈ S[X]X we can construct in linear time a systemf ∈
S[X ′]X

′

in quadratic normal form, whereX ⊆ X ′ andµgX = µfX for all X ∈ X .

Proof Sketch.Note that, asg is clean, we have1 ⊑ µg. Hence, requirement(i) is
no restriction. The transformation that normalizes a system is similar to the one that
brings a context-free grammar into Chomsky normal-form (CNF). The supersetX ′ ⊃
X results from the introduction of new variables by this transformation into CNF. ⊓⊔

Our main result in this section is that forstrongly connectedsystemsf in quadratic
normal form we again have thatµf = µfB. We then show how this result leads to an
algorithm for arbitrary systems.

Given two variablesX,Y ∈ X , we say thatX depends onY (w.r.t. f) if Y occurs
in a monomial offX or there is a variableZ such thatX depends onZ andZ depends
onY . The systemf is strongly connectedif X depends onY for all variablesX,Y .

Theorem 3. µf = µfB holds for strongly connected polynomial systemsf in quadratic
normal form over lossy semirings.

Proof Sketch.We consider a concrete example of a treet that is not a bamboo, and
show how to construct a bamboôt such thatY(t) ⊑ Y(t̂). The general procedure for
all non-bamboos can be found in the appendix. LetX = {X,Y }, andf with fX =
XY + X + Y + a, andfY = X + Y + b. Consider theX-treet depicted on the left of
the picture below, wheretr is some bamboo of height at least2 (we inductively assume
that the original subtree has already been replaced by a bamboo with at least the same
yield). Since the left subtree oft has height2, t itself is not a bamboo. Lets denote the

10

t = (X, XY)

(X, Y)

r = (Y, X)

s = (X, a)

tr

t̂ = (X, XY)

(X, a) t′′ = (Y, X)

t′ = (X, XY)

(X, Y)

trr = (Y, b)

left-most leaf oft, and letr be the parent ofs. In our example, we assume thatr hass
as its only child. Then we proceed as follows:

(i) We remove fromt the leafs, and turn its fatherr into a leaf. Here, we make
use of the assumption thatf is in quadratic normal form, and so every polynomial of
f contains a constant monomial, in our exampleb. We change the monomial-label of
r to b, and obtain the treet′, which is a derivation tree off . Moreover,t′ is a bamboo,
because its left subtree has now height1, and its right subtreetr is a bamboo.

(ii) We prepend a (partial) derivation tree on top oftr having two linear chains as
subtrees: the left chain leads to the leafs, and the right chain leads tot′. This gives us
the treêt depicted on the right of the picture above. The proof of Theorem 3 shows that
these chains exist and have at most lengthn− 1 (in our examplen− 1 = 1). It follows
that t̂ is a bamboo itself with stem̂t − t′′ − t′ − tr, and soY(t̂) ⊑ Y(BX).

We haveY(t) = a·Y(tr) andY(t̂) = a·b·Y(tr). Since the semiring is lossy, we have
1 ⊑ b and soY(t) ⊑ Y(t̂). Notice that, since product is not necessarily commutative, it
is important thata is the first factor of both yields. ⊓⊔

Because of the preceding theorem, given a strongly connected systemf , we may use
the linear systemfB(X) = f(0)+Df |fn(0)(X) for calculatingµf . Asf is strongly
connected,fB is also strongly connected. The least fixed-point of such a strongly con-
nected linear systemfB is easily calculated: all non-constant monomials appearing in
fB have the formblXbr for someX ∈ X , andbl, br ∈ S \ {0}. As fB is strongly
connected, every polynomial(fB)Y is substituted forY in (fB)X again and again
when calculating the Kleene sequence(fk

B(0))k∈N. So, let l be the sum of all left-
handed coefficientsbl (appearing inany fX), and similarly definer. We then have
(µfB)X = l∗

(∑
Y ∈X fY (0)

)
r∗ for all X ∈ X .

If f is not strongly connected, we first decomposef into strongly connected sub-
systems, and then we solve these systems bottom-up. Note that substituting the solu-
tions from underlying SCCs into a given SCC leads to a new system in normal form.
As there are at mostn = |X | many strongly connected components for a given sys-
temf ∈ S[X]X , we obtain the following theorem which was first stated explicitly for
context-free grammars in [3].

Theorem 4. The least fixed-pointµf of a polynomial systemf over a lossy semiring
is representable by regular expressions overS. If f is in normal formµf can be calcu-
lated solving at mostn bamboo systems.

11

7 1-bounded Semirings

Definition 7. An io-semiringS is called1-boundedif a ⊑ 1 holds for alla ∈ S.

Natural examples are the tropical semiring over the naturalnumbers(N∪{∞},∧,+,∞, 0)
and the “maximum-probability” semiring([0, 1],∨, ·, 0, 1), where∧ and∨ denote min-
imum and maximum, respectively. Notice that any commutative1-bounded semiring is
star-distributive (asa∗ = 1 for all a), but not all1-bounded semirings have commuta-
tive multiplication. Consider for example the semiring of those languagesL overΣ that
areupward-closed, i.e.,w ∈ L impliesu ∈ L for all u such thatw is a subword ofu.
This semiring is1-bounded and hasΣ∗ as1-element. Upward-closed languages form a
natural dual to downward-closed languages from the previous section.
We show thatµf can be computed very easily in the case of1-bounded semirings:

Theorem 5. µf = fn(0) holds for polynomial systems over1-bounded semirings.

Proof Sketch.Recall that, by Proposition 2, we have(fn(0))X = Y(T
(n−1)

X), where

T
(n−1)

X contains allX-trees of height at mostn − 1. We proceed by derivation tree
analysis, i.e., by discharging the precondition of Proposition 3. So it suffices to show
that for anyX-treet there is anX-treet′ of height at mostn − 1 with Y(t) ⊑ Y(t′).
Such a treet′ can be constructed by pruningt as long as some variable label occurs
more than once along any path. ⊓⊔

Theorem 5 appears to be rather easy from our point of view, i.e., from the point of
view of derivation trees. However, even this simple result has very concrete applications
in the domain of interprocedural program analysis [13]. Themain algorithms of [13],
the so-calledpost∗ andpre∗ algorithms, can be seen as solvers of fixed-point equations
overboundedsemirings, which are semirings that do not have infinite ascending chains.
Those solvers are based on Kleene’s iteration and the complexity result given there
depends on the maximal length of ascending chains in the semiring (cf. [13], page 28).
Such a bound may not exist, and does not exist for the tropicalsemiring over the natural
numbers(N ∪ {∞},∧,+,∞, 0) which is considered as an example in [13], pages 13
and 18. However, Theorem 5 can be applied to this semiring, which shows that the
program analysis algorithms of [13] applied to1-bounded semirings are polynomial-
time algorithms, independent of the length of chains in the semiring.

8 Conclusion

We have shown that derivation tree analysis, a proof technique first introduced in [5], is
an efficient tool for the design of efficient fixed-point algorithms on io-semirings. We
have considered three classes of io-semirings with applications to language theory and
verification. We have shown that for star-distributive semirings and lossy semirings the
least fixed-point of a polynomial system of equations is equal to the least fixed-point
of a linear system, the bamboo system. This improves the results of [5]: The generic
algorithm given there requires to solveN different systems of linear equations in the
star-distributive case (whereN is the original number of polynomial equations), and is
not applicable to the lossy case.

12

We have used our results to design an efficient fixed-point algorithm for the(min,+)-
semiring. In turn, we have applied this algorithm to providea cubic algorithm for com-
puting the throughput of a context-free language, improving theO(N4) upper bound
obtained by Caucal et al. in [2].

For lossy semirings, derivation tree analysis based on bamboos has led to an al-
gebraic generalization of a result of Courcelle stating that the downward-closure of a
context-free language is effectively regular. Finally we have used derivation tree analy-
sis to derive a simple proof thatµf = fn(0) holds for1-bounded semirings, with some
applications in interprocedural program analysis.

References

1. P. A. Abdulla, A. Bouajjani, and B. Jonsson. On-the-fly analysis of systems with unbounded,
lossy FIFO channels. InCAV’98, LNCS 1427, pages 305–318. Springer, 1998.

2. D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter. Efficient computation of throughput
values of context-free languages. InCIAA’07, LNCS 4783, pages 203–213. Springer, 2007.

3. B. Courcelle. On constructing obstruction sets of words.EATCS Bulletin, 44:178–185, 1991.
4. J. Esparza, S. Kiefer, and M. Luttenberger. An extension of Newton’s method toω-

continuous semirings. InDLT’07, LNCS 4588, pages 157–168. Springer, 2007.
5. J. Esparza, S. Kiefer, and M. Luttenberger. On fixed point equations over commutative

semirings. InSTACS’07, LNCS 4397, pages 296–307. Springer, 2007.
6. J. Esparza, A. Kǔcera, and R. Mayr. Model checking probabilistic pushdown automata.

Logical Methods in Computer Science, 2006.
7. K. Etessami and M. Yannakakis. Recursive Markov chains, stochastic grammars, and mono-

tone systems of nonlinear equations. InSTACS, pages 340–352, 2005.
8. T. Gawlitza and H. Seidl. Precise fixpoint computation through strategy iteration. In

ESOP’07, LNCS 4421, pages 300–315. Springer, 2007.
9. T.E. Harris.The Theory of Branching Processes. Springer, 1963.

10. G. Higman. Ordering by divisibility in abstract algebras.Proc. London Math. Soc., 2, 1952.
11. M. W. Hopkins and D. Kozen. Parikh’s theorem in commutative Kleene algebra. InLICS’99.
12. F. Nielson, H.R. Nielson, and C. Hankin.Principles of Program Analysis. Springer, 1999.
13. T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and their applica-

tion to interprocedural dataflow analysis.Science of Computer Programming, 58(1–2):206–
263, October 2005. Special Issue on the Static Analysis Symposium 2003.

13

Appendix

A Proofs of Section 4

Theorem 1. Letf be a system of polynomials over an io-semiring. For every variable
X of f we haveY(BX) = (µfB)X , i.e., the yield of theX-bamboos is equal to the
X-component of the least solution of the bamboo system.

Proof. By definition, we have

fB(X) = f(0) + Df |fn(0)

(
X
)
.

Its Kleene sequence, thus, becomes

fB(0) = f(0)

f2
B(0) = f(0) + Df |fn(0)

(
f(0)

)

f3
B(0) = f(0) + Df |fn(0)

(
f(0)

)
+ Df |fn(0)

(
Df |fn(0)

(
f(0)

))
︸ ︷︷ ︸

=:Df |2
fn(0)

(
f(0)

)

...
fk
B(0) = f(0) + Df |fn(0)

(
f(0)

)
+ . . . + Df |k−1

fn(0)

(
f(0)

)
.

As µfB = supfk
B(0), we get

µfB =
∑

k∈N

Df |kfn(0)

(
f(0)

)
,

whereDf |k
fn(0) denotes thek-fold application ofDf |fn(0). In particular, we have

Df |0
fn(0)

(
f(0)

)
= f(0).

Let B(h)
X be the set ofX-bamboos (w.r.t.f) of heightat mosth. Similarly,BX de-

notes the set of all bamboos of height at mosth.

⊒-direction: We first prove that

Y(BX) ⊒
(
µfB

)
X

.

It suffices to show (forh ≥ 0) that

Y(B
(h+n−1)
X) ⊒

(
Df |hfn(0)

(
fn(0)

))

X

holds for allX ∈ X as this immediately implies

Y(BX) =
∑

h∈N
Y(B

(h+n−1)
X)

⊒
∑

h∈N

(
Df |h

fn(0)

(
fn(0)

))

X

⊒
∑

h∈N

(
Df |h

fn(0)

(
f(0)

))

X

=
(
µfB

)
X

.

14

We proceed by induction onh: Forh = 0, we haveB(n−1)
X = T

(n−1)
X , andY(T

(n−1)
X) =

fn(0)X (cf. prop. 2). Thus,

Y(B
(n−1)
X) = Y(T

(n−1)
X) = fn(0)X =

(
Df |0fn(0)

(
fn(0)

))

X

follows immediately.

Consider therefore
(
Df |h+1

fn(0)

(
fn(0)

))

X
for h ≥ 0, and letY(B(h)) denote the

vector defined byY(B(h))X := Y(B
(h)
X). We then have by induction onh that

(
Df |h+1

fn(0)

(
fn(0)

))

X
⊑
(
Df |fn(0)

(
Y(B(h+n−1))

))

X

Assume thatfX =
∑k

i=1 mi wherem1, . . . ,mk are monomials. As addition is idem-
potent, we may assume these monomials are pairwise different. By definition, we have

(
Df |fn(0)

(
Y(B(h+n−1))

))

X
= Df

X
|fn(0)

(
Y(B(h+n−1))

)

=
∑k

i=1 Dmi |fn(0)

(
Y(B(h+n−1))

)
.

If all monomialsm1, . . . ,mk have degree0, thenDf
X
|v(a) = 0 for all v,a ∈ V . But

this also implies thatB(h) = T
(0)

X also holds for allh ≥ 1, hence, we may assume that
there is at least one monomial of degree at least one. Letm ∈ {m1, . . . ,mk} be such a
monomial withm = a1X1a2 . . . Xlal+1 (for somel ≥ 1). We then have

Dm|fn(0)

(
Y(B(h+n−1))

)
=
∑

Y ∈X

DY m|fn(0)

(
Y(B(h+n−1))

)

by definition. Consider aY ∈ {X1, . . . ,Xl}, i.e. a variable appearing inm (for the
remaining variables, the differential is again0), and let posY (m) = {i | Xi = Y } be
the set of “positions ofY in m”. We then may write

DY m|fn(0)

(
Y(B(h+n−1))

)

=
∑

p∈posY (m)

(
p−1∏

q=1

aq · f
n(0)Xq

)
· ap · Y(B(h+n−1))Xp

·

(
l∏

q=p+1

aq · f
n(0)Xq

)
· al+1

=
∑

p∈posY (m)

(
p−1∏

q=1

aq · f
n(0)Xq

)
· ap · Y(B

(h+n−1)
Xp

) ·

(
l∏

q=p+1

aq · f
n(0)Xq

)
· al+1

=
∑

p∈posY (m)

(
p−1∏

q=1

aq · Y(T (n−1))Xq

)
· ap · Y(B

(h+n−1)
Xp

) ·

(
l∏

q=p+1

aq · Y(T (n−1))Xq

)
· al+1

=
∑

p∈posY (m)

(
p−1∏

q=1

aq · Y(T
(n−1)

Xq
)

)
· ap · Y(B

(h+n−1)
Xp

) ·

(
l∏

q=p+1

aq · Y(T
(n−1)

Xq
)

)
· al+1

=
∑

p∈posY (m)




p−1∏

q=1

aq ·
∑

t∈T
(n−1)

Xq

Y(t)


 · ap ·




∑

t∈B
(h+n−1)
Xp

Y(t)


 ·




l∏

q=p+1

aq ·
∑

t∈T
(n−1)

Xq

Y(t)


 · al+1

15

But this last sum is simply the yield of allX-bamboost ∈ B
(h+n)
X with λ2(t) =

m having height at least1, and at mosth + n. As for t ∈ B
(h)
X we haveλ2(t) ∈

{m1, . . . ,mk}, we get by idempotent addition
(
Df |fn(0)

(
Y(B(h+n−1))

))

X
⊑ Y(B

(h+n)
X).

⊑-direction: We now turn to the proof of

Y(BX) ⊑
(
µfB

)
X

.

As addition is idempotent, it suffices to show that

Y(t) ⊑
(
µfB

)
X

.

We proceed by induction on the number of nodes int. If t has just one node then
Y(t) ⊑ (f(0))X ⊑

(
µfB

)
X

. For the induction step,t has children. So assume w.l.o.g.
thatλ2(t) = a1X1 · · ·Xsas+1 for somes ≥ 1. Denote the children oft by t1, . . . , ts.
Furthermore we assume w.l.o.g. that the backbone oft goes throught1. Hence,t1 is
itself a bamboo having less nodes thant. By induction we haveY(t1) ⊑

(
µfB

)
X1

. As
t is a bamboo, the other childrent2, . . . , ts have a height of at mostn − 1. It is easy to
see (cf. [4]) that this implies

Y(tr) ⊑ (fn(0))Xr
for all 2 ≤ r ≤ s . (1)

Now we have:

Y(t) = a1Y(t1) · · ·Y(ts)as+1 (def. of yieldY)

⊑ a1

(
µfB

)
X1

a2Y(t2) · · ·Y(ts)as+1 (by induction)

⊑ a1

(
µfB

)
X1

a2(f
n(0))X2

· · · (fn(0))Xs
as+1 (Equation (1))

⊑ DX1
(a1X1 · · ·Xsas+1)|fn(0)

(
µfB

)
(def. of differentials)

⊑ DX1
f

X
|fn(0)

(
µfB

)
(t ∈ BX)

⊑ Df
X
|fn(0)

(
µfB

)
(def. of differentials)

=
(
Df |fn(0)

(
µfB

))
X

(def. of differentials)

⊑
(
µfB

)
X

⊓⊔

B Proofs of Section 5

Proposition 5. In any star-distributive semiring, the following equations hold:

(1) a∗b∗ = a∗ + b∗

(2) (ab∗)∗ = a∗ + ab∗

Proof.

16

(1) The equationa∗b∗ = (a + b)∗ holds in any commutative idempotent semiring. By
star-distributivity,(a + b)∗ = a∗ + b∗.

(2) In any commutative io-semiring, we have(ab∗)∗ = 1 + aa∗b∗ (see e.g. [11]). By
(1), we have1 + aa∗b∗ = 1 + aa∗ + ab∗ = a∗ + ab∗. ⊓⊔

Theorem 2. µf = µfB holds for polynomial systemsf over star-distributive semirings.

Proof. We will need the following notation: Ift′ is a subtree of a derivation treet,
we write t = t̂ · t′ wheret̂ is the partial derivation tree obtained fromt by removing
t′. If, in addition, t′ = t̂′ · t′′, andt′ andt′′ have the same variable-label. we say the
decompositiont = t̂ · t̂′ · t′′ is pumpable, becausêt · (t̂′)i · t′′ is a valid tree for alli ≥ 0.
We definêt · (t̂′)∗ · t′′ = {t̂ · (t̂′)i · t′′ | i ≥ 0}. Notice that, due to commutativity of
product, it holdsY(t̂ · (t̂′)∗ · t′′) = Y(t̂) ·Y(t̂′)∗ ·Y(t′′). We call this yield thepumping
yield of the decompositiont = t̂ · t̂′ · t′′.

The proof is by derivation tree analysis. So it suffices to discharge the precondition
of Corollary 2. More precisely we need to show that, for anyX-treet, we haveY(t) ⊑
Y(BX). If t does not have a pumpable decomposition, thent has a height of at most
n − 1, hencet ∈ BX and soY(t) ⊑ Y(BX). It remains to show: ift has a pumpable
decompositiont = t̂· t̂1 ·t

′
1, thenY(t) ⊑ BX . In fact, we showY(t̂·(t̂1)

∗ ·t′1) ⊑ Y(BX),
which is stronger becauseY(t) ⊑ Y(t̂ · (t̂1)

∗ · t′1).
Denote by#(t) the number of nodes in a treet. We assign to a pumpable decompo-

sition t = t̂ · t̂1 · t
′
1 asizeby settingsize(t = t̂ · t̂1 · t

′
1) = (#(t),#(t̂1 · t

′
1)). We define

a total order on sizes by setting(i, j) ⊳ (i′, j′) if either i < i′ or i = i′ andj < j′.
We use this order to prove by induction that for any size(i, j), if there is a pumpable
decompositiont = t̂ · t̂1 · t

′
1 of size(i, j), thenY(t̂ · (t̂1)

∗ · t′1) ⊑ Y(BX).
The induction base is trivial because treest with #(t) = 1 do not have a decom-

position. For the induction step, lett be anX-tree and lett = t̂ · t̂1 · t′1 be pumpable.
Choose a pathp in t from the root to a leaf throught′1. If p is a valid stem of anX-
bamboo, then all trees in̂t · (t̂1)∗ · t′1 areX-bamboos, soY(t̂ · (t̂1)

∗ · t′1) ⊑ BX . Hence,
assume thatp is not a valid stem, i.e., there is some subtree oft, disjoint fromp, with
height at leastn. So this tree has a subtreet2 = t̂2 · t

′
2 such thatt2 andt′2 have the same

variable-label. We distinguish two cases.

(a) Lett2 notbe a subtree of̂t1. Thent̂1 andt̂2 are disjunct and so there exists aỹ such
thatY(t) = ỹ · Y(t̂1) · Y(t̂2). Then:

Y(t̂ · (t̂1)
∗ · t′1) = ỹ · Y(t̂1)

∗ · Y(t̂2)

⊑ ỹ · Y(t̂1)
∗ · Y(t̂2)

∗ (def. of Kleene∗)
= ỹ · Y(t̂1)

∗ + ỹ · Y(t̂2)
∗ (Prop. 5 (1))

The expressioñy ·Y(t̂1)
∗ equals the pumping yield of a decomposition of anX-tree

which is obtained fromt by removing the substructurêt2. Similarly, the expression
ỹ · Y(t̂2)

∗ is equal to the pumping yield of a decomposition of anX-tree which is
obtained fromt by removing the substructurêt1. By induction on the size, both of
those pumping yields are⊑ Y(BX).

17

(b) Let t2 bea subtree of̂t1. Then we can writêt1 = ̂̂t1 · t̂2 · t′2. We have:

Y(t̂ · (t̂1)
∗ · t′1) = Y(t̂) · Y(̂̂t1 · t̂2 · t′2)∗ · Y(t′1)

= Y(t̂) ·
(
Y(̂̂t1) · Y(t̂2) · Y(t′2)

)∗
· Y(t′1)

⊑ Y(t̂) ·
(
Y(̂̂t1) · Y(t̂2)

∗ · Y(t′2)
)∗

· Y(t′1)

=





Y(t̂) · Y(̂̂t1) · Y(t̂2)
∗ · Y(t′2) · Y(t′1) +

Y(t̂) ·
(
Y(̂̂t1) · Y(t′2)

)∗
· Y(t′1)



 (Prop. 5 (2))

=

{
Y(t̂ · (̂̂t1 · t̂2

∗
· t′2) · t

′
1) +

Y(t̂ · (̂̂t1 · t′2)∗ · t′1)

}

The first expression in this sum equalsY((t̂ · ̂̂t1 · t′1) · t̂2
∗
· t′2). This is the pumping

yield of the decompositiont = (t̂ · ̂̂t1 · t′1) · t̂2 · t′2. Sincet2 = t̂2 · t′2 is a proper
subtree oft̂1 · t′1, it has fewer nodes than̂t1 · t′1. So this decomposition is smaller
(in the second component), i.e., by induction, the first expression in the above sum
is ⊑ Y(BX).

The second expression in the above sum equals the pumping yield of the decompo-
sition of anX-tree which is obtained fromt by removing the substructurêt2. By
induction, this pumping yield is⊑ Y(BX). ⊓⊔

C Proofs of Section 6

Lemma 1. For every cleang ∈ S[X]X we can find a systemf ∈ S[X ′]X
′

(X ⊆ X ′),
wheref is in normal form, andµgX = µfX for all X ∈ X .

Proof. For every cleang ∈ S[X]X we can find af ∈ S[X ′]X
′

in normal form with
X ⊆ X ′ such thatµgX = µfX for all X ∈ X as follows: We first transformg into
Chomsky normal-form, which gives us a systemg′ over the same semiring. As the
transformation into Chomsky normal-form introduces new variables,g′ is given in a
super setX ′ of X with µg′

X = µgX for all X ∈ X . Next, asg is clean, we can ensure
that g′ is clean, too. We therefore may setg′′ := g′ + 1 without changing the least
solution. Hence, every polynomial ofg′′

X has the form

c(X) +
∑

Y,Z∈X ′

a
(X)
Y,Z · Y · Z with 1 ⊑ c andaY,Z ∈ {0, 1}.

18

Finally, as1 ⊑ µg′′ we have

µg′′
X = g′′

X(µg′′
X)

= c(X) +
∑

Y,Z∈X ′

a
(X)
Y,Z · µg′′

Y · µg′′
Z

= c(X) +
∑

Y,Z∈X ′

a
(X)
Y,Z · (1 + µg′′

Y) · (1 + µg′′
Z)

= c(X) + 1 +
∑

Y,Z∈X ′

a
(X)
Y,Z · µg′′

Y · µg′′
Z +

∑

Y ∈X ′

(
∑

Z∈X ′

a
(X)
Y,Z + a

(X)
Z,Y

)
· µg′′

Y

= g′′
X(µg′′

X) + 1 +
∑

Y ∈X ′

(
∑

Z∈X ′

a
(X)
Y,Z + a

(X)
Z,Y

)
· µg′′

Y .

We now definef by setting for allX ∈ X ′

fX := g′′
X + 1 +

∑

Y ∈X ′

(
∑

Z∈X ′

a
(X)
Y,Z + a

(X)
Z,Y

)
· Y.

We then haveg′′ ⊑ f , and, thus,µg′′ ⊑ µf , but alsof(µg′′) = µg′′, i.e.µg′′ = µf .
⊓⊔

For the proof of Theorem 3, we first define partial derivation trees: These trees result
from derivation trees by removing exactly one subtree, leaving in some sense a “dan-
gling pointer”.

Definition 8. Letf ∈ S[X]X . Lett be someX-tree forX ∈ X . Further, letY ∈ X be
some variable such thatt has at least one leafs with λv(s) = Y . By erasing exactly one
such leafs from t, we obtain anXY -tree. We writeTX,Y for the set of allXY -trees.

The setBX,Y is defined similarly. A treet ∈ BX,Y results from a treet ∈ BX by
removing the exactly one such leafs of t with λv(s) = Y , wheres lies on a longest path
from t′ to a leaf.

Example 3.Consider theX-tree depicted on the left. By deleting the leaf labeled by
(Y, d), we obtain theXY -tree depicted in the middle, where we represent the missing
leaf/subtree by©. Similarily, we obtain theXX-tree shown on the right by deleting
the leaf labeled by(X, g).

(X, aY bZc)

(Y, d) (Z, eXf)

(X, g)

(X, aY bZc)

© (Z, eXf)

(X, g)

(X, aY bZc)

(Y, d) (Z, eXf)

©

Note that we can replace© in the XY -tree by anyY -tree in order to obtain a valid
X-tree, again. In other words, the yield of anXY -tree is a linear monomial inY .

19

We now can state our main theorem.
Theorem 3. For a finite set of variablesX (n := |X |), let S be a lossy semiring, and
f ∈ S[X]X a clean and strongly connected system of polynomials in normal-form. We
then haveµf = µfB.

Proof. We again show that we can transform anyX-treet w.r.t.f into a treêt contained
in BX with Y(t) ⊑ Y(t̂). We proceed by induction on the numberN of nodes oft. If
N = 1, thent has height0. By definition, we havet ∈ BX , so we are done.

Therefore assumeN > 1. Asf is in normal form, we either haveλm(t) = blY br or
λm(t) = Y Z for someY,Z ∈ X , andbl, br ∈ S\{0}. If t is labeled byλm(t) = blY br,

t = (X, blY br)

t1

thent has exactly one childt1, which immediately can be replaced by some treet̂1 in
BY with Y(t1) = Y(t̂1) because of induction. This gives us the treet̂

t̂ = (X, blY br)

t̂1

andY(t̂) = blY(t̂1)br = blY(t1)br = Y(t).
Hence, assume thatλm(t) = Y Z, i.e. t has two childrent1, t2.

t = (X,Y Z)

t1 t2

Descending intot1 by always taking the left most child, we end up at the left most
leaf s of t. We denote byt1,1 to t1,k the “right” children of the nodes located on the
path fromt1 to s for somek ∈ N. Let r then be the father ofs with λv(s) = V , and
λm(s) = a ∈ S. We assume thatλm(r) = V W for someW ∈ X

t = (X,Y Z)

t1

r = (U, V W)

s = (V, a) t1,k

t1,1

t2

As f is in normal form, andV W is a monomial offU , there exists also a monomial
clWcr appearing infU for somecl, cr ∈ S \ {0}. We first remove fromt1 the leaf
s, and relabel the noder by settingλm(r) := clWcr. This gives us the treet′1 with
Y(t1) ⊑ a · Y(t′1), as1 ⊑ cl, cr:

20

t′1

r = (U, clWcl)

t1,k

t1,1

Now, asf is strongly connected and in normal form, we find anY -treetY of height
at mostn − 1 which has(V, a) as its single leaf, such thata ⊑ Y(tY); similarly, we
find aZX-treetZX of height at mostn − 1 having© as its single leaf; the “yield” of
tZX is some monomialdlXdr for somedl, dr ∈ S \{0}. Using these, we construct the
following treet′ with λv(t′) = X, andλm(t′) = Y Z. As left child of t′, we take the
Y -treetY , whereas we taketZX as the right child, giving us:

t′ = (X,Y Z)

tY

(V, a)

tZX

©

We next replace© by a new nodet′′ with λv(t′′) = X, andλm(t′′) = Y Z:

t′ = (X,Y Z)

tY

(V, a)

tZX

t′′ = (X,Y Z)

Finally, we set theY -treet′1 as the left child oft′′, while theZ-treet2 becomes the right
child of t′′:

t′ = (X,Y Z)

tY

(V, a)

tZX

t′′ = (X,Y Z)

t′1

(U, clWcr)

t1,k

t1,1

t2

21

We now haveY(t′) = Y(tY) · Y(tZX) ⊒ a · dl · Y(t′′) · dr ⊒ a · Y(t′1) · Y(t2) ⊒
Y(t1) · Y(t2) = Y(t).

By construction oft′, the left child is aY -tree of height at mostn − 1, while every
node fromtZX to t′′ has exactly one child. Hence, only the subtreet′′ might not have
the required form. But ast′′ has one node less thant, we find by induction on the
number of nodes a treêt′′ ∈ BX with Y(t′′) ⊑ Y(t̂′′). Replacing int′ the subtreet′′ by
this treet̂′′,

t̂ = (X,Y Z)

tY

(V, a)

tZX

t̂′′

we then obtain the treêt with t̂ ∈ BX andY(t̂) ⊒ Y(t′) ⊒ Y(t).
If λm(r) = clV cr for somecl, cr ∈ S \ {0}, i.e.

t1

r = (U, clV cr)

s = (V, a)

t1,1

we proceed similarly, but we definet′1 as follows: again, we remove the leafs from t1,
but asr hass as its only child, we now relabelr by λm(r) := fU (0). As f is clean,
we havefU (0) ⊒ 1. This gives us:

t′1

r = (U,fU (0)) t1,1

and

t′ = (X,Y Z)

tY

(V, a)

tZX

t′′ = (X,Y Z)

t′1

(U,fU (0)) t1,1

t2

Again, we can find ât′′ ∈ BX with Y(t′′) ⊑ Y(t̂′′) ast′′ has one node less thant, and
the induction is complete. ⊓⊔

22

D Proofs of Section 7

Theorem 5. µf = fn(0) holds for polynomial systems over1-bounded semirings.

Proof. We reuse the notation from the proof of Theorem 2: Ift2 is a subtree of a deriva-
tion treet, we writet = t1 · t2 wheret1 is the partial derivation tree obtained fromt by
removingt2.

Recall that, by Proposition 2,(fn(0))X = Y(T
(n−1)

X), whereT (n−1)
X contains

all X-trees of height at mostn − 1. We proceed by derivation tree analysis, i.e., by
discharging the precondition of Proposition 3. So it suffices to show that for anyX-tree
t there is a treet′ of height at mostn − 1 with Y(t) ⊑ Y(t′). We proceed by induction
on the number of nodes int. For the induction base,t has just one node, sot ∈ T

(0)
X .

For the induction step w.l.o.g. lett be anX-tree with a height of at leastn. Then there
is a decompositiont = t1 · t2 · t3 with λ1(t2) = λ1(t3). We haveY(t) = y1y2y3y4y5

whereY(t1) = y1y5, Y(t2) = y2y4 andY(t3) = y3. Let t′ = t1 · t3. Notice thatt′ is
a validX-tree asλ1(t2) = λ1(t3). We haveY(t′) = y1y3y5 which is, by1-bounded-
ness, at leasty1y2y3y4y5 = Y(t). As t′ has fewer nodes thant, there is, by induction
hypothesis, anX-treet′′ of height at mostn − 1 such thatY(t′) ⊑ Y(t′′). Combined
we getY(t) ⊑ Y(t′) ⊑ Y(t′′). ⊓⊔

23

