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Abstract. Fixed point equations x = F (x) over ω-continuous semi-
rings are a natural mathematical foundation of interprocedural program
analysis. Equations over the semiring of the real numbers can be solved
numerically using Newton’s method. We generalize the method to any
ω-continuous semiring and show that it converges faster to the least fixed
point than the Kleene sequence 0, F (0), F (F (0)), . . . We prove that the
Newton approximants in the semiring of languages coincide with finite-
index approximations studied by several authors in the 1960s. Finally,
we apply our results to the analysis of stochastic context-free grammars.

1 Introduction

In [2] we have argued that fixed point equations over ω-continuous semirings are
a natural mathematical foundation of interprocedural program analysis. In this
approach a program is mapped (in a syntax-driven way) to a system of fixed
point equations over an abstract semiring. The carrier and the operations of the
semiring are instantiated depending on the information about the program one
wishes to compute. The information is the least solution of the system.

On ω-continuous semirings one can apply Kleene’s fixed point theorem, and
so the least solution of a system of equations x = F (x) is the supremum of
the sequence 0, F (0), F 2(0), . . ., where 0 is the vector whose components are all
equal to the neutral element of +. If the carrier of the semiring is finite, this
yields a procedure to compute the solution. However, if the carrier is infinite,
the procedure rarely terminates, and its convergence can be very slow. So it
is natural to look for “accelerations”. Loosely speaking, an acceleration is a
function G having the same least fixed point µF as F , but such that (Gi(0))i≥0

converges faster to µF than (F i(0))i≥0.
In [2] we presented a generic acceleration scheme for commutative ω-continuous

semirings, which we call the Newton scheme. We showed that the Newton scheme
generalizes two well-known but apparently disconnected acceleration schemes
from the literature: Newton’s method for approximating a zero of a differen-
tiable function (this is the reason for the name of our scheme) (see for instance
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[12]), and the Hopkins-Kozen iteration scheme for Kleene algebras (which are
very close to idempotent commutative semirings) [9].

In this paper we further generalize the Newton scheme of [2] to arbitrary
ω-continuous semirings, commutative or not. In particular, this allows us to
solve systems of fixed point equations over the language semiring having the
set of languages over a given alphabet as carrier and union and concatenation
of languages as sum and product, respectively. For instance, if we consider this
semiring for the alphabet {(, )}, then the least solution of the equation X =
(X) + XX + 1 is the Dyck language of well-parenthesized expressions. Clearly,
the least solution of a system is a context-free language, and every context-free
language is the solution of a system.

The Newton acceleration scheme approximates the least solution from below.
In the case of languages, it computes a chain L0 ⊆ L1 ⊆ L2 . . . of approximations
of the least solution L =

⋃
i≥0 Li. Our main theorem characterizes these approx-

imations, and shows that, once again, a well-known concept from the literature
“is nothing but” Newton’s approximation technique.

The i-th approximation of the Newton scheme turns out to be the index-
(i + 1) approximation Li+1(G) of L(G). Recall that a terminal word w is in
Li(G) if there is a derivation S ⇒ α1 ⇒ · · · ⇒ αr = w and every αi, 0 ≤ i ≤ r
contains at most i occurrences of variables [13, 8, 14, 7].

Our result allows to transfer results from language theory to numerical anal-
ysis and vice versa. We develop a way of applying finite-index approximations
to stochastic context-free grammars and computing the approximation quality.

It is well-known that Newton’s method for approximating the zero of a func-
tion is based on the notion of differential. Our results require to give a definition
of derivative of a polynomial expressions for arbitrary ω-continuous semirings.
This can be seen as a generalization of the Brzozowski’s definition of deriva-
tive for regular languages and Hopkins and Kozen’s definition for commutative
semirings, and could have some interest of its own.

Organization and contributions of this paper. In Section 2 we define differentials
for power series over ω-continuous semirings. Section 3 introduces a generalized
Newton’s method for approximating the least solution of fixed point equations
over arbitrary ω-continuous semirings. In Section 4 (Theorem 4.1) we character-
ize the iterates of the Newton scheme in terms of the tree dimension, a concept
generalized from [2]. We apply this result to context-free grammars in Section 5
and prove that the Newton iterates coincide with finite-index approximations. In
Section 6 we apply the generalized Newton’s method to stochastic context-free
grammars. Missing proofs can be found in a technical report [1].

2 Differentials in ω-Continuous Semirings

The goal of this section is to generalize the notion of differential of a function
to ω-continuous semirings. More precisely, we will only define the notion for
functions that can be represented as a power series.
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Recall the classical notion of differential that can be found in any elementary
calculus textbook. Let V be a vector space of finite dimension over the real
numbers R. The dual of V is the vector space whose elements are the linear
functions V → R, usually called linear forms. Given f : V → R, the differential
Df of f (when it exists) is an application Df : V → Ṽ that assigns to every
vector v ∈ V a linear form Df |v. Loosely speaking, Df |v is the best linear
approximation of f at the point v.

We wish to generalize the notion of differential to the case in which R is
replaced by an arbitrary ω-continuous semiring, and f is a power series. For
this, we first introduce ω-continuous semirings in Section 2.1. In Section 2.2 we
generalize the notions of vector and linear form over the reals. In Section 2.3 we
introduce power series, and finally in Section 2.4 the notion of differential itself.

2.1 ω-Continuous Semirings

In the following, we work with ω-continuous semirings, as defined in [11].

Definition 2.1. A semiring S is given by 〈S, +, ·, 0, 1〉, where S is a set with
0, 1 ∈ S, 〈S, +, 0〉 is a commutative monoid with neutral element 0, 〈S, ·, 1〉 is a
monoid with neutral element 1, 0 is an annihilator w.r.t. ·, i.e. 0 · a = a · 0 = 0
for all a ∈ S, and · distributes over +, i.e. a · (b + c) = a · b + a · c, and
(a + b) · c = a · c + b · c. The natural order relation v on a semiring S is defined
by a v b ⇔ ∃d ∈ S : a + d = b. The semiring S is naturally ordered if v is a
partial order on S.

An ω-continuous semiring is a naturally ordered semiring extended by an infinite
summation-operator

∑
that satisfies the following properties1:

– For every sequence a : N → S the supremum sup{
∑

0≤i≤k ai | k ∈ N} exists
in S w.r.t. v, and is equal to

∑
i∈N

ai. As a consequence, every non-decreasing
sequence ai v ai+1 converges, i.e. sup{ai} exists.

– It holds
∑

i∈N

(c·ai) = c·

(
∑

i∈N

ai

)
,
∑

i∈N

(ai ·c) =

(
∑

i∈N

ai

)
·c,

∑

j∈J



∑

i∈Ij

aj


 =

∑

i∈N

ai

for every a : N → S, c ∈ S, and every partition (Ij)j∈J of N.

In the following we often omit the dot · in products.

Example 2.1. The real semiring, denoted by SR, has R≥0 ∪{∞} as carrier. Sum
and multiplication are defined as expected (e.g. a · ∞ = ∞ for a 6= 0). Notice
that sum is not idempotent and product is commutative.

The language semiring over an alphabet Σ, denoted by SΣ , has the set of
all languages over Σ as carrier. Sum is union, and product is concatenation of
languages. Notice that sum is idempotent and product is not commutative.

1 [11] requires infinite summation for any sum, but we need only countable sums here.
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2.2 Vectors and Linear Forms

We introduce the notion of vectors and linear forms over an ω-continuous semi-
ring S. Notice that the name vector and linear form have to be taken with a
grain of salt, because for instance the set of vectors over S does not build a vector
space (since S may not be a field). However, it is useful to keep the names to
remember that they generalize the usual notions of vector and linear form.

Definition 2.2. Let S be an ω-continuous semiring and let X be a finite set of
variables.

A vector is a mapping v : X → S. The set of all vectors is denoted by V .
Given a countable set I and a vector vi for every i ∈ I, we denote by

∑
i∈I vi

the vector given by
(∑

i∈I vi

)
(X) =

∑
i∈I vi(X) for every X ∈ X .

A linear form is a mapping l : V → S satisfying l(v + v′) = l(v) + l(v′) for
every v, v′ ∈ V and l(0) = 0, where 0 denotes the vector given by 0(X) = 0 for
every X ∈ X . Given a linear form l and s, s′ ∈ S, we denote by s · l ·s′ the linear
form given by (s · l · s′)(v) = s · l(v) · s′ for every v ∈ V . Given a countable set I
and a linear form li for every i ∈ I, we denote by

∑
i∈I li the linear form given

by
(∑

i∈I li
)
(v) =

∑
i∈I li(v) for every v ∈ V .

2.3 Polynomials and Power Series

Definition 2.3. Let S be an ω-continuous semiring and X be a finite set of
variables. A monomial is a finite expression

a1X1a2 · · · akXkak+1

where k ≥ 0, a1, . . . , ak+1 ∈ S and X1, . . . , Xk ∈ X . A polynomial is an expres-
sion of the form m1 + . . .+mk where k ≥ 0 and m1, . . . , mk are monomials. We
let S[X ] denote the set of polynomials w.r.t. S and X . Similarly, a power series
is an expression of the form

∑
i∈I mi, where I is a countable set and mi is a

monomial for every i ∈ I. We use SJX K to denote this set.

Definition 2.4. Let f = α1X1α2X2α3 . . . αkXkαk+1 ∈ SJX K be a monomial
and let v be a vector. We define f(v), the evaluation of f at v, as

f(v) = α1v(X1)α2v(X2)α3 · · ·αkv(Xk)αk+1.

We extend this to any power series f =
∑

i∈I fi ∈ SJX K by f(v) =
∑

i∈I fi(v).

Finally, we can also define the product of polynomials and linear forms as follows:

Definition 2.5. Let I ⊆ N, let f, g ∈ S[X ] be polynomials, and let l be a linear
form. The expression flg denotes the mapping T : V → V → S given by

T (u, v) = f(u)l(v)g(u) .

We denote by T |u : V → S the linear form given by T |u(v) = T (u, v).
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2.4 Differential of a Power Series

Recall that in the real case the differential of a function f : V → R is a mapping
Df : V → Ṽ that assigns to every vector v ∈ V a linear form Df |v, the best linear
approximation of f at the point v. Given the basis {e1, . . . , en} of unit vectors

of V , the dual basis {dX1, . . . , dXn} of Ṽ is defined by dXi(a1e1+. . .+anen) = ai

for every a1, . . . , an ∈ R. Since {dX1, . . . , dXn} is a basis of Ṽ there are functions
λ1, . . . , λn : V → R such that

Df |v = λ1(v) dX1 + · · · + λn(v) dXn

for every v ∈ V (here λi is the partial derivative of f w.r.t. Xi). If for every

variable Xi we define DXi
f : V → Ṽ as the mapping that assigns to every vector

v the linear form DXi
f |v = λi(v) dXi, then we have Df = DX1

f + . . . + DXn
f .

Definition 2.7 below generalizes the linear forms DXi
f |v to the case in which

R is replaced by an ω-continuous semiring. We start by generalizing the dXi:

Definition 2.6. For every X ∈ X , we denote by dX the linear form defined by
dX(v) = v(X) for every v ∈ V .

Definition 2.7. Let f be a power series and let X ∈ X be a variable. The
differential of f w.r.t. X is the mapping DX f : V → V → S that assigns to every
vector v the linear form DX f |v : V → S inductively defined as follows:

DX f |v =





0 if f ∈ S or f ∈ X \ {X}
dX if f = X

DX g |v · h + g · DX h|v if f = g · h∑
i∈I DX fi |v if f =

∑
i∈I fi.

Further, we define the differential of f as the linear form

Df :=
∑

X∈X

DX f .

In the real case the differential is used to approximate the value of a differentiable
function f(v + u) in terms of f(v) and Df |v(u). The following lemma goes in
the same direction.

Lemma 2.1. Let f be a power series and let v, u be two vectors. We have

f(v) + Df |v(u) v f(v + u) v f(v) + Df |v+u(u).

3 Solving Systems of Fixed Point Equations

The partial order v on the semiring S can be lifted to an order on vectors, also
denoted by v, given by v v v′ iff v(X) v v′(X) for every X ∈ X .

In the following, let F be a vector of power series, i.e., a mapping that assigns
to each variable X ∈ X a power series F (X). For convenience we denote F (X)
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by F X . Given a vector v, we define F (v) as the vector satisfying (F (v))(X) =
F X (v) for every X ∈ X , i.e., F (v) is the vector that assigns to X the result of
evaluating the power series F X at v. So, F can be seen as a mapping F : V → V .

Given a vector of power series F , we are interested in the least fixed point
of F , i.e., the least vector v w.r.t. v satisfying v = F (v).

3.1 Kleene’s Iteration Scheme

Recall that a mapping f : S → S is monotone if a v b implies f(a) v f(b), and
ω-continuous if for any infinite chain a0 v a1 v a2 v . . . we have sup{f(ai)} =
f(sup{ai}). The definition can be extended to mappings F : V → V from vectors
to vectors in the obvious way (componentwise). Then we may formulate the
following proposition (cf. [11]).

Proposition 3.1. Let F be a vector of power series. The mapping induced by F

is monotone and continuous. Hence, by Kleene’s theorem, F has a unique least
fixed point µF . Further, µF is the supremum (w.r.t. v) of the Kleene sequence
given by κ(0) = F (0), and κ(i+1) = F (κ(i)).2

Kleene’s iteration scheme converges very slowly. Consider for instance the equa-
tion X = aXb + 1 over the semiring of languages over {a, b} (where 0 = ∅ and
1 = {λ}). The i-th iteration κ(i) is the language {ajbj | j ≤ i}, so the scheme
needs an infinite number of iterations to reach µF . Newton’s iteration scheme,
introduced below, can be seen as an “acceleration” of Kleene’s scheme.

3.2 Newton’s Iteration Scheme

Let F be a vector of power series, and v any vector. Then DF |v denotes the
mapping V → V with

(
DF |v(u)

)
X

= DF X |v(u). So DF |v can be seen as the
evaluation of a mapping DF : V → V → V at v (cf. Definition 2.7). Lemma 2.1
then becomes F (v) + DF |v(u) v F (v + u) v F (v) + DF |v+u(u).

Newton’s scheme uses DF to obtain a sequence that converges more quickly
to the least fixed point than Kleene’s sequence. In order to introduce it we first
define the Kleene star of an arbitrary mapping V → V :

Definition 3.1. Let F : V → V be an arbitrary mapping. The mapping F
i : V →

V is inductively defined by F
0(v) = v and F

i+1(v) = F (F i(v)). The Kleene star
of F , denoted by F

∗, is the mapping F
∗ : V → V given by F

∗(v) =
∑

i≥0 F
i(v).

Now we can define Newton’s scheme.

Definition 3.2. Let F : V → V be a vector of power series. We define the New-
ton sequence (ν(i))i∈N as follows:

ν
(0) = F (0) and ν

(i+1) = ν
(i) + DF |∗

ν(i) (δ
(i)),

where δ
(i) has to satisfy F (ν(i)) = ν(i) + δ

(i).

In words, ν(i+1) is obtained by adding to ν(i) the result of evaluating the Kleene
star of DF |ν(i) at the point δ

(i).

2 In [2] we define κ
(0) = 0, but κ

(0) = F (0) is slightly more convenient for this paper.
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The name “Newton’s method” is justified as follows: Consider a univariate
equation X = F (X) over SR with F ′|x ∈ (−1, 1) for x ∈ [0, µF ). Applying
Newton’s method as described above to X = F (X), yields ν(i+1) = ν(i) +

F ′|∗
ν(i) (F (ν(i))− ν(i)) = ν(i) +

∑
k∈N

F ′|k
ν(i) (F (ν(i))− ν(i)) = ν(i) + F (ν(i))−ν(i)

1−F ′|
ν(i)

=

ν(i) − G(ν(i))
G′|

ν(i)
. But this is exactly Newton’s method for finding a zero of G(X) =

F (X) − X . This can be generalized to equation systems (see [2, 5]).
The following theorem summarizes the properties of the Newton sequence.

Theorem 3.1. Let F ∈ SJX KX be a vector of power series. For every i ∈ N:
κ(i) v ν(i) v F (ν(i)) v µF = supj κ(j).

In particular, this theorem ensures the existence of a suitable δ
(i) (because ν(i) v

F (ν(i)), and the convergence of the Newton sequence to the same value as the
Kleene sequence. Moreover, since κ(i) v ν(i), the Newton sequence converges
“at least as fast” as the Kleene sequence.

Example 3.1. In the following examples we set X = {X}. Since in this case
vectors only have one component, given an element s of a semiring we also use
s to denote the vector v given by v(X) = s.

Consider the language semiring S{a,b} over the alphabet {a, b}. One can show

that by taking δ
(i) = F (ν(i)) Newton’s sequence can be simplified to

ν
(0) = F (0) and ν

(i+1) = DF |∗
ν(i)(F (ν(i))).

(1) Consider again the polynomial f(X) = aXb+1. As already mentioned above,
the Kleene sequence needs ω iterations to reach the fixed point {anbn | n ≥ 0}.
As a warm-up we show that the Newton sequence converges after one step.

We have Df |v = a dX b for every v ∈ V , and so

ν
(1) = (a dX b)∗(1) =

∑

j≥0

aj dX(1)bj = {ajbj | j ≥ 0}.

The next example shows a more interesting case.

(2) Consider the polynomial f(X) = aXX + b. We have:

Df |v = av(X) dX + a dX v(X)

ν(0) = b

ν(1) = Df |∗b (abb + b) = (ab dX + a dX b)∗(abb + b)
= L(X → abX | aXb | abb | b)

ν(i+1) = Df |∗
ν(i) (f(ν(i))) = (aν(i) dX + a dX ν(i))∗(f(ν(i)))

In this case the Newton sequence also needs ω iterations. We shall see in Section 5
that ν(i) contains the words generated by the grammar X → aXX, X → b via
derivations of index at most i+1, i.e., derivations in which no intermediate word
contains more than i + 1 occurrences of variables.
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(3) Consider the same polynomial as in (2), but over a semiring where product
is commutative (and + is still idempotent). In this case we have:

Df |v = av(X) dX

ν(0) = b

ν(1) = Df |∗b(ab2 + b) = (ab dX )∗(ab2 + b) = (ab)∗(ab2 + b) = (ab)∗b

ν
(2) = Df |∗

ν(1)(f(ν(1))) = (aν
(1))∗(f(ν(1))) = a(ab)∗b(a((ab)∗b)2 + b) = (ab)∗b

So the Newton sequence reaches the fixed point at ν(1). The language (ab)∗b is a
regular language having the same Parikh mapping as the context-free language
generated by X → aXX, X → b.

4 Derivation Trees and the Newton Iterates

In language theory, given a grammar G, one associates derivations and derivation
trees with G. The language L(G) can be seen as the set of all words that can be
derived by a derivation tree of G. On the other hand, if G is context-free, then
L(G) is the least solution of a fixed point equation x = F (x) over a language
semiring, where the equation x = F (x) is essentially the production set of G.

In this section we extend the notion of derivation trees to fixed point equa-
tions x = F (x) over any ω-continuous semiring. It will be easy to see that the
Kleene iterates κ(i) correspond to the derivation trees of height at most i. We
will show that the Newton iterates ν(i) correspond to the derivation trees of
dimension at most i, generalizing the concept of dimension introduced in [2].
This gives valuable insight into the generalized Newton’s method from the pre-
vious section and establishes a strong link between two apparently disconnected
concepts, one from language theory (finite-index languages, see Section 5) and
the other from numerical mathematics (Newton’s method).

Definition 4.1 (derivation tree). Let F be a vector of power series. A deriva-
tion tree of F is defined inductively as follows. Let a1X1a2 · · ·Xsas+1 be a sum-
mand of F X (X ∈ X ) and let v be a node labelled by

λ(v) = (λ1(v), λ2(v)) = (X, a1X1a2 · · ·Xsas+1).

Let t1, . . . , ts be derivation trees with λ1(tr) = Xr (1 ≤ r ≤ s). Then the tree
whose root is v and whose (ordered) children are t1, . . . , ts is a derivation tree.

We identify a derivation tree and its root from now on and often simply write
tree when we mean derivation tree.

Remark to multiplicities. Let F be a system of power series. If, for a variable
X ∈ X , the same monomial m occurs more than once as a summand of F X , and
there is a node v in a tree of F s.t. λ1(v) = X and λ2(v) = m, then it is not clear
“which” summand m of F X was used at v. But we assume in the following that
λ2(v) is a particular occurrence of m in F X . Hence, two trees which are equal
up to different occurrences are regarded as different in the following. However,
we do not make that explicit in our definition to avoid notational clutter.
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Definition 4.2 (height, yield). The height h(t) of a derivation tree t is the
length of a longest path from the root to a leaf of t. The yield Y (t) of a derivation
tree t with λ2(t) = a1X1a2 · · ·Xsas+1 is inductively defined to be

Y (t) = a1Y (t1)a2 · · ·Y (ts)as+1.

We can characterize the Kleene sequence (κ(i))i∈N using the height as follows.

Proposition 4.1. For all i ∈ N and X ∈ X , we have that
(
κ

(i)
)
X

is the sum
of yields of all derivation trees with λ1(t) = X and h(t) ≤ i.

Now we aim at characterizing the Newton sequence (ν (i))i∈N in terms of deriva-
tion trees. To this end we need use another property of a tree, the tree dimension.
As does the height, it depends only on the graph structure of a tree.

Definition 4.3 (dimension). For a tree t, define dl (t) = (d(t), l(t)) as follows.

1. If h(t) = 0, then dl(t) = (0, 0).
2. If h(t) > 0, let {t1, . . . , ts} be the children of t where d(t1) ≥ . . . ≥ d(ts). Let

d1 = d(t1). If s > 1, let d2 = d(t2), otherwise let d2 = 0. Then

dl(t) =

{
(d1 + 1, 0) if d1 = d2

(d1, l(t1) + 1) if d1 > d2.

We call d(t) the dimension of the tree t.

The following Theorem 4.1 defines a concrete Newton sequence (ν (i))i∈N which
allows for the desired tree characterization of ν(i) (cf. Prop. 4.1).

Theorem 4.1. Let F be a vector of power series. Define the sequence (ν (i))i∈N

as follows:

ν
(0) = F (0) and ν

(i+1) = ν
(i) + DF |∗

ν(i)(δ
(i)) ,

where δ
(i)
X is the sum of yields of all derivation trees t with λ1(t) = X and

dl (t) = (i + 1, 0). Then for all i ≥ 0 :

(1) F (ν(i)) = ν(i)+δ
(i), so (ν(i))i∈N is a Newton sequence as defined in Def. 3.2;

(2) ν
(i)
X is the sum of yields of all derivation trees t with λ1(t) = X and d(t) ≤ i.

5 Languages with Finite Index

In this section we study fixed point equations x = F (x) over language semirings.
Let SΣ be the language semiring over a finite alphabet Σ. Let F be a vector of
polynomials over X whose coefficients are elements of Σ. Then, for each X0 ∈ X ,
there is a naturally associated context-free grammar GF ,X0 = (X , Σ, P, X0),
where the set of productions is P = {(Xi → α) | α is a summand of F Xi

}.
It is well-known that L(GF ,X0) =

(
µF
)
X0

(see e.g. [11]). Analogously, each
grammar is naturally associated with a vector of polynomials. In the following
we use grammars and vectors of polynomials interchangeably.
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We show in this section that the approximations ν(i) obtained from our gen-
eralized Newton’s method are strongly linked with the finite-index approxima-
tions of L(G). Finite-index languages have been extensively investigated under
different names [13, 8, 14, 7, 6] (see [6] for historical background).

Definition 5.1. Let G be a grammar, and let D be a derivation X0 = α0 ⇒
· · · ⇒ αr = w of w ∈ L(G), and for every i ∈ {0, . . . , r} let βr be the projection
of αr onto the variables of G. The index of D is the maximum of {|β0|, . . . , |βr|}.
The index-i approximation of L(G), denoted by Li(G), contains the words deriv-
able by some derivation of G of index at most i.

We show that for a context-free grammar G in Chomsky normal form (CNF), the
Newton approximations to L(G) coincide with the finite-index approximations.

Theorem 5.1. Let G = (X , Σ, P, X0) be a context-free grammar in CNF and
let (ν(i))i∈N be the Newton sequence associated with G. Then

(
ν(i))X0 = Li+1(G)

for every i ≥ 0.

In particular, it follows from Theorem 5.1 that the (first component of the)
Newton sequence for a context-free grammar G converges in finitely many steps
if and only if L(G) = Li(G) for some i ∈ N.

6 Stochastic Context-Free Grammars

In this section we show how the link between finite-index approximations and
(the classical version of) Newton’s method can be exploited for the analysis of
stochastic context-free grammars (SCFGs), a model that combines the language
semiring and the real semiring.

A SCFG is a CFG where every production is assigned a probability. SCFGs
are widely used in natural language processing and in bioinformatics (see also the
example at the end of the section). We use the grammar Gex with productions

X
1/6
−→ X6, X

1/2
−→ X5, X

1/3
−→ a as running example.

SCFGs can be seen as systems of polynomials over the direct product of the
semiring SΣ of languages over Σ and the semiring of non-negative reals (R≥0 ∪
{∞}, +, ·, 0, 1). The system for the grammar G has one polynomial, namely
FX = (λ, 1

6 )X6 + (λ, 1
2 )X5 + (a, 1

3 ).
Given an SCFG it is often important to compute the termination probability

T (X) of a given variable X (see [4, 3] for applications to program verification).
T (X) is the probability that a derivation starting at X “terminates”, i.e., gen-
erates some word. For Gex we have 0.3357037075 < T (X) < 0.3357037076. It is
easy to see that the termination probabilities are given by (the real part of) the
least fixed point of the corresponding system of polynomials [4, 5], and that they
may be irrational and not representable by radicals (in fact, Gex is an example).
Therefore, they must be numerically approximated. This raises the problem that
whenever other parameters are calculated from the termination probabilities it
is necessary to conduct an error propagation analysis.
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A solution to this problem is to replace the original SCFG G by another one,
say G′, generating “almost” the same language, and for which all termination
probabilities are 1. “Almost” means that (1) the probability of the derivations
of G that are not derivations of G′ is below a given bound, and (2) that the
quotient of the probabilities of any two derivations that appear in both G and
G′ is the same in G and G′. G′ can be obtained as follows. Since δ

(i) is uniquely
determined by the equation F (ν(i)) = ν(i) + δ

(i) over SR, we know that ν(K) is
the probability of the derivation trees of dimension at most K. Hence, we can
approximate the terminating runs by choosing G′ = GK , where GK generates
the derivation trees of G of dimension at most K. Assuming that G is in Chomsky
normal form, GK has variables X0, X1, X≤1, . . . , XK , X≤K

for every variable X
of G, with X≤K

as axiom. Its productions are constructed so that Xi (X≤i)
generates the derivation trees of G of dimension i (at most i) with X as root.
For this, GK has: (i) a production X0 → a for every production X → a of
G, (ii) productions3 Xi → Yi−1Zi−1, Xi → YiZ≤i−1 and Xi → Y≤i−1Zi for
every production X → Y Z of G and every i ∈ {1, . . . , K}, and (iii) productions
X≤i → Xi and X≤i → X≤i−1 for every variable X and every i ∈ {1, . . . , K}.
It remains to define the probabilities of the productions so that the probability
that a tree t is derived from X≤K in GK is equal to the conditional probability
that t is derived from X in G under the condition that a tree of dimension at
most K is derived from X . For this we set p(X0 → a) = p(X→a)

ν
(0)
X

. For K > 0, an

induction over the tree dimension shows that we have to choose the remaining
probabilities as follows (we omit some symmetric cases):

p(X≤K → XK) =
∆

(K)
X

ν
(K)
X

p(XK → YKZ≤K−1) = p(X→Y Z)

∆
(K)
X

∆
(K)
Y ν

(K−1)
Z

p(X≤K → X≤K−1) =
ν

(K−1)
X

ν
(K)
X

p(XK → YK−1ZK−1) = p(X→Y Z)

∆
(K)
X

∆
(K−1)
Y ∆

(K−1)
Z

with ∆
(k) = ν

(k) − ν
(k−1) for k > 0, and ∆

(0) = ν
(0).

The first iterations of the Newton sequence for our running example Gex are

ν
(0) = 1/3, ν

(1) = 0.3357024402, ν
(2) = 0.3357037075, ν

(3) = 0.3357037075

(up to machine accuracy). In this case we could replace Gex by Gex

2 or even Gex

1 .
We finish the section with another example. The following SCFG, taken

from [10], is used to describe the secondary structure in RNA:

L
0.869
−→ CL L

0.131
−→ C S

0.788
−→ pSp S

0.212
−→ CL C

0.895
−→ s C

0.105
−→ pSp.

The following table shows the first iterates of the Newton and Kleene sequences
for the corresponding system of polynomials.

i ( ν
(i)
L , ν

(i)
S , ν

(i)
C ) ( κ

(i)
L , κ

(i)
S , κ

(i)
C )

1 ( 0.5585, 0.4998, 0.9475 ) ( 0.1172, 0, 0.895 )
3 ( 0.9250, 0.9150, 0.9911 ) ( 0.2793, 0.0571, 0.8973 )
5 ( 0.9972, 0.9968, 0.9997 ) ( 0.3806, 0.1414, 0.9053 )

3 where X≤0 is identified with X0.
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As we can see, the contribution of trees of dimension larger than 5 is negligible.
Here, the Newton sequence converges much faster than the Kleene sequence.

7 Conclusions

We have generalized Newton’s method for numerically computing a zero of a
differentiable function to a method for approximating the least fixed point of a
system of power series over an arbitrary ω-continuous semiring. We have charac-
terized the iterates of the Newton sequence in terms of derivation trees: the i-th
iterate corresponds to the trees of dimension at most i. Perhaps surprisingly, in
the language semiring the Newton iterates turn out to coincide with the clas-
sical notion of finite-index approximations. Finally, we have sketched how our
approach can help to analyze stochastic context-free grammars.
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