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Abstract. We consider equation systems of the form X1 = f1(X1, . . . ,Xn), . . . , Xn = fn(X1,
. . . ,Xn), where f1, . . . , fn are polynomials with positive real coefficients. In vector form we denote
such an equation system by X = f(X) and call f a system of positive polynomials (SPP). Equation
systems of this kind appear naturally in the analysis of stochastic models like stochastic context-free
grammars (with numerous applications to natural language processing and computational biology),
probabilistic programs with procedures, web-surfing models with back buttons, and branching pro-
cesses. The least nonnegative solution μf of an SPP equation X = f(X) is of central interest for
these models. Etessami and Yannakakis [J. ACM, 56 (2009), pp. 1–66] have suggested a particular
version of Newton’s method to approximate μf . We extend a result of Etessami and Yannakakis and
show that Newton’s method starting at 0 always converges to μf . We obtain lower bounds on the
convergence speed of the method. For so-called strongly connected SPPs we prove the existence of a
threshold kf ∈ N such that for every i ≥ 0 the (kf + i)th iteration of Newton’s method has at least i
valid bits of μf . The proof yields an explicit bound for kf depending only on syntactic parameters
of f . We further show that for arbitrary SPP equations, Newton’s method still converges linearly:
there exists a threshold kf and an αf > 0 such that for every i ≥ 0 the (kf + αf · i)th iteration
of Newton’s method has at least i valid bits of μf . The proof yields an explicit bound for αf ; the
bound is exponential in the number of equations in X = f(X), but we also show that it is essentially
optimal. The proof does not yield any bound for kf , but only proves its existence. Constructing a
bound for kf is still an open problem. Finally, we also provide a geometric interpretation of Newton’s
method for SPPs.
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1. Introduction. We consider equation systems of the form

X1 = f1(X1, . . . , Xn)

...

Xn = fn(X1, . . . , Xn),

where f1, . . . , fn are polynomials with positive real coefficients. In vector form we
denote such an equation system by X = f (X). The vector f of polynomials is called
a system of positive polynomials, or SPP for short. Figure 1.1 shows the graph of a
2-dimensional SPP equation system X = f (X).

Equation systems of this kind appear naturally in the analysis of stochastic
context-free grammars (with numerous applications to natural language processing
[19, 28] and computational biology [6, 7, 25, 33]), probabilistic programs with proce-
dures [4, 11, 12, 13, 14, 15, 16], and web-surfing models with back buttons [17, 18].
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X1 = f1(X1, X2)

X2 = f2(X1, X2)
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Fig. 1.1. Graphs of the equations X1 = f1(X1,X2) and X2 = f2(X1,X2) with f1(X1,X2) =
X1X2 + 1
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. There are two real solutions in R2, the

lesser of which is labeled with μf .

More generally, they play an important role in the theory of branching processes [2, 21],
stochastic processes describing the evolution of a population whose individuals can die
and reproduce. The probability of extinction of the population is the least solution
of such a system, a result whose history goes back to [35].

Since SPPs have positive coefficients, x ≤ x′ implies f (x) ≤ f(x′) for x,x′ ∈ Rn
≥0;

i.e., the functions f1, . . . , fn are monotonic. This allows us to apply Kleene’s theo-
rem (see, for instance, [26]) and conclude that a feasible system X = f(X), i.e., one
having at least one nonnegative solution, has a smallest solution μf . It follows easily
from standard Galois theory that μf can be irrational and nonexpressible by radicals.
The problem of deciding, given an SPP and a rational vector v encoded in binary,
whether μf ≤ v holds, is known to be in PSPACE, and to be at least as hard as
two relevant problems: Square-Root-Sum and PosSLP. Square-Root-Sum is a
well-known problem of computational geometry, whose membership in NP is a long-
standing open question. PosSLP is the problem of deciding, giving a division-free
straight-line program, whether it produces a positive integer (see [16] for more de-
tails). PosSLP has been recently shown to play a central role in understanding the
Blum–Shub–Smale model of computation, where each single arithmetic operation over
the reals can be carried out exactly and in constant time [1].

For the practical applications mentioned above the complexity of determining
if μf exceeds a given bound is less relevant than the complexity of, given i ∈ N,
computing i valid bits of μf , i.e., computing a vector v such that

∣∣μf j − vj
∣∣ / ∣∣μf j

∣∣ ≤
2−i for every 1 ≤ j ≤ n. Given an SPP f and i ∈ N, deciding whether the first i bits
of a component of μf , say μf1, are 0 remains as hard as Square-Root-Sum and
PosSLP. The reason is that in [16] both problems are reduced to the following one:
given ε > 0 and an SPP f for which it is known that either μf1 = 1 or μf1 ≤ ε,
decide which of the two is the case. So it suffices to take ε = 2−i.

In this paper we study the problem of computing i valid bits in the Blum–Shub–
Smale model. Since the least fixed point of a feasible SPP f is a solution of F (X) = 0
for F (X) = f(X) − X, we can try to apply (the multivariate version of) Newton’s
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method [30]: starting at some x(0) ∈ Rn (we use uppercase to denote variables and
lowercase to denote values), compute the sequence

x(k+1) := x(k) − (F ′(x(k)))−1F (x(k)),

where F ′(X) is the Jacobian matrix of partial derivatives. A first difficulty is that
the method might not even be well-defined, because F ′(x(k)) could be singular for
some k. However, Etessami and Yannakakis have recently studied SPPs derived from
probabilistic pushdown automata (actually, from an equivalent model called recursive
Markov chains) [16], and have shown that a particular version of Newton’s method
always converges, namely, a version which decomposes the SPP into strongly con-
nected components (SCCs)1 and applies Newton’s method to them in a bottom-up
fashion. Our first result generalizes Etessami and Yannakakis’s: the ordinary Newton
method converges for arbitrary SPPs, provided that they are clean (which can be
easily achieved).

While these results show that Newton’s method can be an adequate algorithm for
solving SPP equations, they provide no information on the number of iterations needed
to compute i valid bits. To the best of our knowledge (and perhaps surprisingly), the
rest of the literature does not contain relevant information either: it has not considered
SPPs explicitly, and the existing results have very limited interest for SPPs, since they
do not apply even for very simple and relevant SPP cases (see related work below). In
this paper we obtain upper bounds on the number of iterations that Newton’s method
needs to produce i valid bits, first for strongly connected and then for arbitrary SPP
equations.

For strongly connected SPP equations X = f(X) we prove the existence of a
threshold kf such that for every i ≥ 0 the (kf + i)th iteration of Newton’s method
has at least i valid bits of μf . So, loosely speaking, after kf iterations Newton’s
method is guaranteed to compute at least 1 new bit of the solution per iteration; we
say that Newton’s method converges at least linearly with rate 1. Moreover, we show
that the threshold kf can be chosen as

kf = �4mn+ 3nmax{0,− logμmin}�,

where n is the number of polynomials of the strongly connected SPP, m is such that
all coefficients of the SPP can be given as ratios of m-bit integers, and μmin is the
minimal component of the least fixed point μf .

Notice that kf depends on μf , which is what Newton’s method should compute.
For this reason we also obtain bounds on kf depending only onm and n. We show that
for arbitrary strongly connected SPP equations, kf = 4mn2n is also a valid threshold.
For SPP equations coming from stochastic models, such as the ones listed above, we
do far better. First, we show that if every procedure has a nonzero probability of
terminating (a condition that always holds for back-button processes [17, 18]), then
a valid threshold is kf = 2m(n + 1). Since one iteration requires O(n3) arithmetic
operations in a system of n equations, we immediately obtain an upper bound on the
time complexity of Newton’s method in the Blum–Shub–Smale model: for back-button
processes, i valid bits can be computed in time O(mn4 + in3). Second, we observe
that, since x(k) ≤ x(k+1) ≤ μf holds for every k ≥ 0, as Newton’s method proceeds
it provides better and better lower bounds for μmin and thus for kf . We exhibit an

1Loosely speaking, a subset of variables and their associated equations form an SCC if the value
of any variable in the subset influences the value of all variables in the subset; see section 2 for details.
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SPP for which, using this fact and our theorem, we can prove that no component
of the solution reaches the value 1. This cannot be proved by just computing more
iterations, no matter how many.

For general SPP equations, not necessarily strongly connected, we show that New-
ton’s method still converges linearly. Formally, we show the existence of a threshold
kf and a real number 0 < αf such that for every i ≥ 0 the (kf +αf · i)th iteration of
Newton’s method has at least i valid bits of μf . So, loosely speaking, after the first kf
iterations Newton’s method computes new bits of μf at a rate of at least 1/αf bits per
iteration. Unlike the strongly connected case, the proof does not provide any bound on
the threshold kf : with respect to the threshold the proof is nonconstructive, and find-
ing a bound on kf is still an open problem. However, the proof does provide a bound
for αf : it shows αf ≤ n·2n for an SPP with n polynomials. We also exhibit a family of
SPPs for which more than i·2n−1 iterations are needed to compute i bits. So αf ≤ n·2n
for every system f , and there exists a family of systems for which 2n−1 ≤ αf .

Finally, the last result of the paper concerns the geometric interpretation of New-
ton’s method for SPP equations. We show that, loosely speaking, the Newton ap-
proximants stay within the hypervolume limited by the hypersurfaces corresponding
to each individual equation. This means that a simple geometric intuition of how New-
ton’s method works, extracted from the case of 2-dimensional SPPs, is also correct
for arbitrary dimensions. As a byproduct we also obtain a new variant of Newton’s
method.

Related work. There is a large body of literature on the convergence speed of
Newton’s method for arbitrary systems of differentiable functions. A comprehensive
reference is Ortega and Rheinboldt’s book [30] (see also Chapter 8 of Ortega’s course
[29] or Chapter 5 of [23] for a brief summary). Several theorems (for instance, Theorem
8.1.10 of [29]) prove that the number of valid bits grows linearly, superlinearly, or even
exponentially in the number of iterations, but only under the hypothesis that F ′(x)
is nonsingular everywhere, in a neighborhood of μf , or at least at the point μf itself.
However, the matrix F ′(μf) can be singular for an SPP, even for the 1-dimensional
SPP f(X) = 1/2X2 + 1/2.

The general case in which F ′(μf) may be singular for the solution μf that the
method converges to has been thoroughly studied. In a seminal paper [32], Reddien
shows that under certain conditions, the main ones being that the kernel of F ′(μf )
has dimension 1 and that the initial point is close enough to the solution, Newton’s
method gains 1 bit per iteration. Decker and Kelley obtain results for kernels of
arbitrary dimension, but they require a certain linear map B(X) to be nonsingular
for all x �= 0 [5]. Griewank and Osborne observe in [20] that the nonsingularity of
B(X) is in fact a strong condition which, in particular, can be satisfied only by kernels
of even dimension. They present a weaker sufficient condition for linear convergence
requiring B(X) to be nonsingular only at the initial point x(0); i.e., it requires only to
make “the right guess” for x(0). Unfortunately, none of these results can be directly
applied to arbitrary SPPs. The possible dimensions of the kernel of F ′(μf ) for an
SPP f(X) are to the best of our knowledge unknown, and deciding this question
seems as hard as those related to the convergence rate.2 Griewank and Osborne’s
result does not apply to the decomposed Newton method either because the mapping
B(x(0)) is always singular for x(0) = 0.

2More precisely, SPPs with kernels of arbitrary dimension exist, but the cases we know of can
be trivially reduced to SPPs with kernels of dimension 1.
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Kantorovich’s famous theorem (see, e.g., [30, Theorem 8.2.6], as well as [31] for an
improvement) guarantees global convergence and only requires F ′ to be nonsingular
at x(0). However, it also requires finding a Lipschitz constant for F ′ on a suitable
region and some other bounds on F ′. These latter conditions are far too restrictive for
the applications mentioned above. For instance, the stochastic context-free grammars
whose associated SPPs satisfy Kantorovich’s conditions cannot exhibit two produc-
tions X → aY Z and W → ε such that Prob(X → aY Z) · Prob(W → ε) ≥ 1/4. This
class of grammars is too contrived to be of use.

Summarizing, while the convergence of Newton’s method for systems of differen-
tiable functions has been intensely studied, the case of SPPs does not seem to have
been considered yet. The results obtained for other classes have very limited applica-
bility to SPPs: either they do not apply at all, or they apply only to contrived SPP
subclasses. Moreover, these results only provide information about the growth rate of
the number of accurate bits, but not about the number itself. For the class of strongly
connected SPPs, our thresholds lead to explicit lower bounds for the number of ac-
curate bits depending only on syntactical parameters: the number of equations and
the size of the coefficients. For arbitrary SPPs we prove the existence of a threshold,
while finding explicit lower bounds remains an open problem.

Structure of the paper. Section 2 defines SPPs and briefly describes their
applications to stochastic systems. Section 3 presents a short summary of our main
theorems. Section 4 proves some fundamental properties of Newton’s method for
SPP equations. Sections 5 and 6 contain our results on the convergence speed for
strongly connected and general SPP equations, respectively. Section 7 shows that
the bounds are essentially tight. Section 8 presents our results about the geometrical
interpretation of Newton’s method, and section 9 contains conclusions. A slightly
extended version of this paper is available as a technical report [10].

2. Preliminaries. In this section we introduce our notation used in the following
and formalize the concepts mentioned in the introduction.

2.1. Notation. As usual, R and N denote the sets of real and natural numbers,
respectively. We assume 0 ∈ N. R

n denotes the set of n-dimensional real-valued
column vectors and Rn

≥0 the subset of vectors with nonnegative components. We use
bold letters for vectors, e.g., x ∈ R

n, where we assume that x has the components
x1, . . . , xn. Similarly, the ith component of a function f : Rn → Rn is denoted by fi.
We define 0 := (0, . . . , 0)� and 1 := (1, . . . , 1)�, where the superscript � indicates
the transpose of a vector or a matrix. Let ‖·‖ denote some norm on Rn. Sometimes
we use explicitly the maximum norm ‖·‖∞ with ‖x‖∞ := max1≤i≤n |xi|.

The partial order ≤ on Rn is defined as usual by setting x ≤ y if xi ≤ yi for all
1 ≤ i ≤ n. Similarly, x < y if x ≤ y and x �= y. Finally, we write x ≺ y if xi < yi
for all 1 ≤ i ≤ n, i.e., if every component of x is smaller than the corresponding
component of y.

We use X1, . . . , Xn as variable identifiers and arrange them into the vector X. In
the following n always denotes the number of variables, i.e., the dimension ofX . While
x,y, . . . denote arbitrary elements in Rn, we write X if we want to emphasize that a
function is given with respect to (w.r.t.) these variables. Hence, f(X) represents the
function itself, whereas f(x) denotes its value for some x ∈ Rn.

If S ⊆ {1, . . . , n} is a set of components and x a vector, then by xS we mean the
vector obtained by restricting x to the components in S.

Let S ⊆ {1, . . . , n} and S = {1, . . . , n} \ S. Given a function f(X) and a vector
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xS , then f [S/xS ] is obtained by replacing, for each s ∈ S, each occurrence of Xs

by xs and removing the s-component. In other words, if f (X) = f (XS ,XS), then
f [S/xS ](yS) = fS(xS ,yS). For instance, if f(X1, X2) = (X1X2 +

1
2 , X

2
2 +

1
5 )

�, then
f [{2}/ 1

2 ] : R → R, X1 �→ 1
2X1 +

1
2 .

Rm×n denotes the set of matrices having m rows and n columns. The transpose
of a vector or matrix is indicated by the superscript �. The identity matrix of Rn×n

is denoted by Id.
The formal Neumann series of A ∈ Rn×n is defined by A∗ =

∑
k∈N

Ak. It is
well known that A∗ exists if and only if the spectral radius of A is less than 1, i.e.,
max{|λ| | C  λ is an eigenvalue of A} < 1. If A∗ exists, then A∗ = (Id−A)−1.

The partial derivative of a function f(X) : R
n → R w.r.t. the variable Xi is

denoted by ∂Xif . The gradient ∇f of f(X) is then defined to be the (row) vector

∇f := (∂X1f, . . . , ∂Xnf) .

The Jacobian of a function f (X) with f : Rn → Rm is the matrix f ′(X) defined by

f ′(X) =

⎛⎜⎝ ∂X1f1 . . . ∂Xnf1
...

...
∂X1fm . . . ∂Xnfm

⎞⎟⎠ ;

i.e., the ith row of f ′ is the gradient of fi.

2.2. Systems of positive polynomials.
Definition 2.1. A function f (X) with f : Rn

≥0 → Rn
≥0 is a system of pos-

itive polynomials (SPP) if every component fi(X) is a polynomial in the variables
X1, . . . , Xn with coefficients in R≥0. We call an SPP f (X) feasible if y = f(y) for
some y ∈ Rn

≥0. An SPP is called linear (resp., quadratic) if all polynomials have
degree at most 1 (resp., 2).

Fact 2.2. Every SPP f is monotone on Rn
≥0; i.e., for 0 ≤ x ≤ y we have

f(x) ≤ f (y).
We will need the following lemma, a version of Taylor’s theorem.
Lemma 2.3 (Taylor). Let f be an SPP and let x,u ≥ 0. Then

f (x) + f ′(x)u ≤ f(x+ u) ≤ f(x) + f ′(x+ u)u .

Proof. It suffices to show this for a multivariate polynomial f(X) with nonnega-
tive coefficients. Consider g(t) = f(x+ tu). We then have

f(x+ u) = g(1) = g(0) +

∫ 1

0

g′(s) ds = f(x) +

∫ 1

0

f ′(x+ su)u ds.

The result follows as f ′(x) ≤ f ′(x+ su) ≤ f ′(x+ u) for s ∈ [0, 1].
Since every SPP is continuous, Kleene’s fixed-point theorem (see, e.g., [26]) ap-

plies.
Theorem 2.4 (Kleene’s fixed-point theorem). Every feasible SPP f has a least

fixed point μf in Rn
≥0 i.e., μf = f (μf) and, in addition, y = f (y) implies μf ≤ y.

Moreover, the sequence (κ
(k)
f )k∈N with κ

(k)
f = fk(0) (where fk denotes the k-fold

iteration of f) is monotonically increasing w.r.t. ≤ (i.e., κ
(k)
f ≤ κ

(k+1)
f ) and converges

to μf .
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In the following we call (κ
(k)
f )k∈N the Kleene sequence of f(X) and drop the

subscript whenever f is clear from the context. Similarly, we sometimes write μ
instead of μf .

An SPP f (X) is clean if for all variables Xi there is a k ∈ N such that κ
(k)
i > 0.

It is easy to see that we have κ
(k)
i = 0 for all k ∈ N if κ

(n)
i = 0. So we can “clean”

an SPP f(X) in time linear in the size of f by determining the components i with

κ
(n)
i = 0 and removing them.

We will also need the notion of dependence between variables.
Definition 2.5. A polynomial f(X) contains a variable Xi if ∂Xif(X) is not

the zero-polynomial.
Definition 2.6. Let f (X) be an SPP. A component i depends directly on a

component k if fi(X) contains Xk. A component i depends on k if either i de-
pends directly on k or there is a component j such that i depends on j and j depends
on k. The components {1, . . . , n} can be partitioned into strongly connected com-
ponents (SCCs), where an SCC S is a maximal set of components such that each
component in S depends on each other component in S. An SCC is called trivial if
it consists of a single component that does not depend on itself. An SPP is strongly
connected (scSPP, for short) if {1, . . . , n} is a nontrivial SCC.

2.3. Convergence speed. We will analyze the convergence speed of Newton’s
method. To this end we need the notion of valid bits.

Definition 2.7. Let f be a feasible SPP. A vector x has i valid bits of the least
fixed point μf if ∣∣μf j − xj

∣∣∣∣μf j

∣∣ ≤ 2−i

for every 1 ≤ j ≤ n. Let (x(k))k∈N be a sequence with 0 ≤ x(k) ≤ μf . Then the
convergence order β : N → N of the sequence (x(k))k∈N is defined as follows: β(k) is
the greatest natural number i such that x(k) has i valid bits (or ∞ if such a greatest
number does not exist). We will always mean the convergence order of the Newton
sequence (ν(k))k∈N unless explicitly stated otherwise.

We say that a sequence has linear, exponential, or logarithmic convergence order
if the function β(k) grows linearly, exponentially, or logarithmically in k, respectively.

Remark 2.8. Our definition of convergence order differs from the one commonly
used in numerical analysis (see, e.g., [30]), where “quadratic convergence” or “Q-
quadratic convergence” means that the error e′ of the new approximant (its distance
to the least fixed point according to some norm) is bounded by c · e2, where e is the
error of the old approximant and c > 0 is some constant. We consider our notion more
natural from a computational point of view, since it directly relates the number of
iterations to the accuracy of the approximation. Notice that “quadratic convergence”
implies exponential convergence order in the sense of Definition 2.7. In the following
we avoid the notion of “quadratic convergence.”

2.4. Stochastic models. As mentioned in the introduction, several problems
concerning stochastic models can be reduced to problems about the least fixed point μf
of an SPP f . In these cases, μf is a vector of probabilities, and so μf ≤ 1.

2.4.1. Probabilistic pushdown automata. Our study of SPPs was initially
motivated by the verification of probabilistic pushdown automata. A probabilistic
pushdown automaton (pPDA) is a tuple P = (Q,Γ, δ,Prob), where Q is a finite set
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of control states, Γ is a finite stack alphabet, δ ⊆ Q× Γ×Q× Γ∗ is a finite transition
relation (we write pX ↪−→ qα instead of (p,X, q, α) ∈ δ), and Prob is a function which
to each transition pX ↪−→ qα assigns its probability Prob(pX ↪−→ qα) ∈ (0, 1] so that

for all p ∈ Q and X ∈ Γ we have
∑

pX↪−→qα Prob(pX ↪−→ qα) = 1. We write pX
x
↪−→ qα

instead of Prob(pX ↪−→ qα) = x. A configuration of P is a pair qw, where q is a control
state and w ∈ Γ∗ is a stack content. A pPDA P naturally induces a possibly infinite

Markov chain with the configurations as states and transitions given by pXβ
x
↪−→ qαβ

for every β ∈ Γ∗ if and only if pX
x
↪−→ qα. We assume without loss of generality

(w.l.o.g.) that if pX
x
↪−→ qα is a transition, then |α| ≤ 2.

pPDAs and the equivalent model of recursive Markov chains have been very thor-
oughly studied [4, 11, 12, 13, 14, 15, 16]. These works have shown that the key to the
analysis of pPDAs are the termination probabilities [pXq], where p and q are states,
and X is a stack letter, defined as follows (see, e.g., [11] for a more formal definition):
[pXq] is the probability that, starting at the configuration pX , the pPDA eventually
reaches the configuration qε (empty stack). It is not difficult to show that the vector
of these probabilities is the least solution of the SPP equation system containing the
equation

〈pXq〉 =
∑

pX
x
↪−→rY Z

x ·
∑
t∈Q

〈rY t〉 · 〈tZq〉 +
∑

pX
x
↪−→rY

x · 〈rY q〉 +
∑

pX
x
↪−→qε

x

for each triple (p,X, q). Call this quadratic SPP the termination SPP of the pPDA
(we assume that termination SPPs are clean, and it is easy to see that they are always
feasible).

2.4.2. Strict pPDAs and back-button processes. A pPDA is strict if for

all pX ∈ Q × Γ and all q ∈ Q the transition relation contains a pop-rule pX
x
↪−→ qε

for some x > 0. Essentially, strict pPDAs model programs in which every procedure
has at least one terminating execution that does not call any other procedure. The
termination SPP of a strict pPDA satisfies f(0) � 0.

In [17, 18] a class of stochastic processes is introduced to model the behavior
of web surfers who from the current webpage A can decide either to follow a link
to another page, say B, with probability �AB, or to press the “back button” with
nonzero probability bA. These back-button processes correspond to a very special
class of strict pPDAs having one single control state (which in the following we omit),

and rules of the form A
bA
↪−→ ε (press the back button from A) or A

�AB
↪−−→ BA (follow

the link from A to B, remembering A as the destination of pressing the back button
at B). The termination probabilities are given by an SPP equation system containing
the equation

〈A〉 = bA +
∑

A
�AB
↪−−→BA

�AB〈B〉〈A〉 = bA + 〈A〉
∑

A
�AB
↪−−→BA

�AB〈B〉

for every webpage A. In [17, 18] those termination probabilities are called revoca-
tion probabilities. The revocation probability of a page A is the probability that,
when currently visiting webpage A and having H0H1 . . .Hn−1Hn as the browser his-
tory of previously visited pages, then during subsequent surfing from A the random
user eventually returns to webpage Hn with H0H1 . . . Hn−1 as the remaining browser
history.
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Example 2.9. Consider the following equation system:⎛⎝X1

X2

X3

⎞⎠ =

⎛⎝ 0.4X2X1 + 0.6
0.3X1X2 + 0.4X3X2 + 0.3

0.3X1X3 + 0.7

⎞⎠ .

The least solution of the system gives the revocation probabilities of a back-button
process with three webpages. For instance, if the surfer is at page 2 it can choose
between following links to pages 1 and 3 with probabilities 0.3 and 0.4, respectively,
or pressing the back button with probability 0.3.

3. Newton’s method and an overview of our results. In order to approx-
imate the least fixed point μf of an SPP f we employ Newton’s method.

Definition 3.1. Let f be a clean and feasible SPP. The Newton operator Nf is
defined as follows:

Nf (X) := X +
(
Id− f ′(X)

)−1
(f (X)−X).

The sequence (ν
(k)
f )k∈N with ν

(k)
f = N k

f (0) (where N k
f denotes the k-fold iteration

of Nf ) is called the Newton sequence. We drop the subscript of Nf and ν
(k)
f when f

is understood.

The main results of this paper concern the application of Newton’s method to
SPPs. We summarize them in this section.

Theorem 4.1 states that the Newton sequence (ν(k))k∈N is well-defined (i.e., the

inverse matrices
(
Id − f ′(ν(k))

)−1
exist for every k ∈ N), monotonically increasing

and bounded from above by μf (i.e., ν(k) ≤ f(ν(k)) ≤ ν(k+1) ≤ μf), and converges
to μf . This theorem generalizes the result of Etessami and Yannakakis in [16] to
arbitrary clean and feasible SPPs and to the ordinary Newton method.

For more quantitative results on the convergence speed, it is convenient to focus
on quadratic SPPs. Theorem 4.12 shows that any clean and feasible SPP can be
syntactically transformed into a quadratic SPP without changing the least fixed point
and without accelerating Newton’s method. This means one can perform Newton’s
method on the original (possibly nonquadratic) SPP, and convergence will be at least
as fast as for the corresponding quadratic SPP.

For quadratic n-dimensional SPPs, one iteration of Newton’s method involves
O(n3) arithmetical operations and O(n3) operations in the Blum–Shub–Smale model.
Hence, a bound on the number of iterations needed to compute a given number of
valid bits immediately leads to a bound on the number of operations. In section 5
we obtain such bounds for strongly connected quadratic SPPs. We give different
thresholds for the number of iterations and show that when any of these thresholds
is reached, Newton’s method gains at least one valid bit for each iteration. More
precisely, Theorem 5.10 states the following. Let f be a quadratic, clean, and
feasible scSPP, let μmin and μmax be the minimal and maximal component of μf ,
respectively, and let the coefficients of f be given as ratios of m-bit integers. Then
β(kf + i) ≥ i holds for all i ∈ N and for any of the following choices of kf :

1. 4mn+ �3nmax{0,− logμmin}�;
2. 4mn2n;
3. 7mn if f satisfies f(0) � 0;
4. 2m(n+ 1) if f satisfies both f (0) � 0 and μmax ≤ 1.
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We further show that Newton iterations can also be used to obtain a sequence
of upper approximations of μf . Those upper approximations converge to μf , asymp-
totically as fast as the Newton sequence. More precisely, Theorem 5.13 states the
following: Let f be a quadratic, clean, and feasible scSPP, let cmin be the smallest
nonzero coefficient of f , and let μmin be the minimal component of μf . Further,

for all Newton approximants ν(k) with ν(k) � 0, let ν
(k)
min be the smallest coefficient

of ν(k). Then

ν(k) ≤ μf ≤ ν(k) +

⎡⎣ ∥∥ν(k) − ν(k−1)
∥∥
∞(

cmin ·min{ν(k)min , 1}
)n
⎤⎦,

where [s] denotes the vector x with xj = s for all 1 ≤ j ≤ n.

In section 6 we turn to general (not necessarily strongly connected) clean and
feasible SPPs. We show in Theorem 6.5 that Newton’s method still converges
linearly. Formally, the theorem proves that for every quadratic, clean, and feasible
SPP f , there is a threshold kf ∈ N and αf > 0 such that β(kf+αf ·i) ≥ i for all i ∈ N.
With respect to the threshold, our proof is purely existential and does not provide any
bound for kf . For αf we show an upper bound of n · 2n, i.e., asymptotically at most
n · 2n extra iterations are needed in order to get one new valid bit. Section 7 exhibits
a family of SPPs in which one new bit requires at least 2n−1 iterations, implying that
the bound on αf is essentially tight.

Finally, section 8 gives a geometrical interpretation of Newton’s method on quad-
ratic SPP equations. Let R be the region bounded by the coordinate axes and by the
quadrics corresponding to the individual equations. Theorem 8.10 shows that all
Kleene and Newton approximations lie within R, i.e., ν(i),κ(i) ∈ R for every i ∈ N.

4. Fundamental properties of Newton’s method.

4.1. Effectiveness. Etessami and Yannakakis [16] suggested using Newton’s
method for SPPs. More precisely, they showed that the sequence obtained by ap-
plying Newton’s method to the equation system X = f(X) converges to μf as long
as f is strongly connected. We extend their result to arbitrary SPPs, thereby reusing
and extending several proofs of [16].

In Definition 3.1 we defined the Newton operator Nf and the associated Newton
sequence (ν(k))k∈N. In this section we prove the following fundamental theorem on
the Newton sequence.

Theorem 4.1. Let f be a clean and feasible SPP. Let the Newton operator Nf

be defined as in Definition 3.1:

Nf (X) := X + (Id− f ′(X))−1(f(X)−X).

1. Then the Newton sequence (ν(k))k∈N with ν(k) = N k
f (0) is well-defined (i.e.,

the matrix inverses exist), monotonically increasing, and bounded from above
by μf (i.e., ν(k) ≤ f(ν(k)) ≤ ν(k+1) ≤ μf) and converges to μf .

2. We have (Id − f ′(ν(k)))−1 = f ′(ν(k))∗ for all k ∈ N. We also have (Id −
f ′(x))−1 = f ′(x)∗ for all x ≺ μf .

The proof of Theorem 4.1 consists of three steps. In the first proof step, we
study a sequence generated by a somewhat weaker version of the Newton operator
and obtain the following.
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Proposition 4.2. Let f be a feasible SPP. Let the operator N̂f be defined as
follows:

N̂f (X) := X +

∞∑
d=0

(
f ′(X)d(f (X)−X)

)
.

Then the sequence (ν(k))k∈N with ν(k) := N̂ k
f (0) is monotonically increasing, is

bounded from above by μf (i.e., ν(k) ≤ f(ν(k)) ≤ ν(k+1) ≤ μf), and converges
to μf .

In a second proof step, we show another intermediary proposition, namely, that
the star of the Jacobian matrix f ′ converges for all Newton approximants.

Proposition 4.3. Let f be clean and feasible. Then the matrix series f ′(ν(k))∗ :=
Id + f ′(ν(k)) + f ′(ν(k))2 + · · · converges in R≥0 for all Newton approximants ν(k);
i.e., there are no ∞ entries.

In the third and final step, we show that Propositions 4.2 and 4.3 imply Theo-
rem 4.1.

4.1.1. First step. For the first proof step (i.e., the proof of Proposition 4.2), we
will need the following generalization of Taylor’s theorem.

Lemma 4.4. Let f be an SPP, d ∈ N, 0 ≤ u, and 0 ≤ x ≤ f(x). Then

fd(x+ u) ≥ fd(x) + f ′(x)du .

In particular, by setting u := f (x)− x we get

fd+1(x)− fd(x) ≥ f ′(x)d(f(x)− x) .

Proof. The proof is by induction on d. For d = 0 the statement is trivial. Let
d ≥ 0. Then, by Taylor’s theorem (Lemma 2.3), we have

fd+1(x+ u) = f(fd(x+ u))

≥ f(fd(x) + f ′(x)du) (induction hypothesis)

≥ fd+1(x) + f ′(fd(x))f ′(x)du (Lemma 2.3)

≥ fd+1(x) + f ′(x)d+1u (fd(x) ≥ x).

Lemma 4.4 can be used to prove the following.
Lemma 4.5. Let f be a feasible SPP. Let 0 ≤ x ≤ μf and x ≤ f (x). Then

x+

∞∑
d=0

(
f ′(x)d(f(x)− x)

)
≤ μf .

Proof. Observe that

(4.1) lim
d→∞

fd(x) = μf

because 0 ≤ x ≤ μf implies fd(0) ≤ fd(x) ≤ μf , and as (fd(0))d∈N converges to μf
by Theorem 2.4, so does (fd(x))d∈N. We have

x+
∞∑
d=0

(
f ′(x)d(f(x)− x)

)
≤ x+

∞∑
d=0

(
fd+1(x)− fd(x)

)
(Lemma 4.4)
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= lim
d→∞

fd(x)

= μf (by (4.1)).

Now we can prove Proposition 4.2.
Proof of Proposition 4.2. First we prove the following inequality by induction

on k:

ν(k) ≤ f(ν(k)).

The induction base (k = 0) is easy. For this step, let k ≥ 0. Then

ν(k+1) = ν(k) +

∞∑
d=0

(
f ′(ν(k))d(f (ν(k))− ν(k))

)
= f(ν(k)) +

∞∑
d=1

(
f ′(ν(k))d(f (ν(k))− ν(k))

)
≤ f(ν(k)) + f ′(ν(k))

∞∑
d=0

(
f ′(ν(k))d(f (ν(k))− ν(k))

)
≤ f

(
ν(k) +

∞∑
d=0

(
f ′(ν(k))d(f (ν(k))− ν(k))

))
(Lemma 2.3)

= f(ν(k+1)) .

Now, the inequality ν(k) ≤ μf follows from Lemma 4.5 by means of a straight-
forward induction proof. Hence, it follows that f (ν(k)) ≤ f(μf ) = μf . Further we
have

f(ν(k)) = ν(k) + (f(ν(k))− ν(k))

≤ ν(k) +

∞∑
d=0

(
f ′(ν(k))d(f (ν(k))− ν(k))

)
= ν(k+1) .

(4.2)

So it remains to show that (ν(k))k∈N converges to μf . As we have already shown that
ν(k) ≤ μf , it suffices to show that κ(k) ≤ ν(k) because (κ(k))k∈N converges to μf by
Theorem 2.4. We proceed by induction on k. The induction base (k = 0) is easy. For
this induction step, let k ≥ 0. Then

κ(k+1) = f (κ(k))

≤ f (ν(k)) (induction hypothesis)

≤ ν(k+1) (by (4.2)).

This completes the proof of Proposition 4.2 and, hence, the first step towards the
proof of Theorem 4.1.

4.1.2. Second step. For the second proof step (i.e., the proof of Proposition 4.3)
it is convenient to move to the extended reals R[0,∞]; i.e., we extend R≥0 by an
element ∞ such that addition satisfies a + ∞ = ∞ + a = ∞ for all a ∈ R≥0 and
multiplication satisfies 0 · ∞ = ∞ · 0 = 0 and a · ∞ = ∞ · a = ∞ for all a ∈ R≥0. In

R[0,∞], one can rewrite N̂ (ν(k)) = ν(k) +
∑∞

d=0

(
f ′(ν(k))d(f(ν(k))− ν(k))

)
as ν(k) +
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f ′(ν(k))∗(f(ν(k)) − ν(k)). Notice that Proposition 4.3 does not follow trivially from
Proposition 4.2, because ∞ entries of f ′(ν(k))∗ could be cancelled out by matching 0
entries of f (ν(k))− ν(k).

For the proof of Proposition 4.3 we need several lemmas. The following lemma
assures that a starred matrix has an ∞ entry if and only if it has an ∞ entry on the
diagonal.

Lemma 4.6. Let A = (aij) ∈ R
n×n
≥0 . Let A∗ have an ∞ entry. Then A∗ also has

an ∞ entry on the diagonal, i.e., [A∗]ii = ∞ for some 1 ≤ i ≤ n.
Proof. The proof is by induction on n. The base case n = 1 is clear. For n > 1

assume w.l.o.g. that [A∗]1n = ∞. We have

(4.3) [A∗]1n = [A∗]11

n∑
j=2

a1j

[
A∗

[2..n,2..n]

]
jn

,

where by A[2..n,2..n] we mean the square matrix obtained from A by erasing the first
row and the first column. To see why (4.3) holds, think of [A∗]1n as the sum of weights
of paths from 1 to n in the complete graph over the vertices {1, . . . , n}. The weight
of a path P is the product of the weight of P ’s edges, and ai1i2 is the weight of the
edge from i1 to i2. Each path P from 1 to n can be divided into two subpaths P1, P2

as follows. The second subpath P2 is the suffix of P leading from 1 to n and not
returning to 1. The first subpath P1, possibly empty, is chosen such that P = P1P2.
Now, the sum of weights of all possible P1 equals [A∗]11, and the sum of weights of
all possible P2 equals

∑n
j=2 a1j

[
(A[2..n,2..n])

∗]
jn
. So (4.3) holds.

As [A∗]1n = ∞, it follows that either [A∗]11 or some
[
(A[2..n,2..n])

∗]
jn

equals

∞. In the first case, we are done. In the second case, by induction, there is an i
such that

[
(A[2..n,2..n])

∗]
ii

= ∞. But then also [A∗]ii = ∞, because every entry of[
(A[2..n,2..n])

]∗
is less than or equal to the corresponding entry of A∗.

The following lemma treats the case that f is strongly connected (cf. [16]).
Lemma 4.7. Let f be clean, feasible, and nontrivially strongly connected. Let

0 ≤ x ≺ μf . Then f ′(x)∗ does not have ∞ as an entry.
Proof. By Theorem 2.4 the Kleene sequence (κ(i))i∈N converges to μf . Further-

more, κ(i) ≺ μf holds for all i, because as every component depends nontrivially on
itself, any increase in any component results in an increase of the same component
in a later Kleene approximant. So, we can choose a Kleene approximant y = κ(i)

such that x ≤ y ≺ μf . Notice that y ≤ f (y). By monotonicity of f ′ it suffices to
show that f ′(y)∗ does not have ∞ as an entry. By Lemma 4.4 (taking x := y and
u := μf − y) we have

f ′(y)d(μf − y) ≤ μf − fd(y) .

As d → ∞, the right-hand side converges to 0, because, by Kleene’s theorem, fd(y)
converges to μf . So the left-hand side also converges to 0. Since μf − y � 0, every
entry of f ′(y)d must converge to 0. Then, by standard facts about matrices (see,
e.g., [27]), the spectral radius of f ′(y) is less than 1, i.e., |λ| < 1 for all eigenvalues
λ of f ′(y). This, in turn, implies that the series f ′(y)∗ = Id + f ′(y) + f ′(y)2 + · · ·
converges in R≥0; see [27, p. 531]. In other words, f ′(y)∗ and hence f ′(x)∗ do not
have ∞ as an entry.

The following lemma states that Newton’s method can terminate in a component s
only after certain other components � have reached μf �.
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Lemma 4.8. Let 1 ≤ s, � ≤ n. Let the term
[
f ′(X)∗

]
ss

contain the variable X�.

Let 0 ≤ x ≤ f(x) ≤ μf and xs < μf s and x� < μf �. Then N̂ (x)s < μf s.
Proof. This proof follows closely a proof of [16]. Let d ≥ 0 such that

[
f ′(X)d

]
ss

contains X�. Let m
′ ≥ 0 such that fm′

(x) � 0 and fm′
(x)� > x�. Such an m′ exists

because with Kleene’s theorem the sequence (fk(x))k∈N converges to μf . Notice that

our choice of m′ guarantees
[
f ′(fm′

(x))d
]
ss

>
[
f ′(x)d

]
ss
.

Now choose m ≥ m′ such that fm+1(x)s > fm(x)s. Such an m exists because
the sequence (fk(x)s)k∈N never reaches μfs. This is because s depends on itself
(since

[
f ′(X)∗

]
ss

is not constant 0), and so every increase of the s-component results
in an increase of the s-component in some later iteration of the Kleene sequence.

Now we have

fd+m+1(x)− fd+m(x)

≥ f ′(fm(x))d(fm+1(x)− fm(x)) (Lemma 4.4)

≥∗ f ′(x)d(fm+1(x)− fm(x))
≥ f ′(x)df ′(x)m(f(x)− x) (Lemma 4.4)
= f ′(x)d+m(f(x)− x) .

The inequality marked with ∗ is strict in the s-component, due to the choice of d
and m above. So, with b = d+m we have

(4.4) (f b+1(x)− f b(x))s > (f ′(x)b(f (x)− x))s.

Again by Lemma 4.4, inequality (4.4) holds for all b ∈ N, but with ≥ instead of >.
Therefore

μfs =

(
x+

∞∑
i=0

(f i+1(x)− f i(x))

)
s

(Kleene)

>
(
x+ f ′(x)∗(f (x)− x)

)
s

(inequality (4.4))

=
(
N̂ (x)

)
s
.

Now we are ready to prove Proposition 4.3.
Proof of Proposition 4.3. Using Lemma 4.6 it is enough to show that

[
f ′(ν(k))∗

]
ss

�= ∞ for all s. If the s-component constitutes a trivial SCC, then
[
f ′(ν(k))∗

]
ss

= 0
�= ∞. So we can assume in the following that the s-component belongs to a nontrivial
SCC, say S. LetXL be the set of variables contained by the term

[
f ′(X)∗

]
ss
. For any

t ∈ S we have
[
f ′(X)∗

]
ss

≥
[
f ′(X)∗

]
st

[
f ′(X)∗

]
tt

[
f ′(X)∗

]
ts
. Neither

[
f ′(X)∗

]
st

nor
[
f ′(X)∗

]
ts

is constant zero, because S is nontrivial. Therefore,
[
f ′(X)∗

]
ss

con-

tains all variables that
[
f ′(X)∗

]
tt

contains, and vice versa, for all t ∈ S. So, XL is,

for all t ∈ S, exactly the set of variables contained by
[
f ′(X)∗

]
tt
.

We distinguish two cases.

Case 1. There is a component � ∈ L such that the sequence (ν
(k)
� )k∈N does not

terminate, i.e., ν
(k)
� < μf � holds for all k. Then, by Lemma 4.8, the sequence (ν

(k)
s )k∈N

cannot reach μfs either. In fact, we have ν
(k)
S ≺ μfS . Let M denote the set of those

components that the S-components depend on, but which do not depend on S. In
other words, M contains the components that are “lower” in the directed acyclic
graph (DAG) of SCCs than S. Define g(XS) := fS(X)[M/μfM ]. Then g(XS) is

an scSPP with μg = μfS . As ν
(k)
S ≺ μg, Lemma 4.7 is applicable, so g′(ν(k)

S )∗ does
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not have ∞ as an entry. With
[
f ′(ν(k))∗

]
SS

≤ g′(ν(k)
S )∗, we get

[
f ′(ν(k))∗

]
ss

< ∞,
as desired.

Case 2. For all components � ∈ L the sequence (ν
(k)
� )k∈N terminates. Let i ∈ N

be the least number such that ν
(i)
� = μf � holds for all � ∈ L. By Lemma 4.8 we

have ν
(i)
s < μf s. But as, according to Proposition 4.2, (ν

(k)
s )k∈N converges to μfs,

there must exist a j ≥ i such that 0 <
(
f ′(ν(j))∗(f (ν(j))− ν(j))

)
s
< ∞. So there

is a component u with 0 <
[
f ′(ν(j))∗

]
su

(f (ν(j)) − ν(j))u < ∞. This implies 0 <[
f ′(ν(j))∗

]
su

< ∞, and therefore also
[
f ′(ν(j))∗

]
ss

< ∞. By monotonicity of f ′,
we have

[
f ′(ν(k))∗

]
ss

≤
[
f ′(ν(j))∗

]
ss

< ∞ for all k ≤ j. On the other hand, since[
f ′(X)∗

]
ss

contains only L-variables and ν
(k)
L = μfL holds for all k ≥ j, we also have[

f ′(ν(k))∗
]
ss

=
[
f ′(ν(j))∗

]
ss

< ∞ for all k ≥ j.
This completes the second intermediary step towards the proof of Theorem 4.1.

4.1.3. Third and final step. Now we can use Propositions 4.2 and 4.3 to
complete the proof of Theorem 4.1.

Proof of Theorem 4.1. By Proposition 4.3 the matrix f ′(ν(k))∗ has no ∞ entries.
Then we clearly have f ′(ν(k))∗(Id− f ′(ν(k))) = Id, so (Id− f ′(ν(k)))−1 = f ′(ν(k))∗,
which is the first claim of part 2 of the theorem. Hence, we also have

N̂ (ν(k)) = ν(k) +

∞∑
d=0

(
f ′(ν(k))d(f (ν(k))− ν(k))

)
= ν(k) + f ′(ν(k))∗(f (ν(k))− ν(k))

= ν(k) + (Id− f ′(ν(k)))−1(f (ν(k))− ν(k))

= N (ν(k)) ,

so we can replace N̂ by N . Therefore, part 1 of the theorem is implied by Propo-
sition 4.2. It remains to show (Id − f ′(x))−1 = f ′(x)∗ for all x ≺ μf . It suffices
to show that f ′(x)∗ has no ∞ entries. By part 1 the sequence (ν(k))k∈N converges
to μf . So there is a k′ such that x ≤ ν(k′). By Proposition 4.3, f ′(ν(k′))∗ has no ∞
entries, so, by monotonicity, f ′(x)∗ has no ∞ entries either.

4.2. Monotonicity.
Lemma 4.9 (monotonicity of the Newton operator). Let f be a clean and feasible

SPP. Let 0 ≤ x ≤ y ≤ f (y) ≤ μf and let Nf (y) exist. Then

Nf (x) ≤ Nf (y) .

Proof. For x ≤ y we have f ′(x) ≤ f ′(y), as every entry of f ′(X) is a monotone
polynomial. Hence, f ′(x)∗ ≤ f ′(y)∗. With this at hand we get

Nf (y) = y + f ′(y)∗(f (y)− y) (Theorem 4.1)

≥ y + f ′(x)∗(f (y)− y) (f ′(y)∗ ≥ f ′(x)∗)
≥ y + f ′(x)∗(f (x) + f ′(x)(y − x)− y) (Lemma 2.3)

= y + f ′(x)∗((f (x)− x)− (Id− f ′(x))(y − x))

= y + f ′(x)∗(f (x)− x)− (y − x) (f ′(x)∗ =

(Id− f ′(x))−1)

= Nf (x) (Theorem 4.1).
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4.3. Exponential convergence order in the nonsingular case. If the ma-
trix Id− f ′(μf ) is nonsingular, Newton’s method has exponential convergence order
in the sense of Definition 2.7.

Define for the following lemmas Δ(k) := μf − ν(k); i.e., Δ(k) is the error after
k Newton iterations. The following lemma bounds ‖Δ(k+1)‖ in terms of ‖Δ(k)‖2 if
Id− f ′(μf ) is nonsingular.

Lemma 4.10. Let f be a clean and feasible SPP such that Id − f ′(μf ) is non-
singular. Then there is a constant c > 0 such that∥∥∥Δ(k+1)

∥∥∥
∞

≤ c ·
∥∥∥Δ(k)

∥∥∥2
∞

for all k ∈ N.

Proof. See [10] or Theorem 4.4 of [34].
Lemma 4.10 implies that Newton’s method has an exponential convergence order

in the nonsingular case. We state this more precisely in the following theorem.
Theorem 4.11. Let f be a clean and feasible SPP such that Id − f ′(μf) is

nonsingular. Then there is a constant kf ∈ N such that

β(kf + i) ≥ 2i for all i ∈ N.

Proof. We first show that there is a constant k̃f ∈ N such that

(4.5)
∥∥∥Δ(˜kf+i)

∥∥∥
∞

≤ 2−2i for all i ∈ N.

We can assume w.l.o.g. that c ≥ 1 for the c from Lemma 4.10. As the Δ(k) converge

to 0, we can choose k̃f ∈ N large enough such that d := − log ‖Δ(˜kf )‖− log c ≥ 1. As
c, d ≥ 1, it suffices to show the following inequality:∥∥∥Δ(˜kf+i)

∥∥∥ ≤ 2−d·2i

c
.

We proceed by induction on i. For i = 0, the inequality above follows from the
definition of d. Let i ≥ 0. Then∥∥∥Δ(˜kf+i+1)

∥∥∥ ≤ c ·
∥∥∥Δ(˜kf+i)

∥∥∥2 (Lemma 4.10)

≤ c · 2
−d·2i·2

c2
(induction hypothesis)

=
2−d·2i+1

c
.

Hence, (4.5) is proved.
Choose m ∈ N large enough such that 2m+i + log(μf j) ≥ 2i holds for all compo-

nents j. Thus

Δ
(˜kf+m+i)
j /μf j ≤ 2−2m+i

/μf j (by (4.5))

= 2−(2m+i+log(μf j))

≤ 2−2i (choice of m) .

So, with kf := k̃f +m, the approximant ν(kf+i) has at least 2i valid bits of μf .
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This type of analysis has serious shortcomings. In particular, Theorem 4.11
excludes the case where Id − f ′(μf ) is singular. We will include this case in our
convergence analysis in sections 5 and 6. Furthermore, and maybe more severely,
Theorem 4.11 does not give any bound on kf . We solve this problem for strongly
connected SPPs in section 5.

4.4. Reduction to the quadratic case. In this section we reduce SPPs to
quadratic SPPs, i.e., to SPPs in which every polynomial fi(X) has degree at most 2,
and show that the convergence on the quadratic SPP is no faster than on the original
SPP. In the following sections we will obtain convergence speed guarantees of Newton’s
method on quadratic SPPs. Hence, one can perform Newton’s method on the original
SPP, and, using the results of this section, convergence is at least as fast as on the
corresponding quadratic SPP.

The idea to reduce the degree of our SPP f is to introduce auxiliary variables
that express quadratic subterms. This can be done repeatedly until all polynomials in
the system have reached degree at most 2. The construction is very similar to the one
that transforms a context-free grammar into another grammar in Chomsky normal
form. The following theorem shows that the transformation does not accelerate the
convergence of Newton’s method.

Theorem 4.12. Let f(X) be a clean and feasible SPP such that fs(X) = g(X)+
h(X)XiXj for some 1 ≤ i, j, s ≤ n, where g(X) and h(X) are polynomials with

nonnegative coefficients. Let f̃(X, Y ) be the SPP given by

f̃�(X, Y ) = f�(X) for every � ∈ {1, . . . , s− 1},
f̃s(X, Y ) = g(X) + h(X)Y,

f̃�(X, Y ) = f�(X) for every � ∈ {s+ 1, . . . , n},
f̃n+1(X, Y ) = XiXj.

Then the function b : Rn → Rn+1 given by b(X) = (X1, . . . , Xn, XiXj)
� is a bi-

jection between the set of fixed points of f(X) and f̃(X , Y ). Moreover, ν̃(k) ≤
(ν

(k)
1 , . . . , ν

(k)
n , ν

(k)
i ν

(k)
j )� for all k ∈ N, where ν̃(k) and ν(k) are the Newton approxi-

mants of f̃ and f , respectively.
Proof. We first show the claim regarding b: if x is a fixed point of f , then

b(x) = (x, xixj) is a fixed point of f̃ . Conversely, if (x, y) is a fixed point of f̃ , then
we have y = xixj , implying that x is a fixed point of f . Therefore, the least fixed

point μf of f determines μf̃ , and vice versa.
Now we show that the Newton sequence of f converges at least as fast as the

Newton sequence of f̃ . In the following we write Y for the (n+1)-dimensional vector
of variables (X1, . . . , Xn, Y )� and, as usual, X for (X1, . . . , Xn)

�. For an (n + 1)-
dimensional vector x, we let x[1,n] denote its restriction to the n first components,

i.e., x[1,n] := (x1, . . . , xn)
�. Note that Y [1,n] = X. Let es denote the unit vector

(0, . . . , 0, 1, 0 . . .0)�, where the “1” is on the sth place. We have

f̃ (Y ) =

(
f (X) + esh(X)(Y −XiXj)

XiXj

)
and

f̃
′
(Y ) =

(
f ′(X) + es∂Xh(X)(Y −XiXj) esh(X)

∂XXiXj 0

)
.
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We need the following lemma.

Lemma 4.13. Let z ∈ Rn
≥0, δ =

(
Id − f ′(z)

)−1
(f (z) − z), and δ̃ =

(
Id −

f̃
′
(z, zizj)

)−1
(f̃(z, zizj)− (z, zizj)

�). Then δ = δ̃[1,n].
Proof.

f̃
′
(z, zizj) =

(
f ′(z) + esh(z)∂X(Y −XiXj)|Y =(z,zizj) esh(z)

∂XXiXj|Y =(z,zizj) 0

)
=

(
f ′(z)− esh(z)∂X(XiXj)|X=z esh(z)

∂XXiXj |X=z 0

)
.

We have (Id− f̃
′
(z, zizj))δ̃ = (f̃ (z, zizj)− (z, zizj)

�), or equivalently(
Id− f ′(z) + esh(z)∂X(XiXj)|X=z −esh(z)

−∂XXiXj |X=z 1

)
·
(
δ̃[1,n]
δ̃n+1

)
=

(
f (z)− z

0

)
.

Multiplying the last row by esh(z) and adding to the first n rows yields(
Id− f ′(z)

)
δ̃[1,n] = f (z)− z.

So we have δ̃[1,n] =
(
Id− f ′(z)

)−1
(f (z)− z) = δ, which proves the lemma.

Now we proceed by induction on k to show ν̃
(k)
[1,n] ≤ ν(k), where ν̃(k) is the Newton

sequence for f̃ . By definition of the Newton sequence, this is true for k = 0. For the

step, let k ≥ 0 and define u := (ν̃
(k)
[1,n], ν̃

(k)
i · ν̃(k)j )�. Then we have

ν̃
(k+1)
[1,n] = N

˜f (ν̃
(k))[1,n]

(∗)
≤ N

˜f (u)[1,n] (see below)

= ν̃
(k)
[1,n] +

(
(Id− f̃

′
(u))−1(f̃ (u)− u)

)
[1,n]

= ν̃
(k)
[1,n] + (Id− f ′(ν̃(k)

[1,n]))
−1(f (ν̃

(k)
[1,n])− ν̃

(k)
[1,n]) (Lemma 4.13)

= Nf (ν̃
(k)
[1,n])

≤ Nf (ν
(k)) (induction)

= ν(k+1).

At the inequality marked with (∗) we used the monotonicity of N
˜f (Lemma 4.9)

combined with Theorem 4.1, which states ν̃(k) ≤ f̃ (ν̃(k)); hence in particular ν̃
(k)
n+1 ≤

ν̃
(k)
i ν̃

(k)
j . This concludes the proof of Theorem 4.12.

5. Strongly connected SPPs. In this section we study the convergence speed
of Newton’s method on strongly connected SPPs (scSPPs); see Definition 2.6.

5.1. Cone vectors. Our convergence speed analysis makes crucial use of the
existence of cone vectors.

Definition 5.1. Let f be an SPP. A vector d ∈ Rn
≥0 is a cone vector if d � 0

and f ′(μf )d ≤ d.
Proposition 5.2. Any clean and feasible scSPP has a cone vector.
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Proof. By Theorem 4.1 f ′(x)∗ exists for all x ≺ μf . So, by fundamental matrix
facts [3], the spectral radius of f ′(x) is less than 1 for all x ≺ μf . As the eigenvalues of
a matrix depend continuously on the matrix, the spectral radius of f ′(μf ), say ρ, is at
most 1. Since f is strongly connected, f ′(μf ) is irreducible, and so Perron–Frobenius
theory guarantees the existence of an eigenvector d � 0 of f ′(μf ) with eigenvalue ρ.
So we have f ′(μf)d = ρd ≤ d, i.e., the eigenvector d is a cone vector.

In [10] we prove Proposition 5.2 independently of Perron–Frobenius theory.

5.2. Convergence speed in terms of cone vectors. Now we show that cone
vectors play a fundamental role for the convergence speed of Newton’s method. The
following lemma gives a lower bound of the Newton approximant ν(1) in terms of a
cone vector.

Lemma 5.3. Let f be a feasible (not necessarily clean) SPP such that f ′(0)∗

exists. Let d be a cone vector of f . Let 0 ≥ μf − λd for some λ ≥ 0. Then

N (0) ≥ μf − 1

2
λd .

Proof. We write f(X) as a sum f(X) = c +
∑D

k=1 T
(k)(X, . . . ,X), where D is

the degree of f and, for all k ∈ {1, . . . , D} and all i ∈ {1, . . . , n}, the component T
(k)
i

of T (k) is the symmetric k-linear form associated to the degree-k terms of fi. Let L
(k) :

(Rn)k−1 → Rn×n such that T (k)(X(1), . . . ,X(k)) = L(k)(X(1), . . . ,X(k−1)) · X(k).
Now we can write

f(X) = c+

D∑
k=1

L(k)(X, . . . ,X)X and f ′(X) =

D∑
k=1

k · L(k)(X, . . . ,X) .

We write L for L(1), and h(X) for f (X)− LX − c. We have

λ

2
d =

λ

2
(L∗d− L∗Ld) (L∗ = Id + L∗L)

≥ λ

2
(L∗f ′(μf )d− L∗Ld) (f ′(μf )d ≤ d)

=
λ

2
L∗h′(μf)d (f ′(x) = h′(x) + L)

= L∗ 1
2
h′(μf )λd

≥ L∗ 1
2
h′(μf )μf (λd ≥ μf )

= L∗ 1
2

D∑
k=2

k · L(k)(μf , . . . , μf)μf

≥ L∗
D∑

k=2

L(k)(μf , . . . , μf)μf

= L∗h(μf )
= L∗(f(μf )− Lμf − c) (f (x) = h(x) + Lx+ c)

= L∗μf − L∗Lμf − L∗c (f (μf) = μf )

= μf − L∗c (L∗ = Id + L∗L)
= μf −N (0) (N (0) = f ′(0)∗f(0) = L∗c).
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We extend Lemma 5.3 to arbitrary vectors x as follows.
Lemma 5.4. Let f be a feasible (not necessarily clean) SPP. Let 0 ≤ x ≤ μf

and x ≤ f(x) such that f ′(x)∗ exists. Let d be a cone vector of f . Let x ≥ μf − λd
for some λ ≥ 0. Then

N (x) ≥ μf − 1

2
λd .

Proof. Define g(X) := f (X + x) − x. We first show that g is an SPP (not
necessarily clean). The only coefficients of g that could be negative are those of
degree 0. But we have g(0) = f(x) − x ≥ 0, and so these coefficients are also
nonnegative.

It follows immediately from the definition that μf −x ≥ 0 is the least fixed point
of g. Moreover, g satisfies g′(μf − x)d ≤ d, and so d is also a cone vector of g.
Finally, we have 0 ≥ μf − x − λd = μg − λd. So, Lemma 5.3 can be applied as
follows.

Nf (x) = x+ f ′(x)∗(f(x)− x)

= x+ g′(0)∗(g(0)− 0)

= x+Ng(0)

≥ x+ μg − 1

2
λd (Lemma 5.3)

= μf − 1

2
λd.

By induction we can extend this lemma to the whole Newton sequence.
Lemma 5.5. Let d be a cone vector of a clean and feasible SPP f and let

λmax = maxj{
μfj

dj
}. Then

ν(k) ≥ μf − 2−kλmaxd .

Before proving the lemma we illustrate it in the graph shown in Figure 5.1. The
dashed line in Figure 5.1 is the ray r(t) = μf − td along a cone vector d. Notice
that r(0) equals μf and that r(λmax ) is the greatest point on the ray that is below
0. The figure also shows the Newton iterates ν(k) for 0 ≤ k ≤ 2 (shape: ×) and
the corresponding points r(2−kλmax ) (shape: +) located on the ray r. Observe that
ν(k) ≥ r(2−kλmax ), as claimed by Lemma 5.5.

Proof of Lemma 5.5. The proof is by induction on k. For the induction base
(k = 0) we have for all components i

(μf − λmaxd)i =

(
μf −max

j

{
μf j

dj

}
d

)
i

≤ μf i −
μf i

di
di = 0 ,

so ν(0) = 0 ≥ μf − λmaxd.
For the induction step, let k ≥ 0. By the induction hypothesis we have ν(k) ≥

μf − 2−kλmaxd. So we can apply Lemma 5.4 to get

ν(k+1) = N (ν(k)) ≥ μf − 1

2
2−kλmaxd = μf − 2−(k+1)λmaxd .

The following proposition guarantees a convergence order of the Newton sequence
in terms of a cone vector.
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X1 = f1(X)

X2 = f2(X)
μf = r(0)

0

−0.4

−0.2

0.2 0.4 0.6

0.2

X1

X2

r(λmax )

Fig. 5.1. Illustration of Lemma 5.5: The points (+) on the ray r along a cone vector are lower
bounds on the Newton approximants (×).

Proposition 5.6. Let d be a cone vector of a clean and feasible SPP f and

let λmax = maxj
{μf j

dj

}
and λmin = minj

{μf j

dj

}
. Let kf ,d =

⌈
log λmax

λmin

⌉
. Then

β(kf ,d + i) ≥ i for all i ∈ N.
Proof. For all 1 ≤ j ≤ n the following holds:(

μf − ν(kf,d+i)
)
j
≤ 2−(kf,d+i)λmaxdj (Lemma 5.5)

≤ λmin

λmax
2−iλmaxdj (def. of kf ,d)

= λmindj · 2−i

≤ μf j · 2−i (def. of λmin).

Hence, ν(kf ,d+i) has i valid bits of μf .

5.3. Convergence speed independent from cone vectors. The convergence
order provided by Proposition 5.6 depends on a cone vector d. While Proposition 5.2
guarantees the existence of a cone vector for scSPPs, it does not give any information
on the magnitude of its components. So we do not have any bound yet on the
“threshold” kf ,d from Proposition 5.6. The following theorem solves this problem.

Theorem 5.7. Let f be a quadratic, clean, and feasible scSPP. Let cmin be the
smallest nonzero coefficient of f and let μmin and μmax be the minimal and maximal
component of μf , respectively. Let

kf =

⌈
log

μmax

μmin · (cmin ·min{μmin , 1})n
⌉

.

Then

β(kf + i) ≥ i for all i ∈ N.
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Before we prove Theorem 5.7 we give an example.
Example 5.8. As an example of an application of Theorem 5.7, consider the

scSPP equation of the back-button process of Example 2.9:⎛⎝X1

X2

X3

⎞⎠ =

⎛⎝ 0.4X2X1 + 0.6
0.3X1X2 + 0.4X3X2 + 0.3

0.3X1X3 + 0.7

⎞⎠ .

We wish to know if there is a component s ∈ {1, 2, 3} with μfs = 1. Notice
that f (1) = 1, so μf ≤ 1. Performing 14 Newton steps (e.g., with Maple) yields an
approximation ν(14) to μf with⎛⎝ 0.98

0.97
0.992

⎞⎠ ≤ ν(14) ≤

⎛⎝ 0.99
0.98
0.993

⎞⎠ .

We have cmin = 0.3. In addition, since Newton’s method converges to μf from
below, we know μmin ≥ 0.97. Moreover, μmax ≤ 1, as 1 = f (1) and so μf ≤ 1.
Hence kf ≤

⌈
log 1

0.97·(0.3·0.97)3
⌉
= 6. Theorem 5.7 then implies that ν(14) has 8 valid

bits of μf . As μf ≤ 1, the absolute errors are bounded by the relative errors, and
since 2−8 ≤ 0.004, we know

μf ≤ ν(14) +

⎛⎝2−8

2−8

2−8

⎞⎠ ≤

⎛⎝0.994
0.984
0.997

⎞⎠ ≺

⎛⎝1
1
1

⎞⎠ .

So Theorem 5.7 yields a proof that μf s < 1 for all three components s.
Notice also that the Newton sequence converges much faster than the Kleene

sequence (κ(k))k∈N. We have κ(14) ≺
(
0.89, 0.83, 0.96

)�
, so κ(14) has no more than

4 valid bits in any component, whereas ν(14) has, in fact, more than 30 valid bits in
each component.

For the proof of Theorem 5.7 we need the following lemma.
Lemma 5.9. Let d be a cone vector of a quadratic, clean, and feasible scSPP f .

Let cmin be the smallest nonzero coefficient of f and μmin the minimal component
of μf . Let dmin and dmax be the smallest and the largest component of d, respectively.
Then

dmin

dmax
≥ (cmin ·min{μmin , 1})n .

Proof. In what follows we shorten μf to μ. W.l.o.g. let d1 = dmax and dn = dmin .
We claim the existence of indices s, t with 1 ≤ s, t ≤ n such that f ′

st(μ) �= 0 and

(5.1)
dmin

dmax
≥
(
ds
dt

)n

.

To prove that such s, t exist, we use the fact that f is strongly connected, i.e., that
there is a sequence 1 = r1, r2, . . . , rq = n with q ≤ n such that f ′

rj+1rj (X) is not

constant zero. As μ � 0, we have f ′
rj+1rj (μ) �= 0. Furthermore

d1
dn

=
dr1
dr2

· · ·
drq−1

drq
, and so
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log
d1
dn

= log
dr1
dr2

+ · · ·+ log
drq−1

drq
.

So there must exist a j such that

log
d1
dn

≤ (q − 1) log
drj
drj+1

≤ n log
drj
drj+1

, and so

dn
d1

≥
(
drj+1

drj

)n

.

Hence one can choose s = rj+1 and t = rj .
As d is a cone vector, we have f ′(μ)d ≤ d and thus f ′

st(μ)dt ≤ ds. Hence

(5.2) f ′
st(μ) ≤

ds
dt

.

On the other hand, since f is quadratic, f ′ is a linear mapping such that

f ′
st(μ) = 2(b1 · μ1 + · · ·+ bn · μn) + �,

where b1, . . . , bn and � are coefficients of quadratic, respectively, linear, monomials of
f . As f ′

st(μ) �= 0, at least one of these coefficients must be nonzero and so greater
than or equal to cmin . It follows that f

′
st(μ) ≥ cmin ·min{μmin , 1}. So we have

(cmin ·min{μmin , 1})n ≤
(
f ′
st(μ)

)n
≤
(
ds
dt

)n

(by (5.2))

≤ dmin

dmax
(by (5.1)) .

Now we can prove Theorem 5.7.
Proof of Theorem 5.7. By Proposition 5.2, f has a cone vector d. Let dmax =

maxj{dj}, dmin = minj{dj}, λmax = maxj
{μfj

dj

}
, and λmin = minj

{μf j

dj

}
. We have

λmax

λmin
≤ μmax · dmax

μmin · dmin

(
as λmax ≤ dmax

μmin
and λmin ≥ dmin

μmax

)
≤ μmax

μmin · (cmin ·min{μmin , 1})n
(Lemma 5.9) .

So the statement follows with Proposition 5.6.
The following consequence of Theorem 5.7 removes some of the parameters on

which the kf from Theorem 5.7 depends.
Theorem 5.10. Let f be a quadratic, clean, and feasible scSPP, let μmin and

μmax be the minimal and maximal component of μf , respectively, and let the coeffi-
cients of f be given as ratios of m-bit integers. Then

β(kf + i) ≥ i for all i ∈ N

holds for any of the following choices of kf :
1. �4mn+ 3nmax{0,− logμmin}�.
2. 4mn2n.
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3. 7mn whenever f(0) � 0.
4. 2mn+m whenever both f(0) � 0 and μmax ≤ 1.

Items 3 and 4 of Theorem 5.10 apply in particular to termination SPPs of strict
pPDAs (section 2.4); i.e., they satisfy f(0) � 0 and μmax ≤ 1.

To prove Theorem 5.10 we need some relations between the parameters of f . We
collect them in the following lemma.

Lemma 5.11. Let f be a quadratic, clean, and feasible scSPP. With the termi-
nology of Theorems 5.7 and 5.10 the following relations hold:

1. cmin ≥ 2−m.
2. If f (0) � 0, then μmin ≥ cmin .
3. If cmin > 1, then μmin > 1.
4. If cmin ≤ 1, then μmin ≥ c2

n−1
min .

5. If f is strictly quadratic, i.e., nonlinear, then the inequalities cmin ≤ 1 and
μmax · c3n−2

min ·min{μ2n−2
min , 1} ≤ 1 hold.

Proof. We show the relations in turn.

1. The smallest nonzero coefficient representable as a ratio of m-bit numbers is
1
2m .

2. As f(0) � 0, in all components i there is a nonzero coefficient ci such that
fi(0) = ci. We have μf ≥ f (0), so μf i ≥ fi(0) = ci ≥ cmin > 0 holds for
all i. Hence μmin > 0.

3. Let cmin > 1. Recall the Kleene sequence (κ(k))k∈N with κ(k) = fk(0). We
first show by induction on k that for all k ∈ N and all components i either

κ
(k)
i = 0 holds or κ

(k)
i > 1. For the induction base we have κ(0) = 0. Let

k ≥ 0. Then κ
(k+1)
i = fi(κ

(k)) is a sum of products of numbers which are
either coefficients of f (and hence by assumption greater than 1) or which

are equal to κ
(k)
j for some j. By induction, κ

(k)
j is either 0 or greater than 1.

So, κ
(k+1)
i must be 0 or greater than 1.

By Theorem 2.4, the Kleene sequence converges to μf . As f is clean, we
have μf � 0, and so there is a k ∈ N such that κ(k) � 1. The statement
follows with μf ≥ κ(k).

4. Let cmin ≤ 1. We prove the following stronger statement by induction on k:
For every k with 0 ≤ k ≤ n there is a set Sk ⊆ {1, . . . , n}, |Sk| = k,

such that μfs ≥ c2
k−1

min holds for all s ∈ Sk. The induction base (k = 0)

is trivial. Let k ≥ 0. Consider the SPP f̂ (X{1,...,n}\Sk
) that is obtained

from f(X) by removing the Sk-components from f and replacing every Sk-
variable in the polynomials by the corresponding component of μf . Clearly,
μf̂ = (μf ){1,...,n}\Sk

. By induction, the smallest nonzero coefficient ĉmin of f̂

satisfies ĉmin ≥ cmin(c
2k−1
min )2 = c2

k+1−1
min . Pick a component i with f̂i(0) > 0.

Then μf̂ i ≥ f̂i(0) ≥ ĉmin ≥ c2
k+1−1

min . So set Sk+1 := Sk ∪ {i}.
5. W.l.o.g. let μmax = μf1. The proof is based on the idea that X1 indirectly

depends quadratically on itself. More precisely, as f is strongly connected
and strictly quadratic, component 1 depends (indirectly) on some component,
say ir, such that fir contains a degree-2-monomial. The variables in that
monomial, in turn, depend on X1. This gives an inequality of the form
μf1 ≥ C · μf1

2, implying μf1 · C ≤ 1.
We give the details in the following. As f is strongly connected and strictly
quadratic, there exists a sequence of variables Xi1 , . . . , Xir and a sequence of
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monomials mi1 , . . . ,mir (1 ≤ r ≤ n) with the following properties:

• Xi1 = X1,
• miu is a monomial appearing in fiu (1 ≤ u ≤ r),
• miu = ciu ·Xiu+1 (1 ≤ u ≤ r),
• mir = cir ·Xj1 ·Xk1 for some variables Xj1 , Xk1 .

Notice that

μmax = μf1 ≥ ci1 · . . . · cir · μf j1 · μfk1

≥ min(cnmin , 1) · μf j1 · μfk1
.

(5.3)

Again using that f is strongly connected, there exists a sequence of variables
Xj1 , . . . , Xjs and a sequence of monomials mj1 , . . . ,mjs−1 (1 ≤ s ≤ n) with
the following properties:

• Xjs = X1,
• mju is a monomial appearing in fju (1 ≤ u ≤ s− 1),
• mju = cju ·Xju+1 or mju = cju ·Xju+1 ·Xj′u+1

for some variable Xj′u+1
(1 ≤ u ≤ s− 1).

Notice that

μf j1 ≥ cj1 · . . . · cjs−1 ·min(μs−1
min , 1) · μf1

≥ min(cn−1
min , 1) ·min(μn−1

min , 1) · μf1 .
(5.4)

Similarly, there exists a sequence of variables Xk1 , . . . , Xkt (1 ≤ t ≤ n) with
Xkt = X1 showing

(5.5) μfk1
≥ min(cn−1

min , 1) ·min(μn−1
min , 1) · μf1 .

Combining (5.3) with (5.4) and (5.5) yields

μmax ≥ min(c3n−2
min , 1) ·min(μ2n−2

min , 1) · μ2
max ,

or

(5.6) μmax ·min(c3n−2
min , 1) ·min(μ2n−2

min , 1) ≤ 1 .

Now it suffices to show cmin ≤ 1. Assume for a contradiction that cmin > 1.
Then, by statement 3, μmin > 1. Plugging this into (5.6) yields μmax ≤
1. This implies μmax < μmin , contradicting the definitions of μmax and
μmin .

Now we are ready to prove Theorem 5.10.
Proof of Theorem 5.10.
1. First we check the case where f is linear; i.e., all polynomials fi have degree

at most 1. In this case, Newton’s method reaches μf after one iteration, so
the statement holds. Consequently, we can assume in the following that f
is strictly quadratic, meaning that f is quadratic and there is a polynomial
in f of degree 2.
By Theorem 5.7 it suffices to show

log
μmax

μmin · cnmin ·min{μn
min , 1}

≤ 4mn+ 3nmax{0,− logμmin} .
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We have

log
μmax

μmin · cnmin ·min{μn
min , 1}

≤ log
1

c4n−2
min ·min{μ3n−1

min , 1}
(Lemma 5.11.5)

≤ 4n · log 1

cmin
− log(min{μ3n−1

min , 1}) (Lemma 5.11.5: cmin ≤ 1)

≤ 4mn− log(min{μ3n−1
min , 1}) (Lemma 5.11.1) .

If μmin ≥ 1, we have − log(min{μ3n−1
min , 1}) ≤ 0, so we are done in this case.

If μmin ≤ 1, we have − log(min{μ3n−1
min , 1}) = −(3n − 1) logμmin ≤ 3n ·

(− logμmin).
2. By statement 1 of this theorem, it suffices to show that 4mn + 3nmax{0,

− logμmin} ≤ 4mn2n. This inequality obviously holds if μmin ≥ 1. So let
μmin ≤ 1. Then, by Lemma 5.11.3, cmin ≤ 1. Hence, by parts 4 and 1 of
Lemma 5.11, μmin ≥ c2

n−1
min ≥ 2−m(2n−1). So we have an upper bound on

− logμmin with − logμmin ≤ m(2n − 1) and get

4mn+ 3nmax{0,− logμmin} ≤ 4mn+ 3nm(2n − 1)

≤ 4mn+ 4nm(2n − 1) = 4mn2n.

3. Let f(0) � 0. By statement 1 of this theorem it suffices to show that 4mn+
3nmax{0,− logμmin} ≤ 7mn holds. By parts 2 and 1 of Lemma 5.11, we have
μmin ≥ cmin ≥ 2−m, so − logμmin ≤ m. Hence, 4mn+3nmax{0,− logμmin}
≤ 4mn+ 3nm = 7mn.

4. Let f(0) � 0 and μmax ≤ 1. By Theorem 5.7 it suffices to show that

log
μmax

μmin · cnmin ·min{μn
min , 1}

≤ 2mn+m.

We have

log
μmax

μmin · cnmin ·min{μn
min , 1}

≤ −n log cmin − (n+ 1) logμmin (as μmin ≤ μmax ≤ 1)

≤ −(2n+ 1) log cmin (Lemma 5.11.2)

≤ 2mn+m (Lemma 5.11.1).

5.4. Upper bounds on the least fixed point via Newton approximants.
By Theorem 4.1 each Newton approximant ν(k) is a lower bound on μf . Theorems 5.7
and 5.10 give us upper bounds on the error Δ(k) := μf − ν(k). Those bounds can be
directly transformed into upper bounds on μf , as μf = ν(k) +Δ(k); cf. Example 5.8.

Theorems 5.7 and 5.10 allow us to compute bounds on Δ(k) even before the
Newton iteration has been started. However, this may be more than we actually
need. In practice, we may wish to use an iterative method that yields guaranteed
lower and upper bounds on μf that improve during the iteration. The following
theorem and its corollary can be used to this end.

Theorem 5.12. Let f be a quadratic, clean, and feasible scSPP. Let 0 ≤ x ≤ μf
and x ≤ f(x) such that f ′(x)∗ exists. Let cmin be the smallest nonzero coefficient
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of f , and let μmin be the minimal component of μf . Then

‖N (x)− x‖∞
‖μf −N (x)‖∞

≥ (cmin ·min{μmin , 1})n .

We prove Theorem 5.12 at the end of the section. The theorem can be applied
to the Newton approximants.

Theorem 5.13. Let f be a quadratic, clean, and feasible scSPP. Let cmin be
the smallest nonzero coefficient of f , and let μmin be the minimal component of μf .

For all Newton approximants ν(k) with ν(k) � 0, let ν
(k)
min be the smallest coefficient

of ν(k). Then

ν(k) ≤ μf ≤ ν(k) +

⎡⎣ ∥∥ν(k) − ν(k−1)
∥∥
∞(

cmin ·min{ν(k)min , 1}
)n
⎤⎦,

where [s] denotes the vector x with xj = s for all 1 ≤ j ≤ n.
Proof. Theorem 5.12 applies, due to Theorem 4.1, to the Newton approximants

with x = ν(k−1). So we get∥∥∥μf − ν(k)
∥∥∥
∞

≤
∥∥ν(k) − ν(k−1)

∥∥
∞

(cmin ·min{μmin , 1})n

≤
∥∥ν(k) − ν(k−1)

∥∥
∞(

cmin ·min{ν(k)min , 1}
)n (as ν(k) ≤ μf) .

Hence the statement follows from ν(k) ≤ μf .
Example 5.14. Consider again the equation X = f(X) from Examples 2.9

and 5.8: ⎛⎝X1

X2

X3

⎞⎠ =

⎛⎝ 0.4X2X1 + 0.6
0.3X1X2 + 0.4X3X2 + 0.3

0.3X1X3 + 0.7

⎞⎠ .

Again we wish to verify that there is no component s ∈ {1, 2, 3} with μfs = 1.
Performing 10 Newton steps yields an approximation ν(10) to μf with⎛⎝0.9828

0.9738
0.9926

⎞⎠ ≺ ν(10) ≺

⎛⎝0.9829
0.9739
0.9927

⎞⎠ .

Further, it holds that
∥∥ν(10) − ν(9)

∥∥
∞ ≤ 2 · 10−6. So we have∥∥ν(10) − ν(9)

∥∥
∞(

cmin ·min{ν(10)min , 1}
)3 ≤ 2 · 10−6

(0.3 · 0.97)3
≤ 0.00009,

and hence by Theorem 5.13

ν(10) ≤ μf ≤ ν(10) + [0.00009] ≤

⎛⎝0.983
0.974
0.993

⎞⎠ .

In particular we know that μfs < 1 for all three components s.
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Fig. 5.2. Number of valid bits of the lower (×) and upper (+) bounds on μf1; see Example 5.15.

Example 5.15. Consider again the SPP f from Example 5.14. Setting

u(k) := ν(k) +

⎡⎢⎣∥∥ν(k) − ν(k−1)
∥∥
∞(

0.3 · ν(k)min

)3
⎤⎥⎦ ,

Theorem 5.13 guarantees

ν(k) ≤ μf ≤ u(k) .

Let us measure the tightness of the bounds ν(k) and u(k) on μf in the first component.
Let

plower (k) := − log2(μf1 − ν
(k)
1 ),

pupper(k) := − log2(u
(k)
1 − μf1) .

Roughly speaking, ν
(k)
1 and u

(k)
1 have plower (k) and pupper(k) valid bits of μf1, re-

spectively. Figure 5.2 shows plower (k) and pupper(k) for k ∈ {1, . . . , 11}.
It can be seen that the slope of plower (k) is approximately 1 for k = 2, . . . , 6. This

corresponds to the linear convergence of Newton’s method according to Theorem 5.7.
Since Id− f ′(μf) is nonsingular,3 Newton’s method actually has, asymptotically, an
exponential convergence order; cf. Theorem 4.11. This behavior can be observed in
Figure 5.2 for k ≥ 7. For pupper , we roughly have (using ν(k) ≈ μf )

pupper(k) ≈ plower (k − 1) + log
(
0.3 · ν(k)min

)3
≈ plower (k − 1)− 5 .

3In fact, the matrix is “almost” singular, with det(Id− f ′(μf)) ≈ 0.006.
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The proof of Theorem 5.12 uses techniques similar to those of the proof of Theo-
rem 5.7, in particular Lemma 5.9.

Proof of Theorem 5.12. By Proposition 5.2, f has a cone vector d. Let dmin

and dmax be the smallest and the largest component of d, respectively. Let λmax :=

maxj{
μf j−xj

dj
}, and w.l.o.g. let λmax =

μf1−x1

d1
. We have x ≥ μf − λmaxd, so we can

apply Lemma 5.4 to obtain N (x) ≥ μf − 1
2λmaxd. Thus

‖N (x)− x‖∞ ≥ (N (x)− x)1 ≥ μf1 −
1

2
λmaxd1 − x1 =

1

2
λmaxd1 ≥ 1

2
λmaxdmin .

On the other hand, with Lemma 4.5 we have 0 ≤ μf − N (x) ≤ 1
2λmaxd and so

‖μf −N (x)‖∞ ≤ 1
2λmaxdmax . Combining those inequalities, we obtain

‖N (x)− x‖∞
‖μf −N (x)‖∞

≥ dmin

dmax
.

Now the statement follows from Lemma 5.9.

6. General SPPs. In section 5 we considered strongly connected SPPs; see Defi-
nition 2.6. However, it is not always guaranteed that the SPP f is strongly connected.
In this section we analyze the convergence speed of two variants of Newton’s method
that both compute approximations of μf , where f is a clean and feasible SPP that
is not necessarily strongly connected (“general SPPs”).

The first one was suggested by Etessami and Yannakakis [16] and is called de-
composed Newton’s method (DNM). It works by running Newton’s method separately
on each SCC; see section 6.1. The second one is the regular Newton’s method from
section 4. We will analyze its convergence speed in section 6.2.

The reason we first analyze DNM is that our convergence speed results about
Newton’s method for general SPPs (Theorem 6.5) build on our results about DNM
(Theorem 6.2). From an efficiency point of view it actually may be advantageous to
run Newton’s method separately on each SCC. For those reasons DNM deserves a
separate treatment.

6.1. Convergence speed of DNM. DNM, originally suggested in [16], works
as follows. It starts by using Newton’s method for each bottom SCC, say S, of
the SPP f . Then the corresponding variables XS are substituted for the obtained
approximation for μfS , and the corresponding equations XS = fS(X) are removed.
The same procedure is then applied to the new bottom SCCs, until all SCCs have
been processed.

Etessami and Yannakakis did not provide a particular criterion for the number of
Newton iterations to be applied in each SCC. Consequently, they did not analyze the
convergence speed of DNM. We will treat those issues in this section, thereby taking
advantage of our previous analysis of scSPPs.

We fix a quadratic, clean, and feasible SPP f for this section. We assume that we
have already computed the DAG of SCCs. This can be done in linear time in the size
of f . To each SCC S we can associate its depth t: it is the longest path in the DAG
of SCCs from S to a top SCC. Notice that 0 ≤ t ≤ n− 1. We write SCC(t) for the set
of SCCs of depth t. We define the height h(f ) as the largest depth of an SCC and
the width w(f ) := maxt |SCC(t)| as the largest number of SCCs of the same depth.
Notice that f has at most (h(f ) + 1) · w(f ) SCCs. Further we define the component
sets [t] :=

⋃
S∈SCC(t) S and [>t] :=

⋃
t′>t[t

′] and similarly [< t].
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function DNM (f , i) /* The parameter i controls the precision. */
for t from h(f ) downto 0

forall S ∈ SCC(t) /* for all SCCs S of depth t */

ρ
(i)
S := N i·2t

fS
(0) /* perform i · 2t Newton iterations */

f [<t] := f [<t][S/ρ
(i)
S ] /* apply ρ

(i)
S in the upper SCCs */

return ρ(i)

Fig. 6.1. Decomposed Newton’s method (DNM) for computing an approximation ρ(i) of μf .

Figure 6.1 shows our version of DNM. We suggest running Newton’s method in
each SCC S for a number of steps that depends (exponentially) on the depth of S
and (linearly) on a parameter i that controls the precision.

Proposition 6.1. The function DNM(f , i) of Figure 6.1 runs at most i ·w(f ) ·
2h(f)+1 ≤ i · n · 2n iterations of Newton’s method.

Proof. The number of iterations is
∑h(f)

t=0 |SCC(t)| · i · 2t. This can be estimated
as follows:

h(f)∑
t=0

|SCC(t)| · i · 2t ≤ w(f ) · i ·
h(f)∑
t=0

2t

≤ w(f ) · i · 2h(f)+1

≤ i · n · 2n (as w(f ) ≤ n and h(f ) < n).

The following theorem states that DNM has linear convergence order.
Theorem 6.2. Let f be a quadratic, clean, and feasible SPP. Let ρ(i) denote

the result of calling DNM(f , i) (see Figure 6.1). Let βρ denote the convergence order
of (ρ(i))i∈N. Then there is a kf ∈ N such that βρ(kf + i) ≥ i for all i ∈ N.

Theorem 6.2 can be interpreted as follows: Increasing i by one yields asymptot-
ically at least one additional bit in each component and, by Proposition 6.1, costs
at most n · 2n additional Newton iterations. Notice that for simplicity we do not
take into account here that the cost of performing a Newton step on a single SCC is
not uniform, but rather depends on the size of the SCC (e.g., cubically if Gaussian
elimination is used for solving the linear systems).

For the proof of Theorem 6.2, let Δ(i) denote the error when running DNM with
parameter i, i.e., Δ(i) := μf − ρ(i). Observe that the error Δ(i) can be understood
as the sum of two errors:

Δ(i) := μf − ρ(i) = (μ− μ̃(i)) + (μ̃(i) − ρ(i)) ,

where μ̃
(i)
[t] := μ

(
f [t][[>t]/ρ

(i)
[>t]]

)
; i.e., μ̃

(i)
[t] is the least fixed point of f [t] after the

approximations from the lower SCCs have been applied. So, Δ
(i)
[t] consists of the

propagation error (μf [t] − μ̃
(i)
[t] ) (resulting from the error at lower SCCs) and the

approximation error (μ̃
(i)
[t] − ρ

(i)
[t] ) (resulting from the newly added error of Newton’s

method on level t).
The following lemma gives a bound on the propagation error.
Lemma 6.3 (propagation error). There is a constant Cf > 0 such that∥∥∥μf [t] − μ̃[t]

∥∥∥ ≤ Cf ·
√∥∥∥μf [>t] − ρ[>t]

∥∥∥
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holds for all ρ[>t] with 0 ≤ ρ[>t] ≤ μf [>t], where μ̃[t] = μ
(
f [t][[>t]/ρ[>t]]

)
.

Roughly speaking, Lemma 6.3 states that if ρ
(i)
[>t] has k valid bits of μf [>t], then

μ̃
(i)
[t] has at least about k/2 valid bits of μf [t]. In other words (at most) one-half of the

valid bits are lost on each level of the DAG due to the propagation error. The proof
of Lemma 6.3 is technically involved and, unfortunately, not constructive in that we
know nothing about Cf except for its existence. Therefore, the statements in this
section are independent of a particular norm. The proof of Lemma 6.3 can be found
in Appendix A.

The following lemma gives a bound on the error ‖Δ(i)
[t] ‖ on level t, taking both

the propagation error and the approximation error into account.
Lemma 6.4. There is a Cf > 0 such that ‖Δ(i)

[t] ‖ ≤ 2Cf−i·2t for all i ∈ N.

Proof. Let f̃
(i)

[t] := f [t][[> t]/ρ
(i)
[>t]]. Observe that the coefficients of f̃

(i)

[t] and

thus its least fixed point μ̃
(i)
[t] are monotonically increasing with i, because ρ

(i)
[>t] is

monotonically increasing as well. Consider an arbitrary depth t and choose real
numbers cmin > 0 and μmin > 0 and an integer i0 such that, for all i ≥ i0, cmin and
μmin are lower bounds on the smallest nonzero coefficient of f̃

(i)

[t] and the smallest

coefficient of μ̃
(i)
[t] , respectively. Let μmax be the largest component of μf [t]. Let

k̃ :=
⌈
n · log μmax

cmin ·μmin ·min{μmin ,1}
⌉
. Then it follows from Theorem 5.7 that performing

k̃ + j Newton iterations (j ≥ 0) on depth t yields j valid bits of μ̃
(i)
[t] for any i ≥ i0.

In particular, k̃ + i · 2t Newton iterations give i · 2t valid bits of μ̃
(i)
[t] for any i ≥ i0.

So there exists a constant c1 > 0 such that, for all i ≥ i0,

(6.1)
∥∥∥μ̃(i)

[t] − ρ
(i)
[t]

∥∥∥ ≤ 2c1−i·2t ,

because DNM (see Figure 6.1) performs i · 2t iterations to compute ρ
(i)
S , where S is

an SCC of depth t. Choose c1 large enough such that (6.1) holds for all i ≥ 0 and all
depths t.

Now we can prove the theorem by induction on t. In the base case (t = h(f))
there is no propagation error, so the claim of the lemma follows from (6.1). Let
t < h(f). Then∥∥∥Δ(i)

[t]

∥∥∥ =
∥∥∥μf [t] − μ̃

(i)
[t] + μ̃

(i)
[t] − ρ

(i)
[t]

∥∥∥
≤
∥∥∥μf [t] − μ̃

(i)
[t]

∥∥∥+ ∥∥∥μ̃(i)
[t] − ρ

(i)
[t]

∥∥∥
≤
∥∥∥μf [t] − μ̃

(i)
[t]

∥∥∥+ 2c1−i·2t (by (6.1))

≤ c2 ·
√∥∥∥Δ(i)

[>t]

∥∥∥+ 2c1−i·2t (Lemma 6.3)

≤ c2 ·
√
2c3−i·2t+1 + 2c1−i·2t (induction hypothesis)

≤ 2c4−i·2t

for some constants c2, c3, c4 > 0.
Now Theorem 6.2 follows easily.
Proof of Theorem 6.2. From Lemma 6.4 we deduce that for each component j ∈ [t]

there is a cj such that

(μf j − ρ
(i)
j )/μf j ≤ 2cj−i·2t ≤ 2cj−i .
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Let kf ≥ cj for all 1 ≤ j ≤ n. Then

(μf j − ρ
(i+kf )
j )/μf j ≤ 2cj−(i+kf ) ≤ 2−i .

Notice that, unfortunately, we cannot give a bound on kf , mainly because Lemma
6.3 does not provide a bound on Cf .

6.2. Convergence speed of Newton’s method. We use Theorem 6.2 to prove
the following theorem for the regular (i.e., not decomposed) Newton sequence (ν(i))i∈N.

Theorem 6.5. Let f be a quadratic, clean, and feasible SPP. There is a threshold
kf ∈ N such that β(kf + i · n · 2n) ≥ β(kf + i · (h(f ) + 1) · 2h(f)) ≥ i for all i ∈ N.

In the rest of the section we prove this theorem by a sequence of lemmas. The
following lemma states that a Newton step is not faster on an SCC if the values of
the lower SCCs are fixed.

Lemma 6.6. Let f be a clean and feasible SPP. Let 0 ≤ x ≤ f(x) ≤ μf such
that f ′(x)∗ exists. Let S be an SCC of f and let L denote the set of components that
are not in S, but on which a variable in S depends. Then (Nf (x))S ≥ NfS [L/xL](xS).

Proof.

(Nf (x))S =
(
f ′(x)∗(f (x)− x)

)
S

= f ′(x)∗SS(f(x)− x)S + f ′(x)∗SL(f (x)− x)L

≥ f ′(x)∗SS(f(x)− x)S

=
(
(fS [L/xL])

′(xS)
)∗
(fS [L/xL](xS)− xS)

= NfS [L/xL](xS).

Recall Lemma 4.9, which states that the Newton operator N is monotone. This
fact and Lemma 6.6 can be combined in order to obtain the following lemma stating
that i ·(h(f)+1) iterations of the regular Newton’s method “dominate” a decomposed
Newton’s method that performs i Newton steps in each SCC.

Lemma 6.7. Let ν̃(i) denote the result of a decomposed Newton’s method which
performs i iterations of Newton’s method in each SCC. Let ν(i) denote the result of i

iterations of the regular Newton’s method. Then ν(i·(h(f)+1)) ≥ ν̃(i).
Proof. Let h = h(f). Let [t] and [>t] again denote the set of components of depth

t and > t, respectively. We show the following by induction on the depth t:

ν
(i·(h+1−t))
[t] ≥ ν̃

(i)
[t] .

The induction base (t = h) is clear, because for bottom SCCs the two methods are
identical. Now let t < h. Then

ν
(i·(h+1−t))
[t] = N i

f (ν
(i·(h−t)))[t]

≥ N i

f [t][[>t]/ν
(i·(h−t))

[>t]
]
(ν

(i·(h−t))
[t] ) (Lemma 6.6)

≥ N i

f [t][[>t]/ν̃
(i)

[>t]
]
(ν

(i·(h−t))
[t] ) (induction hypothesis)

≥ N i

f [t][[>t]/ν̃
(i)

[>t]
]
(0[t]) (Lemma 4.9)

= ν̃
(i)
[t] (definition of ν̃(i)).

Now, the lemma itself follows by using Lemma 4.9 once more.
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As a side note, observe that the above proof of Lemma 6.7 implicitly benefits
from the fact that SCCs of the same depth are independent. So, SCCs with the same
depth are handled in parallel by the regular Newton’s method. Therefore, w(f ), the
width of f , is irrelevant here (cf. Proposition 6.1).

Now we can prove Theorem 6.5.

Proof of Theorem 6.5. Let k2 be the kf of Theorem 6.2, and let k1 = k2 ·(h(f )+1)
· 2h(f). Then we have

ν(k1+i·(h(f)+1)·2h(f)) = ν((k2+i)·(h(f)+1)·2h(f))

≥ ν̃((k2+i)·2h(f)) (Lemma 6.7)

≥ ρ(k2+i) ,

where the last step follows from the fact that DNM(f , k2+i) runs at most (k2+i)·2h(f)
iterations in every SCC. By Theorem 6.2, ρ(k2+i) and hence ν(k1+i·(h(f)+1)·2h(f)) have
i valid bits of μf . Therefore, Theorem 6.5 holds with kf = k1.

7. Upper bounds on the convergence. In this section we show that the lower
bounds on the convergence order of Newton’s method that we obtained in the previous
section are essentially tight, meaning that an exponential (in n) number of iterations
may be needed per bit.

More precisely, we expose a family (f (n))n≥1 of SPPs with n variables, such that
more than k·2n−1 iterations are needed for k valid bits. Consider the following system:

(7.1) X = f (n)(X) =

⎛⎜⎜⎜⎝
1
2 + 1

2X
2
1

1
4X

2
1 + 1

2X1X2 +
1
4X

2
2

...
1
4X

2
n−1 +

1
2Xn−1Xn + 1

4X
2
n

⎞⎟⎟⎟⎠ .

The only solution of (7.1) is μf (n) = (1, . . . , 1)�. Notice that each component of f (n)

is an SCC. We prove the following theorem.

Theorem 7.1. The convergence order of Newton’s method applied to the SPP f (n)

from (7.1) (with n ≥ 2) satisfies

β(k · 2n−1) < k for all k ∈ {1, 2, . . .}.

In particular, β(2n−1) = 0.

Proof. We write f := f (n) for simplicity. Let

Δ(i) := μf − ν(i) = (1, . . . , 1)� − ν(i) .

Notice that (ν
(i)
1 )i∈N = (0, 12 ,

3
4 ,

7
8 , . . .), which is the same sequence as obtained by

applying Newton’s method to the 1-dimensional system X1 = 1
2 + 1

2X
2
1 . So we have

Δ
(i)
1 = 2−i; i.e., after i iterations we have exactly i valid bits in the first component.

We know from Theorem 4.1 that for all j with 1 ≤ j ≤ n − 1 we have ν
(i)
j+1 ≤

fj+1(ν
(i)) = 1

4 (ν
(i)
j )2 + 1

2ν
(i)
j ν

(i)
j+1 + 1

4 (ν
(i)
j+1)

2 and ν
(i)
j+1 ≤ 1. It follows that ν

(i)
j+1

is at most the least solution of Xj+1 = 1
4 (ν

(i)
j )2 + 1

2ν
(i)
j Xj+1 + 1

4 (Xj+1)
2, and so

Δ
(i)
j+1 ≥ 2

√
Δ

(i)
j −Δ

(i)
j >

√
Δ

(i)
j .
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By induction it follows that Δ
(i)
j+1 > (Δ

(i)
1 )2

−j

. In particular,

Δ(k·2n−1)
n >

(
Δ

(k·2n−1)
1

)2−(n−1)

= 2−k·2n−1·2−(n−1)

= 2−k.

Hence, after k · 2n−1 iterations we have fewer than k valid bits.
Notice that the proof exploits that an error in the first component gets “amplified”

along the DAG of SCCs. One can also show along those lines that computing μf is
an ill-conditioned problem: Consider the SPP g(n,ε) obtained from f (n) by replacing
the first component by 1− ε where 0 ≤ ε < 1. If ε = 0, then (μg(n,ε))n = 1, whereas
if ε = 1

22n−1 , then (μg(n,ε))n < 1
2 . In other words, to get 1 bit of precision of μg, one

needs exponentially in n many bits in g. Note that this observation is independent
from any particular method to compute or approximate the least fixed point.

8. Geometrical aspects of SPPs. As shown in section 4.4 we can assume that
f consists of quadratic polynomials. For quadratic polynomials the locus of zeros is
also called a quadric surface, or more commonly quadric. Quadrics are one of the
most fundamental class of hypersurfaces. It is therefore natural to study the quadrics
induced by a quadratic SPP f and how the Newton sequence is connected to these
surfaces.

Let us write q for f −X. Every component qi of q is also a quadratic polynomial
each defining a quadric denoted by

Qi := {x ∈ R
n | qi(x) = fi(x)− xi = 0}.

Finding μf thus corresponds to finding the least nonnegative point of intersection of
these n quadrics Qi.

Example 8.1. Consider the SPP f given by

f(X,Y ) =

(
1
2X

2 + 1
4Y

2 + 1
4

1
4X + 1

4XY + 1
4Y

2 + 1
4

)
leading to

q1(X,Y ) =
1

2
X2 +

1

4
Y 2 +

1

4
−X and q2(X,Y ) =

1

4
X +

1

4
XY +

1

4
Y 2 +

1

4
− Y.

Using standard techniques from linear algebra, one can show that q1 defines an ellipse,
while q2 describes a parabola (see Figure 8.1).

Figure 8.1 shows the two quadrics induced by the SPP f discussed in the example
above. In Figure 8.1 (a) one can recognize one of the two quadrics as an ellipse, while
the other one is a parabola. In this example the Newton approximants (depicted as
crosses) stay within the region enclosed by the coordinate axes and the two quadrics
as shown in Figure 8.1 (b).

In this section we want to show that the image depicted in the figure in principle
is the same for all clean and feasible scSPPs. That is, we show that the Newton
(and Kleene) approximants always stay in the region enclosed by the coordinate axes
and the quadrics. We characterize this region and study some of the properties of
the quadrics restricted to this region. This eventually leads to a generalization of
Newton’s method (Theorem 8.13). We close the section by showing that this new
method converges at least as fast as Newton’s method. All missing proofs can be
found in Appendix B.
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(a) (b)

Fig. 8.1. (a) The quadrics induced by the SPP from Example 8.1 with “q1 = 0” an ellipse and
“q2 = 0” a parabola. (b) Close-up view of the region important for determining μf . The crosses
show the Newton approximants of μf .

Fig. 8.2. The normals (scaled down) of the quadrics from Example 8.1.

Let us start with the properties of the quadrics Qi. We restrict our attention to
the region [0, μf). For this we set

Mi := Qi ∩ [0, μf) = {x ∈ [0, μf) | qi(x) = 0}.

We start by showing that for every x ∈ Mi the gradient q′i(x) in x at Mi does not
vanish. As q′i(x) is perpendicular to the tangent plane in x at Mi, this means that the
normal of the tangent plane is determined by q′i(x) (up to orientation). See Figure 8.2
for an example. This will later allow us to apply the implicit function theorem.

Lemma 8.2. For every quadric qi induced by a clean and feasible scSPP f we
have

q′i(x) = (∂X1qi(x), ∂X2qi(x), . . . , ∂Xnqi(x)) �= 0 and ∂Xiqi(x) < 0 for all x ∈ [0, μf ).
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In the following, for i ∈ {1, . . . , n} we write x−i for the vector (x1, . . . , xi−1, xi+1,
. . . , xn) and define (x−i, xi) to also denote the original vector x.

We next show that there exists a complete parametrization of “the lower part”
of Mi. By “lower part” we refer to the set

Si := {x ∈ Mi | ∀y ∈ Mi : (x−i = y−i) ⇒ xi ≤ yi} ,

i.e., the points x ∈ Mi such that there is no point y with the same non-i-components
but smaller i-component. Taking a look at Figure 8.1, the surfaces S1 and S2 are those
parts of M1, respectively, M2, which delimit that part of R2

≥0 shown in Figure 8.1 (b).
If x ∈ Si, then xi is the least nonnegative root of the (at most) quadratic polyno-

mial qi(Xi,x−i). As we will see, these roots can also be represented by the following
functions.

Definition 8.3. For a clean and feasible scSPP f we define for all k ∈ N the

polynomial h
(k)
i by

h
(0)
i (X−i) := fi[i/0](X−i), h

(k+1)
i (X−i) := fi[i/h

(k)
i (X−i)](X−i).

The function hi(X) is then defined pointwise by

hi(x−i) := lim
k→∞

h
(k)
i (x−i)

for all x−i ∈ [0, μf−i].
We show in Appendix B (see Proposition B.1) that the function hi is well-defined

and exists. We therefore can parameterize the surface Si w.r.t. the remaining variables
X−i; i.e., hi is the “height” of the surface Si above the “ground” Xi = 0.

By the preceding proposition the map

pi : [0, μf−i) → [0, μf ] : x−i �→ (x1, . . . , xi−1, hi(x−i), xi+1, . . . , xn)

gives us a pointwise parametrization of Si. We want to show that pi is continuously
differentiable. For this it suffices to show that hi is continuously differentiable, which
follows easily from the implicit function theorem (see, e.g., [30]).

Lemma 8.4. hi is continuously differentiable with

∂Xjhi(x−i) =
∂Xjfi(x)

−∂Xiqi(x)
=

∂Xj qi(x)

−∂Xiqi(x)
for x ∈ Si and j �= i.

In particular, ∂Xjhi is monotonically increasing with x.
Corollary 8.5. The map

pi : [0, μf−i) → [0, μf ] : x−i �→ (x1, . . . , xi−1, hi(x−i), xi+1, . . . , xn)

is continuously differentiable and a local parametrization of the manifold Si.
Example 8.6. For the SPP f defined in Example 8.1 we can simply solve q1(X,Y )

for X , leading to

h1(Y ) = 1−
√

1

2
(1 − Y 2).

The important point is that by the previous result we know that this function has to
be defined on [0, μf2], and differentiable on [0, μf2). Similarly, we get

h2(X) = 2− 1

2
X − 1

2

√
X2 − 12X + 12.
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Figure 8.1 (b) conveys the impression that the surfaces Si are convex w.r.t. the
parameterizations pi. As we have seen, the functions hi are monotonically increasing.
Thus, in the case of two dimensions the functions hi even have to be strictly mono-
tonically increasing (as f is strongly connected), so that the surfaces Si are indeed
convex. (Recall that a surface S is convex in a point x ∈ S if S is located completely
on one side of the tangent plane at S in x.) But in the case of more than two variables
this no longer needs to hold.

Example 8.7. The equation

Z =
1

8
X2 +

3

4
XY +

1

8
Y 2 +

1

4

is an admissible part of any SPP. It defines the hyperbolic paraboloid depicted in
Figure 8.3, which is clearly not convex.

(a) (b) (c)

Fig. 8.3. (a) The hyperbolic paraboloid defined by Z = 1
8
X2 + 3

4
XY + 1

8
Y 2 + 1

4
for X, Y,Z ∈

[−10, 10]. (b) A visualization of an SPP consisting of three copies of the quadric of (a) with μf =
( 1
2
, 1
2
, 1
2
) the upper apex. (c) One of the three quadrics of (b) over [0, μf ]. Clearly, even limited to

this range the surface is not convex.

Still, as shown in Lemma 2.3 it holds for all 0 ≤ x ≤ y that

x+ f ′(x) · y ≤ f (x+ y).

It now follows (see the following lemma) that the surfaces Si have the property that
for every x ∈ [0, μf) the “relevant” part of Si for determining μf , i.e., Si ∩ [x, μf ],
is located on the same side of the tangent plane at Si in x (see Figure 8.4).

Lemma 8.8. For all x ∈ Si we have

for all y ∈ Si ∩ [x, μf ] : q′i(x) · (y − x) ≤ 0.

In particular

for all y ∈ Si ∩ [x, μf ] : yi ≥ xi +
∑
j �=i

∂Xjhi(x−i) · (yj − xj).

Consider now the set

R :=

n⋂
i=1

{x ∈ [0, μf) | xi ≤ hi(x−i)},
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Fig. 8.4. The graphic shows the quadric defined by q1 = 0 with the tangent and normal in x
at S1. Every point y of S1 above x is located on the same side of the the tangent. More precisely,
we have ∇q1|x · (y − x) ≤ 0.

i.e., the region of [0, μf ) delimited by the coordinate axes and the surfaces Si. Note
that the gradient q′i(x) for x ∈ Si points from Si into R (see Figure 8.2).

Proposition 8.9. It holds that

x ∈ R ⇔ x ∈ [0, μf) ∧ q(x) ≥ 0.

From this last result it now easily follows that R is indeed the region of [0, μf )
in which all Newton and Kleene steps are located.

Theorem 8.10. Let f be a clean and feasible scSPP. All Newton and Kleene
steps starting from 0 lie within R, i.e.,

ν(i),κ(i) ∈ R (for all i ∈ N).

Proof. For an scSPP we have κ(i),ν(i) ∈ [0, μf) for all i. Further, κ(i) ≤ κ(i+1) =
f(κ(i)) and ν(i) ≤ f(ν(i)) holds for all i, too.

In the rest of this section we will use the results regarding R and the surfaces Si

for interpreting Newton’s method geometrically and for obtaining a generalization of
Newton’s method.

The preceding results suggest another way of determining μf (see Figure 8.5): Let
x be some point inside of R. We may move from x onto one of the surface Si by going
upward along the line x + t · ei, which gives us the point pi(x−i) = (x−i, hi(x−i)).
As x ∈ R, we have x,pi(x−i) ≤ μf . Consider now the tangent plane

Ti|x =
{
y ∈ R

n | q′i(pi(x−i)) ·
(
y − pi(x−i)

)
= 0

}
at Si in pi(x−i). Recall that by Lemma 8.8 we have

for all y ∈ Si ∩ [pi(x−i), μf ) : q
′
i(pi(x−i)) · (y − pi(x−i)) ≤ 0;

i.e., the part of Si relevant for determining μf is located completely below (w.r.t.
q′i(()pi(x−i))) this tangent plane. By continuity this also has to hold for y = μf .
Hence, when taking the intersection of all the tangent planes T1 to Tn this gives us
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Fig. 8.5. Given a point x inside of R the intersection of the tangents at the quadrics in the
points p1(x2), respectively, p2(x1), is also located inside of R, yielding a better approximation of
μf .

again a point T (x) inside ofR. That this point T (x) exists and is uniquely determined
is shown in the following lemma.

Lemma 8.11. Let f be a clean and feasible scSPP. Let x(1), . . . ,x(n) ∈ [0, μf).
Then the matrix ⎛⎜⎝q′1(x

(1))
...

q′n(x(n))

⎞⎟⎠
is regular; i.e., the vectors {q′i(x(i)) | i = 1, . . . , n} are linearly independent.

By this lemma the normals at the quadrics in the points pi(x−i) for x ∈ [0, μf )
are linearly independent. Thus, there exists a unique point of intersection of tangent
planes at the quadrics in these points. Of course, in general the values hi(x−i) can
be irrational. The following definition takes this in account by requiring only that
underapproximations ηi of hi(x−i) are known.

Definition 8.12. Let x ∈ R. For i = 1, . . . , n fix some ηi ∈ [xi, hi(x−i)], and
set η = (η1, . . . , ηn). We then let Tη(x) denote the solution of

q′i((x−i, ηi))(X − (x−i, ηi)) = −qi((x−i, ηi)) (i = 1, . . . , n).

We drop the subscript and simply write T in the case of ηi = hi(x−i) for i = 1, . . . , n.
Note that the operator Tx is the Newton operator N .
Theorem 8.13. Let f be a clean and feasible scSPP. Let x ∈ R. For i = 1, . . . , n

fix some ηi ∈ [xi, hi(x−i)], and set η = (η1, . . . , ηn). We then have

x ≤ N (x) ≤ Tη(x) ≤ T (x) ≤ μf .

Further, the operator T is monotone on R; i.e., for any y ∈ R with x ≤ y it holds
that T (x) ≤ T (y).

By Theorem 8.13, replacing the Newton operator N by T gives a variant of
Newton’s method which converges at least as fast.

We do not know whether this variant is substantially faster. See Figure 8.6 for a
geometrical interpretation of both methods.
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(a) (b)

(c) (d)

Fig. 8.6. Geometrical interpretation of Newton’s method: (a) Given a point x ∈ R, Newton’s
method first considers the “enlarged” quadrics defined by qi(X) = qi(x) (dashed and dotted) which
contain the current approximation x. (b) Then the tangents in x at these enlarged quadrics are
computed (dotted), i.e., q′i(x) · (X − x) = 0. (c) Finally, these tangents are corrected by moving
them towards the actual quadrics, i.e., q′i(x) · (X −x) = −qi(x). The intersection of these corrected
tangents gives the next Newton approximation. (d) A comparison between N (x) and T (x): N (x),
respectively, T (x), is given by the intersection of the dotted, respectively, dashed lines. Clearly, we
have N (x) ≤ T (x).

9. Conclusions. We have studied the convergence order and convergence rate of
Newton’s method for fixed-point equations of systems of positive polynomials (SPP
equations). These equations appear naturally in the analysis of several stochastic
computational models that have been intensely studied in recent years, and they also
play a central role in the theory of stochastic branching processes.

The restriction to positive coefficients leads to strong results. For arbitrary poly-
nomial equations Newton’s method may not converge or may converge only locally,
i.e., when started at a point sufficiently close to the solution. We have extended a
result by Etessami and Yannakakis [16] and shown that for SPP equations the method
always converges starting at 0. Moreover, we have proved that the method has at least
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linear convergence order and have determined the asymptotic convergence rate. To
the best of our knowledge, this is the first time that a lower bound on the convergence
order is proved for a significant class of equations with a trivial membership test.4

Finally, in the case of scSPPs we have also obtained upper bounds on the threshold,
i.e., the number of iterations necessary to reach the “steady state” in which valid bits
are computed at the asymptotic rate. These results lead to practical tests for checking
whether the least fixed point of a strongly connected SPP exceeds a given bound.

It is worth mentioning that in a recent paper we study the behavior of Newton’s
method when arithmetic operations only have a fixed accuracy [8]. We develop an
algorithm for a relevant class of SPPs that computes iterations of Newton’s method
increasing the accuracy on demand. A simple test applied after each iteration decides
if the round-off errors have become too large, in which case the accuracy is increased.

There are still at least two important open questions. The first one is, can one
provide a bound on the threshold valid for arbitrary SPPs, and not only for strongly
connected ones? Since SPPs cannot be solved exactly in general, we cannot first
compute the exact solution for the bottom SCCs, insert it in the SCCs above them,
and iterate. We can only compute an approximation, and we are not currently able
to bound the propagation of the error. For the second question, say that Newton’s
method is polynomial for a class of SPP equations if there is a polynomial p(x, y, z)
such that for every k ≥ 0 and for every system in the class with n equations and
coefficients of sizem, the p(n,m, k)th Newton approximant ν(p(n,m,k)) has k valid bits.
We have proved in Theorem 5.10 that Newton’s method is polynomial for strongly
connected SPPs f satisfying f(0) � 0; for this class one can take p(n,m, k) = 7mn+k.
We have also exhibited in section 7 a class for which computing the first bit of the
least solution takes 2n iterations. The members of this class, however, are not strongly
connected, and this is the fact we have exploited to construct them. So the following
question remains open: Is Newton’s method polynomial for strongly connected SPPs?

Appendix A. Proof of Lemma 6.3. The proof of Lemma 6.3 is by a sequence
of lemmas. The proof of Lemma A.2 and, consequently, the proof of Lemma 6.3 are
nonconstructive in the sense that we cannot give a particular Cf . Therefore, we often
use the equivalence of norms, disregard the constants that link them, and state the
results in terms of an arbitrary norm.

First we prove the following lemma on cone vectors.
Lemma A.1. Let f be a clean and feasible scSPP and let d > 0 with f ′(μf)d ≤ d.

Then d is a cone vector, i.e., d � 0.
Proof. Since f is an SPP, every component of f ′(μf ) is nonnegative. So,

0 ≤ f ′(μf )nd ≤ f ′(μf )n−1d ≤ · · · ≤ f ′(μf )d ≤ d.

W.l.o.g. let d1 > 0. As f is strongly connected, there is for all j with 1 ≤ j ≤ n an
rj ≤ n such that (f ′(μf )rj )j1 > 0. Hence, (f ′(μf)rjd)j > 0 for all j. With the above
inequality chain, it follows that dj ≥ (f ′(μf)rjd)j > 0. So, d � 0.

The following two lemmas, Lemmas A.2 and A.3, provide a lower bound on
‖f(x)− x‖ for an “almost-fixed-point” x.

Lemma A.2. Let f be a quadratic, clean, and feasible SPP without linear terms,
i.e., f(X) = B(X ,X)+c, where B is a bilinear map, and c is a constant vector. Let

4Notice the contrast with the classical result stating that if (Id − f ′(μf)) is nonsingular, then
Newton’s method has exponential convergence order; here the membership test is highly nontrivial,
and, as far as we know, as hard as computing μf itself.
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f(X) be nonconstant in every component. Let R ∪̇ S = {1, . . . , n} with S �= ∅. Let
every component depend on every S-component and not on any R-component. Then
there is a constant Cf > 0 such that

‖f (μf − δ)− (μf − δ)‖ ≥ Cf · ‖δ‖2

for all δ with 0 ≤ δ ≤ μf .
Proof. With the given component dependencies we can write f (X) as follows:

f(X) =

(
fR(X)
fS(X)

)
=

(
BR(XS ,XS) + cR
BS(XS ,XS) + cS

)
.

A straightforward calculation shows

e(δ) := f(μf − δ)− (μf − δ) = (Id− f ′(μf ))δ +B(δ, δ) .

Furthermore, ∂XR
f is constant zero in all entries, so

eR(δ) = δR − ∂XS
fR(μf ) · δS +BR(δS , δS),

eS(δ) = δS − ∂XS
fS(μf ) · δS +BS(δS , δS) .

Notice that for every real number r > 0 we have

min
0≤δ≤μf ,‖δ‖≥r

‖e(δ)‖
‖δ‖2

> 0 ,

because otherwise μf − δ < μf would be a fixed point of f . We have to show

inf
0≤δ≤μf ,‖δ‖>0

‖e(δ)‖
‖δ‖2

> 0.

Assume, for a contradiction, that this infimum equals zero. Then there exists a
sequence (δ(i))i∈N with 0 ≤ δ(i) ≤ μf , ‖δ(i)‖ > 0 such that limi→∞ ‖δ(i)‖ = 0

and limi→∞
‖e(δ(i))‖
‖δ(i)‖2 = 0. Define r(i) := ‖δ(i)‖ and d(i) := δ(i)

‖δ(i)‖ . Notice that

d(i) ∈ {d ∈ Rn
≥0 | ‖d‖ = 1} =: D, where D is compact. So some subsequence

of (d(i))i∈N, say w.l.o.g. the sequence (d(i))i∈N itself, converges to some vector d∗ ∈ D.
By our assumption we have

(A.1)
∥∥∥e(δ(i))

∥∥∥ / ∥∥∥δ(i)
∥∥∥2 =

∥∥∥∥ 1

r(i)
(Id− f ′(μf ))d(i) +B(d(i),d(i))

∥∥∥∥ −→ 0 .

As B(d(i),d(i)) is bounded, 1
r(i)

(Id − f ′(μf ))d(i) must be bounded, too. Since r(i)

converges to 0, ‖(Id− f ′(μf))d(i)‖ must converge to 0, so

(Id− f ′(μf ))d∗ = 0 .

In particular,
(
(Id− f ′(μf ))d∗)

R
= d∗

R − ∂XSfR(μf) · d∗
S = 0. So we have d∗

S > 0,
because d∗

S = 0 would imply d∗
R = 0, which would contradict d∗ > 0.

In the remainder of the proof we focus on fS . Define the scSPP g(XS) := fS(X).
Notice that μg = μfS . We can apply Lemma A.1 to g and d∗

S and obtain d∗
S � 0.

As fS(X) is nonconstant we get BS(d
∗
S ,d

∗
S) � 0. By (A.1), 1

r(i)
(Id − g′(μg))d(i)

S
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converges to −BS(d
∗
S ,d

∗
S) ≺ 0. So there is a j ∈ N such that (Id − g′(μg))d(j)

S ≺ 0.

Let δ̃ := rd(j) for some small enough r > 0 such that 0 < δ̃S ≤ μg and

eS(δ̃) = (Id− g′(μg))δ̃S +BS(δ̃S , δ̃S)

= r(Id − g′(μg))d(j)
S + r2BS(d

(j)
S ,d

(j)
S ) ≺ 0 .

So we have g(μg − δ̃S) ≺ μg − δ̃S . However, μg is the least point x with g(x) ≤ x.
Thus we get the desired contradiction.

Lemma A.3. Let f be a quadratic, clean, and feasible scSPP. Then there is a
constant Cf > 0 such that

‖f (μf − δ)− (μf − δ)‖ ≥ Cf · ‖δ‖2

for all δ with 0 ≤ δ ≤ μf .
Proof. Write f (X) = B(X ,X) + LX + c for a bilinear map B, a matrix L, and

a constant vector c. By Theorem 4.1.2. the matrix L∗ = (Id−L)−1 = (Id− f ′(0))−1

exists. Define the SPP f̃(X) := L∗B(X ,X) + L∗c. A straightforward calculation

shows that the sets of fixed points of f and f̃ coincide and that

f(μf − δ)− (μf − δ) = (Id− L)
(
f̃(μf − δ)− (μf − δ)

)
.

Further, if σn(Id−L) denotes the smallest singular value of Id−L, we have by basic
facts about singular values (see [22, Chapter 3]) that∥∥∥(Id− L)

(
f̃(μf − δ)− (μf − δ)

)∥∥∥
2
≥ σn(Id− L)

∥∥∥f̃ (μf − δ)− (μf − δ)
∥∥∥
2
.

Note that σn(Id− L) > 0 because Id− L is invertible. So it suffices to show that∥∥∥f̃(μf − δ)− (μf − δ)
∥∥∥ ≥ Cf · ‖δ‖2 .

If f (X) is linear (i.e., B(X,X) ≡ 0), then f̃(X) is constant and we have ‖f̃(μf −
δ)− (μf − δ)‖ = ‖δ‖, so we are done in that case. Hence we can assume that some

component of B(X ,X) is not the zero polynomial. It remains to argue that f̃ satisfies

the preconditions of Lemma A.2. By definition, f̃ does not have linear terms. Define

S := {i | 1 ≤ i ≤ n, Xi is contained in a component of B(X,X)} .

Notice that S is nonempty. Let i0, i1, . . . , im, im+1 (m ≥ 0) be any sequence such
that, in f , for all j with 0 ≤ j < m the component ij depends directly on ij+1

via a linear term and im depends directly on im+1 via a quadratic term. Then i0
depends directly on im+1 via a quadratic term in LmB(X ,X) and hence also in f̃ .
So all components are nonconstant and depend (directly or indirectly) on every S-
component. Furthermore, no component depends on a component that is not in S,
because L∗B(X,X) contains only S-components. Thus, Lemma A.2 can be applied,
and the statement follows.

The following lemma gives a bound on the propagation error for the case that f
has a single top SCC.

Lemma A.4. Let f be a quadratic, clean, and feasible SPP. Let S ⊆ {1, . . . , n}
be the single top SCC of f . Let L := {1, . . . , n} \ S. Then there is a constant Cf ≥ 0
such that

‖μfS − μ̃S‖ ≤ Cf ·
√
‖μfL − xL‖

for all xL with 0 ≤ xL ≤ μfL, where μ̃S := μ (fS [XL/xL]).
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Proof. We write fS(X) = fS(XS ,XL) in the following.
If S is a trivial SCC, then μfS = fS(0, μfL) and μ̃S = fS(0,xL). In this case

we have with Taylor’s theorem (cf. Lemma 2.3)

‖μfS − μ̃S‖ = ‖fS(0, μfL)− fS(0,xL)‖
≤ ‖∂XfS(0, μfL) · (μfL − xL)‖
≤ ‖∂XfS(0, μfL)‖ · ‖μfL − xL‖
= ‖∂XfS(0, μfL)‖ ·

√
‖μfL − xL‖ ·

√
‖μfL − xL‖

≤ ‖∂XfS(0, μfL)‖ ·
√
‖μfL‖ ·

√
‖μfL − xL‖,

and the statement follows by setting Cf := ‖∂XfS(0, μfL)‖ ·
√
‖μfL‖.

Hence, in the following we can assume that S is a nontrivial SCC. Set g(XS) :=
fS(XS , μfL). Notice that g is an scSPP with μg = μfS . By applying Lemma A.3
to g and setting c := 1/

√
Cg (the Cg from Lemma A.3), we get

‖μfS − μ̃S‖ ≤ c ·
√
‖g(μg − (μfS − μ̃S))− (μg − (μfS − μ̃S))‖

= c ·
√
‖fS(μ̃S , μfL)− μ̃S‖

= c ·
√
‖fS(μ̃S , μfL)− fS(μ̃S ,xL)‖,

and with Taylor’s theorem (cf. Lemma 2.3) we obtain

≤ c ·
√
‖∂XL

fS(μ̃S , μfL)(μfL − xL)‖
≤ c ·

√
‖∂XL

fS(μfS , μfL)(μfL − xL)‖
≤ c ·

√
‖∂XL

fS(μfS , μfL)‖ ·
√
‖μfL − xL‖.

So the statement follows by setting Cf := c ·
√
‖∂XL

fS(μfS , μfL)‖.
Now we can extend Lemma A.4 to Lemma 6.3, restated here.
Lemma 6.3. There is a constant Cf > 0 such that∥∥∥μf [t] − μ̃[t]

∥∥∥ ≤ Cf ·
√∥∥∥μf [>t] − ρ[>t]

∥∥∥
holds for all ρ[>t] with 0 ≤ ρ[>t] ≤ μf [>t], where μ̃[t] = μ

(
f [t][[>t]/ρ[>t]]

)
.

Proof. Observe that μf [t], μ̃[t], μf [>t], and ρ[>t] do not depend on the components
of depth < t. So we can assume w.l.o.g. that t = 0. Let SCC(0) = {S1, . . . , Sk}.

For any Si from SCC(0), let f (i) be obtained from f by removing all top SCCs

except for Si. Lemma A.3 applied to f (i) guarantees a C(i) such that

∥∥μfSi
− μ̃Si

∥∥ ≤ C(i) ·
√∥∥∥μf [>0] − ρ[>0]

∥∥∥
holds for all ρ[>0] with 0 ≤ ρ[>0] ≤ μf [>0]. Using the equivalence of norms, w.l.o.g.

let the norm ‖·‖ be the maximum-norm ‖·‖∞. Let Cf := max1≤i≤k C
(i). Then we

have ∥∥∥μf [0] − μ̃[0]

∥∥∥ = max
1≤i≤k

∥∥μfSi
− μ̃Si

∥∥ ≤ Cf ·
√∥∥∥μf [>0] − ρ[>0]

∥∥∥
for all ρ[>0] with 0 ≤ ρ[>0] ≤ μf [>0].
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Appendix B. Proofs of section 8.

B.1. Proof of Lemma 8.2.
Lemma 8.2. For every quadric qi induced by a clean and feasible scSPP f we

have

q′i(x) = (∂X1qi(x), ∂X2qi(x), . . . , ∂Xnqi(x)) �= 0 and ∂Xiqi(x) < 0 for all x ∈ [0, μf ).

Proof. As shown by Etessami and Yannakakis in [16] under the above precondi-
tions it holds for all x ∈ [0, μf) that

(
Id− f ′(x)

)
is invertible with(

Id− f ′(x)
)−1

= f ′(x)∗.

Thus, we have

q′(x)−1 =
(
f ′(x)− Id

)−1
= −

(
f ′(x)∗

)
,

implying that q′i(x) �= 0 for all x ∈ [0, μf), as q′(x) has to have full rank n in order for
q′(x)−1 to exist. Furthermore, it follows that all entries of q′(x)−1 are nonpositive,
as f ′(x)∗ is nonnegative. Now, as qi(X) = fi(X) − Xi and fi(X) is a polynomial
with nonnegative coefficients, it holds that

q′i(x) · ej = ∂Xj qi(x) = ∂Xjfi(x) ≥ 0

for all j �= i and x ≥ 0. With every entry of q′(x)−1 nonpositive, and

q′i(x) · q′(x)−1 = e�i ,

we conclude that ∂Xiqi(x) < 0.

B.2. Proof of Lemma 8.4. We first summarize some properties of the functions
hi.

Proposition B.1. Let f be a clean and feasible scSPP. Let x,y ∈ [0, μf ] with
x ≤ y.

(a) 0 ≤ h
(k)
i (x−i) ≤ μf i.

(b) h
(k)
i (x−i) ≤ h

(k+1)
i (x−i) for all k ∈ N.

(c) h
(k)
i (x−i) ≤ h

(k)
i (y−i) for all k ∈ N.

(d) hi(x−i) ≤ μf i, and hi is a map from [0, μf−i] to [0, μf i]. If fi depends on
at least one other variable except Xi, we also have hi([0, μf−i)) ⊆ [0, μf i).

(e) hi(x−i) ≤ hi(y−i).
(f) fi(x−i, hi(x−i)) = hi(x−i).
(g) For xi = fi(x) we have hi(x−i) ≤ xi.
(h) hi(μf−i) = μf i.
Proof. Let 0 ≤ x ≤ y ≤ μf . Using the monotonicity of fi over R

n
≥0, we proceed

by induction on k.
(a) For k = 0 we have

0 ≤ h
(0)
i (x−i) = fi(0,x−i) ≤ fi(μf) = μf i.

We then get

0 ≤ h
(k+1)
i (x−i) = fi(h

(k)
i (x−i),x−i) ≤ fi(μf) = μf i.
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(b) For k = 0 we have

h
(0)
i (x−i) = fi(0,x−i) ≤ fi(h

(0)
i (x−i),x−i) = h

(1)
i (x−i).

Thus

h
(k+1)
i (x−i) = fi(h

(k)
i (x−i),x−i) ≤ fi(h

(k+1)
i (x−i),x−i) = h

(k+2)
i (x−i)

follows.
(c) As x ≤ y, we have for k = 0

h
(0)
i (x−i) = fi(0,x−i) ≤ fi(0,y−i) = h

(0)
i (y−i).

Hence, we get

h
(k+1)
i (x−i) = fi(h

(k)
i (x−i),x−i) ≤ fi(h

(k)
i (y−i),y−i) = h

(k+1)
i (y−i).

(d) As the sequence (h
(k)
i (x−i))k∈N is monotonically increasing and bounded from

above by μf i, the sequence converges. Thus, for every x the value

hi(x−i) = lim
k→∞

h
(k)
i (x−i)

is well-defined; i.e., hi is a map from [0, μf−i] to [0, μfi].
If fi depends on at least one other variable exceptXi, then hi is a nonconstant
power series in this variable with nonnegative coefficients. For x−i ∈ [0, μf−i)
we thus always have

hi(x−i) < hi(μf−i) = μf i

as x−i ≺ μf−i.
(e) This follows immediately from (b).
(f) As fi is continuous, we have

fi(hi(x−i),x−i) = fi

(
lim
k→∞

h
(k)
i (x−i),x−i

)
= lim

k→∞
h
(k+1)
i (x−i) = hi(x−i),

where the last equality holds because of (b).

(g) Using induction similar to (a), replacing μf by x, one gets h
(k)
i (x−i) ≤ xi

for all k ∈ N as fi(x−i) = xi. Thus, hi(x−i) ≤ xi follows similarly to (d).
(h) By definition, we have μf = limk→∞ fk(0). For k = 0, we have

(f0(0))i = 0 ≤ fi(0, μf−i) = h
(0)
i (μf−i).

We thus get by induction

(f (k+1)(0))i = fi(f
k(0)) ≤ fi(h

(k)
i (μf−i), μf−i) = h

(k+1)
i (μf−i).

Thus, we may conclude that μf i ≤ hi(μf−i). As μf i = fi(μf ), we get by
virtue of (g) that hi(μf−i) ≤ μf i, too.
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With Proposition B.1 in hand, we now can show Lemma 8.4.
Lemma 8.4. hi is continuously differentiable with

∂Xjhi(x−i) =
∂Xjfi(x)

−∂Xiqi(x)
=

∂Xj qi(x)

−∂Xiqi(x)
for x ∈ Si and j �= i.

In particular, ∂Xjhi is monotonically increasing with x.
Proof. By Lemma 8.2 the implicit function theorem is applicable for every x ∈

Si. We therefore find for every x ∈ Si a local parametrization hx : U �→ V with
hx(x−i) = xi. Thus hx(x−i) is the least nonnegative solution of qi(Xi,x−i) = 0.
By continuity of qi it is now easily shown that for all y−i ∈ U it has to hold that
hx(y−i) is also the least nonnegative solution of qi(Xi,y−i) = 0 (see below). By
uniqueness we therefore have hx = hi and that hi is continuously differentiable for all
x−i ∈ [0, μf−i).

For every x−i ∈ [0, μf−i) we can solve the (at most) quadratic equation qi(Xi,x−i)
= 0. We already know that hi(x−i) is the least nonnegative solution of this equation.
So, if there exists another solution, it has to be real, too.

Assume first that this equation has two distinct solutions for some fixed x−i ∈
[0, μf−i). Solving qi(Xi,x−i) = 0 thus leads to an expression of the form

−b(x−i)±
√
b(x−i)2 − 4a · c(x−i)

2a

for the solutions where b, c are (at most) quadratic polynomials in X−i, c having
nonnegative coefficients, and a is a positive constant (leading coefficient of X2

i in
qi(X)). As b and c are continuous, the discriminant b(·)2 − 4a · c(·) stays positive for
some open ball around x−i included inside of U (it is positive in x−i as we assume
that we have two distinct solutions). By making U smaller, we may assume that U is
this open ball. One of the two solutions must then be the least nonnegative solution.
As hx is the least nonnegative solution for x−i, and hx is continuous, this also has
to hold for some open ball centered at x−i. W.l.o.g. U is this ball. So, hx and hi

coincide on U .
We turn to the case that qi(Xi,x−i) = 0 has only a single solution, i.e., hi(x−i).

Note that qi(X) is linear in Xi if and only if qi(Xi,x−i) is linear in Xi. Obviously,
if qi linear in Xi, then hi and hx coincide on U . Thus, consider the case that qi(X)
is quadratic in Xi, but qi(Xi,x−i) has only a single solution. This means that x−i

is a root of the discriminant, i.e., b(x−i) − 4ac(x−i) = 0. As hi(y−i) is a solution of
qi(Xi,y−i) = 0 for all y−i ∈ U , the discriminant is nonnegative on U . If it is equal
to zero on U , then we again have that hi is equal to hx on U . Therefore assume that
it is positive in some point of U . As the discriminant is continuous, the solutions
change continuously with x−i. But this implies that for some y−i ∈ U there are at
least two yi, y

∗
i ∈ V such that (y−i, yi) and (y−i, y

∗
i ) are both located on the quadric

qi(X) = 0. But this contradicts the uniqueness of hx guaranteed by the implicit
function theorem.

Assume now that x ∈ Si. We then have

qi(x) = qi(x−i, hi(x−i)) = 0,

or equivalently

fi(x−i, hi(x−i)) = hi(x−i).
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Calculating the gradient of both in x yields

f ′
i(x) · p′

i(x−i) = h′
i(x−i).

For the Jacobian of pi we obtain

p′
i(x−i) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e�1
...

e�i−1

h′
i(x−i)
e�i+1
...
e�n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This leads to

∂Xjfi(x) + ∂Xifi(x) · ∂Xjhi(x−i) = ∂Xjhi(x−i),

which solved for ∂Xjhi yields

∂Xjhi(x−i) =
∂Xjfi(x)

−∂Xiqi(x)
.

As ∂Xiqi(x) < 0 and both ∂Xjfi and ∂Xiqi monotonically increase with x, it follows
that ∂Xjhi also monotonically increases with x. Finally, for j �= i we have that
∂Xj qi = ∂Xjfi as qi = fi −Xi.

B.3. Proof of Lemma 8.8.
Lemma 8.8. For all x ∈ Si we have

for all y ∈ Si ∩ [x, μf ] : q′i(x) · (y − x) ≤ 0.

In particular

for all y ∈ Si ∩ [x, μf ] : yi ≥ xi +
∑
j �=i

∂Xjhi(x−i) · (yj − xj).

Proof. Let x ∈ Si, i.e., fi(x) = xi. We want to show that

q′i(x) · (y − x) ≤ 0

for all y ∈ Si ∩ [x, μf). As fi is quadratic in X, we may write

0 = qi(y)
= −yi + fi(y)

= −yi + fi(x)︸ ︷︷ ︸
=xi

+f ′
i(x) · (y − x) + (y − x)� ·A · (y − x)︸ ︷︷ ︸

≥0

≥ −yi + xi + f ′
i(x) · (y − x)

= f ′
i(x) · (y − x)− e�i · (y − x)

= q′i(x) · (y − x),

where A is a symmetric square matrix with nonnegative components such that the
quadric terms of fi are given by X�AX .

The second claim is easily obtained by solving this inequality for yi and recall-

ing that by Lemma 8.4 we have ∂Xjhi(x−i) =
∂Xj

qi(pi(x−i))

−∂Xi
qi(pi(x−i))

and ∂Xiqi(pi(x−i)) <

0.
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B.4. Proof of Proposition 8.9.
Proposition 8.9. It holds that

x ∈ R ⇔ x ∈ [0, μf) ∧ q(x) ≥ 0.

Proof. Let x ∈ R and i ∈ {1, . . . , n}. Consider the function

g(t) := qi(pi(x−i) + tei).

As qi is a quadratic polynomial in X, there exists a symmetric square matrix A with
nonnegative entries, a vector b, and a constant c such that

qi(X) = X�AX + b�X + c.

It then follows that

qi(X + Y ) = qi(X) + q′i(X)Y + Y �AY .

With qi(pi(x−i)) = 0 this implies

g(t) = q′i(pi(x−i))tei + t2 e�i Aei︸ ︷︷ ︸
:=a≥0

= t · (∂Xiqi(pi(x−i)) + a · t) .

As pi(x−i) ≺ μf (f is strongly connected and x ∈ [0, μf)), we know that ∂Xiqi(pi(x−i))
< 0. Thus, g(t) has at most two zeros, one at 0, the other for some t∗ ≥ 0.

For the direction (⇒) we have to show only that xi ≤ hi(x−i) implies that
qi(x) ≥ 0. This now easily follows as xi ≤ hi(x−i) implies that there is a t′ ≤ 0 with
pi(x−i) + tei = x. But for this t′ ≤ 0 we have qi(x) = g(t′) ≥ 0.

Consider therefore the other direction (⇐), that is, x ∈ [0, μf) with q(x) ≥ 0.
Assume that x �∈ R; i.e., for at least one i we have xi > hi(x−i). As qi(x) ≥ 0 there
has to be a t′′ > 0 with pi(x−i) + t′′ei = x and g(t′′) ≥ 0. This implies that a > 0
has to hold, as otherwise g(t) would be linear in t and negative for t > 0. But then
the second root t∗ of g(t) has to be positive. Set x∗ = pi(x−i)+ t∗ei with qi(x

∗) = 0,
too.

A calculation similar to the one above leads to

g(t+ t∗) = qi(x
∗ + tei) = t · (∂Xiqi(x

∗) + a · t) .

It follows that ∂Xiqi(x
∗) has to be greater than zero for −t∗ to be a root (as a > 0).

But we have shown that ∂Xiqi(x) < 0 for all x ∈ [0, μf ).

B.5. Proof of Lemma 8.11.
Lemma 8.11. Let f be a clean and feasible scSPP. Let x(1), . . . ,x(n) ∈ [0, μf).

Then the matrix ⎛⎜⎝q′1(x
(1))
...

q′n(x(n))

⎞⎟⎠
is regular; i.e., the vectors {q′i(x(i))|i = 1, . . . , n} are linearly independent.

Proof. Define x ∈ [0, μf) by setting

xi := max{x(j)
i | j = 1, . . . , n}.
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We then have x(i) ≤ x for all i, and x ≺ μf . As mentioned above, we therefore have
that q′(x) is regular with

q′(x)−1 = −
∑
k∈N

f ′(x)k.

As x(i) ≤ x it follows that ⎛⎜⎝f ′
1(x

(1))
...

f ′
n(x

(n))

⎞⎟⎠ ≤ f ′(x).

Hence, we also have

l∑
k=0

⎛⎜⎝f ′
1(x

(1))
...

f ′
n(x

(n))

⎞⎟⎠
l

≤
l∑

k=0

f ′(x),

implying that ⎛⎜⎝f ′
1(x

(1))
...

f ′
n(x

(n))

⎞⎟⎠
∗

and, thus,

⎛⎜⎝q′1(x(1))
...

q′n(x
(n))

⎞⎟⎠
−1

exist.

So, the vectors {q′1(x(1)), . . . , q′n(x(n))} have to be linearly independent.

B.6. Proof of Theorem 8.13.
Theorem 8.13. Let f be a clean and feasible scSPP. Let x ∈ R. For i = 1, . . . , n

fix some ηi ∈ [xi, hi(x−i)], and set η = (η1, . . . , ηn). We then have

x ≤ N (x) ≤ Tη(x) ≤ T (x) ≤ μf .

Further, the operator T is monotone on R; i.e., for any y ∈ R with x ≤ y it holds
that T (x) ≤ T (y).

Proof. Set

πi := (x−i, ηi) and h := (h1(x−1), . . . , hn(x−n)).

We first show that x ≤ Tη(x):

Tη(x) =
(
q′i(πi)

)−1

i=1,...,n
·
(
q′i(πi) · πi − qi(πi)

)
i=1,...,n

=
(
f ′
i(πi)

)∗
i=1,...,n

·
(
−q′i(πi) · πi + qi(πi)

)
i=1,...,n

=
(
f ′
i(πi)

)∗
i=1,...,n

·
(
−q′i(πi) · (x+ (ηi − xi) · ei) + qi(πi)

)
i=1,...,n

=
(
f ′
i(πi)

)∗
i=1,...,n︸ ︷︷ ︸

≥0 in every comp.

·
(
−q′i(πi) · x− ∂Xiqi(πi)︸ ︷︷ ︸

<0

· (ηi − xi)︸ ︷︷ ︸
≥0

+ qi(πi)︸ ︷︷ ︸
≥0

)
i=1,...,n

≥ x.

Tη(x) is by definition the (unique) solution of the equation system defined by

q′i(πi)(X − πi) = −qi(πi) (i = 1, . . . , n).
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As Tη(x) ≥ x, we can also consider this system with the origin of the coordinate
system moved into x, i.e.,

q′i(πi)(X + x− πi) = −qi(πi) (i = 1, . . . , n).

We show that this system is equivalent to an SPP. For this, we solve these equations
for Xi:

q′i(πi)(X + x− πi) = −qi(πi)

⇔ q′i(πi)X = −qi(πi) + q′i(πi) (πi − x)︸ ︷︷ ︸
=(ηi−xi)·ei

⇔ Xi =
∑

j �=i

∂Xj
qi(πi)

−∂Xi
qi(πi)

·Xj +
qi(πi)

−∂Xi
qi(πi)

+ (ηi − xi).

Again, we have ∂Xiqi(πi) < 0 ≤ ∂Xjqi(πi) as πi ∈ R, and q′i(πi) monotonically
increases with ηi. Hence, the above linear equation for Xi is indeed a polynomial with
nonnegative coefficients. Denote by fη the SPP defined by these linear equations. We
then have μfη = Tη(x)− x, as the above equation system has Tη(x)− x ≥ 0 as its

unique solution. Further, we know that the Kleene sequence
(
fk
η(0)

)
k∈N

converges to
μfη . We show that all coefficients of fη increase with η → h. This is straightforward
for

∂Xjqi(πi)

−∂Xiqi(πi)
,

as ∂Xiqi(πi) < 0 ≤ ∂Xj qi(πi), and all of these terms increase with ηi → hi(x−i).
Consider therefore

0 ≥ qi(πi)

−∂Xiqi(πi)
+ (ηi − xi) =

qi(πi)− ∂Xiqi(πi)(ηi − xi)

−∂Xiqi(πi)
.

We show that this term increases with ηi. Set δi := ηi−xi. We can find a nonnegative,
symmetric square matrix A, a vector b, and constant c such that

qi(X) = X�AX + b�X + c and q′i(X) = 2X�A+ b�.

As πi = x+ δiei, we have

qi(πi) = qi(x+ δiei) = qi(x) + ∂Xiqi(x)δi + δ2iAii

and

∂Xiqi(πi) · δi = q′i(x+ δiei)δiei = ∂Xiqi(x)δi + 2δ2iAii.

This leads to

qi(πi)− ∂Xiqi(πi)δi
−∂Xiqi(πi)

=
qi(x)− δ2iAii

−∂Xiqi(x)− 2δiAii
.

Taking the derivative w.r.t. δi yields

−2Aiiδi
−∂Xi

qi(x)+2Aiiδi
− qi(x)−Aiiδ

2
i

(−∂Xi
qi(x)−2Aiiδi)2

(−2Aii)

=
2Aii∂Xi

qi(x)δi+4A2
iiδ

2
i +2Aiiqi(x)−2A2

iiδ
2
i

(−∂Xi
qi(x)−2Aiiδi)2

= 2Aii
Aiiδ

2
i +∂Xi

qi(x)δi+qi(x)

(−∂Xi
qi(x)−2Aiiδi)2

= 2Aii
qi(πi)

(−∂Xi
qi(πi))2

.
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As qi(πi) ≥ 0 and Aii ≥ 0, it follows that

qi(πi)

−∂Xiqi(πi)
+ (ηi − xi)

increases with ηi → hi(x−i). Thus, all coefficients of fη increase with ηi → hi(x−i),
and so for any η′ ∈ [η,h] it follows that

fη(y) ≤ fη′(y) for all y ≥ 0

and

Tη(x)− x = μfη ≤ μfη′ = Tη′(x)− x.

As N (X) = Tx(X) and T (X) = Th(X), we may therefore conclude that

N (x) ≤ Tη(x) ≤ Tη′(x) ≤ T (x).

It remains to show that T (x) ≤ μf . This is equivalent to showing that μfh ≤ μf−x.
For fh(X) we have by definition and Lemma 8.4

(
fh(X)

)
i
=
∑
j �=i

∂Xj qi(pi(x−i))

−∂Xiqi(pi(x−i))
Xj+(hi(x−i)−xi) =

∑
j �=i

∂Xjhi(x−i)Xj+(hi(x−i)−xi).

By virtue of Lemma 8.8 it follows that μf is above all the tangents, i.e.,

fh(μf − x) ≤ μf − x.

By monotonicity of fh we also have

fh(0) ≤ fh(μf − x).

A straightforward induction therefore shows that

fk
h(0) ≤ μf − x (for all k ∈ N),

and, thus,

T (x)− x = μfh ≤ μf − x.

We turn to the monotonicity of T . Let y ∈ R with x ≤ y. Assume that x and y are
located on the surface Si, i.e.,

hi(x−i) = xi and hi(y−i) = yi.

The tangent Ti|x at Si in x is spanned by the partial derivatives of pi in x. The part
Ti|x ∩ [x, μf ] relevant for T (x) can therefore be parameterized by

x+
∑
j �=i

∂Xjpi(x) · (uj − xj) with u−i ∈ [x−i, μf−i].

Similarly for Ti|y.
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In particular, for u−i ∈ [y−i, μf−i] both points on the tangents defined by u−i

differ only in the ith coordinate (the remaining coordinates are simply u−i):

ty = yi +
∑
j �=i

∂Xjhi(y) · (uj − yj), respectively, tx = xi +
∑
j �=i

∂Xjhi(x) · (uj − xj).

By Lemma 8.8 we have

yi ≥ xi +
∑
j �=i

∂Xjhi(x) · (yj − xj).

From Lemma 8.4 it follows that ∂Xjhi(y) ≥ ∂Xjhi(x). Thus ty ≥ tx immediately
follows.

Now for x,y ∈ R with x ≤ y we can apply this result to the tangents at Si in
pi(x−i), respectively, pi(y−i), and T (x) ≤ T (y) follows.
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[12] J. Esparza, A. Kučera, and R. Mayr, Quantitative analysis of probabilistic pushdown au-
tomata: Expectations and variances, in Proceedings of the 20th IEEE Symposium on Logic
in Computer Science (LICS 2005), IEEE Computer Society Press, Los Alamitos, CA, 2005,
pp. 117–126.

[13] K. Etessami and M. Yannakakis, Algorithmic verification of recursive probabilistic systems,
in Proceedings of the 11th International Conference on Tools and Algorithms for Con-
struction and Analysis of Systems (TACAS 2005), Lecture Notes in Comput. Sci. 3440,
Springer-Verlag, Berlin, 2005, pp. 253–270.

[14] K. Etessami and M. Yannakakis, Checking LTL properties of recursive Markov chains, in
Proceedings of the 2nd International Conference on Quantitative Evaluation of Systems
(QEST’05), IEEE Computer Society Press, Washington, DC, 2005, pp. 155–165.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMPUTING FIXED POINTS OF POLYNOMIAL SYSTEMS 2335

[15] K. Etessami and M. Yannakakis, Recursive Markov decision processes and recursive stochas-
tic games, in Proceedings of the 32nd International Colloquium on Automata, Languages
and Programming (ICALP 2005), Lecture Notes in Comput. Sci. 3580, Springer-Verlag,
Berlin, 2005, pp. 891–903.

[16] K. Etessami and M. Yannakakis, Recursive Markov chains, stochastic grammars, and mono-
tone systems of nonlinear equations, J. ACM, 56 (2009), pp. 1–66.

[17] R. Fagin, A. Karlin, J. Kleinberg, P. Raghavan, S. Rajagopalan, R. Rubinfeld, M. Su-

dan, and A. Tomkins, Random walks with “back buttons” (extended abstract), in Pro-
ceedings of the 32nd Annual ACM Symposium on Theory of Computing (STOC 2000),
ACM, New York, 2000, pp. 484–493.

[18] R. Fagin, A. Karlin, J. Kleinberg, P. Raghavan, S. Rajagopalan, R. Rubinfeld, M. Su-

dan, and A. Tomkins, Random walks with “back buttons”, Ann. Appl. Probab., 11 (2001),
pp. 810–862.

[19] S. Geman and M. Johnson, Probabilistic Grammars and Their Applications, in International
Encyclopedia of the Social & Behavioral Sciences, N. J. Smelser and P. B. Baltes, eds.,
Pergamon, Oxford, 2002, pp. 12075–12082.

[20] A. Griewank and M. R. Osborne, Newton’s method for singular problems when the dimension
of the null space is > 1, SIAM J. Numer. Anal., 18 (1981), pp. 145–149.

[21] T. Harris, The Theory of Branching Processes, Springer-Verlag, Berlin, 1963.
[22] R. Horn and C. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge,

UK, 1991.
[23] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia,

1995.
[24] S. Kiefer, M. Luttenberger, and J. Esparza, On the convergence of Newton’s method

for monotone systems of polynomial equations, in Proceedings of the 39th Annual ACM
Symposium on Theory of Computing (STOC 2007), ACM, New York, 2007, pp. 217–226.

[25] B. Knudsen and J. Hein, Pfold: RNA secondary structure prediction using stochastic context-
free grammars, Nucleic Acids Res., 31 (2003), pp. 3423–3428.

[26] W. Kuich, Semirings and formal power series: Their relevance to formal languages and au-
tomata, in Handbook of Formal Languages, Vol. 1, Springer-Verlag, Berlin, 1997, Chap. 9,
pp. 609–677.

[27] P. Lancaster and M. Tismenetsky, The Theory of Matrices, 2nd ed., Academic Press, New
York, 1985.

[28] C. Manning and H. Schütze, Foundations of Statistical Natural Language Processing, MIT
Press, Cambridge, MA, 1999.

[29] J. Ortega, Numerical Analysis: A Second Course, Academic Press, New York, 1972.
[30] J. Ortega and W. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Vari-

ables, Academic Press, New York, 1970.
[31] F. Potra and V. Ptak, Sharp error bounds for Newton’s process, Numer. Math., 34 (1980),

pp. 63–72.
[32] G. W. Reddien, On Newton’s method for singular problems, SIAM J. Numer. Anal., 15 (1978),

pp. 993–996.
[33] Y. Sakabikara, M. Brown, R. Hughey, I. Mian, K. Sjolander, R. Underwood, and

D. Haussler, Stochastic context-free grammars for tRNA, Nucleic Acids Res., 22 (1994),
pp. 5112–5120.
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