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Abstract. We consider the state-minimisation problem for weighted
and probabilistic automata. We provide a numerically stable polynomial-
time minimisation algorithm for weighted automata, with guaranteed
bounds on the numerical error when run with floating-point arithmetic.
Our algorithm can also be used for “lossy” minimisation with bounded
error. We show an application in image compression. In the second part
of the paper we study the complexity of the minimisation problem for
probabilistic automata. We prove that the problem is NP-hard and in
PSPACE, improving a recent EXPTIME-result.

1 Introduction

Probabilistic and weighted automata were introduced in the 1960s, with many
fundamental results established by Schützenberger [25] and Rabin [23]. Nowa-
days probabilistic automata are widely used in automated verification, natural-
language processing, and machine learning.

Probabilistic automata (PAs) generalise deterministic finite automata (DFAs):
The transition relation specifies, for each state q and each input letter a, a
probability distribution on the successor state. Instead of a single initial state,
a PA has a probability distribution over states; and instead of accepting states, a
PA has an acceptance probability for each state. As a consequence, the language
induced by a PA is a probabilistic language, i.e., a mapping L : Σ∗ → [0, 1],
which assigns each word an acceptance probability. Weighted automata (WAs),
in turn, generalise PAs: the numbers appearing in the specification of a WA may
be arbitrary real numbers. As a consequence, a WA induces a weighted language,
i.e., a mapping L : Σ∗ → R. Loosely speaking, the weight of a word w is the
sum of the weights of all accepting w-labelled paths through the WA.

Given an automaton, it is natural to ask for a small automaton that accepts
the same weighted language. A small automaton is particularly desirable when
further algorithms are run on the automaton, and the runtime of those algo-
rithms depends crucially on the size of the automaton [17]. In this paper we
consider the problem of minimising the number of states of a given WA or PA,
while preserving its (weighted or probabilistic) language.

WAs can be minimised in polynomial time, using, e.g., the standardisation
procedure of [25]. When implemented efficiently (for instance using triangular
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matrices), one obtains an O(|Σ|n3) minimisation algorithm, where n is the num-
ber of states. As PAs are special WAs, the same holds in principle for PAs.

There are two problems with these algorithms: (1) numerical instability, i.e.,
round-off errors can lead to an automaton that is not minimal and/or induces a
different probabilistic language; and (2) minimising a PA using WA minimisation
algorithms does not necessarily result in a PA: transition weights may, e.g.,
become negative. This paper deals with those two issues.

Concerning problem (1), numerical stability is crucial under two scenarios: (a)
when the automaton size makes the use of exact rational arithmetic prohibitive,
and thus necessitates floating-point arithmetic [17]; or (b) when exact minimi-
sation yields an automaton that is still too large and a “lossy compression” is
called for, as in image compression [15]. Besides finding a numerically stable
algorithm, we aim at two further goals: First, a stable algorithm should also be
efficient; i.e., it should be as fast as classical (efficient, but possibly unstable)
algorithms. Second, stability should be provable, and ideally there should be
easily computable error bounds. In Section 3 we provide a numerically stable
O(|Σ|n3) algorithm for minimising WAs. The algorithm generalises the Arnoldi
iteration [2] which is used for locating eigenvalues in numerical linear algebra.
The key ingredient, leading to numerical stability and allowing us to give error
bounds, is the use of special orthonormal matrices, called Householder reflec-
tors [14]. To the best of the authors’ knowledge, these techniques have not been
previously utilised for computations on weighted automata.

Problem (2) suggests a study of the computational complexity of the PA min-
imisation problem: given a PA and m ∈ N, is there an equivalent PA with m
states? In the 1960s and 70s, PAs were studied extensively, see the survey [7] for
references and Paz’s influential textbook [22]. PAs appear in various flavours and
under different names. For instance, in stochastic sequential machines [22] there
is no fixed initial state distribution, so the semantics of a stochastic sequential
machine is not a probabilistic language, but a mapping from initial distributions
to probabilistic languages. This gives rise to several notions of minimality in this
model [22]. In this paper we consider only PAs with an initial state distribution;
equivalence means equality of probabilistic languages.

One may be tempted to think that PA minimisation is trivially in NP, by
guessing the minimal PA and verifying equivalence. However, it is not clear that
the minimal PA has rational transition probabilities, even if this holds for the
original PA.

For DFAs, which are special PAs, an automaton is minimal (i.e., has the least
number of states) if and only if all states are reachable and no two states are
equivalent. However, this equivalence does in general not hold for PAs. In fact,
even if a PA has the property that no state behaves like a convex combination of
other states, the PA may nevertheless not be minimal. As an example, consider
the PA in the middle of Figure 2 on page 276. State 3 behaves like a convex
combination of states 2 and 4: state 3 can be removed by splitting its incoming
arc with weight 1 in two arcs with weight 1/2 each and redirecting the new arcs
to states 2 and 4. The resulting PA is equivalent and no state can be replaced
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by a convex combination of other states. But the PA on the right of the figure
is equivalent and has even fewer states.

In Section 4 we show that the PA minimisation problem is NP-hard by a
reduction from 3SAT. A step in our reduction is to show that the following
problem, the hypercube problem, is NP-hard: given a convex polytope P within
the d-dimensional unit hypercube and m ∈ N, is there a convex polytope with
m vertices that is nested between P and the hypercube? We then reduce the
hypercube problem to PA minimisation. To the best of the authors’ knowledge,
no lower complexity bound for PA minimisation has been previously obtained,
and there was no reduction from the hypercube problem to PA minimisation.
However, towards the converse direction, the textbook [22] suggests that an
algorithm for the hypercube problem could serve as a “subroutine” for a PA
minimisation algorithm, leaving the decidability of both problems open. In fact,
problems similar to the hypercube problem were subsequently studied in the field
of computational geometry, citing PA minimisation as a motivation [26,21,11,10].

The PA minimisation problem was shown to be decidable in [20], where the
authors provided an exponential reduction to the existential theory of the reals,
which, in turn, is decidable in PSPACE [8,24], but not known to be PSPACE-
hard. In Section 4.2 we give a polynomial-time reduction from the PA min-
imisation problem to the existential theory of the reals. It follows that the PA
minimisation problem is in PSPACE, improving the EXPTIME result of [20].

2 Preliminaries

In the technical development that follows it is more convenient to talk about
vectors and transition matrices than about states, edges, alphabet labels and
weights. However, a PA “of size n” can be easily viewed as a PA with states
1, 2, . . . , n. We use this equivalence in pictures.

Let N = {0, 1, 2, . . .}. For n ∈ N we write Nn for the set {1, 2, . . . , n}. For
m,n ∈ N, elements of Rm and R

m×n are viewed as vectors and matrices, re-
spectively. Vectors are row vectors by default. Let α ∈ R

m and M ∈ R
m×n.

We denote the entries by α[i] and M [i, j] for i ∈ Nm and j ∈ Nn. By M [i, ·]
we refer to the ith row of M . By α[i..j] for i ≤ j we refer to the sub-vector
(α[i], α[i + 1], . . . , α[j]), and similarly for matrices. We denote the transpose by
αT (a column vector) and MT ∈ R

n×m. We write In for the n × n identity
matrix. When the dimension is clear from the context, we write e(i) for the
vector with e(i)[i] = 1 and e(i)[j] = 0 for j �= i. A vector α ∈ R

m is stochastic
if α[i] ≥ 0 for all i ∈ Nm and

∑m
i=1 α[i] ≤ 1. A matrix is stochastic if all its

rows are stochastic. By ‖·‖ = ‖·‖2, we mean the 2-norm for vectors and matrices
throughout the paper unless specified otherwise. If a matrix M is stochastic,
then ‖M‖ ≤ ‖M‖1 ≤ 1. For a set V ⊆ R

n, we write 〈V 〉 to denote the vec-
tor space spanned by V , where we often omit the braces when denoting V . For
instance, if α, β ∈ R

n, then 〈{α, β}〉 = 〈α, β〉 = {rα+ sβ | r, s ∈ R}.
An R-weighted automaton (WA) A = (n,Σ,M,α, η) consists of a size

n ∈ N, a finite alphabet Σ, a map M : Σ → R
n×n, an initial (row) vector
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α ∈ R
n, and a final (column) vector η ∈ R

n. Extend M to Σ∗ by setting
M(a1 · · ·ak) := M(a1) · · ·M(ak). The language LA of a WA A is the mapping
LA : Σ∗ → R with LA(w) = αM(w)η. WAs A,B over the same alphabet Σ are
said to be equivalent if LA = LB. A WA A is minimal if there is no equivalent
WA B of smaller size.

A probabilistic automaton (PA) A = (n,Σ,M,α, η) is a WA, where α is
stochastic, M(a) is stochastic for all a ∈ Σ, and η ∈ [0, 1]n. A PA is a DFA if all
numbers in M,α, η are 0 or 1.

3 Stable WA Minimisation

In this section we discuss WA minimisation. In Section 3.1 we describe a WA
minimisation algorithm in terms of elementary linear algebra. The presentation
reminds of Brzozowski’s algorithm for NFA minimisation [6].1 WA minimisation
techniques are well known, originating in [25], cf. also [4, Chapter II] and [3]. Our
algorithm and its correctness proof may be of independent interest, as they ap-
pear to be particularly succinct. In Sections 3.2 and 3.3 we take further advantage
of the linear algebra setting and develop a numerically stable WA minimisation
algorithm.

3.1 Brzozowski-like WA Minimisation

Let A = (n,Σ,M,α, η) be a WA. Define the forward space of A as the (row)
vector space F := 〈αM(w) | w ∈ Σ∗〉. Similarly, let the backward space of A be
the (column) vector space B := 〈M(w)η | w ∈ Σ∗〉. Let −→n ∈ N and F ∈ R

−→n×n

such that the rows of F form a basis of F. Similarly, let ←−n ∈ N and B ∈ R
n×←−n

such that the columns of B form a basis of B. Since FM(a) ⊆ F and M(a)B ⊆ B

for all a ∈ Σ, there exist maps
−→
M : Σ → R

−→n×−→n and
←−
M : Σ → R

←−n×←−n such that

FM(a) =
−→
M(a)F and M(a)B = B

←−
M(a) for all a ∈ Σ. (1)

We call (F,
−→
M ) a forward reduction and (B,

←−
M) a backward reduction. We will

show that minimisation reduces to computing such reductions. By symmetry we

can focus on forward reductions. We call a forward reduction (F,
−→
M) canonical

if F [1, ·] (i.e., the first row of F ) is a multiple of α, and the rows of F are
orthonormal, i.e., FFT = I−→n .

Let A = (n,Σ,M,α, η) be a WA with forward and backward reductions

(F,
−→
M) and (B,

←−
M), respectively. Let −→α ∈ R

−→n be a row vector such that

α = −→αF ; let ←−η ∈ R
←−n be a column vector such that η = B←−η . (If (F,

−→
M) is

canonical, we have −→α = (±‖α‖, 0, . . . , 0).) Call
−→A := (−→n ,Σ,

−→
M,−→α , Fη) a for-

ward WA of A with base F and
←−A := (←−n ,Σ,

←−
M,αB,←−η ) a backward WA of A

with base B. By extending (1) one can see that these automata are equivalent
to A:
1 In [5] a very general Brzozowski-like minimization algorithm is presented in terms
of universal algebra. One can show that it specialises to ours in the WA setting.
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Proposition 1. Let A be a WA. Then LA = L−→A = L←−A .

Further, applying both constructions consecutively yields a minimal WA:

Theorem 2. Let A be a WA. Let A′ =
←−−→A or A′ =

−→←−A . Then A′ is minimal and
equivalent to A.

Theorem 2 mirrors Brzozowski’s NFA minimisation algorithm. We give a short
proof in [19].

3.2 Numerically Stable WA Minimisation

Theorem 2 reduces the problem of minimising a WA to the problem of comput-
ing a forward and a backward reduction. In the following we focus on computing

a canonical (see above for the definition) forward reduction (F,
−→
M). Figure 1

shows a generalisation of Arnoldi’s iteration [2] to multiple matrices. Arnoldi’s
iteration is typically used for locating eigenvalues [12]. Its generalisation to mul-
tiple matrices is novel, to the best of the authors’s knowledge. Using (1) one can
see that it computes a canonical forward reduction by iteratively extending a
partial orthonormal basis {f1, . . . , fj} for the forward space F.

function ArnoldiReduction
input: α ∈ R

n; M : Σ → R
n×n

output: canonical forward reduction (F,
−→
M) with F ∈ R

−→n×n and
−→
M : Σ → R

−→n×−→n

� := 0; j := 1; f1 := α/‖α‖ (or f1 := −α/‖α‖)
while � < j do

� := �+ 1
for a ∈ Σ do

if f�M(a) �∈ 〈f1, . . . , fj〉
j := j + 1
define fj orthonormal to f1, . . . , fj−1 such that

〈f1, . . . , fj−1, f�M(a)〉 = 〈f1, . . . , fj〉
define

−→
M(a)[�, ·] such that f�M(a) =

∑j
i=1

−→
M(a)[�, i]fi

and
−→
M(a)[�, j+1..n] = (0, . . . , 0)−→n := j; form F ∈ R

−→n×−→n with rows f1, . . . , f−→n
return F and

−→
M(a)[1..−→n , 1..−→n ] for all a ∈ Σ

Fig. 1. Generalised Arnoldi iteration

For efficiency, one would like to run generalised Arnoldi iteration (Figure 1)
using floating-point arithmetic. This leads to round-off errors. The check “if
f�M(a) �∈ 〈f1, . . . , fj〉” is particularly problematic: since the vectors f1, . . . , fj
are computed with floating-point arithmetic, we cannot expect that f�M(a) lies
exactly in the vector space spanned by those vectors, even if that would be
the case without round-off errors. As a consequence, we need to introduce an
error tolerance parameter τ > 0, so that the check “f�M(a) �∈ 〈f1, . . . , fj〉”
returns true only if f�M(a) has a “distance” of more than τ to the vector space
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〈f1, . . . , fj〉.2 Without such a “fuzzy” comparison the resulting automaton could
even have more states than the original one. The error tolerance parameter τ
causes further errors.

To assess the impact of those errors, we use the standard model of floating-
point arithmetic, which assumes that the elementary operations +,−, ·, / are
computed exactly, up to a relative error of at most the machine epsilon εmach ≥
0. It is stated in [13, Chapter 2]: “This model is valid for most computers, and, in
particular, holds for IEEE standard arithmetic.” The bit length of numbers aris-
ing in a numerical computation is bounded by hardware, using suitable roundoff.
So we adopt the convention of numerical linear algebra to take the number of
arithmetic operations as a measure of time complexity.

The algorithm ArnoldiReduction (Figure 1) leaves open how to implement
the conditional “if f�M(a) �∈ 〈f1, . . . , fj〉”, and how to compute the new basis
element fj . In [19] we propose an instantiation HouseholderReduction of Arnoldi-
Reduction based on so-called Householder reflectors [14], which are special or-
thonormal matrices. We prove the following stability property:

Proposition 3. Consider the algorithm HouseholderReduction in [19], which
has the following interface:

function HouseholderReduction
input: α ∈ R

n; M : Σ → R
n×n; error tolerance parameter τ ≥ 0

output: canonical forward reduction (F,
−→
M) with F ∈ R

−→n×n and
−→
M : Σ → R

−→n×−→n

We have:

1. The number of arithmetic operations is O(|Σ|n3).
2. HouseholderReduction instantiates ArnoldiReduction.
3. The computed matrices satisfy the following error bound: For each a ∈ Σ,

the matrix E(a) ∈ R
−→n×n with E(a) := FM(a)−−→

M(a)F satisfies

‖E(a)‖ ≤ 2
√
nτ + cmn3εmach ,

where m > 0 is such that ‖M(a)‖ ≤ m holds for all a ∈ Σ, and c > 0 is an
input-independent constant.

The proof follows classical error-analysis techniques for QR factorisations with
Householder reflectors [13, Chapter 19], but is substantially complicated by the
presence of the “if” conditional and the resulting need for the τ parameter. By
Proposition 3.2. HouseholderReduction computes a precise canonical forward
reduction for εmach = τ = 0. For positive εmach and τ the error bound grows lin-
early in εmach and τ , and with modest polynomials in the WA size n. In practice
εmach is very small3, so that the term cmn3εmach can virtually be ignored.

The use of Householder reflectors is crucial to obtain the bound of Propo-
sition 3. Let us mention a few alternative techniques, which have been used
for computing certain matrix factorisations. Such factorisations (QR or LU) are

2 This will be made formal in our algorithm.
3 With IEEE double precision, e.g., it holds εmach = 2−53 [13].
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related to our algorithm. Gaussian elimination can also be used for WA min-
imisation in time O(|Σ|n3), but its stability is governed by the growth factor,
which can be exponential even with pivoting [13, Chapter 9], so the bound on
‖E(a)‖ in Proposition 3 would include a term of the form 2nεmach. The most
straightforward implementation of ArnoldiReduction would use the Classical
Gram-Schmidt process, which is highly unstable [13, Chapter 19.8]. A variant,
the Modified Gram-Schmidt process is stable, but the error analysis is compli-
cated by a possibly loss of orthogonality of the computed matrix F . The extent
of that loss depends on certain condition numbers (cf. [13, Equation (19.30)]),
which are hard to estimate or control in our case. In contrast, our error bound
is independent of condition numbers.

Using Theorem 2 we can prove:

Theorem 4. Consider the following algorithm:

function HouseholderMinimisation
input: WA A = (n,Σ,M,α, η); error tolerance parameter τ ≥ 0
output: minimised WA A′ = (n′, Σ,M ′, α′, η′).

compute forward reduction (F,
−→
M) of A using HouseholderReduction

form
−→A := (−→n ,Σ,

−→
M,−→α ,−→η ) as the forward WA of A with base F

compute backward reduction (B,M ′) of
−→A using HouseholderReduction

form A′ := (n′, Σ,M ′, α′, η′) as the backward WA of
−→A with base B

return A′

We have:

1. The number of arithmetic operations is O(|Σ|n3).
2. For εmach = τ = 0, the computed WA A′ is minimal and equivalent to A.
3. Let τ > 0. Let m > 0 such that ‖A‖ ≤ m holds for all

A ∈ {M(a),
−→
M(a),M ′(a) | a ∈ Σ}. Then for all w ∈ Σ∗ we have

|LA(w)− LA′(w)| ≤ 4|w|‖α‖m|w|−1‖η‖√nτ

+ cmax{|w|, 1}‖α‖m|w|‖η‖n3εmach ,

where c > 0 is an input-independent constant.

The algorithm computes a backward reduction by running the straightforward
backward variant of HouseholderReduction. We remark that for PAs one can
take m = 1 for the norm bound m from part 3. of the theorem (or m = 1 + ε
for a small ε if unfortunate roundoff errors occur). It is hard to avoid an error
bound exponential in the word length |w|, as |LA(w)| itself may be exponential
in |w| (consider a WA of size 1 with M(a) = 2). Theorem 4 is proved in [19].

The error bounds in Proposition 3 and Theorem 4 suggest to choose a small
value for the error tolerance parameter τ . But as we have discussed, the computed
WA may be non-minimal if τ is set too small or even to 0, intuitively because
round-off errors may cause the algorithm to overlook minimisation opportunities.
So it seems advisable to choose τ smaller (by a few orders of magnitude) than the
desired bound on ‖E(a)‖, but larger (by a few orders of magnitude) than εmach.
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Note that for εmach > 0 Theorem 4 does not provide a bound on the number of
states of A′.

To illustrate the stability issue we have experimented with minimising a PA A
derived from Herman’s protocol as in [17]. The PA has 190 states and Σ = {a}.
When minimising with the (unstable) Classical Gram-Schmidt process, we have
measured a huge error of |LA(a190) − LA′(a190)| ≈ 1036. With the Modified
Gram-Schmidt process and the method from Theorem 4 the corresponding errors
were about 10−7, which is in the same order as the error tolerance parameter τ .

3.3 Lossy WA Minimisation

A larger error tolerance parameter τ leads to more “aggressive” minimisation
of a possibly already minimal WA. The price to pay is a shift in the language:
one would expect only L′

A(w) ≈ LA(w). Theorem 4 provides a bound on this
imprecision. In this section we illustrate the trade-off between size and precision
using an application in image compression.

Weighted automata can be used for image compression, as suggested by Culik
et al. [15]. An image, represented as a two-dimensional matrix of grey-scale val-
ues, can be encoded as a weighted automaton where each pixel is addressed by a
unique word. To obtain this automaton, the image is recursively subdivided into
quadrants. There is a state for each quadrant and transitions from a quadrant
to its sub-quadrants. At the level of the pixels, the automaton accepts with the
correct grey-scale value.

Following this idea, we have implemented a prototype tool for image compres-
sion based on the algorithm of Theorem 4. We give details and show example
pictures in [19]. This application illustrates lossy minimisation. The point is that
Theorem 4 guarantees bounds on the loss.

4 The Complexity of PA Minimisation

Given a PA A = (n,Σ,M,α, η) and n′ ∈ N, the PA minimisation problem
asks whether there exists a PA A′ = (n′, Σ,M ′, α′, η′) so that A and A′ are
equivalent. For the complexity results in this section we assume that the numbers
in the description of the given PA are fractions of natural numbers represented
in binary, so they are rational. In Section 4.1 we show that the minimisation
problem is NP-hard. In Section 4.2 we show that the problem is in PSPACE by
providing a polynomial-time reduction to the existential theory of the reals.

4.1 NP-Hardness

We will show:

Theorem 5. The PA minimisation problem is NP-hard.

For the proof we reduce from a geometrical problem, the hypercube problem,
which we show to be NP-hard. Given d ∈ N, a finite set P = {p1, . . . , pk} ⊆ [0, 1]d
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of vectors (“points”) within the d-dimensional unit hypercube, and � ∈ N, the
hypercube problem asks whether there is a set Q = {q1, . . . , q�} ⊆ [0, 1]d of at
most � points within the hypercube such that conv(Q) ⊇ P , where

conv (Q) := {λ1q1 + · · ·+ λ�q� | λ1, . . . , λ� ≥ 0, λ1 + · · ·+ λ� = 1}

denotes the convex hull of Q. Geometrically, the convex hull of P can be viewed
as a convex polytope, nested inside the hypercube, which is another convex
polytope. The hypercube problem asks whether a convex polytope with at most
� vertices can be nested in between those polytopes. The answer is trivially yes,
if � ≥ k (take Q = P ) or if � ≥ 2d (take Q = {0, 1}d). We speak of the restricted
hypercube problem if P contains the origin (0, . . . , 0). We prove the following:

Proposition 6. The restricted hypercube problem can in polynomial time be
reduced to the PA minimisation problem.

Proof (sketch). Let d ∈ N and P = {p1, . . . , pk} ⊆ [0, 1]d and � ∈ N be an
instance of the restricted hypercube problem, where p1 = (0, . . . , 0) and � ≥ 1.
We construct in polynomial time a PA A = (k + 1, Σ,M, α, η) such that there
is a set Q = {q1, . . . , q�} ⊆ [0, 1]d with conv(Q) ⊇ P if and only if there is a PA
A′ = (�+1, Σ,M ′, α′, η′) equivalent to A. Take Σ := {a2, . . . , ak}∪{b1, . . . , bd}.
Set M(ai)[1, i] := 1 and M(bs)[i, k + 1] := pi[s] for all i ∈ {2, . . . , k} and all
s ∈ Nd, and set all other entries of M to 0. Set α := e(1) and η := e(k + 1)T .
Figure 2 shows an example of this reduction. We prove the correctness of this
reduction in [19]. ��
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Fig. 2. Reduction from the hypercube problem to the minimisation problem. The left
figure shows an instance of the hypercube problem with d = 2 and P = {p1, . . . , p5} =
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conv(Q) ⊇ P . The middle figure depicts the PA A obtained from P . The right figure
depicts a minimal equivalent PA A′, corresponding to the set Q suggested in the left
figure.
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Next we show that the hypercube problem is NP-hard, which together with
Proposition 6 implies Theorem 5. A related problem is known4 to be NP-hard:

Theorem 7 (Theorem 4.2 of [10]). Given two nested convex polyhedra in
three dimensions, the problem of nesting a convex polyhedron with minimum
faces between the two polyhedra is NP-hard.

Note that this NP-hardness result holds even in d = 3 dimensions. However,
the outer polyhedron is not required to be a cube, and the problem is about
minimising the number of faces rather than the number of vertices. Using a
completely different technique we show:

Proposition 8. The hypercube problem is NP-hard. This holds even for the
restricted hypercube problem.

The proof is by a reduction from 3SAT, see [19].

Remark 9. The hypercube problem is in PSPACE, by appealing to decision al-
gorithms for ExTh(R), the existential fragment of the first-order theory of the
reals. For every fixed d the hypercube problem is5 in P , exploiting the fact that
ExTh(R) can be decided in polynomial time, if the number of variables is fixed.
(For d = 2 an efficient algorithm is provided in [1].) It is an open question
whether the hypercube problem is in NP. It is also open whether the search for
a minimum Q can be restricted to sets of points with rational coordinates (this
holds for d = 2).

Propositions 6 and 8 together imply Theorem 5.

4.2 Reduction to the Existential Theory of the Reals

In this section we reduce the PA minimisation problem to ExTh(R), the existen-
tial fragment of the first-order theory of the reals. A formula of ExTh(R) is of the
form ∃x1 . . . ∃xmR(x1, . . . , xn), where R(x1, . . . , xn) is a boolean combination of
comparisons of the form p(x1, . . . , xn) ∼ 0, where p(x1, . . . , xn) is a multivariate
polynomial and ∼ ∈ {<,>,≤,≥,=, �=}. The validity of closed formulas (m = n)
is decidable in PSPACE [8,24], and is not known to be PSPACE-hard.

Proposition 10. Let A1 = (n1, Σ,M1, α1, η1) be a PA. A PA
A2 = (n2, Σ,M2, α2, η2) is equivalent to A1 if and only if there exist ma-

trices
−→
M(a) ∈ R

(n1+n2)×(n1+n2) for a ∈ Σ and a matrix F ∈ R
(n1+n2)×(n1+n2)

such that F [1, ·] = (α1, α2), and F (ηT1 ,−ηT2 )
T = (0, . . . , 0)T , and

F

(
M1(a) 0

0 M2(a)

)

=
−→
M(a)F for all a ∈ Σ.

The proof is in [19]. The conditions of Proposition 10 on A2, including that it
be a PA, can be phrased in ExTh(R). Thus it follows:

4 The authors thank Joseph O’Rourke for pointing out [10].
5 This observation is in part due to Radu Grigore.
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Theorem 11. The PA minimisation problem can be reduced in polynomial time
to ExTh(R). Hence, PA minimisation is in PSPACE.

Theorem 11 improves on a result in [20] where the minimisation problem was
shown to be in EXPTIME. (More precisely, Theorem 4 of [20] states that a
minimal PA can be computed in EXPSPACE, but the proof reveals that the
decision problem can be solved in EXPTIME.)

5 Conclusions and Open Questions

We have developed a numerically stable and efficient algorithm for minimising
WAs, based on linear algebra and Brzozowski-like automata minimisation. We
have given bounds on the minimisation error in terms of both the machine epsilon
and the error tolerance parameter τ .

We have shown NP-hardness for PA minimisation, and have given a
polynomial-time reduction to ExTh(R). Our work leaves open the precise com-
plexity of the PA minimisation problem. The authors do not know whether the
search for a minimal PA can be restricted to PAs with rational numbers. As
stated in the Remark after Proposition 8, the corresponding question is open
even for the hypercube problem. If rational numbers indeed suffice, then an NP
algorithm might exist that guesses the (rational numbers of the) minimal PA
and checks for equivalence with the given PA. Proving PSPACE-hardness would
imply PSPACE-hardness of ExTh(R), thus solving a longstanding open problem.

For comparison, the corresponding minimisation problems involving WAs (a
generalisation of PAs) and DFAs (a special case of PAs) lie in P . More precisely,
minimisation of WAs (with rational numbers) is in randomised NC [18], and DFA
minimisation is NL-complete [9]. NFA minimisation is PSPACE-complete [16].
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