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1. INTRODUCTION

In this article we aim at designing efficient algorithms for analyzing basic properties of
probabilistic programs operating on unbounded data domains that can be abstracted
into a nonnegative integer counter. Consider, for example, the recursive program
TreeEval of Figure 1 which evaluates a given AND-OR tree, that is, a tree whose root is
an AND node, all children of AND nodes are either leaves or OR nodes, and all children
of OR nodes are either leaves or AND nodes. Note that the program TreeEval evaluates
a subtree only when necessary. In general, we cannot say much about its expected termi-
nation time; if the input tree is infinite, the program may not even terminate, that is, it
may fail to evaluate the root node. Now assume that we do have some knowledge about
the actual input domain of the program, which might have been gathered empirically:

—an AND node has about a children on average;
—an OR node has about o children on average;
—the length of a branch is b on average;
—the probability that a leaf evaluates to 1 is z.
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Fig. 1. The program TreeEval for evaluating AND-OR trees.

Further, let us assume that the actual number of children and the actual length of
a branch are geometrically distributed (which is a reasonably good approximation
in many cases). Hence, the probability that an AND node has exactly n children is
(1 − xa)n−1xa with xa = 1

a . Under these assumptions, the behaviour of TreeEval is
well-defined in the probabilistic sense, and we may ask what its expected complexity
is, that is, the expected termination time. Since TreeEval is recursive, this question is
not trivial. By applying the generic results of Section 3, the answer can be produced
automatically and efficiently.

Apart from the expected termination time, which is a fundamental characteristic of
terminating runs, we also consider the properties of nonterminating runs in probabilis-
tic programs, specified by linear-time logics or automata on infinite words. Here, we
ask for the probability of all runs satisfying a given linear-time property.

The abstract class of probabilistic programs considered in this article corresponds
to probabilistic one-counter automata (pOC). Informally, a pOC has finitely many con-
trol states p, q, . . . that can store global data, and a single nonnegative counter that
can be incremented, decremented, and tested for zero. The dynamics of a given pOC is
described by finite sets of positive and zero rules of the form p

x,c−→>0 q and p
x,c−→=0 q, re-

spectively, where p, q are control states, x is the probability of the rule, and c ∈ {−1, 0, 1}
is the counter change which must be non-negative in zero rules. A configuration p(i)
is given by the current control state p and the current counter value i. If i is posi-
tive/zero, then positive/zero rules can be applied to p(i) in the natural way. Thus, every
pOC determines an infinite-state Markov chain whose states are the configurations
and whose transitions are determined by the rules. For every pair of control states p, q,
we use Run(p↓q) to denote the set of all runs initiated in p(1) that reach q(0) so that
the counter value stays positive in all configurations preceding the visit to q(0). The
probability of Run(p↓q) is denoted by [p↓q], and the conditional expected number of
transitions needed to reach q(0) from p(1), under the condition that a run of Run(p↓q)
is performed, is denoted by E(p↓q). A probability of the form [p↓q] is called termination
probability, and an expectation of the form E(p↓q) is called expected termination time.
The runs initiated in p(1) that do not visit a configuration with zero counter are called
diverging, and the probability of all diverging runs initiated in p(1) is denoted by [p↑]
(clearly, [p↑] = 1 − ∑

q[p↓q]).
As an example, consider a pOC model of the program TreeEval. We use the counter

to abstract the stack of activation records. Since the procedures AND and OR alter-
nate regularly in the stack, we keep just the current stack height in the counter, and
maintain the “type” of the current procedure in the finite control (when we increase or
decrease the counter, the “type” is swapped). The return values of the two procedures
are also stored in the finite control. Thus, we obtain the pOC model of Figure 2 with
6 control states and 12 positive rules (zero rules are irrelevant and hence not shown
in Figure 2). We set xa := 1/a, xo := 1/o and y := 1/b in order to obtain the average
numbers a, o, b from the beginning. The initial configuration is 〈and, init〉(1), and the
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Fig. 2. A probabilistic one-counter automaton which models the program TreeEval.

pOC terminates either in 〈or, return, 0〉(0) or 〈or, return, 1〉(0), which corresponds to
evaluating the input tree to 0 and 1, respectively. Hence, E(〈and, init〉↓〈or, return, 0〉)
and E(〈and, init〉↓〈or, return, 1〉) are the conditional expected termination times under
the condition that the input tree evaluates to 0 and 1, respectively.

As we already indicated, pOC can model recursive programs operating on unbounded
data structures such as trees, queues, or lists, assuming that the structure can be faith-
fully abstracted into a counter. Let us note that modeling general recursive programs
requires more powerful formalisms such as probabilistic pushdown automata (pPDA)
[Esparza et al. 2004] or recursive Markov chains (RMC) [Etessami and Yannakakis
2005c]. However, as it is mentioned in this article, pPDA and RMC do not admit efficient
quantitative analysis for fundamental reasons. Hence, we must inevitably sacrifice a
part of pPDA modeling power to gain efficiency in algorithmic analysis, and pOC seem
to represent a convenient tradeoff between expressiveness and tractability.

The relevance of pOC is not limited just to recursive programs. As observed in
Etessami et al. [2008], pOC are equivalent, in a well-defined sense, to discrete-time
Quasi-Birth-Death processes (QBDs), a well-established stochastic model that has been
deeply studied since the late 60s (see, e.g., Neuts [1981]). QBDs are widely used in queu-
ing theory, performance evaluation, etc., and the main algorithmic problems studied
in this context concern the invariant probability distribution in ergodic QBDs. Very
recently, games over (probabilistic) one-counter automata, also called “energy games”,
were considered in several independent works [Chatterjee and Doyen 2010; Chatterjee
et al. 2010; Brázdil et al. 2010a, 2010b]. The study is motivated by optimizing the use
of resources (such as energy) in modern computational devices.

Our contribution. We start by connecting the quantitative analysis of pOC to mar-
tingale theory (see, e.g., Billingsley [1995], Rosenthal [2006], and Williams [1991] for a
general introduction to martingales). In Theorem 3.4, we show how to construct a suit-
able martingale for a given pOC. By analyzing this martingale, we obtain the following
results.

(A) We characterize the case when E(p↓q) = ∞, and we give an upper bound for a
finite E(p↓q) in Theorem 3.2.

(B) We give a lower bound for a positive divergence probability [p↑] in Theorem 4.8.

These results have the following algorithmic consequences.

(1) The problem whether for given p, q the value E(p↓q) is finite is in P (see
Corollary 3.3). Further, a finite E(p↓q) is computable up to an arbitrarily small rel-
ative error ε > 0 in time polynomial in the size of the underlying pOC and log(1/ε)
(see Theorem 3.5). Actually, we can even compute the expected termination time
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up to an arbitrarily small absolute error, which is a better estimate because the
expected termination time is always at least 1.

(2) The probability of all runs initiated in a configuration p(0) of a pOC A satisfying an
ω-regular property encoded by a deterministic Rabin automaton R is computable
up to an arbitrarily small relative error ε > 0 in time polynomial in |A |, |R|, and
log(1/ε). Further, the problem whether this probability is equal to 1 is in P (see
Theorem 4.1).

In our algorithms, we employ the techniques that have been invented for pPDA and
RMC in Esparza et al. [2004, 2005] and Etessami and Yannakakis [2005c]. We also
rely on the recent result of Stewart et al. [2013] where it is shown that the termination
probabilities in pOC can be approximated up to a given relative error ε > 0 in time
which is polynomial in the size of pOC and log(1/ε). More concretely, (1) is proven as
follows.

—The problem whether E(p↓q) is infinite is shown to be in P by using the characteri-
zation in (A).

—For all finite E(p↓q), we construct a system of linear equations L based on the natural
recursive dependency among all finite E(p↓q) such that the tuple of all finite E(p↓q)
is the unique solution of L. The coefficients in L are given only symbolically as
fractions involving termination probabilities of the form [p↓q], and their values may
be irrational. Using the upper bound for a finite E(p↓q) obtained in (A), we show that
for a given ε > 0 there exists δ > 0 computable in time polynomial in the size of the
underlying pOC and log(1/ε) such that a system L′ derived from L by approximating
the coefficients up to the relative error δ still has a unique solution whose relative
error (with respect to the solution of L) is bounded by ε. Hence, it suffices to compute
the system L′, which can be done in polynomial time due to Stewart et al. [2013],
and solve L′ exactly.

The results of (2) are proven in several steps.

—For a pOC A , a configuration p(0) of A , and a deterministic Rabin automaton R, we
construct a finite Markov chain G and a state p0 of G such that the probability of all
runs initiated in p(0) and accepted by R is equal to the probability P(Run(p0, good))
of all runs initiated in p0 and visiting a “good” bottom strongly connected component
(BSCC) of G. The set of states and the transition relation of G are computable in
time polynomial in |A | and |R|, and the defining condition of a “good” BSCC is also
verifiable in polynomial time. However, the transition probabilities in G are specified
only symbolically and may take irrational values.

—The problem whether P(Run(p0, good)) = 1 is shown to be in P by applying standard
methods for finite-state Markov chains (here we do not need to compute/approximate
the transition probabilities of G; see, for example, Kemeny and Snell [1960]). Thus,
we obtain the qualitative part of (2).

—We show that the transition probabilities of G can be approximated up to a given
relative error δ > 0 in time polynomial in |A | and log(1/δ). This result crucially
depends on the lower bound obtained in (B).

—We construct a system of linear equations L such that P(Run(p0, good)) is a compo-
nent of the unique solution of L. The variables of L correspond to the states of G that
can reach a good BSCC of G with probability strictly between zero and one, and the co-
efficients of L correspond to the transition probabilities of G. Using the lower bound of
(B), we show that, for a given ε > 0, there exists δ > 0 computable in time polynomial
in |A | and log(1/ε) such that an approximated system L′, where the relative error
of all coefficients is bounded by δ, has a unique solution whose relative error is
bounded by ε. Hence, it suffices to compute L′ (here we again employ the procedure
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of Stewart et al. [2013] for approximating termination probabilities) and solve this
system exactly. Thus, we obtain the quantitative part of (2).

Let us note that in the preliminary conference version of this article [Brázdil et al.
2011b], we used a procedure of Etessami et al. [2010] for approximating the termination
probabilities [p↓q] up to a given relative error ε > 0. This procedure runs in polynomial
time on the unit-cost rational arithmetic RAM, and the same computational model was
adopted in Brázdil et al. [2011b] when formulating the results. In this article, we
employ the improved procedure of Stewart et al. [2013], and hence we can use the
standard Turing machine model.

Related work. In Esparza et al. [2004] and Etessami and Yannakakis [2005c], it has
been shown that the vector of termination probabilities in pPDA and RMC is the least
solution of an effectively constructible system of quadratic equations. The termination
probabilities may take irrational values, but can be effectively approximated up to
an arbitrarily small absolute error ε > 0 in polynomial space by employing the deci-
sion procedure for the existential fragment of Tarski algebra (i.e., first-order theory
of the reals) [Canny 1988]. Due to the results of Etessami and Yannakakis [2005c], it
is possible to approximate termination probabilities in pPDA and RMC “iteratively”
by using the decomposed Newton’s method. However, this approach may need expo-
nentially many iterations of the method before it starts to produce one bit of precision
per iteration [Kiefer et al. 2007]. Further, any nontrivial approximation of the nonter-
mination probabilities is at least as hard as the SQUAREROOTSUM problem [Etessami
and Yannakakis 2005c], whose exact complexity is a long-standing open question in
exact numerical computations. The best-known upper bound for SQUAREROOTSUM is CH
(counting hierarchy; see Corollary 1.4 in Allender et al. [2008]). Computing termina-
tion probabilities in pPDA and RMC up to a given relative error ε > 0, which is more
relevant from the point of view of this article, is provably infeasible because the termi-
nation probabilities can be doubly-exponentially small in the size of a given pPDA or
RMC [Etessami and Yannakakis 2005c].

The expected termination time and the expected reward per transition in pPDA and
RMC have been studied in Esparza et al. [2005]. In particular, it has been shown
that the tuple of expected termination times is the least solution of an effectively con-
structible system of linear equations, where the (products and fractions of) termination
probabilities are used as coefficients. Hence, the equational system can be represented
only symbolically, and the corresponding approximation algorithm employs the deci-
sion procedure for Tarski algebra (the system L used in the approximation algorithm
of (1) can be seen as a special case of the system constructed in Esparza et al. [2005]).
There are other results for pPDA and RMC, which concern model-checking problems
for linear-time [Etessami and Yannakakis 2005a, 2005b] and branching-time [Brázdil
et al. 2005b] logics, long-run average properties [Brázdil et al. 2005a], discounted prop-
erties of runs [Brázdil et al. 2008], etc. An overview of the existing results about pPDA
and RMC can be found in Brázdil et al. [2013].

It has been shown in Etessami et al. [2010] that when the decomposed Newton’s
method is used to approximate the termination probabilities in pOC, it needs only
polynomially many iterations before it starts to produce one bit of precision per it-
eration (cf., the corresponding result for pPDA mentioned previously). Consequently,
termination probabilities in pOC can be approximated up to a given relative error
ε > 0 using only a polynomial number of arithmetic operations. In other words, the ap-
proximation algorithm of Etessami et al. [2010] runs in polynomial time assuming the
unit-cost rational arithmetic RAM model of computation. This algorithm has recently
been modified in [Stewart et al. 2013] by rounding the intermediate results carefully
so that it runs in polynomial time on the standard Turing machine model.
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One-counter Markov decision processes and one-counter stochastic games, where the
choice among the outgoing transitions of a given configuration can be either stochastic
(as in pOC) or nondeterministic, have been studied in Brázdil et al. [2010b, 2011a,
2010a, 2012]. Let us note that the martingale construction for pOC introduced in this
article turned out to be applicable also to these generalized models.

2. DEFINITIONS

We use Z, N, N0, Q, and R to denote the set of all integers, positive integers, nonnegative
integers, rational numbers, and real numbers, respectively. The symbol ∞ in treated in
the standard way (in particular, x < ∞ and x+∞ = ∞+x = ∞ for all x ∈ R), and we also
adopt the standard notation for intervals (e.g., [0,∞] denotes {x ∈ R | x ≥ 0} ∪ {∞}).

Let δ > 0, x ∈ Q, and y ∈ R. We say that x is a relative δ-approximation of y if
either y �= 0 and |x − y|/|y| ≤ δ, or x = y = 0. Further, we say that x is an absolute
δ-approximation of y if |x − y| ≤ δ.

Given a finite set Q, we regard elements of RQ as vectors over Q. We use boldface
symbols like u, v for vectors. In particular, we write 1 for the vector whose entries
are all 1. Similarly, elements of RQ×Q are regarded as square matrices. All vectors are
considered as column vectors in matrix multiplications, unless otherwise stated (an
example of a frequently used row vector is the invariant distribution β introduced in
Section 3.1).

Let V = (V, → ), where V is a nonempty set of vertices and → ⊆ V × V a total
relation (i.e., for every v ∈ V there is some u ∈ V such that v → u). A finite path in V of
length k ≥ 0 is a finite sequence of vertices v0, . . . , vk, where vi → vi+1 for all 0 ≤ i < k.
The length of a finite path w is denoted by length(w). A run in V is an infinite sequence
w of vertices such that every finite prefix of w is a finite path in V. The individual
vertices of w are denoted by w(0), w(1), . . . The sets of all finite paths and all runs in
V are denoted by FPathV and RunV , respectively. The sets of all finite paths and all
runs in V that start with a given finite path w are denoted by FPathV (w) and RunV (w),
respectively. Let U ⊆ V . We say that U is strongly connected if for all u, v ∈ U there
is a finite path from u to v. Further, we say that U is a strongly connected component
(SCC) if U is a maximal strongly connected subset of V . A bottom SCC (BSCC) is a
SCC U such that for every u ∈ U and every u→ v we have that v ∈ U .

The class of problems solvable by a deterministic Turing machine in polynomial time
is denoted by P. Whenever we say that X is computable in polynomial time, we mean
that X is computable by a deterministic Turing machine in polynomial time.

2.1. Markov Chains

We assume familiarity with basic notions of probability theory, for example, probability
space, random variable, or the expected value. As usual, a probability distribution over
a finite or countably infinite set X is a function f : X → [0, 1] such that

∑
x∈X f (x) = 1.

We call f positive if f (x) > 0 for every x ∈ X, and rational if f (x) ∈ Q for every x ∈ X.

Definition 2.1. A Markov chain is a triple M = (S, → , Prob) where S is a finite or
countably infinite set of states, → ⊆ S × S is a total transition relation, and Prob is
a function that assigns to each state s ∈ S a positive probability distribution over the
outgoing transitions of s. As usual, we write s x→ t when s → t and x is the probability
of s → t.

A Markov chain M can be also represented by its transition matrix M ∈ [0, 1]S×S,
where Ms,t = 0 if s �→ t, and Ms,t = x if s x→ t.

To every s ∈ S we associate the probability space (RunM(s),F ,P) of runs starting
at s, where F is the σ -field generated by all basic cylinders RunM(w), where w is a
finite path starting at s, and P : F → [0, 1] is the unique probability measure such
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that P(RunM(w)) = ∏length(w)
i=1 xi where w(i−1) xi→ w(i) for every 1 ≤ i ≤ length(w). If

length(w) = 0, we put P(RunM(w)) = 1.

2.2. Probabilistic One-Counter Automata

One-counter automata are abstract computational devices equipped with a finite con-
trol unit and an unbounded counter which can store nonnegative integers. Each tran-
sition can either increment, decrement, or leave unchanged the current counter value.
Further, the counter can be “tested for zero” in the sense that there can be special
transitions enabled only in configurations with zero counter. The probabilistic variant
of one-counter automata is obtained by assigning positive probabilities to transitions.
A formal definition follows.

Definition 2.2. A probabilistic one-counter automaton (pOC) is a tuple A =
(Q, δ=0, δ>0, P=0, P>0) where

—Q is a finite set of states,
—δ>0 ⊆ Q×{−1, 0, 1}× Q and δ=0 ⊆ Q×{0, 1}× Q are the sets of positive and zero rules

such that each p ∈ Q has an outgoing positive rule and an outgoing zero rule;
—P>0 and P=0 are probability assignments, assigning to each p ∈ Q a positive rational

probability distribution over the outgoing rules in δ>0 and δ=0, respectively, of p.

In the following, we often write p
x,c−→=0 q to denote that (p, c, q) ∈ δ=0

and P=0(p, c, q) = x, and similarly p
x,c−→>0 q to denote that (p, c, q) ∈ δ>0 and

P>0(p, c, q) = x. The size of A , denoted by |A |, is the length of the string which repre-
sents A , where the probabilities of rules are written as fractions of binary numbers.

A configuration of A is an element of Q × N0, written as p(i). To A we associate an
infinite-state Markov chain MA whose states are the configurations of A , and for all
p, q ∈ Q, i ∈ N, and c ∈ N0 we have that p(0) x→ q(c) iff p

x,c−→=0 q, and p(i) x→ q(c) iff
p

x,c−i−−−→>0 q.
We say that a finite path p0(�0), . . . , pm(�m) inMA is zero-safe if �i > 0 for all 0 ≤ i < m

(in particular, observe that p(0) is a zero-safe finite path of length 0 from p(0) to p(0),
and there is no other zero-safe finite path initiated in p(0)). Further, for all p, q ∈ Q,
let

—RunA (p↓q) be the set of all runs in MA initiated in p(1) that start with a zero-safe
finite path from p(1) to q(0). The runs of

⋃
q∈Q RunA (p↓q) are called the terminating

runs of p(1);
—RunA (p↑) be the set of all diverging runs in MA initiated in p(1) where the counter

never reaches zero.

We omit the “A ” in RunA (p↓q) and RunA (p↑) when it is clear from the context, and
we use [p↓q] and [p↑] to denote the probability of Run(p↓q) and Run(p↑), respectively.
Observe that [p↑] = 1 − ∑

q∈Q[p↓q] for every p ∈ Q. At various places in this article,
we rely on the following proposition.

PROPOSITION 2.3. Let A = (Q, δ=0, δ>0, P=0, P>0) be a pOC, and p, q ∈ Q.

(A) The problem whether [p↓q] > 0 is in P.
(B) If [p↓q] > 0, then [p↓q] ≥ x|Q|3

min , where xmin is the least (positive) probability used in
the rules of A .

(C) The probability [p↓q] can be approximated up to an arbitrarily small relative error
ε > 0 in time polynomial in |A | and log(1/ε).
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Fig. 3. The Markov chain MA .

The problem considered in Part (A) of Proposition 2.3 is a special case of the standard
reachability problem for pushdown automata [Hopcroft and Ullman 1979] which is
known to be in P (see also the proof of Lemma 5.3 where a more general result of
Esparza et al. [2000] related to the reachability problem for pushdown automata is
recalled). Parts (B) and (C) of Proposition 2.3 are proven in Etessami et al. [2008,
Corollary 6] and Stewart et al. [2013, Theorem 5], respectively. Let us note that a
variant of Part (C) valid for the unit-cost rational arithmetic RAM model of computation
was established already in Etessami et al. [2008, Theorem 14]. In our approximation
algorithms (see Theorem 3.5 and Theorem 4.1), we use the procedure of Part (C) to
compute the coefficients in certain systems of linear equations which are then solved
exactly.

Let T >0 be the set of all pairs (p, q) ∈ Q × Q satisfying [p↓q] > 0. Note that T >0

is computable in polynomial time due to Proposition 2.3(A). Further, for every r( j) ∈
Q× N0, we define the sets Pre∗(r( j)) and Post∗(r( j)) where

—Pre∗(r( j)) consists of all configurations t(�) such that there exists a zero-safe finite
path from t(�) to r( j);

—Post∗(r( j)) consists of all configurations t(�) such that there exists a zero-safe finite
path from r( j) to t(�).

Note that r(0) ∈ Pre∗(r(0)) and r(1) ∈ Post∗(r(1)).

3. EXPECTED TERMINATION TIME

In this section, we give an efficient algorithm for approximating the expected termina-
tion time in pOC up to an arbitrarily small relative (or even absolute) error ε > 0.

For the rest of this section, we fix a pOC A = (Q, δ=0, δ>0, P=0, P>0), and we use
xmin to denote the least (positive) probability used in the rules of A . For all p, q ∈ Q,
let Rp↓q : Run(p(1)) → N0 ∪ {∞} be a random variable which to a given run w assigns
either the k such that w(0), . . . , w(k) is a zero-safe finite path from p(1) to q(0), or ∞ if
there is no such k. If (p, q) ∈ T >0, we use E(p↓q) to denote the conditional expectation
E[Rp↓q | Run(p↓q)].

The first problem we have to deal with is that E(p↓q) can be infinite, as illustrated
by the following example.

Example 3.1. Consider a simple pOC with only one control state p, one zero rule
(p, 0, p), and two positive rules (p,−1, p) and (p, 1, p) that are both assigned the prob-
ability 1/2. The Markov chain MA is shown in Figure 3. Note that [p↓p] has to satisfy
the equation x = 1

2 + 1
2 x2, and hence [p↓p] = 1. Further, E(p↓p) has to satisfy the

equation x = 1
2 + 1

2 (1 + 2x), which means E(p↓p) = ∞ because the equation has no
other nonnegative solution. See Esparza et al. [2005] and Section 3.2 for more details.

We proceed as follows. First, we show that if E(p↓q) < ∞, then E(p↓q) is at most
exponential in |A |, and the problem whether E(p↓q) = ∞ is in P (Section 3.1). Then,
we eliminate all infinite expectations, and show how to approximate the finite values
of the remaining E(p↓q) up to a given absolute (and hence also relative) error ε > 0
efficiently (Section 3.2).
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3.1. Size and Finiteness Of The Expected Termination Time

Let X be a finite-state Markov chain with Q as set of states and transition matrix
A ∈ [0, 1]Q×Q given by

Ap,q =
∑

p
x,c−→>0q

x.

Given a BSCC B of X , let B ∈ [0, 1]B×B be the restriction of A to the elements of B×B,
and let β ∈ (0, 1]B be the invariant distribution of B, that is, the unique row vector
satisfying βB = β and β1 = 1 (see, e.g., Kemeny and Snell [1960, Theorem 5.1.2]). Now
we define

—the vector s ∈ RB of expected counter changes by sp = ∑
p

x,c−→>0q
x · c,

—the trend t ∈ R of B by t = βs.

Intuitively, the trend is the average counter change per transition. Note that t is easily
computable in time polynomial in |A | (hence, the binary length of t is also polynomial
in |A |). Our aim is to prove the following theorem.

THEOREM 3.2. Let (p, q) ∈ T >0. Then we have the following.

(A) If q is not in a BSCC of X , then E(p↓q) ≤ 5|Q|/x|Q|+|Q|3
min .

(B) If q is in a BSCC B of X , then
(a) if Pre∗(q(0)) ∩ Post∗(p(1)) ∩ B × N0 is a finite set, then E(p↓q) ≤ 20|Q|3/x4|Q|3

min ;
(b) if Pre∗(q(0)) ∩ Post∗(p(1)) ∩ B × N0 is an infinite set, then

(1) if B has trend t �= 0, then E(p↓q) ≤ 85000|Q|6/(x5|Q|+|Q|3
min · t4);

(2) if B has trend t = 0, then E(p↓q) is infinite.

One can check in polynomial time which case of Theorem 3.2 applies. In particular,
due to Esparza et al. [2000], there are finite-state automata constructible in polynomial
time recognizing the sets Pre∗(q(0)) and Post∗(p(1)). Hence, we can efficiently compute
a finite-state automaton F recognizing the set Pre∗(q(0)) ∩ Post∗(p(1)) ∩ B × N0 and
check whether the language accepted by F is finite (cf. Lemma 5.3). Thus, we have the
following corollary.

COROLLARY 3.3. Let (p, q) ∈ T >0. The problem whether E(p↓q) is finite is in P.

The rest of this section is devoted to the proof of Theorem 3.2. In particular, we
establish a powerful link between pOC and martingale theory which is also used
in Section 4. For the sake of readability, we concentrate mainly on explaining the
underlying ideas, and postpone the technical details to Section 5.1.

First assume case (A), that is, q is not in a BSCC of X . Then, for all s(�) ∈ Post∗(p(1)),
we have that s(�) can reach either q(0) or a configuration outside Pre∗(q(0)) in at most
|Q| − 1 transitions. It follows that the probability of performing a zero-safe finite path
from p(1) to q(0) of length i decays exponentially in i, and hence E(p↓q) is finite. The
upper bound of case (A) is proven by standard methods (see Lemma 5.2).

Next assume case (B), that is, q ∈ B for some BSCC B of X . It is easy to show that
the expected time for a run in Run(p↓q) to reach B is finite. If we further assume that
C := Pre∗(q(0))∩Post∗(p(1))∩B×N is a finite set (case (B)(a)), then every run basically
moves within a finite-state Markov chain on C after reaching B. By assumption, C
is finite which implies, by a pumping argument, that |C | ≤ 3|Q|3 (see Lemma 5.3).
Consequently, after a run of Run(p↓q) has reached B, it reaches q(0) in finite expected
time which can be estimated due to the upper bound on the size of C . Thus, we obtain
the upper bound of case (B)(a) in Lemma 5.4.
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Case (B)(b) requires new nontrivial techniques. We employ a generic observation
which connects the study of pOC to martingale theory. Recall that a stochastic process
m(0), m(1), . . . is a martingale if, for all i ∈ N0,

—E[|m(i)|] < ∞,
—E[m(i+1) | m(0), . . . , m(i)] = m(i) almost surely.

Two generic results about martingales that are used in this paper are Azuma’s inequal-
ity and the optional stopping theorem (see, e.g., Billingsley [1995], Rosenthal [2006],
and Williams [1991]). Let m(0), m(1), . . . be a martingale such that |m(k) − m(k−1)| ≤ d
almost surely for all k ∈ N, and let τ : 	 → N0 ∪ {∞} be a random variable over the
underlying probability space of m(0), m(1), . . . such that E[τ ] is finite and τ is a stopping
time, that is, for all k ∈ N0 the occurrence of the event τ = k depends only on the values
m(0), . . . , m(k). Then Azuma’s inequality states that for all b > 0 and i ∈ N we have that
both P(m(i) − m(0) ≥ b) and P(m(i) − m(0) ≤ −b) are bounded by

exp
( −b2

2id2

)
,

and the optional stopping theorem guarantees that E[m(τ )] = E[m(0)].
Let us fix an initial configuration r(c) ∈ B × N. Our aim is to construct a suitable

martingale over Run(r(c)). Let p(i) and c(i) be random variables which to every run
w ∈ Run(r(c)) assign the control state and the counter value of the configuration w(i),
respectively. Note that if the vector s of expected counter changes is constant, that is,
s = 1 · t where t is the trend of B, then we can define a martingale m(0), m(1), . . . simply
by

m(i) =
{

c(i) − i · t if c( j) ≥ 1 for all 0 ≤ j < i;
m(i−1) otherwise.

Since s is generally not constant, we might try to “compensate” the difference among
the individual control states by a suitable vector v ∈ RB. The next proposition shows
that this is indeed possible (a proof is postponed to Section 5.1).

THEOREM 3.4. There is a vector v ∈ [0,∞)B such that the stochastic process
m(0), m(1), . . . defined by

m(i) =
{

c(i) + vp(i) − i · t if c( j) ≥ 1 for all 0 ≤ j < i;
m(i−1) otherwise

is a martingale, where t is the trend of B. Moreover, the vector v satisfies
0 ≤ vp ≤ 2|B|/x|B|

min for every p ∈ B.

Due to Theorem 3.4, powerful results of martingale theory, such as the aforemen-
tioned optional stopping theorem and Azuma’s inequality, become applicable to pOC. In
this paper, we use the constructed martingale to establish case (B)(b) of Theorem 3.2,
and to prove the crucial divergence gap theorem in Section 4. The range of possible
applications of Theorem 3.4 is of course wider.

Assume now case (B)(b)(1), that is, t �= 0. For simplicity, let us first assume that
p ∈ B. For every i ∈ N, let Run(p↓q, i) = {w ∈ Run(p↓q) | Rp↓q(w) = i} be the set
of all runs initiated in p(1) that reach q(0) in exactly i transitions, and let [p↓q, i] be
the probability of Run(p↓q, i). We first show that there are 0 < a < 1 and h ∈ N such
that for all i ≥ h we have that [p↓q, i] ≤ ai. This immediately implies that E(p↓q)
is finite, and the bound on E(p↓q) can be obtained by analyzing the size of a and h.
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Consider the martingale m(0), m(1), . . . over Run(p(1)) as defined in Theorem 3.4, and let
δv := vmax − vmin, where vmax and vmin are the maximal and the minimal components
of v, respectively. Realize that, for every w ∈ Run(p↓q, i), we have that

(
m(i) − m(0))(w) = vq − vp − i · t.

Hence, [p↓q, i] ≤ P(m(i) − m(0) = vq − vp − i · t). A simple computation reveals that, for
a sufficiently large h ∈ N and all i ≥ h we have the following.

—If t < 0, then [p↓q, i] ≤ P(m(i) − m(0) ≥ (i/2) · (−t)).
—If t > 0, then [p↓q, i] ≤ P(m(i) − m(0) ≤ (i/2) · (−t)).

In each step, the martingale value changes by at most δv + |t| + 1, where δv is defined
above. Hence, by applying Azuma’s inequality, we obtain the following for all t �= 0 and
i ≥ h:

[p↓q, i] ≤ exp
(

− (i/2)2t2

2i(δv + |t| + 1)2

)
= ai.

Here a := exp(−t2 / 8(δv +|t|+1)2) < 1. In the general case, when p does not necessarily
belong to B, the analysis is slightly more complicated, and we also need to re-use the
upper bound on the expected time to reach B. The details are given in the proof of
Lemma 5.6.

Finally, consider case (B)(b)(2), that is, t = 0. We need to show that E(p↓q) = ∞.
Since Pre∗(q(0)) ∩ Post∗(p(1)) ∩ B × N0 is infinite, for an arbitrarily large k ∈ N there
is a configuration r(k) ∈ Pre∗(q(0)) ∩ Post∗(p(1)). We show that if k is sufficiently large,
then the expected number of transitions needed to decrease the counter by some fixed
constant b is infinite. This is achieved by analyzing the martingale m(0), m(1), . . . for
r(k), but this time we use the optional stopping theorem to show that the probability of
performing a finite path of length i which decreases the counter by b decays sufficiently
slowly to make the expected length of this path infinite. It follows that E(p↓q) is also
infinite. See Lemma 5.7 for details.

3.2. Efficient Approximation of Finite Expected Termination Time

Let us denote by T >0
<∞ the set of all pairs (p, q) ∈ T >0 satisfying E(p↓q) < ∞. Note that

due to Corollary 3.3, the set T >0
<∞ is computable in polynomial time. Our aim is to prove

the following theorem.

THEOREM 3.5. For all (p, q) ∈ T >0
<∞, the value of E(p↓q) can be approximated up to

an arbitrarily small absolute error ε > 0 in time polynomial in |A | and log(1/ε).

Note that an absolute ε-approximation of E(p↓q) (where 0 < ε < 1) is also a relative
ε-approximation of E(p↓q) because E(p↓q) ≥ 1.

Our proof of Theorem 3.5 is based on the fact that the vector of all E(p↓q), where
(p, q) ∈ T >0

<∞, is the unique solution of a system of linear equations whose coefficients
are fractions of termination probabilities. Hence, the coefficients may take irrational
values, but can be efficiently approximated up to an arbitrarily small relative error
due to Proposition 2.3(C). The main problem is to determine a sufficient precision for
the coefficients so that the solution of the perturbed system is sufficiently close to the
vector of all E(p↓q). Here we use the bounds of Theorem 3.2.

Let us start by setting up the system of linear equations for E(p↓q). For all (p, q) ∈
T >0

<∞, we fix a fresh variable V (p↓q), and construct the following system of linear
equations L, where the termination probabilities are treated as constants, and all
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summands with zero coefficients are immediately deleted:

V (p↓q) =
∑

p
x,−1−−→>0q

x
[p↓q]

+
∑

p
x,0−→>0t

x · [t↓q]
[p↓q]

· (1 + V (t↓q))

+
∑

p
x,1−→>0t

∑
r∈Q

x · [t↓r] · [r↓q]
[p↓q]

· (1 + V (t↓r) + V (r↓q)).

Note that since E(p↓q) < ∞, the equation for V (p↓q) in L cannot employ any variable
V (r↓t) such that E(r↓t) = ∞. Further, the vector �E of all E(p↓q), where (p, q) ∈ T >0

<∞,
is the least solution of L in [0,∞)m with respect to component-wise ordering,1 where
m := |T >0

<∞|. Observe that �E ≥ 1. We show that L has no other solution in Rm. Assume
the converse, that is, L has another solution �F ∈ Rm. Then, �E+c( �E− �F) is also a solution
of L for an arbitrarily small c > 0. Since �E �= �F, there is a sufficiently small ĉ > 0 such
that ĉ( �E − �F) �= 0 and |ĉ( �E − �F)i| ≤ 1

2 for all i ∈ {1, . . . , m}. Then, �E + ĉ( �E − �F) ≥ 0
and since �E is the least solution of L in [0,∞)m, we have that �E ≤ �E + ĉ( �E − �F). From
this we get ĉ( �E − �F) ≥ 0. Since �E − ĉ( �E − �F) ≥ 0 is also a solution of L, we have a
contradiction with the minimality of �E.

If we rewrite L into the standard matrix form, we obtain the system �V = H · �V + b,
where H is a nonsingular nonnegative matrix, �V is the vector of variables in L, and
b is a constant vector. Further, we have that b = 1, which follows from the following
equality (see Esparza et al. [2004] and Etessami and Yannakakis [2005c]):

[p↓q] =
∑

p
x,−1−−→>0q

x +
∑

p
x,0−→>0t

x · [t↓q] +
∑

p
x,1−→>0t

∑
r∈Q

x · [t↓r] · [r↓q]. (1)

Hence, L takes the form �V = H · �V + 1. As we already mentioned, the entries of H can
take irrational values, but can be efficiently approximated up to an arbitrarily small
relative error due to Proposition 2.3(C). Denote by G an approximated version of H.
We aim at bounding the error of the solution of the “perturbed” system �V = G · �V + 1
in terms of the error of G. To measure these errors, we use the l∞ norm of vectors and
matrices, defined as follows: For a vector u, we have that ‖u‖ = maxi |ui|, and for a
matrix M, we have ‖M‖ = maxi

∑
j |Mij |. Hence, ‖M‖ = ‖M · 1‖ if M is nonnegative.

The next proposition is obtained by applying standard results of numerical analysis
(see Section 5.2 for details).

PROPOSITION 3.6. Let b ≥ max{E(p↓q) | (p, q) ∈ T >0
<∞}. For every ε such that 0 < ε < 1,

let δ = ε /(12 · b2). If ‖G− H‖ ≤ δ, then the perturbed system �V = G · �V + 1 has a unique
solution �F such that |E(p↓q) − �Fpq| ≤ ε for all (p, q) ∈ T >0

<∞. Here, �Fpq is the component
of �F corresponding to the variable V (p↓q).

The value of b in Proposition 3.6 can be estimated as follows. By Theorem 3.2, for all
(p, q) ∈ T >0

<∞, we have that

E(p↓q) ≤ 85000 · |Q|6/(x6|Q|3
min · t4

min

)
, (2)

1This claim can be seen as a special case of a more general result achieved in Esparza et al. [2005] for
probabilistic pushdown automata, and it can also be found in the standard QBD literature; see, for example,
Neuts [1981].
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where tmin = min{|t| �= 0 | t is the trend of a BSCC of X }. Although b appears large, it
is really the value of log(1/b) which matters, and it is still reasonable. Theorem 3.5 now
follows by combining Propositions 3.6 and Inequality (2), because the approximated
matrix G can be computed in time polynomial in |A | and log(1/ε).

4. QUALITATIVE AND QUANTITATIVE MODEL-CHECKING OF ω-REGULAR PROPERTIES

In this section, we show that for every ω-regular property encoded by a deterministic
Rabin automaton,2 the probability of all runs in a given pOC that satisfy the property
can be approximated up to an arbitrarily small relative error ε > 0 in polynomial time.
This is achieved by designing and analyzing a quantitative model-checking algorithm
for pOC and ω-regular properties. The algorithm is based on similar ideas3 as the
algorithms designed for pPDA and RMC in Esparza et al. [2004] and Etessami and
Yannakakis [2005a, 2005b]. The crucial new observation underpinning its functionality
is the divergence gap theorem (i.e., Theorem 4.8), which bounds a positive probability
of the form [p↑] away from zero. In the proof of Theorem 4.8, we use the martingale of
Section 3 and apply the optional stopping theorem to derive certain lower bounds.

Recall that a deterministic Rabin automaton (DRA) over a finite alphabet 
 is a
deterministic finite-state automaton R with total transition function and Rabin accep-
tance condition (E1, F1), . . . , (Ek, Fk), where k ∈ N, and all Ei, Fi are subsets of control
states of R. For a given infinite word w over 
, let inf(w) be the set of all control states
visited infinitely often along the (unique) run of R on w. The word w is accepted by R
if there is i ≤ k such that inf(w) ∩ Ei = ∅ and inf(w) ∩ Fi �= ∅.

Let 
 be a finite alphabet, R a DRA over 
, and A = (Q, δ=0, δ>0, P=0, P>0) a pOC.
A valuation is a function ν which to every configuration p(i) of A assigns a unique
letter of 
. For simplicity, we assume that ν(p(i)) depends only on the control state p
(note that a “bounded” information about the current counter value can be encoded
and maintained in the finite control of A ). Intuitively, the letters of 
 correspond to
collections of predicates that are valid in a given configuration of A . Thus, every run
w ∈ RunA (p(i)) determines a unique infinite word ν(w) over 
 which is either accepted
by R or not. The main result of this section is the following theorem.

THEOREM 4.1. For every p ∈ Q, let RunA (p(0),R) be the set of all w ∈ RunA (p(0))
that are accepted by R. The problem whether P(RunA (p(0),R)) = 1 is in P. Further,
P(RunA (p(0),R)) can be approximated up to an arbitrarily small relative error ε > 0
in time polynomial in |A |, |R|, and log(1/ε).

Since R is deterministic, it can be simulated on-the-fly in the finite control of A . The
resulting pOC has |Q| · |R| control states, where R is the set of control states of R, and
behaves in the same way as A . Thus, we can translate the problem of Theorem 4.1
into an equivalent but technically simpler problem of computing the probability of all
accepting runs in pOC with Rabin acceptance condition, which is formally defined in
the following.

Let A = (Q, δ=0, δ>0, P=0, P>0) be a pOC. A Rabin acceptance condition for A is
a finite sequence (E1,F1), . . . , (Ek,Fk), where Ei,Fi ⊆ Q for all 1 ≤ i ≤ k. For every

2Recall that deterministic Rabin automata can encode an arbitrary ω-regular language [Thomas 1991] and
there are quite efficient translations from various LTL fragments to deterministic Rabin automata [Křetı́nský
and Ledesma-Garza 2013], although the complexity of this translation is exponential in general.
3In principle, we could use the algorithms developed for pPDA and RMC and apply them to pOC. The main
ingredient of these algorithms is the construction of a finite-state Markov chain (called X� in Esparza et al.
[2004] or “summary chain” in Etessami and Yannakakis [2005a, 2005b]) which captures the behavior of
infinite runs. To make this article self-contained, we design a simplified model-checking algorithm tailored
specifically for pOC where the infinite runs are analyzed using a finite-state Markov chain G. The chain G is
simpler than X� and the associated analysis leads to better estimates in Lemma 5.11.
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run w ∈ RunA , let Q-inf(w) be the set of all p ∈ Q visited infinitely often along w.
We use RunA (p(0), acc) to denote the set of all accepting runs w ∈ RunA (p(0)) such
that Q-inf(w) ∩ Ei = ∅ and Q-inf(w) ∩ Fi �= ∅ for some i ≤ k. Sometimes we also
write RunA (p(0), rej) to denote the set RunA (p(0))\RunA (p(0), acc) of rejecting runs.
Theorem 4.1 is obtained as a direct corollary to the following proposition.

PROPOSITION 4.2. Let A = (Q, δ=0, δ>0, P=0, P>0) be a pOC and (E1,F1), . . . , (Ek,Fk)
a Rabin acceptance condition for A . For every p ∈ Q, the problem whether
P(RunA (p(0), acc)) = 1 is in P. Further, P(RunA (p(0), acc)) can be approximated up to
an arbitrarily small relative error ε > 0 in time polynomial in |A |, k, and log(1/ε).

For the rest of this section, we fix a pOC A = (Q, δ=0, δ>0, P=0, P>0), and a Rabin
acceptance condition (E1,F1), . . . , (Ek,Fk) for A . Our proof of Proposition 4.2 consists of
two steps.

(1) We introduce a finite-state Markov chain G (with possibly irrational transition
probabilities) such that the probability of all accepting runs in MA is equal to the
probability of reaching a “good” BSCC in G.

(2) We show how to approximate the probability of reaching a “good” BSCC in G up to
a relative error ε > 0 in time polynomial in |A |, k, and log(1/ε).

In Step (2), we re-use the martingale introduced in Section 3 to prove the aforemen-
tioned divergence gap theorem (Theorem 4.8).

Step (1) Let G be a finite-state Markov chain, where Q×{0, 1} ∪ {acc, rej} is the set of
states (the elements of Q×{0, 1} are written as qi, where i ∈ {0, 1}), and the transitions
of G are defined as follows.

—r0
x→ qj is a transition of G iff r(0) x→ q( j) is a transition of MA .

—r1
x→ q0 iff x = [r↓q] > 0.

—r1
x→ acc iff x = P(RunA (r(1), acc) ∩ RunA (r↑)) > 0.

—r1
x→ rej iff x = P(RunA (r(1), rej) ∩ RunA (r↑)) > 0.

—acc 1→ acc, rej 1→ rej.
—there are no other transitions.

The correspondence between the runs of RunA (p(0)) and RunG(p0) is formally captured
by a function 
 : RunA (p(0)) → RunG(p0) ∪ {⊥}, where 
(w) is obtained from a given
w ∈ RunA (p(0)) as follows.

—First, each maximal zero-safe subpath in w of the form r(1), . . . , q(0) is replaced with
a single transition r1 → q0.

—Then, all of the remaining configurations s(0) with zero counter are replaced with s0.
Note that if w contained infinitely many configurations with zero counter, then the
resulting sequence is a run of RunG(p0), and thus we obtain our 
(w). Otherwise, the
resulting sequence takes the form v ŵ, where v ∈ FPathG(p0) and ŵ is a suffix of w
initiated in a configuration r(1). Then, we distinguish three possibilities.
—If ŵ is accepting and P(RunA (r(1), acc) ∩ RunA (r↑)) > 0, we put 
(w) = v r1 accω.
—If ŵ is rejecting and P(RunA (r(1), rej) ∩ RunA (r↑)) > 0, we put 
(w) = v r1 rejω.
—Otherwise, we put 
(w) = ⊥.

LEMMA 4.3. For every measurable subset A ⊆ RunG(p0), we have that 
−1(A) is
measurable and P(A) = P(
−1(A)).

A proof of Lemma 4.3 is straightforward (it suffices to check that the lemma holds
for all basic cylinders RunG(w) where w ∈ FPathG(p0)). Note that Lemma 4.3 implies
P(
=⊥) = 0.

Journal of the ACM, Vol. 61, No. 6, Article 41, Publication date: November 2014.



Efficient Analysis of Probabilistic Programs with an Unbounded Counter 41:15

A BSCC B of G is good if either B = {acc}, or there is i ≤ k such that Ei ∩ Q(B) = ∅
and Fi ∩ Q(B) �= ∅, where Q(B) consists of all r ∈ Q such that either rj ∈ B for
some j ∈ {0, 1}, or there are t1, q0 ∈ B such that t1 → q0 is a transition in G and
r( j) ∈ Pre∗(q(0))∩Post∗(t(1)) for some j ∈ N. A BSCC of G which is not good is bad. Note
that every BSCC of G can be effectively classified as good or bad in polynomial time
(see the remarks after Theorem 3.2). Now observe the following.

LEMMA 4.4. Let B be a BSCC of G, and let RunG(p0, B) be the set of all w ∈ RunG(p0)
such that w hits B. If B is good/bad, then almost all runs of 
−1(RunG(p0, B)) are
accepting/rejecting, respectively.

A proof of Lemma 4.4 is straightforward—if B = {acc} or B = {rej}, then all runs
of 
−1(RunG(p0, B)) are accepting or rejecting, because all of them have an accepting
or rejecting suffix, respectively. Otherwise, it suffices to realize that for almost all
w ∈ 
−1(RunG(p0, B)) we have that Q-inf(w) = Q(B).

Since almost all runs of RunG(p0) hit a BSCC of G, our next proposition is a direct
consequence of Lemma 4.3 and Lemma 4.4.

PROPOSITION 4.5. Let p ∈ Q, and let RunG(p0, good) be the set of all w ∈ RunG(p0)
that hit a good BSCC of G. Then P(RunA (p(0), acc)) = P(RunG(p0, good)).

Step 2. Due to Proposition 4.5, the problem of approximating P(RunA (p(0), acc))
reduces to the problem of approximating the probability of hitting a good BSCC in the
finite-state Markov chain G. Note that the probabilities associated to transitions of the
form r1

x→ q0, r1
x→ acc, and r1

x→ rej in G may take irrational values. In the last two
cases, it is even not clear how to decide whether such a transition exists in G, that is,
whether the associated probability x is positive (see the definition of G). We show the
following.

(a) The transition relation of G is computable in polynomial time.
(b) The probability of a transition r1

x→ q0 in G satisfies x ≥ x|Q|3
min , and the probability of

a transition r1
x→ acc or r1

x→ rej in G satisfies

x ≥ x4|Q|2
min · t3

min+

7000 · |Q| ,

where tmin+ = min{t > 0 | t is the trend of a BSCC of X }. If there is no BSCC of X
with positive trend,4 we put tmin+ = 1. Moreover, all transition probabilities of G can
be approximated up to an arbitrarily small relative error ε > 0 in time polynomial
in |A | and log(1/ε).

Note that if Claim (a) holds, we can efficiently compute the sets S0 and S1 consisting of
all states s of G such that P(RunG(s, good)) is equal to 0 and 1, respectively. This proves
the “qualitative part” of Proposition 4.2. The “quantitative part” of Proposition 4.2 is
obtained from Claim (b) as follows. Let S? be the set of all states of G that are not
contained in S0 ∪ S1, and let G be the stochastic matrix of G. For every s ∈ S? we fix a
fresh variable Vs and the equation

Vs =
∑
t∈S?

G(s, t) · Vt +
∑
t∈S1

G(s, t).

4As we shall see in Section 5.3, transitions of the form r1
x→ acc or r1

x→ rej do not exist in G if the trends of
all BSCCs of X are negative; however, they may exist if there is a BSCC with zero trend and no BSCC with
positive trend.
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Thus, we obtain a system of linear equations �V = A �V + b whose unique solution �V ∗
in R|S?| is the vector of probabilities of reaching a good BSCC from the states of S?.
Since the elements of A and b correspond to (sums of) transition probabilities in G, for
every ε > 0 it suffices to compute the transition probabilities of G with a sufficiently
small relative error δ > 0 so that the approximate A and b produce an approximate
solution where the relative error of each component is bounded by ε. Using standard
results of numerical analysis and the lower bound on transition probabilities given in
Claim (b), we show that δ can be chosen so that log(1/δ) is bounded by a polynomial in
|A | and log(1/ε). Now is suffices to apply the second part of Claim (b). The details are
postponed to Section 5.3 (see Lemma 5.11).

In the rest of this section, we indicate how to prove Claims (a) and (b). Due to
Proposition 2.3, we only need to consider transitions of the form r1

x→ acc and r1
y→ rej,

and the respective probabilities x and y. Recall that x and y are the probabilities
of all w ∈ RunA (r↑) that are accepting and rejecting, respectively. A simple but
important observation is that almost all w ∈ RunA (r↑) still behave accordingly with
the underlying finite-state Markov chain X of A (see Section 3.1 for the definition of
X ). More precisely, we have the following lemma.

LEMMA 4.6. Let r ∈ Q. For almost all w ∈ RunA (r↑), we have that w visits a BSCC
B of X after finitely many transitions, and then it visits all states of B infinitely often.

In fact, Lemma 4.6 is a variant of the standard result saying that almost all runs
in a finite-state Markov chain M hit a BSCC B of M and then visit all states of B
infinitely often (see, e.g., Kemeny and Snell [1960]). A proof of Lemma 4.6 does not
require any new insights.

A BSCC B of X is consistent with the considered Rabin acceptance condition if there
is i ≤ k such that B ∩ Ei = ∅ and B ∩ Fi �= ∅. If B is not consistent, it is inconsistent.
An immediate corollary to Lemma 4.6 is the following.

COROLLARY 4.7. Let RunA (r(1), cons) and RunA (r(1), inco) be the sets of all w ∈
RunA (r(1)) such that w visits a control state of some consistent and inconsistent BSCC
of X , respectively. Then

—P(RunA (r(1), acc) ∩ RunA (r↑)) = P(RunA (r(1), cons) ∩ RunA (r↑)),
—P(RunA (r(1), rej) ∩ RunA (r↑)) = P(RunA (r(1), inco) ∩ RunA (r↑)).

Let Acons be a pOC which is the same as A except that for each control state q of an

inconsistent BSCC of X , all positive outgoing rules of q are replaced with q
1,−1−−→>0 q

(the outgoing zero rules of q are irrelevant and may stay unchanged). Thus, almost all
runs of RunA (r↑) which were rejecting become terminating (i.e., visit a configuration
with zero counter) in Acons. Hence,

P(RunA (r(1), acc) ∩ RunA (r↑)) = P(RunA (r(1), cons) ∩ RunA (r↑)) = P(RunAcons(r↑)).

Similarly, we construct a pOC Ainco which are the same as A except that for each
control state q of a consistent BSCC of X , all positive outgoing rules of q are replaced

with q
1,−1−−→>0 q. Then, P(RunA (r(1), rej) ∩ RunA (r↑)) = P(RunAinco (r↑)).

Due to these observations, the problem of computing the probability of a transition
r1

x→ acc (or r1
y→ rej) in G reduces to the problem of computing the probability [r↑] in an

efficiently constructible pOC Acons (or Ainco, respectively). Since the problem whether
[r↑] > 0 for a given control state r of a given pOC is solvable in polynomial time [Brázdil
et al. 2010b], we obtain Claim (a).
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To prove Claim (b), we need to establish a sufficiently large lower bound on [r↑] in
Acons and Ainco. This bound is given in the following “divergence gap theorem”.

THEOREM 4.8. Let ˆA be a pOC with Q as the set of control states where the least
positive probability used in the rules of ˆA is at least xmin. For all p, q ∈ Q, let [p, q]
be the probability of all w ∈ Run ˆA (p(1)) such that w starts with a zero-safe finite path
from p(1) to q(k), where k ≥ 1. Let p ∈ Q such that the probability [p↑] (considered in

ˆA ) is positive. Then there are two possibilities.

(1) There is q ∈ Q such that [p, q] > 0 and [q↑] = 1. Hence, [p↑] ≥ [p, q] ≥ x|Q|2
min .

(2) There exists a BSCC B of the underlying finite-state Markov chain X̂ of ˆA and a
state q of B such that the trend t of B is positive, [p, q] > 0, and vq = vmax. Here v
is the vector of Theorem 3.4, and vmax is the maximal component of v; all of these
are considered in B. Further,

[p↑] ≥ x4|Q|2
min · t3

7000 · |Q|3 .

A proof of Theorem 4.8 is obtained by analyzing the martingale of Section 3; see
Section 5.3 for details.

Note that Acons and Ainco have the same set of control states as A , the least positive
rule probability in Acons and Ainco is at least xmin, and if B is a BSCC of Xcons (or
Xinco) with a positive trend t, then B is also a BSCC of X with the same trend. Hence,
Theorem 4.8 gives a lower bound on [r↑] in Acons and Ainco and thus we obtain the first
part of Claim (b).

The second part of Claim (b) is a trivial consequence of Theorem 4.8 and
Proposition 2.3. Recall that [r↑] = 1 − ∑

q∈Q[r↓q], and hence we can approximate
[r↑] up to an arbitrarily small absolute error δ > 0 efficiently by applying Proposi-
tion 2.3(C). Using the bound of Theorem 4.8, we can efficiently compute δ > 0 such that
log(1/δ) is polynomial in log(1/ε) and the size of Acons (or Ainco), and every absolute
δ-approximation of [r↑] is also a relative ε-approximation of [r↑].

5. PROOFS

In this section, we give proofs that were only sketched or completely omitted in the
previous sections.

5.1. Proofs of Section 3.1

Recall that we assume a fixed pOC A = (Q, δ=0, δ>0, P=0, P>0), where xmin denotes
the least positive probability used in the rules of A . Also recall the definition of the
finite-state Markov chain X .

For a given initial configuration r( j) ∈ Q × N and a set of target configurations
F ⊆ Q × N0, we define a random variable TF over the runs of MA initiated in r( j)
where TF(w) returns either the least k ∈ N0 such that w(0), . . . , w(k) is a zero-safe finite
path from r( j) to a configuration of F, or ∞ if there is no such k. Further, we use Pre∗(F)
to denote the set

⋃
t(�)∈F Pre∗(t(�)). We start by establishing a simple tail bound for TF .

LEMMA 5.1. Let r( j) ∈ Q × N be an initial configuration and F ⊆ Q × N0 a set of
target configurations. Further, let n ∈ N be a constant such that for every configuration
t(�) ∈ Post∗(r( j)) there is a zero-safe finite path of length strictly less than n from t(�) to
a configuration which either belongs to F or is not contained in Pre∗(F). Then, for all
k ≥ n, we have that P(k ≤ TF < ∞) ≤ 2ck where c := exp(−xn

min/n).
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PROOF. Let us first consider the case when xmin = 1. Then, there is a unique run w
in MA initiated in r( j). If TF(w) = ∞, then P(TF < ∞) = 0. If TF(w) = m for some
m ∈ N0, then the least constant n satisfying the assumptions of our lemma is equal to
m+ 1. Clearly, for every k ≥ m+1 we have that P(k ≤ TF < ∞) = 0.

Now assume xmin < 1, and let n ∈ N be a constant satisfying the assumptions of
our lemma. Since for each control state the sum of the probabilities of the outgoing
(zero or positive) rules is 1, we must have x ≤ 1/2. For every initial configuration
t(�) ∈ Post∗(r( j)), call crash the event of performing a zero-safe finite path of length
at most n − 1 ending in a configuration which either belongs to F or does not belong
to Pre∗(F). The probability of crash is at least xn−1

min ≥ xn
min, regardless of the initial

configuration t(�). Let k ≥ n. For the event k ≤ TF < ∞, a crash has to be avoided at
least � k−1

n−1� times, that is,

P(k ≤ TF < ∞) ≤ (
1 − xn

min

)� k−1
n−1 �

.

As � k−1
n−1� ≥ k−1

n−1 − 1 ≥ k
n − 1 and

(
1 − xn

min

)−1 ≤ 2 (recall xmin ≤ 1/2), we obtain

P(k ≤ TF < ∞) ≤ 1
1 − xn

min
· ((

1 − xn
min

)1/n)k ≤ 2 · ((
1 − xn

min

)1/n)k

= 2 ·
(

exp
(

1
n

log
(
1 − xn

min

)))k

≤ 2 ·
(

exp
(

1
n

· (−xn
min

)))k

= 2 · ck .

For the last inequality, recall that log(1 − y) ≤ −y for all y ∈ (0, 1).

Now we can easily prove the following lemma.

LEMMA 5.2 [CASE (A) OF THEOREM 3.2]. Let p, q ∈ Q such that [p↓q] > 0 and q
is not in a BSCC of X . Then E(p↓q) ≤ 5|Q| / x|Q|+|Q|3

min .

PROOF. Observe that if q is not in a BSCC of X , then, for every configuration t(�) ∈
Post∗(p(1)), there is a zero-safe finite path of length at most |Q| − 1 initiated in t(�)
which ends either in q(0) or in a configuration not contained in Pre∗(q(0)). Hence, we
can apply Lemma 5.1 for the initial configuration p(1), F = {q(0)}, and n = |Q|. Thus,
we obtain

E(p↓q) · [p↓q] =
∑
k∈N

P(k ≤ Rp↓q < ∞) =
∑
k∈N

P(k ≤ TF < ∞)

≤
|Q|∑
k=1

1 +
∞∑

k=0

2ck = |Q| + 2
1 − c

, (Lemma 5.1)

where c := exp(−x|Q|
min/|Q|). We have 1 − c = 1 − exp(−x|Q|

min/|Q|) ≥ x|Q|
min/(2|Q|), hence

E(p↓q) · [p↓q] ≤ |Q| + 4|Q|
x|Q|

min

≤ 5|Q|
x|Q|

min

.

As [p↓q] ≥ x|Q|3
min by Proposition 2.3 (B), it follows E(p↓q) ≤ 5|Q| / x|Q|+|Q|3

min .

Now consider case (B) of Theorem 3.2. From now on, we assume that q belongs to
some (fixed) BSCC B of the finite-state Markov chain X . Every run w ∈ Run(p↓q)
starts with a zero-safe finite path from p(1) to some r(k) where r ∈ B, followed by a
zero-safe finite path from r(k) to q(0) which visits only the configurations of B × N0.
Our upper bounds for E(p↓q) are obtained as sums of upper bounds for the expected
number of transitions needed to perform the two finite subpaths.
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More precisely, we define the following random variables over RunMA (p(1)).

—R(1)(w) is the least k ∈ N0 such that w(0), . . . , w(k) is a zero-safe finite path from p(1)
to a configuration of B × N0; if there is no such k, we put R(1)(w) = ∞.

—R(2)(w) is the � such that w(R(1)(w)), . . . , w(R(1)(w)+�) is a zero-safe finite path from
w(R(1)(w)) to q(0); if there is no such � (which includes the case when R(1)(w) = ∞),
we put R(2)(w) = ∞. Intuitively, � is the number of transitions needed to reach q(0)
after hitting B.

—Con(w) is the configuration w(k) where k = R(1)(w). If R(1)(w) = ∞, then Con(w) = ⊥.
That is, Con(w) is the first configuration of w which hits B.

Note that Rp↓q(w) = R(1)(w) + R(2)(w) for all runs w initiated in p(1). Further, we
have the following5:

E(p↓q) · [p↓q] =
∑
k∈N0

P
(
Rp↓q = k

) · k =
∑
k∈N0

P
(
R(1) + R(2) = k

) · k

=
∑

k1,k2∈N0

P
(
R(1) = k1 ∧ R(2) = k2

) · (k1 + k2)

=
∑

k1,k2∈N0

P
(
R(1) = k1

) · P(
R(2) = k2 | R(1) = k1

) · (k1 + k2)

= E1 + E2 ,

where

E1 :=
∑

k1,k2∈N0

P
(
R(1) = k1

) · P(
R(2) = k2 | R(1) = k1

) · k1 and

E2 :=
∑

k1,k2∈N0

P
(
R(1) = k1

) · P(
R(2) = k2 | R(1) = k1

) · k2 .

Now observe that for every configuration t(�) ∈ Post∗(p(1)), there is a zero-safe
finite path of length at most |Q| − 1 from t(�) to a configuration which either
belongs to B × N0 or is not contained in Pre∗(B × N0). Hence, we can apply
Lemma 5.1 for the initial configuration p(1), F = B × N0, and n = |Q|. Thus, we
obtain the following upper bound on E1:

E1 =
∑

k1∈N0

P
(
R(1) = k1

) · k1 ·
∑

k2∈N0

P
(
R(2) = k2 | R(1) = k1

)

≤
∑

k1∈N0

P
(
R(1) = k1

) · k1 =
∑
k1∈N

P(TF = k1) · k1 =
∑
k1∈N

P(k1 ≤ TF < ∞)

≤
|Q|∑

k1=1

1 +
∞∑

k=0

2ck = |Q| + 2
1 − c

(Lemma 5.1) .

We have 1 − c = 1 − exp(−x|Q|
min/|Q|) ≥ x|Q|

min/(2|Q|), hence

E1 ≤ 5|Q|
x|Q|

min

. (3)

5To simplify our notation, we adopt the convention that P(A | B) denotes 0 whenever P(B) = 0.

Journal of the ACM, Vol. 61, No. 6, Article 41, Publication date: November 2014.



41:20 T. Brázdil et al.

Establishing an upper bound for E2 is more difficult and it is done separately for
case (B)(a) and case (B)(b) of Theorem 3.2.

Now we aim at proving the upper bound of case (B)(a). First, we show that
if the set Pre∗(q(0)) ∩ Post∗(p(1)) ∩ B × N0 is finite, then its size is bounded
by 3|Q|3. Intuitively, we just observe that the sets Pre∗(q(0)) and Post∗(p(1))
are recognizable by finite-state automata of “small” size, and hence the same holds
for the product automaton recognizing the intersection. Then, we apply the standard
pumping argument and conclude that if the product automaton accepted a “long”
word, it would necessarily accept an infinite language.

LEMMA 5.3. Let p, q ∈ Q. If the set Pre∗(q(0)) ∩ Post∗(p(1)) ∩ B × N0 is finite, then it
has at most 3|Q|3 elements.

PROOF. We use the notions and results of Esparza et al. [2000] which show how
to compute the sets of all predecessors/successors of a regular set of configurations
of a pushdown automaton. Note that A naturally determines a pushdown automa-
ton � where Q is the set of control states, {I} is the stack alphabet, and tI ↪→ rIc+1

is a transition rule of � iff (t, c, r) ∈ δ>0 (here Ik denotes the word consisting of k
copies of the symbol I; in particular, I0 is the empty string ε). Every configuration
p(k) of A then corresponds to the configuration pIk of �, and there is a natural
one-to-one correspondence between zero-safe finite paths initiated in p(k) and finite
paths initiated in pIk (by definition, pushdown automata get stuck when the stack is
emptied).

A P-automaton is a nondeterministic finite-state automaton F over the alphabet
{I} such that the set of control states of F subsumes Q. A configuration rIk of A is
recognized by F if F accepts the word Ik from the initial state r. In Esparza et al.
[2000], it has been shown that for every F , one can compute another P-automaton
Fpre∗ recognizing all predecessors of all configurations recognized by F . Further, the
automaton Fpre∗ has the same set of control states as F . In our case, F recognizes just
qε and hence it has only |Q| control states. So, Fpre∗ has also |Q| control states.

Similarly, one can construct a P-automaton Fpost∗ recognizing all successors of all
configurations recognized by F . In our case, F recognizes just pI, and hence the result-
ing Fpost∗ has at most |Q| + 2 states (see Esparza et al. [2000]).

Using the standard product construction, we obtain a P-automaton F with at
most |Q| · (|Q| + 2) states recognizing the intersection of the sets recognized by
Fpre∗ and Fpost∗ . That is, F recognizes all configurations rIk such that r(k) ∈
Pre∗(q(0)) ∩ Post∗(p(1)). Now note that if Pre∗(q(0)) ∩ Post∗(p(1)) ∩ B × N0 is fi-
nite, then a standard pumping argument for finite-state automata implies that
the length of every word accepted by F from an initial state r ∈ B is bounded
by |Q| · (|Q| + 2). It follows that there are at most |Q|2 · (|Q| + 2) configurations
in Pre∗(q(0)) ∩ Post∗(p(1)) ∩ B × N0 where the counter is positive, and at most
one configuration with zero counter. Hence, the size of Pre∗(q(0)) ∩ Post∗(p(1)) ∩ B × N0
is bounded by |Q|3 + 2|Q|2 + 1. Note that 3|Q|3 > |Q|3 + 2|Q|2 + 2 for |Q| ≥ 2; and in the
special case when |Q| = 1 we have that Pre∗(q(0))∩Post∗(p(1))∩B ×N0 is either empty
(which contradicts [p↓q] > 0) or infinite.

LEMMA 5.4 (CASE (B)(A) OF THEOREM 3.2). Let p, q ∈ Q such that [p↓q] > 0, q ∈ B,
and Pre∗(q(0)) ∩ Post∗(p(1)) ∩ B × N0 is finite. Then, E(p↓q) ≤ 20|Q|3/x4|Q|3

min .

PROOF. Let C := Pre∗(q(0))∩Post∗(p(1))∩B ×N0. Note that if Con(w) �= ⊥ for a given
run w ∈ RunMA (p(1)), then Con(w) ∈ C .
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Since E(p↓q) · [p↓q] = E1 + E2 and we already have an upper bound on E1 due to
Inequality (3), it suffices to establish an upper bound on E2. We have that

E2 =
∑

k1,k2∈N0

P
(
R(1) = k1

) · P(
R(2) = k2 | R(1) = k1

) · k2

=
∑

k2∈N0

k2 ·
∑

k1∈N0

P
(
R(2) = k2 ∧ R(1) = k1

)

=
∑

k2∈N0

k2 ·
∑

k1∈N0

∑
r( j)∈C

P
(
R(2) = k2 ∧ R(1) = k1 ∧ Con = r( j)

)

=
∑

k2∈N0

k2 ·
∑

r( j)∈C

P
(
R(2) = k2 ∧ Con = r( j)

)

=
∑

r( j)∈C

P
(
Con = r( j)

) ·
∑

k2∈N0

k2 · P(
R(2) = k2 | Con = r( j)

)

≤ max
r( j)∈C

∑
k2∈N0

k2 · P(
R(2) = k2 | Con = r( j)

)
.

Hence, all we need is an upper bound on
∑

k2∈N0
k2 ·P(R(2) = k2 | Con = r( j)) in the case

when P(Con = r( j)) > 0. Observe that for every configuration t(�) ∈ Post∗(r( j)) there is
a zero-safe finite path of length at most |Q|3 + 2|Q|2 initiated in t(�) which ends either
in q(0) or in a configuration not contained in Pre∗(q(0)) (here we use Lemma 5.3). By
applying Lemma 5.1 for the initial configuration r( j), F = {q(0)}, and n = 3|Q|3, we get
the following:∑

k2∈N0

k2 · P(
R(2) = k2 | Con = r( j)

) =
∑

k2∈N0

k2 · P(TF = k2) =
∑

k2∈N0

P(k2 ≤ TF < ∞)

≤ 3|Q|3 + 12|Q|3
x3|Q|3

min

≤ 15|Q|3
x3|Q|3

min

.

Hence, E2 ≤ 15|Q|3/x3|Q|3
min , and thus we have

[p↓q] · E(p↓q) = E1 + E2 ≤ 5|Q|
x|Q|

min

+ 15|Q|3
x3|Q|3

min

≤ 20|Q|3
x3|Q|3

min

.

Since [p↓q] ≥ x|Q|3
min by Proposition 2.3(B), we finally obtain E(p↓q) ≤ 20|Q|3/x4|Q|3

min .

It remains to prove case (B)(b) of Theorem 3.2. Recall the following notions: Bdenotes
the transition matrix of B, s ∈ RB is the vector of expected counter changes defined by
sp = ∑

p
x,c−→>0q

x · c, and t = βs is the trend of B, where β is the invariant distribution
of B. First, we restate and prove Theorem 3.4.

THEOREM 3.4. There is a vector v ∈ [0,∞)B such that the stochastic process m(0),

m(1), . . . defined by

m(i) =
{

c(i) + vp(i) − i · t if c( j) ≥ 1 for all 0 ≤ j < i;
m(i−1) otherwise

is a martingale, where t is the trend of B. Moreover, the vector v satisfies 0 ≤
vp ≤ 2|B|/x|B|

min for every p ∈ B.
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PROOF. A potential is a vector v ∈ RB that satisfies s + Bv = v + 1t. The intuitive
meaning of a potential v is that, starting in any state r ∈ B, the expected counter
increase after i steps for large i is i · t + vr. Given a potential v, we use vmax and vmin
to denote the maximal and the minimal component of v, respectively. First, we prove
the following.

(a) Let W := 1β, that is, W is a square matrix where each row equals β. Let
Z := (I − B+ W)−1. The matrix Z exists and the vector Zs is a potential.

(b) Denote by xmin the least positive coefficient of B. There exists a potential v with
0 ≤ vp ≤ 2|B|/x|B|

min for every p ∈ B.

A proof of Claim (a). The matrix Z := (I − B + W)−1 exists6 by Kemeny and Snell
[1960, Theorem 5.1.3]. Furthermore, by Kemeny and Snell [1960, Theorem 5.1.3(d)]
the matrix Z satisfies I + BZ = Z + W . Multiplying with s and setting u := Zs, we
obtain s + Bu = u + 1βs; that is, u is a potential.

A Proof of Claim (b). Let u be the potential from Claim (a); that is, we have

(I − B)u = s − 1t . (4)

By the Perron-Frobenius theorem for strongly connected matrices, there exists a pos-
itive vector d ∈ (0, 1]B with Bd = d; that is, (I − B)d = 0. Observe that u + κd is a
potential for all κ ∈ R. Choose κ such that v := u + κd satisfies vmax = 2|B|/x|B|

min. It
suffices to prove vmin ≥ 0. Let q ∈ B such that vq = vmax. Define the distance of a state
p ∈ B, denoted by ηp, as the distance of p from q in the graph induced by B. Note that
ηq = 0 and all states of B have distance at most |B| − 1, as B is strongly connected.
We prove by induction that a state p with distance i satisfies vp ≥ vmax − 2i/xi

min. The
claim is obvious for the induction base (i = 0). For the induction step, let p be a state
such that ηp = i + 1. Then, there is a state r such that Br,p > 0 and ηr = i. We have

vr = (Bv)r + sr − t (as v is a potential)
≤ (Bv)p + 2 (as sp, t ∈ [−1, 1])

=
⎛
⎝Br,p · vp +

∑
p′ �=p

Br,p′ · vp′

⎞
⎠ + 2

≤ Br,p · vp + (1 − Br,p) · vmax + 2 .

By rewriting the last inequality and applying induction hypothesis to vr we obtain

vp ≥ vmax − vmax − vr + 2
Br,p

≥ vmax − vmax − (
vmax − 2i/xi

min

) + 2
xmin

≥ vmax − 2(i + 1)

xi+1
min

.

This completes the induction step. Hence, we have vmin ≥ 0 as desired.
It remains to show that the sequence m(0), m(1), . . . is indeed a martingale, where

v is chosen as above. Let us fix some i ∈ N0. Obviously, m(i) ≤ c(0) + i + vmax − i · t,
and hence E[m(i)] is finite. Further, we need to prove that E[m(i+1) | m(0), . . . , m(i)] =
m(i) almost surely. Since the values of m(0), . . . , m(i) depend only on the configurations
p(0)c(0), . . . , p(i)c(i), it suffices to show that for every finite path u of length i initiated
in p(0)c(0) we have that E[m(i+1) | Run(u)] = m(i). Let us fix such a path u. If c( j) = 0
for some 0 ≤ j ≤ i, then for every run w ∈ Run(u) we have m(i+1)(w) = m(i)(w) which

6The matrix Z is sometimes called the fundamental matrix of the finite-state Markov chain induced by B.
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implies E[m(i+1) | Run(u)] = m(i). Now assume that c( j) ≥ 1 for all 0 ≤ j ≤ i. Then,

E
[
m(i+1) | Run(u)

] = E
[
c(i+1) + vp(i+1) − (i + 1) · t | Run(u)

]
= c(i) +

∑
p(i)

x,a−→>0q

x · a +
∑

p(i)
x,a−→>0q

x · vq − (i + 1) · t

= c(i) + sp(i) + (Bv)p(i) − (i + 1) · t

= m(i) + sp(i) + (Bv)p(i) − vp(i) − t

= m(i) ,

where the last equality holds because v is a potential.

Now we have all tools needed to prove the two remaining subcases of Theorem 3.2.

LEMMA 5.6 (CASE (B)(b)(1) OF THEOREM 3.2). Let p, q ∈ Q such that q ∈ B,
Pre∗(q(0)) ∩ Post∗(p(1)) ∩ B × N0 is infinite, and the trend t of B satisfies t �= 0. Then

E(p↓q) ≤ 85000 · |Q|6
x5|Q|+|Q|3

min · t4
.

PROOF. Recall that E(p↓q) · [p↓q] = E1 + E2, and we already have an upper bound
on E1 due to Inequality (3). Hence, we need to establish an upper bound on E2. Assume
that a run of Run(p↓q) reaches B in a configuration r(k). First, we show that the
probability of performing a terminating path of length i from r(k) decays exponentially
in i, and we give an explicit upper bound on this probability.

Let r(k) be a configuration where r ∈ B. Let Run(r(k)↓, i) be the set of all runs that
start with a zero-safe finite path of length i from r(k) to a configuration with zero
counter. Let v be the vector of Theorem 3.4, δv := vmax − vmin, and

a := exp
(

− t2

8(δv + |t| + 1)2

)
. (5)

Note that 0 < a < 1. Further, let h denote either 2(−δv − k)/t or 2(δv − k)/t, depending
on whether t < 0 or t > 0, respectively. We show that, for all i ≥ h we have that
P(Run(r(k)↓, i)) ≤ ai. Observe that all runs in Run(r(k)↓, i) satisfy m(i) = vp(i) − i · t and
hence

m(0) − m(i) = k + vr − vp(i) + i · t . (6)

If t < 0, then, for all i ≥ h, we obtain the following:

P(Run(r(k)↓, i)) = P(Run(r(k)↓, i) ∧ m(i) − m(0) = −k − vr + vp(i) − i · t)

≤ P
(
m(i) − m(0) = −k − vr + vp(i) − i · t

)
≤ P

(
m(i) − m(0) ≥ −k − δv − i · t

)
= P

(
m(i) − m(0) ≥ (i − h/2) · (−t)

)
≤ P

(
m(i) − m(0) ≥ (i/2) · (−t)

)
.

Similarly, if t > 0, then, for all i ≥ h, we obtain that

P(Run(r(k)↓, i)) ≤ P
(
m(0) − m(i) ≥ (i/2) · t

)
.
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In each step, the martingale value changes by at most δv + |t| + 1. Hence, Azuma’s
inequality asserts for t �= 0 and i ≥ h the following:

P(Run(r(k)↓, i)) ≤ exp
(

− (i/2)2t2

2i(δv + |t| + 1)2

)
= ai .

Now we derive an upper on E2. Recall that

E2 :=
∑

k1,k2∈N0

P
(
R(1) = k1

) · P(
R(2) = k2 | R(1) = k1

) · k2 .

By applying Lemma 5.1, we obtain

P
(
R(1) = k1

) ≤ 2ck1 (7)

for all k1 ≥ |Q| where c := exp(−x|Q|
min/|Q|). Let us fix some k1 ∈ N0. Then

∑
k2∈N0

P
(
R(2) = k2 | R(1) = k1

) · k2

=
∑
r∈B

k1+1∑
j=0

∑
k2∈N0

P
(
R(2) = k2 | R(1) = k1, Con = r( j)

) · k2 · P(
Con = r( j) | R(1) = k1

)

=
∑
r∈B

k1+1∑
j=0

∑
k2∈N0

P
(
R(2) = k2 | Con = r( j)

) · k2 · P(
Con = r( j) | R(1) = k1

)

In these equalities, we used the fact that in each step the counter value can increase
by at most 1, thus R(1) = k1 and Con(w) = r( j) imply j ≤ k1 + 1. Denote by Con(k1) ∈
B ×{0, . . . , k1 + 1} the value of Con that maximizes

∑
k2∈N0

P(R(2) = k2 | Con = r( j)) · k2.
Then we can continue:

≤
∑

k2∈N0

P
(
R(2) = k2 | Con = Con(k1)

) · k2 ·
∑
r∈B

k1+1∑
j=0

P
(
Con = r( j) | R(1) = k1

)

=
∑

k2∈N0

P
(
R(2) = k2 | Con = Con(k1)

) · k2 .

Let h(k1) := 2(δv + k1 + 1)/|t|. Observe that h(k1) ≥ 2(−δv − (k1+1))/t or h(k1) ≥
2(δv − (k1+1))/t, depending on whether t < 0 or t > 0, respectively, which means
that for all k2 ≥ h(k1) we have that P(R(2) = k2 | Con = Con(k1)) ≤ ak2 with a defined
by (5). So we can continue:

≤
�h(k1)�∑

k2=0

k2 +
∞∑

k2=�h(k1)�
ak2 · k2 ≤ h(k1)2 + a

(1 − a)2 = 4(δv + k1 + 1)2

t2 + a
(1 − a)2 .
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By combining this inequality with Inequality (7), we get a bound on E2:

E2 =
∑

k1∈N0

P
(
R(1) = k1

) ·
∑

k2∈N0

P
(
R(2) = k2 | R(1) = k1

) · k2

≤
|Q|−1∑
k1=0

(
4(δv + k1 + 1)2

t2 + a
(1 − a)2

)
+

∞∑
k1=0

2ck1
a

(1 − a)2 +
∞∑

k1=0

2ck1
4(δv + k1 + 1)2

t2

≤ 4|Q|(δv + |Q|)2

t2 + 2|Q|
(1 − c)(1 − a)2 + 8

t2

∞∑
k1=0

ck1 (δv + k1 + 1)2,

where c := exp(−x|Q|
min/|Q|). The last series can be bounded as follows:

∞∑
k1=0

ck1 (δv + k1 + 1)2 ≤
�δv+1�∑
k1=0

(2(δv + 1))2 +
∞∑

k1=�δv+1�+1

ck1 · (2k1)2

≤ 4(δv + 2)3 + 4
∞∑

k1=0

ck1 · k2
1 = 4(δv + 2)3 + 4

c(c + 1)
(1 − c)3

≤ 4(δv + 2)3 + 8
(1 − c)3

It follows:

E2 ≤ 4|Q|(δv + |B|)2

t2 + 2|Q|
(1 − c)(1 − a)2 + 32

t2

(
(δv + 2)3 + 2

(1 − c)3

)
. (8)

Recall the following bounds:

δv ≤ 2|B|/x|B|
min (Theorem 3.4),

1 − c = 1 − exp
(− x|Q|

min/|Q|) ≥ x|Q|
min/(2|Q|) (Lemma 5.1),

1 − a ≥ 1 − exp
(− t2/

(
8(δv + 2)2)) ≥ t2/

(
16(δv + 2)2) (by |t| ≤ 1),

[p↓q] ≥ x|Q|3
min (Proposition 2.3 (B)).

After plugging these bounds into Inequality (8) we obtain

E2 ≤ 84356
|Q|6

x5|Q|
min · t4

. (9)

Hence, by combining Inequalities (3) and (9), we finally obtain

E(p↓q) = E1 + E2

[p↓q]
≤ 85000 · |Q|6

x5|Q|+|Q|3
min · t4

.

LEMMA 5.7 (CASE (B)(b)(2) OF THEOREM 3.2). Let p, q ∈ Q such that q ∈ B,
Pre∗(q(0)) ∩ Post∗(p(1)) ∩ B × N0 is infinite, and the trend t of B satisfies t = 0. Then,
E(p↓q) = ∞.

PROOF. We start by introducing some notation. For every configuration r(k) ∈ B × N
and every � ∈ N0 such that k > �, let Run(r(k)⇓�) be the set of all runs initiated in r(k)
that visit a configuration with counter value equal to �. Further, let Rr(k)⇓� be a random
variable which for every w ∈ Run(r(k)) returns either the least i such that the counter
value in w(i) is equal to �, or ⊥ if there is no such i.We use E(r(k)⇓�) to denote the

Journal of the ACM, Vol. 61, No. 6, Article 41, Publication date: November 2014.



41:26 T. Brázdil et al.

conditional expected value E[Rr(k)⇓� | Run(r(k)⇓�)]. The set of all runs w ∈ Run(r(k))
that start with a zero-safe finite path from r(k) to q(0) is denoted by Run(r(k)↓q).

We prove the following:

(a) There is b1 ∈ N such that for every r(k) ∈ B × N where k ≥ b1 we have that
E(r(k)⇓0) = ∞. Consequently, E(r(m+b1)⇓m) = ∞ for every m ∈ N0.

(b) There is b2 ∈ N such that for every configuration r(k) ∈ Pre∗(q(0)) ∩ B × N where
k ≥ b2 we have that if r(k) → s(�), then s(�) ∈ Pre∗(q(0)) ∩ B × N.

First, we show that Claims (a) and (b) together imply E(p↓q) = ∞. Since Pre∗(q(0))∩
Post∗(p(1))∩B ×N0 is infinite, there is r(k) ∈ Pre∗(q(0))∩Post∗(p(1))∩B ×N0 such that
k = b1 + b2, where b1 and b2 are the bounds of Claim (a) and (b), respectively. Our aim
is to prove that ∑

k2∈N0

P
(
R(2) = k2 | Con = r(k)

) · k2 = ∞.

This immediately implies E2 = ∞ and hence also E(p↓q) = (E1 + E2)/[p↓q] = ∞. Let
D(1), D(2) be random variables over Run(r(k)) defined as follows:

—D(1)(w) is the least � ∈ N0 such that the counter value in w(�) is equal to b2; if there
is no such �, we put D(1)(w) = ⊥;

—D(2)(w) is the least � ∈ N0 such that w(D(1)(w)), . . . , w(D(1)(w)+�) is a zero-safe finite
path from w(D(1)(w)) to q(0); if there is no such � or D(1)(w) = ⊥, we put D(2)(w) = ⊥.

Further, let C be the set of all t ∈ B such that there is a finite path from r(k) to t(b2)
where the counter stays strictly above b2 before the visit to t(b2). Note that for each
t ∈ C, we have t(b2) ∈ Pre∗(q(0)) by Claim (b); hence, M(b2) := mint∈C P(Run(t(b2)↓q))
is positive. Then, we have the following:

∑
k2∈N0

P
(
R(2)=k2 | Con=r(k)

) · k2 =
∑

�1,�2∈N0

P
(
D(1)=�1 ∧ D(2)=�2 | Run(r(k)↓q)

) · (�1 + �2)

≥
∑

�1∈N0

P
(
D(1)=�1 | Run(r(k)↓q)

) · �1

≥
∑

�1∈N0

P(D(1)=�1) · M(b2)
P(Run(r(k)↓q))

· �1

= M(b2)
P(Run(r(k)↓q))

·
∑

�1∈N0

P
(
D(1)=�1

) · �1

= M(b2)
P(Run(r(k)↓q))

· E(r(k)⇓b2) = ∞.

In the last step, we use Claim (a) to conclude E(r(k)⇓b2) = ∞.
So, it remains to prove Claims (a) and (b). For Claim (a), let us first realize that every

configuration r(k) ∈ B × N satisfies P(Run(r(k)⇓0)) > 0. Since Pre∗(q(0)) ∩ B × N0 is
infinite, there is s ∈ B such that s(i) ∈ Pre∗(q(0)) for infinitely many i’s, which means
that P(Run(s(i)⇓0)) > 0 for every i ∈ N0. Since B is strongly connected, we can fix the
shortest path from r to s in the finite-state Markov chain X , and follow this path from
r(k). Thus, we either visit a configuration with zero counter, or enter a configuration
s(i) for some i. In both cases, we have that P(Run(r(k)⇓0)) > 0.
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Now let b1 := �vmax − vmin + 1�, where vmax and vmin are the constants intro-
duced in Theorem 3.4. Let us fix some r(k) ∈ B × N where k ≥ b1, and con-
sider the martingale m(0), m(1), . . . defined in Theorem 3.4 over Run(r(k)) (note
that as t = 0, the term i · t vanishes from the definition of the martingale).
For every n ≥ k + 1, we define a stopping time τ which returns the first point
in time in which either m(τ ) ≥ vmax + n, or m(τ ) ≤ vmax. For the remaining
runs of U := {w ∈ Run(r(k)) | vmax < m(i)(w) < vmax + n for all i ∈ N0}, the variable τ re-
turns ∞. Observe that P(U ) = 0, that is, E[τ ] < ∞ as required by the optional stopping
theorem. To see this, realize that all runs of U visit only configurations s(�) such that
� < δv + n (where δv := vmax − vmin), because the martingale value would reach at least
vmax + n otherwise. Since P(Run(s(�)⇓0)) > 0 (see the preceding text), we obtain that
almost all runs of U visit a configuration with zero counter, where the martingale value
is at most vmax. Thus, we obtain P(U ) = 0.

By applying the optional stopping theorem, we obtain that E(m(τ )) = E(m(0)) =
vr + k. Since the martingale value changes by at most δv + 1 in each step (where
δv := vmax − vmin), we further obtain that if m(τ ) ≥ vmax +n, then m(τ ) ≤ vmax +n+δv +1.
Hence,

vr + k = E
(
m(τ )) ≤ P

(
m(τ ) ≥ vmax + n

) · (vmax + n + δv + 1) + P
(
m(τ ) ≤ vmax

) · vmax.

From this, we get

P
(
m(τ ) ≥ vmax + n

) ≥ vr + k − vmax

n + vmax + δv + 1
. (10)

Note that m(τ ) ≥ vmax + n implies c(τ ) = m(τ ) − vp(τ ) ≥ vmax + n − vp(τ ) ≥ n, and thus also
Rr(k)⇓0 ≥ n, because at least n steps are required to decrease the counter value from n
to 0. It follows that P(m(τ ) ≥ vmax + n) ≤ P(Rr(k)⇓0 ≥ n). By combining this inequality
with Inequality (10), we have

∑
n∈N

P
(
Rr(k)⇓0 ≥ n

) ≥
∞∑

n=k+1

P
(
Rr(k)⇓0 ≥ n

) ≥
∞∑

n=k+1

vr + k − vmax

n + vmax + δv + 1
= ∞ . (11)

Using Inequality (11), we finally obtain

E(r(k)⇓0) =
∑
n∈N

P
(
Rr(k)⇓0 ≥ n | Run(r(k)⇓0)

) =
∑

n∈N P(Rr(k)⇓0 ≥ n)
P(Run(r(k)⇓0))

= ∞ .

Now we prove Claim (b). We start by observing that Pre∗(q(0)) has an “ultimately
periodic” structure. For every i ∈ N0, let Pre(i) = {s ∈ B | s(i) ∈ Pre∗(q(0))}. Note that,
if Pre(i) = Pre( j) for some i, j ∈ N0, then also Pre(i+1) = Pre( j+1). Let m1 be the least
index such that Pre(m1) = Pre( j) for some j > m1, and let m2 be the least j > m1 such
that Pre(m1) = Pre( j). Further, we put m = m2 − m1. Observe that m1, m2 ≤ 2|B|, and
for every � ≥ m2, we have that Pre(�) = Pre(�+m).

For every configuration s(i) ∈ B×N0, let C(s(i)) be the set of all configurations s(i+ j)
such that 0 ≤ j < m and s ∈ Pre(i+ j). Note that C(s(i)) has at most m elements, and
we define the index of s(i) as the cardinality of C(s(i)). Due the periodicity of Pre∗(q(0)),
we immediately obtain that for every s(i) and j ∈ N0, where i ≥ m1, the index of s(i) is
the same as the index of s(i+ j).

Let b2 := m1 + |B| + 1, and assume that there is a transition r(k) → s(�) such that
r ∈ Pre(k), s �∈ Pre(�), and k ≥ b2. Then, r(k+ j) → s(�+ j) for all 0 ≤ j < m. Obviously,
if s ∈ Pre(�+ j), then also r ∈ Pre(k+ j), which means that the index of s(�) is strictly
smaller than the index of r(k). Since B is strongly connected, there is a finite path
from s(�) to r(n) of length at most |B|, where n ≥ m1. This means that there is a finite
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path from s(�+ j) to r(n+ j) for every 0 ≤ j < m. Hence, the index of s(�) is at least as
large as the index of r(n). Since the indexes of r(n) and r(k) are the same, we have a
contradiction.

5.2. Proofs of Section 3.2

We start by recalling a standard result of numerical analysis (see, e.g., Isaacson and
Keller [1966]7).

THEOREM 5.8. Consider a system of linear equations, C · �U = c, where C ∈ Rn×n and
c ∈ Rn. Suppose that C is nonsingular and c �= 0. Let �U ∗ = C−1 ·c be the unique solution
of this system (note that �U ∗ �= 0). Denote by κ(C) = ‖C‖ · ‖C−1‖ the condition number of
C. Consider a system of equations (C + �) · �U = c + d where � ∈ Rn×n and d ∈ Rn. If
‖�‖ < 1

‖C−1‖ , then the system (C +�) · �U = c+d has a unique solution �U ∗
p. Moreover, for

every δ > 0 satisfying ‖�‖
‖C‖ ≤ δ and ‖d‖

‖c‖ ≤ δ and 4 · δ · κ(C) < 1, the solution �U ∗
p satisfies

‖ �U ∗ − �U ∗
p‖

‖ �U ∗‖
≤ 4 · δ · κ(C).

Using Theorem 5.8, we prove the following proposition.

PROPOSITION 5.9. Consider a system of linear equations, B · �V = b, where B ∈ Rn×n

and b ∈ Rn. Suppose that B is nonsingular and b �= 0. Let �V ∗ = B−1 · b be the unique
solution of this system. Consider a system (B+E)· �V = b where E ∈ Rn×n. Let ‖B‖ ≤ u ≥ 1
and ‖B−1‖ ≤ v ≥ 1. If ‖E‖ < 1/v, then the system (B+ E) · �V = b has a unique solution
�W∗. Moreover, if ‖E‖ ≤ δ < 1/(4uv), then �W∗ satisfies

‖ �V ∗ − �W∗‖
‖ �V ∗‖

≤ δ · 4uv.

PROOF. We apply Theorem 5.8 with

C :=
(

B 0
0 1

)
and c :=

(
b
1

)
and � :=

(
E 0
0 0

)
;

that is, a single equation x = 1, for a new variable x is added to the system, without
new errors. Notice that

C−1 =
(

B−1 0
0 1

)
and �U ∗ :=

( �V ∗
1

)
.

Further ‖C−1‖ = max{1, ‖B−1‖}. So we have ‖�‖ = ‖E‖ < 1/v ≤ 1/ max{1, ‖B−1‖} =
1/‖C−1‖. Thus, by Theorem 5.8, there is a unique solution of (C + �) · �U = c, hence �W∗
is unique too. Moreover, we have

‖�‖
‖C‖ = ‖�‖

max{1, ‖B‖} ≤ ‖�‖ = ‖E‖ ≤ δ and

4 · δ · κ(C) = 4 · δ · max{1, ‖B‖} · max{1, ‖B−1‖} ≤ 4 · δ · u · v < 1,

so Theorem 5.8 implies

‖ �V ∗ − �W∗‖
‖ �V ∗‖

≤ 4 · δ · κ(C) ≤ δ · 4uv .

7We use a slightly modified version of Theorem 3 presented in Chapter 2.1.2 of Isaacson and Keller [1966].
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Now we have all tools needed to prove Proposition 3.6.

PROPOSITION 3.6. Let b ≥ max{E(p↓q) | (p, q) ∈ T >0
<∞}. For every ε such that 0 < ε < 1,

let δ = ε /(12 · b2). If ‖G− H‖ ≤ δ, then the perturbed system �V = G · �V + 1 has a unique
solution �F such that |E(p↓q) − �Fpq| ≤ ε for all (p, q) ∈ T >0

<∞. Here �Fpq is the component
of �F corresponding to the variable V (p↓q).

PROOF. Denote by �E the vector of all finite E(p↓q), that is, �E = (I − H)−11. We apply
Proposition 5.9 using the following assignments: B = I − H, B + E = I − G, b = 1,
�V ∗ = �E, and �W∗ = �F. To find a suitable u, we need to find a bound on ‖I − H‖. By
comparing L with Equality (1), it follows that ‖H1‖ ≤ 2 and hence

‖I − H‖ ≤ 1 + ‖H‖ = 1 + ‖H1‖ ≤ 3 . (12)

Hence, we set u := 3. Further, we set v := b, so we need to show ‖(I − H)−1‖ ≤ b. By
our assumption, ‖ �E‖ ≤ b. Recall that �E = (I − H)−11, so if (I − H)−1 is nonnegative,
then ‖(I − H)−1‖ = ‖(I − H)−11‖ = ‖ �E‖ ≤ b, hence it remains to show that (I − H)−1

is nonnegative. To see this, note that �E is the (unique) fixed point of a linear function
F which to every �V assigns H · �V + 1. This function is continuous and monotone,
so by Kleene’s theorem we get that �E = supi∈N F i(0) = ∑∞

i=0 Hi1. Recall that �E is
finite, so the matrix series H∗ := ∑∞

i=0 Hi converges and thus equals (I − H)−1. Hence
(I − H)−1 = H∗, which is nonnegative as H is nonnegative.

Now we are ready to apply Proposition 5.9. Since ‖G − H‖ ≤ ε/(12 · b2) < 1/v, the
perturbed system �V = G · �V + 1 has a unique solution �F as desired. By applying the
second part of Proposition 5.9, we get

‖ �E − �F‖
‖ �E‖

≤ δ · 12 · b for ‖G − H‖ ≤ δ ≤ 1/(12 · b). (13)

Hence,

|E(p↓q) − �Fpq| ≤ ‖ �E − �F‖ (by the definition of the norm)

≤ b · ‖ �E − �F‖
‖ �E‖

(by ‖ �E‖ ≤ b)

≤ b · δ · 12 · b (by (13))
= ε (by the definition of δ).

5.3. Proofs of Section 4

Recall that we assume a fixed pOC A = (Q, δ=0, δ>0, P=0, P>0) and a Rabin acceptance
condition (E1,F1), . . . , (Ek,Fk) for A . Also recall the finite-state Markov chain G intro-
duced in Section 4, and the system (I − A) �V = b of linear equations whose unique
solution �V ∗ in R|S?| is the vector of probabilities of reaching a good BSCC of G from
the states of S?. We show how to compute a relative ε-approximation of �V ∗ in time
polynomial in |A | and log(1/ε), assuming that Claim (b) of Section 4 has already been
proven.

LEMMA 5.11. Let c = 2|Q|. For every s ∈ S?, let Rs be the probability of visiting
a BSCC of G from s in at most c transitions, and let R = min{Rs | s ∈ S?}. Then
R ≥ x6|Q|4

min · t3
min+/(7000 · |Q|) and if all transition probabilities in G are computed with
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relative error at most εR3/8(c+1)2, then the resulting system (I− A′) �V = �b′ has a unique
solution �U ∗ such that | �V ∗

s − �U ∗
s |/ �V ∗

s ≤ ε for every s ∈ S?.

PROOF. The first step towards applying Theorem 5.8 is to estimate the condition
number κ = ‖I − A‖·‖(I − A)−1‖. Obviously, ‖I − A‖ ≤ 2. Further, ‖(I − A)−1‖ is bounded
by the expected number of steps needed to reach a BSCC of G from a state of S? (here
we use a standard result about absorbing finite-state Markov chains). Since S? has at
most c states, we have that Rs > 0, and hence R ≥ x6|Q|4

min · t3
min+/(7000 · |Q|) by applying

the lower bounds of Claim (b). Obviously, the probability of not visiting a BSCC of G in
at most i transitions from a state of S? is bounded by (1− R)�i/c�. Hence, the probability
of visiting a BSCC of G from a state of S? after exactly i transitions is bounded by
(1 − R)�(i−1)/c�. Further, a simple calculation shows that

‖(I − A)−1‖ ≤
∞∑

i=1

i · (1 − R)�(i−1)/c� =
∞∑
j=0

( j+1)c∑
i= jc+1

i · (1 − R) j

=
∞∑
j=0

(1 − R) j
( j+1)c∑
i= jc+1

i =
∞∑
j=0

(1 − R) j ·
(

c(c + 1)
2

+ jc2
)

= c(c + 1)
2R

+ c2(1 − R)
R2 ≤

(
c + 1

R

)2

.

Hence, κ ≤ 2(c + 1)2/R2. Let �V ∗ be the unique solution of (I − A) �V = �b. Since ‖ �V ∗‖ ≤ 1
and �V ∗

s ≥ R for every s ∈ S?, it suffices to compute an approximate solution �U ∗ such
that

‖ �V ∗ − �U ∗‖
‖ �V ∗‖

≤ ε · R.

By Theorem 5.8, we have that

‖ �V ∗ − �U ∗‖
‖ �V ∗‖

≤ 4τκ ≤ 8τ (c + 1)2

R2 ,

where τ is the relative error of A and �b. Hence, it suffices to choose τ so that

τ ≤ εR3

8(c + 1)2

and compute all transition probabilities in G up to the relative error τ . Note that the
approximation A′ of the matrix A which is obtained in this way is still nonsingular,
because

‖A− A′‖ ≤ τ ≤ εR3

8(c + 1)2 <
R2

(c + 1)2 ≤ 1
‖(I − A)−1‖ .

Now we prove the divergence gap theorem (i.e., Theorem 4.8). Let us fix a pOC ˆA
with Q as the set of control states where the least positive probability used in the rules
of ˆA is at least xmin. Recall the underlying finite-state Markov chain X̂ introduced in
Section 3.1. The technical core of our proof are some observations about the runs in
BSCCs of X̂ with positive trend. For the rest of this section, we fix a BSCC B of X̂ such
that the trend t of B is positive, and we use B to denote the transition matrix of B.
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LEMMA 5.12. Assume [p↑] < 1 for all p ∈ B, and let q(k) ∈ B × N be a configuration
such that the control state q satisfies vq = vmax, where v is the vector of Theorem 3.4. Let
b ∈ N, and let Run(q(k)→b) be the set of all w ∈ Run(q(k)) such that w visits a configu-
ration with counter value at least b and the counter stays positive in all configurations
preceding this visit. Then, P(Run(q(k)→b)) ≥ 1/(b + 1 + δv).

PROOF. If k ≥ b, the lemma holds trivially. Now assume that k < b. We define a
stopping time τ over Run(q(k)) (cf. Section 3.1) as follows:

τ := inf{i ∈ N0 | m(i) ≤ vmax ∨ m(i) ≥ b + vmax}.
Here m(0), m(1), . . . is the martingale of Theorem 3.4. Note that 1 + vmax ≤ m(0) <
b + vmax, that is, τ ≥ 1. Let E be the set of all w ∈ Run(q(k)) where τ (w) < ∞ and
m(τ )(w) ≥ b + vmax, that is, E is the event that the martingale m(i) reaches a value of
b + vmax or higher without previously reaching a value of vmax or lower. Similarly, let
D be the set of all w ∈ Run(q(k)) such that the counter reaches a value of b or higher
without previously hitting 0. To prove the lemma, we need to show P(D) ≥ 1/(b+1+δv).
We will do that by showing that E ⊆ D and P(E) ≥ 1/(b + 1 + δv).

First, we show E ⊆ D. Consider any run w ∈ E, that is, m(τ )(w) ≥ b + vmax and
m(i)(w) > vmax for all i ≤ τ . So, for all i ≤ τ , we have

m(i)(w) = c(i)(w) + vp(i)(w) − i · t > vmax,

implying c(i)(w) > 0. Similarly, m(τ )(w) = c(τ )(w) + vp(τ )(w) − τ (w) · t ≥ b + vmax, which
means c(τ )(w) ≥ b and hence w ∈ D. It remains to show P(E) ≥ 1/(b + 1 + δv).

Next we argue that E[τ ] is finite, that is, τ is indeed a stopping time. Since [p↑] < 1
for all p ∈ B, there are constants � ∈ N and x ∈ (0, 1] such that, given any initial
configuration p(c) ∈ B × N, the probability of decreasing the counter by 1 in at most �
steps is at least x. Since B is strongly connected, it follows that there are constants
�′ ∈ N and x′ ∈ (0, 1] such that, given any configuration p(c) ∈ B × N, the probability
of reaching a configuration with zero counter or a configuration p(c − b) in at most �′

steps is at least x′. It follows that whenever m(i) < b + vmax, the probability that there
is j ≤ �′ with m(i+ j) ≤ vmax is at least x′. Hence, we have

E[τ ] =
∞∑
j=0

P(τ > j) ≤ �′
∞∑
j=0

P(τ > �′ · j) ≤ �′
∞∑
j=0

(1 − x′) j = �′

x′ < ∞.

Consequently, the optional stopping theorem (cf., Section 3.1) is applicable and asserts

E
[
m(τ )] = E

[
m(0)] = m(0) ≥ 1 + vmax . (14)

For all runs in E, we have m(τ−1) < b+ vmax. Since the value of m(i) can increase by at
most 1 + δv in a single step, we have m(τ ) ≤ b+ vmax + 1 + δv for all runs in E. It follows
that

E
[
m(τ )] ≤ P(E) · (b + vmax + 1 + δv) + (1 − P(E)) · vmax

= vmax + P(E) · (b + 1 + δv) .

Combining this inequality with (14) yields P(E) ≥ 1/(b + 1 + δv). This completes the
proof.

Recall that for every configuration q(k) ∈ B×N, we use Run(q(k)⇓0) to denote the set
of all runs initiated in q(k) that visit a configuration with zero counter. Further, Rq(k)⇓0
is a random variable which for every w ∈ Run(q(k)) returns either the least i such that
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the counter value in w(i) is zero, or ⊥ if there is no such i. The following lemma gives
an upper bound on P(Run(q(k)⇓0)).

LEMMA 5.13. Let q(k) ∈ B × N such that k ≥ δv. Then, P(Run(q(k)⇓0)) ≤ ak/(1 − a),
where

a := exp
(

− t2

2(δv + t + 1)2

)
.

Note that 0 < a < 1. Further, if k ≥ 6(δv + t + 1)3/t3, then P(Run(q(k)⇓0)) ≤ 1/2.

PROOF. Clearly, P(Run(q(k)⇓0)) = ∑∞
i=k P(Rq(k)⇓0 = i). For all runs w ∈ Run(q(k))

such that Rq(k)⇓0(w) = i, we have m(i) = vp(i) − i · t and so

m(0) − m(i) = k + vq − vp(i) + i · t .

It follows that

P
(
Rq(k)⇓0 = i

) = P
(
Rq(k)⇓0 = i ∧ m(0) − m(i) = k + vq − vp(i) + i · t

)
≤ P

(
m(0) − m(i) = k + vq − vp(i) + i · t

)
≤ P

(
m(0) − m(i) ≥ k − δv + i · t

)
≤ P

(
m(0) − m(i) ≥ i · t

)
(as k ≥ δv) .

In each step, the martingale value changes by at most δv + t + 1. Hence, Azuma’s
inequality (cf., Section 3.1) asserts

P
(
Rq(k)⇓0 = i

) ≤ exp
(

− i · t2

2(δv + t + 1)2

)
= ai .

It follows that

P(Run(q(k)⇓0)) =
∞∑

i=k

P
(
Rq(k)⇓0 = i

) ≤
∞∑

i=k

ai = ak/(1 − a) .

This proves the first statement. For the second statement, we need to find a condition
on k such that P(Run(q(k)⇓0)) ≤ 1/2. The condition ak/(1 − a) ≤ 1/2 is equivalent to

k ≥ ln(1 − a) − ln 2
ln a

.

Define d := t2

2(δv+t+1)2 . Note that a = exp(−d) and 0 < d < 1. It is straightforward to
verify that

ln(1 − exp(−d)) − ln 2
−d

≤ 2
d3/2 for all 0 < d < 1.

Since

2
d3/2 = 2 · 23/2 · (δv + t + 1)3

t3 ≤ 6(δv + t + 1)3

t3 ,

the second statement follows.

LEMMA 5.14. Assume [p↑] < 1 for all p ∈ B. Let q ∈ B with vq = vmax, where v is
the vector of Theorem 3.4. Then

[q↑] ≥ t3

12(2δv + 4)3 .
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PROOF. Define b as the smallest integer such that b ≥ 6(δv+t+1)3/t3. By Lemma 5.12,
we have P(Run(q(1)→b)) ≥ 1/(b + 1 + δv). Since 0 < t ≤ 1, we have

b + 1 + δv ≤ 6(δv + t + 2)3/t3 + 1 + δv ≤ 6(2δv + 4)3/t3

and so

P(Run(q(1)→b)) ≥ t3

6(2δv + 4)3 .

Using Lemma 5.13, we obtain

[q↑] ≥ t3

12(2δv + 4)3 .

Now we can prove Theorem 4.8.

THEOREM 4.8. Let ˆA be a pOC with Q as the set of control states where the least
positive probability used in the rules of ˆA is at least xmin. For all p, q ∈ Q, let [p, q]
be the probability of all w ∈ Run ˆA (p(1)) such that w starts with a zero-safe finite path
from p(1) to q(k), where k ≥ 1. Let p ∈ Q such that the probability [p↑] (considered in

ˆA ) is positive. Then there are two possibilities.

(1) There is q ∈ Q such that [p, q] > 0 and [q↑] = 1. Hence, [p↑] ≥ [p, q] ≥ x|Q|2
min .

(2) There exists a BSCC B of the underlying finite-state Markov chain X̂ of ˆA and a
state q of B such that the trend t of B is positive, [p, q] > 0, and vq = vmax. Here,
v is the vector of Theorem 3.4, and vmax is the maximal component of v; all of these
are considered in B. Further,

[p↑] ≥ x4|Q|2
min · t3

7000 · |Q|3 .

PROOF. For a given BSCC B̂ of X̂ , let Run(p↑, B̂) be the set of all w ∈ Run(p↑) that
visit B̂. Since almost all runs of Run(p↑) visit some BSCC of X̂ , there is a BSCC B
of X̂ such that P(Run(p↑,B)) > 0. According to the results of Brázdil et al. [2010b,
Section 3], the trend of B must be nonnegative; and if the trend of B is equal to zero,
there is a configuration q(k) ∈ B × N such that [q↑] = 1 and p(1) can reach q(k) via a
zero-safe finite path. Hence, we can distinguish two possibilities.

—The trend of B is equal to zero and there is a configuration q(k) ∈ B × N such that
[q↑] = 1 and p(1) can reach q(k) via a zero-safe finite path. Hence, P(Run(p↑,B)) ≥
[p, q] > 0. Now it suffices to show that if [p, q] > 0, there is a zero-safe finite path
from p(1) to q(k) (for some k ∈ N) of length at most |Q|2; this implies [p, q] ≥ x|Q|2

min . If
[p, q] > 0, there is some zero-safe finite path w from p(1) to q(k), where k ∈ N, such
that every configuration is visited at most once along w. If the counter value is strictly
bounded by |Q| along w, then w visits at most |Q| · (|Q| − 1) distinct configurations
and we are done. Otherwise, let � by the least number such that the counter value
in w(�) is |Q|. The number of configurations visited along w(0), . . . , w(�−1) is at most
|Q| · (|Q| − 1), hence � ≤ |Q| · (|Q| − 1). Obviously, w(�) can reach q(k′) (for some k′ ∈ N)
in at most |Q| transitions, and hence there is a zero-safe finite path from p(1) to q(k′)
of length at most |Q| · (|Q| − 1) + |Q| = |Q|2.

—The trend of B is positive. Let q ∈ B be a control state such that vq = vmax. Observe
that almost all runs of Run(p↑,B) visit a configuration with control state q infinitely
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often. Hence, [p, q] ≥ P(Run(p↑,B)) > 0. By applying Lemma 5.14, we obtain

P(Run(p↑,B)) ≥ [p, q]t3

12(2δv + 4)3 ≥ x4|Q|2
min · t3

7000 · |Q|3 .

In the last step, we use the bound δv ≤ 2|B|/x|B|
min given in Theorem 3.4.

6. CONCLUSIONS

We believe that the methods developed in this article can also be used to approximate
other interesting quantities and numerical characteristics of pOC, related to both finite
paths and infinite runs. An efficient implementation of the associated algorithms would
result in a verification tool capable of analyzing an interesting class of infinite-state
stochastic programs, which is beyond the scope of currently available tools limited to
finite-state systems only.
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