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1. Introduction

Multi-type branching processes (MBPs) are stochastic pro-
cesses modeling populations in which the individuals of a
generation produce a random number of children of dif-
ferent types or species in the next generation. Individuals
can be elementary particles, genes, animals, or program
threads [1,2].

MBPs are classified into subcritical, critical, and super-
critical, depending on the spectral radius of a certain matrix,
the expectation matrix. This division plays a central role,
since many theorems assume that the process belongs to
one of these classes. In particular, criticality is strongly
related to the extinction probability: under some weak con-
ditions, the population of subcritical and critical processes

✩ Some results of this note are contained in the same authors’ confer-
ence paper Computing least fixed points of probabilistic systems of polynomials,
in: Proceedings of STACS, 2010, pp. 359–370.
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goes ultimately extinct with probability 1, while for su-
percritical processes the extinction probability is strictly
smaller than 1.

We study the computational complexity of the classifi-
cation problem: deciding whether a given MBP is subcrit-
ical, critical, or supercritical. By definition, the problem
consists of deciding if the spectral radius of the expecta-
tion matrix is smaller than, equal to, or larger than one [2].
Etessami and Yannakakis have observed in [3] that this
problem reduces to feasibility of a linear programming
problem (LP-problem). While LP-problems can be solved
in polynomial time, no strongly polynomial algorithms are
known: the number of arithmetic operations to be per-
formed depends on the size of the input, which quickly
degrades the performance of LP-based classificators. We
show that LP can be avoided by reducing the classification
problem to the problem of solving a system of linear equa-
tions. In particular, this leads to an algorithm with O (n3)

arithmetical operations, where n is the dimension of the
matrix, independently of the size of the entries.

Stochastic context-free grammars (SCFGs) are context-free
grammars whose rules are weighted with probabilities.
They are applied in diverse areas such as natural language
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processing [4], security [5], and biological sequence analy-
sis [6]. An SCFG is called consistent if it generates a termi-
nal string with probability 1. Consistency is a fundamental
characteristic of SCFGs, and plays a central role in compu-
tations on SCFGs, see e.g. [7]. An SCFG is naturally associ-
ated to an MBP, so that the SCFG is consistent if and only
if the extinction probability of the MBP is 1. As a conse-
quence, our strongly polynomial algorithm also allows to
decide consistency of SCFGs.

The note is organized as follows. In Section 2 we
present our strongly polynomial algorithm for comparing
the spectral radius to 1. Sections 3 and 4 explain the ap-
plication of our algorithm to MBPs and SCFGs, respectively.
Finally, in Section 5 we apply the algorithm to a neutron
scattering process taken from [1], which, loosely speak-
ing, studies when a ball of plutonium becomes an atomic
bomb.

Related work. The computational complexity of problems
related to branching process has been recently studied by
Etessami, Stewart, and Yannakakis [8,9]. In particular, they
prove that the extinction probability can be approximated
in polynomial time. This is nicely complemented by our
result, which shows how to decide in strongly polynomial
time whether this probability is exactly 1.

2. Main result

For a square matrix M , we denote by ρ(M) its spec-
tral radius, i.e., the largest absolute value of the eigenvalues
of M . A matrix is nonnegative if all its entries are nonneg-
ative. In this section we show:

Theorem 2.1. Given a nonnegative matrix M ∈ [0,∞)n×n, one
can decide in strongly polynomial time and with O (n3) arith-
metic operations whether ρ(M) < 1 or ρ(M) = 1 or ρ(M) > 1.

We need some notation. Let T be a finite set of in-
dices with |T | = n � 1. For technical convenience we
view (square) matrices as elements of R

T ×T and as-
sume M ∈ [0,∞)T ×T . We write I for the identity ma-
trix. We use bold letters for designating (column) vectors,
e.g. v ∈ R

T . If the dimension is clear from the context,
we write 0 (resp. 1) for the vector (0, . . . ,0)� (resp.
(1, . . . ,1)�), where � denotes transpose. We write v X for
v(X) where X ∈ T . We write v = w (resp. v � w resp.
v ≺ w) if v X = w X (resp. v X � w X resp. v X < w X ) holds
for all X ∈ T . By v < w we mean v � w and v �= w .
For a nonnegative matrix M we define the matrix se-
ries M∗ := I + M + M2 + · · · . We say M∗ is finite if all
its entries are finite, i.e., the series converges. To a non-
negative matrix M ∈ [0,∞)T ×T we associate a directed
graph graph(M) whose set of vertices is T and whose
edges are (X, Y ) whenever M X,Y > 0. A nonnegative ma-
trix M is irreducible if graph(M) is strongly connected.
A matrix M ′ ∈ R

T ′×T ′
is a principal submatrix of M ∈ R

T ×T

if T ′ ⊆ T and M ′
X,Y = M X,Y for all X, Y ∈ T ′ .

We start the proof of Theorem 2.1 by recalling three
facts about nonnegative matrices. The first two are stan-
dard results, see e.g. [10], while the third follows from [10,
Corollary 2.1.6].
Lemma 2.1. Let M ∈ [0,∞)T ×T be a nonnegative matrix.

(a) M∗ is finite if and only if ρ(M) < 1.
(b) If M∗ is finite, then M∗ = (I − M)−1 .
(c) For all principal submatrices M ′ of M we have ρ(M ′) �

ρ(M). Furthermore, M has an irreducible principal subma-
trix M ′ with ρ(M ′) = ρ(M).

Consider the partition T1, . . . , T N of T in strongly
connected components of graph(M), and the correspond-
ing principal submatrices M(1), . . . , M(N) of M . By Lem-
ma 2.1(c) we have ρ(M(i)) � ρ(M) for every 1 � i � N .
Moreover, since every irreducible principal submatrix of M
is also a principal submatrix of M(i) for some 1 � i � N ,
we also have ρ(M) = ρ(M( j)) for some 1 � j � N . There-
fore,

ρ(M) = max
1�i�N

ρ
(
M(i)). (1)

Thanks to this equation, we can focus on irreducible
nonnegative matrices. We recall four further facts from
Perron–Frobenius theory, see [10, Chapter 2]:

Lemma 2.2. Let M ∈ [0,∞)T ×T be nonnegative and irre-
ducible.

(a) ρ(M) is a simple eigenvalue of M.
(b) There exists an eigenvector v 
 0 with ρ(M) as eigenvalue.
(c) Every eigenvector v 
 0 has ρ(M) as eigenvalue.
(d) For all α,β ∈ R \ {0} and v > 0: if αv < M v < βv , then

α < ρ(M) < β .

Using these facts we prove:

Proposition 2.1. Let M ∈ [0,∞)T ×T be nonnegative and irre-
ducible.

(a) Assume that there is v ∈ R
T \ {0} such that (I − M)v = 0.

If v 
 0 or v ≺ 0, then ρ(M) = 1; otherwise, ρ(M) > 1.
(b) Assume that v = 0 is the only solution of (I − M)v = 0;

i.e., there exists a unique x ∈ R
T such that (I − M)x = 1. If

x � 1, then ρ(M) < 1; otherwise, ρ(M) > 1.

Proof.

(a) From (I −M)v = 0 it follows M v = v . So v is an eigen-
vector of M with eigenvalue 1, thus ρ(M) � 1.
• Let v 
 0 or v ≺ 0. By Lemma 2.2(c), ρ(M) is the

eigenvalue of v , and so ρ(M) = 1.
• Let ρ(M) � 1, i.e., ρ(M) = 1. By Lemma 2.2(a)

and (b), the eigenspace of the eigenvalue 1 is one-
dimensional and contains a vector x 
 0. So v = α ·x
for some α ∈R \ {0}. Hence v 
 0 or v ≺ 0.

(b) • Let x � 1. Then Mx = x − 1 ≺ x, so we have
ρ(M) < 1 by Lemma 2.2(d).

• Let ρ(M) � 1. Suppose for a contradiction that
ρ(M) = 1. Then, by Lemma 2.2(a), the matrix M
would have an eigenvector v �= 0 with eigenvalue 1,
so (I − M)v = 0, contradicting the assumption. So
we have, in fact, ρ(M) < 1. By Lemma 2.1(a) and (b)
this implies x = (I − M)−11 = M∗1 � 1. �
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We obtain as an immediate consequence:

Proposition 2.2. Let M ∈ [0,∞)T ×T be a nonnegative ma-
trix. The following algorithm decides whether ρ(M) < 1 or
ρ(M) = 1 or ρ(M) > 1:

1. Compute the partition T1, . . . , T N of T in strongly con-
nected components of graph(M), and the corresponding
principal submatrices M(1), . . . , M(N) of M.

2. For each M(i) , solve the system (I − M(i))v = 0 using Gaus-
sian elimination.
2.1. If there is a vector v �= 0 such that (I − M(i))v = 0,

conclude ρ(M(i)) > 1 or ρ(M(i)) = 1 according to
Proposition 2.1(a).

2.2. If v = 0 is the only solution of (I − M(i))v = 0, solve
(I − M(i))v = 1 using Gaussian elimination, and con-
clude ρ(M(i)) < 1 or ρ(M(i)) > 1 according to Proposi-
tion 2.1(b).

3. Use Eq. (1) and the results of step 2 to conclude ρ(M) < 1,
ρ(M) = 1, or ρ(M) > 1.

Since the partition of a graph into strongly connected
components can be computed in linear time by means of
Tarjan’s algorithm [11], the matrices M(1), . . . , M(N) can be
computed in linear time. If the dimensions of these ma-
trices are n1, . . . ,nN , then we have

∑N
i=1 ni = n, where

n = |T | is the dimension of M . Since Gaussian elimina-
tion of a rational ni -dimensional linear equation system
can be carried out in strongly polynomial time using O (n3

i )

arithmetic operations (see e.g. [12]), steps 2 and 3 can be
carried out using O (n3) arithmetic operations. This con-
cludes the proof of Theorem 2.1.

Example 2.1. Consider the matrix

M =

⎛
⎜⎜⎝

0 0 4/9 2/9
0 0 0 4/5
2 0 0 0
0 5/4 0 0

⎞
⎟⎟⎠ .

It has two strongly connected components, T A = {1,3} and
T B = {2,4}, with irreducible principal submatrices

M(A) =
(

0 4/9
2 0

)
M(B) =

(
0 4/5

5/4 0

)
.

The system (I − M(A))v = 0 has v = 0 as only so-
lution. Since the only x satisfying (I − M(A))x = 1 is
x = (13,27)� � 1, we have ρ(M(A)) < 1. The system
(I − M(B))v = 0 has a solution v = (4,5)� 
 0, and so
ρ(M(B)) = 1. Since ρ(M) = max{ρ(M(A)),ρ(M(B))}, we
conclude ρ(M) = 1.

3. Application to multi-type branching processes

As mentioned in the introduction, multi-type branch-
ing processes model populations in which the individuals
of a generation produce a random number of children of
different types in the next generation. Formally, a popu-
lation over types t1, . . . , tn is an element of Nn; intuitively,
c ∈N

n is the population containing c i individuals of type ti
for each i ∈ {1, . . . ,n}.
Let z(k) denote the random variable modeling the pop-
ulation of the kth generation of a stochastic process, and
let c(i,k, j) denote the offspring (also a population) of the
jth individual of type ti in z(k) . Given an initial population
z(0) , we have

z(k+1) =
n∑

i=1

z(k)
i∑

j=1

c(i,k, j) for every k � 0,

where z(k)
i denotes the ith component of z(k) . If the c(i,k, j)

are i.i.d. over all k � 0 and j � 1, then the process {z(k)}∞k=0
is called a multi-type branching process (MBP). In this case,
for every vector c ∈ N

n there is a fixed probability pi,c that
an individual of type ti produces offspring c . An MBP can
be explicitly described by enumerating all the probabili-
ties pi,c > 0, and implicitly described by giving functions
f i :Nn → [0,1] such that f i(c) = pi,c .

A central parameter of branching processes with one
single type is the expected number m of children of an
individual, given by m = ∑∞

c=0 cpc , where pc is the prob-
ability of generating c children. The process is called sub-
critical, critical, or supercritical if m < 1, m = 1, or m > 1,
respectively. These definitions can be extended to the
multi-type case. Let mi, j be the expected number of chil-
dren of type j of an individual of type i, i.e., mi, j =∑

c∈Nn c j pi,c , and let M be the n × n matrix given by
Mi, j = mi, j .

Definition 3.1. An MBP is subcritical, critical, or supercritical
if m < 1, m = 1, or m > 1, respectively, where m = ρ(M).

Using the algorithm from Proposition 2.2 we can de-
cide in strongly polynomial time if an MBP (given by the
rational probabilities pi,c > 0) is subcritical, critical, or su-
percritical.

A fundamental quantity of an MBP and an initial popu-
lation is the probability of its ultimate extinction. We de-
fine the extinction probability q := limk→∞ Pr(z(k) = 0).
The extinction probability is closely related to critical-
ity [1–3]. We sketch the connection. Consider an MBP
with initial population z(0) and matrix M . W.l.o.g. we
can assume that every type t j is reachable, i.e., that

Pr(z(k)
j > 0) > 0 for some k � 0. (Unreachable types t j can

be removed from the description of the process without
affecting its behavior.) Now, let us inductively define mor-
tality: type t j is mortal if p j,0 > 0 or if p j,c > 0 for some
population c ∈ N

n containing only individuals of mortal
types; otherwise, t j is immortal. We have (see e.g. [3]):
if some type is immortal (which can be easily decided in
linear time), then q < 1; if all types are mortal, then q = 1
iff ρ(M) � 1.

Example 3.1. Consider a population of commoners and no-
bles, both of which can be children or adults. Common chil-
dren (type 1) either die before reaching adulthood, become
common adults, or become noble adults through marriage,
with probabilities 3/9, 4/9, and 2/9, respectively. Noble
children (type 2) either die or become noble adults with
probabilities 1/5 and 4/5. Common adults (type 3) give
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birth to between 0 and 3 common children with probabil-
ities 1/10,1/10,5/10,3/10, respectively, and noble adults
(type 4) give birth to between 0 and 3 noble children with
probabilities 2/8,3/8,2/8,1/8.

Let us compute some of the entries of M . For exam-
ple, m3,1 is the expected number of commoner children
of a common adult, and so m3,1 = 0 · 1/10 + 1 · 1/10 + 2 ·
5/10 + 3 · 3/10 = 2. Similarly, m1,4 is the expected num-
ber of noble adults “generated” by a common child, and so
m1,4 = 1 ·2/9 = 2/9. In fact, M is the matrix of Example 2.1
with ρ(M) = 1.

Since all types are mortal and reachable (assuming the
initial population contains commoners and nobles), it fol-
lows from the result above that we have q = 1, i.e., the
population goes ultimately extinct almost surely.

4. Application to stochastic context-free grammars

Recall that a stochastic context-free grammar (SCFG) is a
tuple G = (V ,Σ, R, X1), where V = {X1, . . . , Xn} is a set
of variables with a distinguished element X1 called the ax-
iom, Σ is a set of terminals, and R is a set of production
rules Xi

p−→ α, where α ∈ (V ∪ T )∗ and p ∈ [0,1], such that∑
Xi

p−→α
p = 1 for every variable Xi . The probability of a

derivation of an SCFG is the product of the probabilities
of its corresponding sequence of rules. As explained in [3],
every SCFG induces an MBP: the types of the MBP are the
variables of the SCFG, the initial population consists of an
individual of type X1, and for every c ∈ N

n the probability
pi,c is defined as the probability that Xi generates in one
step a string α with (c1, . . . , cn) occurrences of the vari-
ables (X1, . . . , Xn), respectively. Observe that the branching
process has no terminals and does not care about the or-
der of variables, only about their multiplicities. Further, in
the MBP all variables of a generation are “derived simulta-
neously”, to produce the next generation. However, these
differences are irrelevant as far as the generation of a ter-
minal string is concerned, and we have [3]: the probability
that an SCFG terminates (i.e., produces a string of termi-
nals) is equal to the extinction probability of the induced
MBP.

An SCFG G is called consistent if it terminates with
probability 1. The algorithm sketched in Section 3 to de-
cide if q = 1 can be easily turned into a strongly poly-
nomial algorithm to decide the consistency of G (see [3],
Fig. 7): first, remove all variables Xi that are not reachable
from X1, i.e., X1 cannot generate any string containing at
least one occurrence of Xi . If there is some useless variable
left (i.e., some variable that cannot generate any string of
terminals), then G is not consistent. Otherwise, compute
the matrix M of the associated MBP. The grammar G is
consistent iff ρ(M) � 1.

5. An example: neutron scattering process

To illustrate the interest of our result, we consider a
classical problem of nuclear physics: determining the crit-
ical mass or, equivalently, the critical radius of a perfect
sphere of plutonium.3 Roughly speaking, the critical radius
is the smallest radius that will cause a nuclear explosion.
More precisely, recall that the explosion is produced by a
chain reaction: spontaneous fission of an atom liberates
neutrons, whose collisions with other atoms induce fur-
ther fissions, etc. Following Harris [1], we model the ball
by an MBP describing the population of atoms fissioning
at different distances from the ball’s center. Initially there
is one free neutron in the ball. A chain reaction occurs if its
line of descendants does not go ultimately extinct (physi-
cally, this is identical to all atoms in the ball fissioning in a
very short time). Since the spontaneous fission rate is high
(several hundred atoms per second per cm3), even a small
probability that one fission causes a chain reaction results
in an explosion with large probability after a short time.
So the critical radius is approximately given by the small-
est radius such that q < 1.

Let us assume that the radius of the considered sphere
is D , and that a neutron born at distance ξ from the center
collides with an atom at distance η from the center with
probability density R(ξ,η). Let further pk be the probabil-
ity that a collision generates k neutrons (k = 0 means that
no fission occurs). Harris uses the values p0 = 0.025, p1 =
0.830, p2 = 0.07, p3 = 0.05, p4 = 0.025, pk = 0 for k > 4,
and also gives an expression for R(ξ,η) (see [1], p. 86).

The probability that a neutron starting at distance ξ

collides with an atom at a distance in the interval [a,b]
(with 0 � a � b � D) and generates k neutrons can be ex-
pressed as

θ(ξ,a,b,k) := pk ·
b∫

a

R(ξ,η)dη.

By discretizing the interval [0, D] into n segments we
obtain an MBP with n types t1, . . . , tn . An individual of
type ti represents a neutron whose distance from the cen-
ter lies in between (i − 1)D/n and iD/n. The probabilities
pi,c > 0 of the MBP are given by

pi,c =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θ(
(i−0.5)D

n ,
( j−1)D

n ,
jD
n ,k),

c j = k � 1 and c	 = 0 for 	 �= j,

1 − (1 − p0) · ∫ D
0 R(t (i−0.5)D

n , η)dη,

c = 0,

0, otherwise.

Since all types of the MBP are mortal and all types are
reachable from all types, checking whether q = 1 can be
done by deciding whether ρ(M) � 1 for the square matrix
M of the MBP as described in Section 3.

We take different discretizations n = 25,50,75,100,

150 and combine our algorithm with binary search to de-
termine the critical radius up to an error of 0.001, using
the computer algebra system Maple. During the search, the
algorithm analyzes MBPs that get closer and closer to be-
ing critical. The running times of our algorithm for the last
(and most expensive) binary search step that decreases the
interval to 0.001 are given in Table 1. We found the critical

3 We assume room temperature, and so the density of plutonium is
known.
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Table 1
Runtime in seconds for the last step of the binary search described in the text.

n 25 50 75 100 150

Critical radius 2.9790 2.9809 2.9815 2.9815 2.9815

Precision ±0.0005 ±0.0005 ±0.0005 ±0.0005 ±0.0005

Our algorithm < 1 < 1 < 1 1 4
Exact LP (Maple Simplex) < 1 6 32 108 588
Exact LP (QSOpt_ex solver) < 1 < 1 4 14 72
radius to be in the interval [2.981,2.982] (using the finest
discretization n = 150). Harris [1] estimates 2.9.

We also measured the time required for analyzing the
MBP in the last step of the binary search if we replace
our algorithm by linear programming. We compared our
algorithm to Maple’s exact simplex package as well as the
QSOpt_ex tool [13], a standalone exact LP solver. Our ap-
proach outperforms both by at least an order of magni-
tude.
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