
Relational Analysis for Delivery of Services ?

Flemming Nielson, Hanne Riis Nielson, Jörg Bauer, Christoffer Rosenkilde
Nielsen, and Henrik Pilegaard

Informatics and Mathematical Modelling, Technical University of Denmark
Kongens Lyngby, Denmark.

{nielson,hrn,joba,crn,hepi}@imm.dtu.dk

Abstract. Many techniques exist for statically computing properties of
the evolution of processes expressed in process algebras. Static analysis
has shown how to obtain useful results that can both be checked and
computed in polynomial time. In this paper we develop a static analy-
sis in relational form which substantially improves the precision of the
results obtained while being able to deal with the full generality of the
syntax of processes. The analysis reveals a feasible complexity for practi-
cal examples and gives rise to a fast prototype. We use this prototype to
automatically prove the correct delivery of messages for the implementa-
tion of an accident service, which is based on multiplexed communication,
a crucial feature of global computing applications.

1 Introduction

Process algebras facilitate abstract models of a number of features of concurrent
and distributed computation. Many use the notion of channel to provide end-to-
end guarantees ensuring secure communications taking place. A prime example
is the π-calculus [10] where channels can be freely created and guarantee that a
message sent along the channel can only be received by a process listening on
that channel. Indeed, processes not having access to the channel cannot observe
or influence any properties of the values being sent along the channel. Hence
end-to-end guarantees of proper delivery of messages is almost automatic.

Moving closer to the actual implementation level there is no direct counter-
part of the notion of channels as used in the π-calculus although symmetric cryp-
tosystems can be used to encode some of their properties. Practical techniques
often include limiting the number of channels used and instead use multiplexing
of several communications over a fixed set of channels. It is then a requirement
on the transporting processes that they correctly implement the intended end-
to-end communication. In this paper we use a running example, a version of
the accident service taken from the automotive case study of the SENSORIA
EU-project, where this problem arises.

This paper shows how to use static analysis for demonstrating that the ser-
vice requests of the system are correctly distributed by the multiplexer process.

? This work has been partially sponsored by the project SENSORIA, IST-2005-016004.

It turns out that so-called independent attribute analyses [11], as developed in
e.g. [1], are unable to deliver the guarantees needed. A static analysis for mul-
tiplexing must be relational, that is, it must be able to capture precisely the
dependence between various names. As an example, if a process contains output
operations a〈b, b〉 and a〈c, c〉 then the analysis must be able to show the absence
of the output operations a〈b, c〉 and a〈c, b〉.

There are strong relational analyses around to prove multiplexing correct,
most successful among them the abstract interpretations of Venet [16] and Feret
[5]. In contrast to our proposed analyses, they are even able to distinguish dif-
ferent recursive instances of a process.

However, where our analysis is presented for standard π-calculus (with pat-
tern matching) with the standard reduction semantics based on congruence, the
analyses of [16, 5] rely on heavily customised versions of the language that include
input-guarded replication, an instrumented semantics and explicit substitution
environments. Thus, these customisations enable strong analyses, but are of dis-
advantage in the context of global computing where many calculi emerge, for
instance [8] and [3], that all use the standard constructs of classical π, in partic-
ular congruence and reduction semantics. In contrast, our analysis, being based
on these standards, can be easily transferred to new emerging languages, while
[16, 5] would need to be completely re-designed. Beyond re-usability, which is
of utmost importance for global computing, our proposal is implemented and
enjoys a correctness result in terms of a subject reduction result, which is the
standard proof technique. In contrast, [16, 5] settle for a very general soundness
result of their abstract interpretation.

Our contribution is thus the development of a relational analysis that can
be specified almost as naturally as the simpler (and in fact too simple) inde-
pendent attribute analyses [1], that is easily extendable to new, emerging global
computing calculi, because it relies on standard syntax, semantics, and proof
technique. Indeed, our correctness results relies on the invariance of a correct-
ness predicate under subject reduction, where the correctness predicate takes
care of the implicit substitutions that need to be made very explicit—and hence
deviating from standard reduction semantics—in the approaches of Venet [16]
and Feret [5]. The analysis is implemented, and provides results that are suffi-
ciently precise to validate our running example. While the worst case complexity
is (necessarily) exponential we show that for realistic programs, e.g. for our run-
ning example, we are polynomial in solving the associated constraints. We should
also point out that, due to our use of Alternation-free Least Fixed Point Logic
(ALFP), the time needed for computing the best solution is asymptotically equal
to the time needed for validating a solution (unlike approaches where validation
is polynomial time but inference is nondeterministic polynomial time, the latter
being exponential in practice).

Outline. We continue by presenting our running example, an accident service
from the automotive case study of the SENSORIA EU-project. In Section 2, we
present syntax and semantics of pπ, our extension of the π-calculus with pattern

alarm emergency

pos

loggps

status
Monitor

Service CentreCar

Black Box

GPS Device

DEMUXMUX

Sensor

GPS Logger

Fig. 1. The overall architecture of the accident service.

matching. The analysis itself is specified in Section 3, while its properties are
reported in Section 4. Section 5 concludes.

1.1 The Accident Service.

A typical service-centred application is the accident service. The overall architec-
ture of this service is depicted in Figure 1. In order to subscribe to this service,
a car needs to be equipped with a GPS device and a black box. The black box
frequently polls internal sensors for abnormal events. In such a case, it will start
sending alarm messages containing the car’s and the driver’s identity. The ser-
vice centre has two objectives: It logs the GPS data received from the car and
monitors whether any alarm occurs. In that case, it gets the location of the car
and the identity of its driver from the GPS logger and sends an SOS message
to a rescue service (not modelled here). The somewhat intricate specification of
the logger ensures that the most recently sent position is actually attached to
the SOS.

All messages between the car and the service centre are communicated over a
multiplexed, wireless channel— a feature typical of service oriented architectures.
The multiplexer takes care of distributing messages correctly while providing
optimal use of bandwidth.

We use a polyadic π-calculus, pπ, extended with pattern matching in input
prefixes (as in [2]) in order to write down the accident service formally (Table 1).
For analysis purposes, action prefixes are annotated with labels. The usual prece-
dence rules—parallelisation < summation < prefix, restriction, replication—hold
for pπ as well. An input prefix x(ȳ; ū), receives a tuple z̄ over channel x if the first
| ȳ | elements of z̄ equal ȳ, thus binding the remaining elements to ū. The com-
plete syntax and semantics are presented in Section 2. Our analysis presented in
Section 3 will be able to find out that the MUX distributes messages correctly,
that is, messages over the emergency channel will contain car and driver identity
information only, whereas messages sent over the log channel will always contain
car identities and position information.

2 The pπ-Calculus

2.1 Syntax

The syntax of the π-calculus extended with pattern matching, pπ, can be seen
in Table 2. As in the π-calculus we have channels that facilitate synchronous

GPS device: ! (νloc) gps〈cari, loc〉1
Sensor: ! (status〈cari, ok〉2 + status〈cari, crit〉3)
Black Box: ! status(cari; x)4.[x = crit]5. ! alarm〈cari, driveri〉6

GPS Logger: (νk)(! k(;)7.log(; ycar , ypos)
8.

(pos(ycar ;)
9.pos〈ycar , ypos〉10.k〈〉11 + k〈〉12)

| k〈〉13)
Monitor: ! emergency(; zcar , zd)14.pos〈zcar 〉15.pos(zcar ; zpos)

16.SOS〈zcar , zpos , zd〉17

Mux: ! gps(; zcar , zpos)
18.wifi〈log, zcar , zpos〉19

| ! alarm(; zcar , zd)20.wifi〈emergency, zcar , zd〉21
Demux: ! wifi(; z1, z2, z3)

22.z1〈z2, z3〉23

Table 1. The pπ specification of the accident service. The process Pacc is the parallel
composition of the components stated here.

P ::= 0 Terminated Process

| !P Replication

| P1 | P2 Parallel

| P1 + P2 Choice

| (νn)P Restriction

| [x = y]`P Match

| x〈ȳ〉`.P Output

| x(ȳ; ū)`.P Input

Table 2. Processes; P

name passing communication. We use names picked from the denumerable set
Name to denote channels and we shall use the notation n, m, p for elements of
this set. Similarly, we shall assume a denumerable set Var of variables and let
u, v range over this set. When necessary, we shall use x, y, z to range over the
disjoint union Name ∪ Var. However, as we shall see below names and variables
are bound in different manners. The calculus is polyadic and we shall use bars
to denote polyadic entities, e.g. n̄, ū, x̄ etc.

The intuition behind the set of primitives is as follows: The inactive or ter-
minal process, 0, denotes the end of a process, a point from where no further
progress can be made. The parallel composition construct, P1 | P2, represents the
process that is a concurrent composition of two processes P1 and P2. The choice
construct, P1+P2, is used to model non-deterministic behaviour. The replication
construct, !P , describes a process that is the parallel composition of as many
occurrences of P as necessary; in the scope of name passing this is adequate for
expressing recursive behaviour. The name restriction construct, (νn)P , binds a

name, n, that may be used freely in P , but is not free in (νn)P , i.e. the scope
of n is restricted to P . The guarded process, [x = y]P , has a simple ’if-then’
behaviour - the execution of P can only commence if x and y denote the same
name. The polyadic output prefix construct, x〈ȳ〉.P , represents a process that
desires to engage, as sender, in a synchronous exchange of information on the
channel denoted by x and then proceed as described by P . However, the output
can be completed only if a concurrent subprocess is simultaneously willing to
participate, as receiver, in a matching communication on the same channel. The
polyadic input prefix construct, x(ȳ; ū).P , represents a process that desires to
engage, as receiver, in a synchronous exchange of information on the channel
denoted by x and then proceed as P . The input can complete if:

1. a concurrent subprocess is simultaneously willing to engage, as sender, in a
communication on the same channel, and

2. the output offered by this remote process matches the expectations expressed
by the input pattern, i.e. the output and input vectors are both of length
|ȳ|+ |ū| and they agree on the names in the first |ȳ| positions.

If these conditions are satisfied the communication can commence binding each
variable in ū to the name mentioned in the corresponding position of the output
vector.

Syntactic conventions. As customary for the π-calculus we shall abstain from
writing the terminal 0 at the end of example processes. Furthermore, we shall
assume that well-formed programs do not contain free variables. However, for
the convenience of writing examples we do allow free names. We use ? ∈ {|,+}
for brevity when parallel composition and choice are treated in the same way.

Label Annotations. To aid expressing the analysis in Section 3 we shall annotate
the actions of the processes with labels ` ∈ Lab as in x〈ȳ〉`, x(ȳ; ū)` and [x = y]`.
For simplicity we shall assume that the labels are unique in the process P? to be
analysed. The labels play no role whatsoever in the semantics; they only serve
as pointers into the syntax.

2.2 Semantics

We now give an operational semantics of the pπ calculus based on a structural
congruence, ≡, and a reduction relation, →. This is a semantics in the style of
Milner’s reaction relation [9] for the original π-calculus. The resulting semantics
clearly expresses an intuitive understanding of concurrency and interaction. The
processes of pπ are grouped into congruence classes by the structural congruence
relation, which is defined in Table 3. This definition ensures that the members
of each class are congruent up to trivial syntactic restructuring. In the definition
- and the following - we use fn(P) and fv(P) to denote the free names and free
variables of the process P , respectively.

(Nam1) (νn)(νm)P ≡ (νm)(νn)P (Nam2) (νn)0 ≡ 0

(Nam3) (νn)(P | Q) ≡ (νn)P | Q if n /∈ fn(Q)

(Assoc) (P ? Q) ? R ≡ P ? (Q ? R) (Com) P ? Q ≡ Q ? P

(Nil) P | 0 ≡ P (Rep) !P ≡ P | !P

(Aeq) P ≡α Q ⇒ P ≡ Q

Table 3. Structural congruence, P ≡ Q, is the smallest congruence relation on pro-
cesses satisfying the axioms above. We use ? ∈ {|, +} for brevity.

(Alpha) (νn)P ≡α (νm)P [m/n] if m 6∈ fn(P) ∧ bnc = bmc

Table 4. Disciplined α-equivalence; P ≡α Q.

As usual the congruence includes α-equivalence (Table 4) - asserting that
processes are equivalent if they differ only in their choice of bound names. How-
ever, as we distinguish between names and variables and shall never substitute a
variable for a name or variable we choose to define α-equivalence only for names.
Also, we write P [m/n] to denote the process that is as P except that every free
occurrence of name n is replaced by name m; the notion of substitution is for-
mally defined in Table 5. Finally, we use the notion of canonical names (bnc as
motivated and defined below) and demand that α-equivalence only holds when
the bound names have the same canonical name.

In the definition of substitution over a name restriction, α-renaming is used
to avoid name capture. This means that constants do not have representations
that are stable under evaluation. However, syntactically unstable entities are
not suitable for carrying static analysis information. Therefore we associate each
constant n with a stable canonical name bnc and demand that α-renaming be
disciplined, such that canonical names are preserved, even when the syntactical
representations change. Technically, the canonicalisation of names partitions the
name-space into equivalence classes. Each canonical name uniquely identifies the
defining syntactic occurrence giving rise to the associated class. Then α-renaming
(Rule (Sres) of Table 5) demands that new names be picked from appropriate
classes.

The reductions of processes are given by the binary reduction relation, which
is defined inductively as the least binary relation described by the axioms and
rules of Table 6.

When the reduction relation holds between a pair of processes, written P →
P ′, it means that P can evolve into P ′ by a single input/output reduction (Com)
or a successful guard (Match) within some subprocess of P . The rule (Com)
requires radices to be on a certain normal form and the rule (Var) allows the use
of the structural congruence for obtaining this form. The remaining rules, (Par)

(Snil) 0[m/z] = 0

(Srep) (!P)[m/z] = !P [m/z]

(Spar) (P1 ? P2)[
m/z] = P1[

m/z] ? P2[
m/z]

(Sres) ((νn)P)[m/z] =

(νn)P if z = n

(νn′)(P [n
′
/n][m/z]) if z 6= n ∧m = n ∧

n′ 6∈ fn(P) ∧ bnc = bn′c
(νn)P [m/z] otherwise

(Smatch) ([x = y]P)[m/z] = [x[m/z] = y[m/z]]P [m/z]

(Sout) (x〈ȳ〉.P)[m/z] = x[m/z]〈ȳ[m/z]〉.P [m/z]

(Sin) (x(ȳ; ū).P)[m/z] =

{
x[m/z](ȳ[m/z]; ū).P if z ∈ {ū}
x[m/z](ȳ[m/z]; ū).P [m/z] otherwise

Table 5. Substitution; P [m/z].

(Match) [n = n]P → P (Par)
P → P ′

P | Q → P ′ | Q
(Cho)

P → P ′

P + Q → P ′

(Com) m〈n1, . . . , nk〉.P | m(n1, . . . , nj ; uj+1, . . . , uk).Q →
P | Q[nj+1/uj+1] · · · [nk/uk]

(Var)
P ≡ Q Q → Q′ Q′ ≡ P ′

P → P ′ (Res)
P → P ′

(νn)P → (νn)P ′

Table 6. Reduction Semantics; P → P ′.

and (Res), simply propagate reductions across parallel composition and name
restrictions respectively, while (Cho) lets one process in a summation proceed.

3 Relational Analysis

We set the stage for the analysis by defining some auxiliary information. First,
a label environment L is defined as a mapping

L : Lab ↪→ Var∗

that to each label ` associates a sequence ū of variables that have been introduced
before this point in the process. More formally, we shall take L = Lε[[P?]] where
Lū (for ū ∈ Var∗) is defined in Table 7. Here we write] for joining two mappings
with disjoint domains and [] for the mapping with empty domain. The notation
ūv̄ stands for the concatenation of ū and v̄. We will use the notation 〈x1, . . . , xr〉
to write down vectors.

In the analysis we shall also need a representation of the flow of control in
the process P? of interest. We shall represent this by a flow mapping F that to
each label ` associates the set of labels that will become exposed once the action
labelled ` has been executed; thus

F : Lab ↪→ P(Lab)

Lū[[P1 ? P2]] = Lū[[P1]]] Lū[[P2]] Lū[[!P]] = Lū[[P]]

Lū[[(νn)P]] = Lū[[P]] Lū[[0]] = []

Lū[[x〈ȳ〉`.P]] = Lū[[P]][` 7→ ū] Lū[[x(ȳ; v̄)`.P]] = Lūv̄[[P]][` 7→ ū]

Lū[[[x = y]`P]] = Lū[[P]][` 7→ ū]

Table 7. Label environment.

F [[P1 ? P2]] = let (F1, E1) = F [[P1]]

(F2, E2) = F [[P2]]

in (F1] F2, E1 ∪ E2)

F [[!P]] = F [[P]]

F [[(νn)P]] = F [[P]]

F [[0]] = ([], ∅)
F [[x〈y1, . . . , yk〉`.P]] = let (F, E) = F [[P]]

in (F [` 7→ E], {`})
F [[x(y1, . . . , yj ; uj+1, . . . , uk)`.P]] = let (F, E) = F [[P]]

in (F [` 7→ E], {`})
F [[[x = y]`P]] = let (F, E) = F [[P]]

in (F [` 7→ E], {`})

Table 8. Flow information; F [[P]].

The function F defined in Table 8 will for each process P define such a mapping
together with the set of exposed labels of the process itself and we shall define
(F,E) = F [[P?]].

Example 1. The annotated running example, Pacc, was given in Table 1. Using
the functions L and F we obtain E = {1, 2, 3, 4, 7, 13, 14, 18, 20, 22} and the
following samples for flow F and label environment L.

` 1 4 8 14 15 16 17
F.` ∅ {5} {9, 12} {15} {16} {17} ∅
L.` ε ε ε ε 〈zcar , zd〉 〈zcar , zd〉 〈zcar , zd , zpos〉

3.1 Analysis domains

The abstract environments R̂ of the analysis will, given a label `, return a set of
sequences of names; the structure of these sequences will equal that of L.` and
will determine the potential values of the variables. Thus we shall take:

R̂ : Lab → P(Name∗)

Note that this is exactly the point, where the analysis becomes relational. We
record sets of tuples of names, which are received at the same time, rather than
tuples of sets as it would be the case for an independent attribute analysis.

If R̂.` = ∅ it means that the program point ` is not reachable; if R̂.` = {ε} it
means that no variables are bound at that program point.

We use the following auxiliary function to determine the potential values of
a variable u at the label `: Πu@L.`(w̄), where w̄ has the same length as L.` and
u ∈ {L.`}. We shall use w̄ to denote elements of R̂.`, that is, vectors of names.
In the cases where more than one occurrence of u occurs in L.` we always select
the rightmost—corresponding to the most recently bound one.

Given an element w̄ ∈ R̂.` we can now determine the value Πx@L.`(w̄) of x.
We have two cases depending on whether x is a name or a variable:

Πn@L.`(w̄) = n (for n being a name)

Πu@L.`(w̄) = ns where w̄ = 〈n1, . . . , nr〉, L.` = 〈u1, . . . , ur〉
and s = max{i | ui = u}

This operation is extended to sets R of sequences of names and to sequences x̄
of names and variables as in Πx̄@L.`(R).

3.2 The relational analysis

The judgements of the analysis have the form R̂, K̂ `L,F P where L, F and R̂ are
as above and

K̂ ⊆ Name×Name∗

records the tuples that potentially are communicated over the channels. Table
9 defines the judgements. Intuitively, they define, whether a given pair R̂, K̂ is a
valid analysis result. Hence, Table 9 specifies a set of solutions. As discussed in
Section 4.2, we are interested in and able to compute the most precise one.

The rules (Rpar), (Rrep) and (Rres) are straightforward as they only re-
quire that the subprocesses can be analysed using the same analysis information.
The rule (Rnil) expresses that any analysis information will be correct for 0.

In the rule (Rout) we write X for the set of sequences of names that take part
in the communication; this set is obtained by extracting the names corresponding
to xy1 . . . yk from R̂.` using L.` as expressed by Πxȳ@L.`(R̂.`). The condition
X ⊆ K̂ ensures that the output is recorded in K̂ and the premise of the rule
expresses a reachability test in that the analysis information is only required
to be valid for the continuation if something might be communicated over the
channel. Finally, the side condition ∀`′ ∈ F.` : R̂.` ⊆ R̂.`′ requires that the
information of R̂.` flows to all the program points that follow directly after `.

In the rule (Rin) we use the set X to capture how the environment R̂.` is
extended to contain the bindings of the new variables ū. The set is constructed
by first selecting those sequences m̄p̄ from K̂ that match the potential values of
x and ȳ in some w̄ of R̂.` and then extending those w̄ sequences with p̄. The
sequences X constructed in this way will then be the possible environments at

(Rpar)
R̂, K̂ `L,F P1 R̂, K̂ `L,F P2

R̂, K̂ `L,F P1 ? P2

(Rrep)
R̂, K̂ `L,F P

R̂, K̂ `L,F !P

(Rres)
R̂, K̂ `L,F P

R̂, K̂ `L,F (νn)P
(Rnil) R̂, K̂ `L,F 0

(Rout)
X 6= ∅ ⇒ R̂, K̂ `L,F P

R̂, K̂ `L,F x〈ȳ〉`.P
if X ⊆ K̂ ∧ ∀`′ ∈ F.` : X 6= ∅ ⇒ R̂.` ⊆ R̂.`′

where X = Πxȳ@L.`(R̂.`)

(Rin)
X 6= ∅ ⇒ R̂, K̂ `L,F P

R̂, K̂ `L,F x(ȳ; ū)`.P

if ∀`′ ∈ F.` : X ⊆ R̂.`′

where X = {w̄p̄ | w̄ ∈ R̂.` ∧ m̄ = Πxȳ@L.`(w̄) ∧ m̄ p̄ ∈ K̂ ∧ |p̄| = |ū|}

(Rmatch)
X 6= ∅ ⇒ R̂, K̂ `L,F P

R̂, K̂ `L,F [x = y]`P

if ∀`′ ∈ F.` : X ⊆ R̂.`′

where X = {w̄ ∈ R̂.` | Πx@L.`(w̄) = Πy@L.`(w̄)}

Table 9. Relational Analysis; R̂, K̂ `L,F P .

all the program points that follow directly after `. Note that the continuation P
is only analysed if X is non-empty, that is if there actually are some sequences
in K̂ that satisfy the conditions expressed in the definition of X.

Finally, in the rule (Rmatch) the set X is defined to be those sequences
from R̂.` that agree on the values of x and y as obtained using the positions
obtained from L.`. Only these sequences are required to be recorded as possible
environments in the program points that follow directly after ` and the contin-
uation P will only be analysed if X is non-empty, that is, when the test might
indeed be passed.

Example 2. For the running example Pacc the following choice of R̂ and K̂ satisfies
R̂, K̂ `L,F Pacc (and is indeed the most precise solution). Note that this results
holds for an arbitrary but fixed number n > 0 of identically defined cars.

K̂ = { 〈pos, cari, loc〉, 〈emergency, cari, driver〉, 〈log, cari, loc〉, 〈alarm, cari, driver〉,
〈status, cari, crit〉, 〈status, cari, ok〉, 〈gps, cari, loc〉, 〈k〉, 〈pos, car〉,
〈SOS, cari, loc, driver〉, 〈wifi, emergency, cari, driver〉, 〈wifi, log, cari, loc〉
| i = 1, .., n}

R̂.5: {〈ok〉, 〈crit〉} R̂.6: {〈crit〉} R̂.9: {〈cari, loc〉} R̂.10: {〈cari, loc〉}
R̂.11: {〈cari, loc〉} R̂.12: {〈cari, loc〉} R̂.15: {〈cari, driver〉}
R̂.16: {〈cari, driver〉} R̂.17: {〈cari, driver, loc〉} R̂.19: {〈cari, loc〉}
R̂.21: {〈cari, driver〉} R̂.23: {〈log, cari, loc〉, 〈emergency, cari, driver〉}

For all labels ` ∈ {1, 2, 3, 4, 7, 8, 13, 14, 18, 20, 22} we take R̂.` = {ε}. For brevity,
we left out the condition i = 1, .., n, when stating the R̂.` sets.

As stated in the introduction, we see from K̂ that only car and driver identity
are communicated over the emergency channel and that messages sent over log
only contain car and position information. Moreover, information from different
cars is not mixed up. This can be inferred regardless of the number of cars in-
volved, which would be impossible given a non-relational analysis. If we changed
the specification of the black box to separately send car and driver information,
then our analysis would detect the (real) error, that car and driver information
from different cars may be mixed up in the multiplexer.

4 Properties of the Analysis

4.1 Correctness

The correctness of the analysis is formulated in terms of a correctness predicate
which is shown invariant under subject reduction in Theorem 1. In contrast, mere
analysability is not preserved under subject reduction (c.f. Appendix A). The
correctness predicate is defined in Definition 1 and relates a process syntactically
to the process initially analysed thus taking care of the implicit substitutions
prevalent in standard reduction semantics.

In the following we will use small Greek letters to denote input, output, and
match prefixes. Moreover, we shall assume that P? is a uniquely labelled process,
and we shall fix L = Lε[[P?]] and (F,E) = F [[P?]] as information derived from P?.
Additionally, assume a subexpression α`.P ′ of P?, an analysis result R̂, K̂ `L,F P?

and an element w̄ ∈ R̂.`. We define the instantiation of α`.P ′ with w̄, written
α`.P ′[w̄] to be the process1

α`.P ′[Πur@L.`(w̄)/ur] · · · [Πu1@L.`(w̄)/u1]

where u1, . . . , ur are the variables in L.`. We define the correctness predicate for
a process Q as follows.

Definition 1 (Correctness Predicate). Correctness predicate R̂, K̂ |=P? Q
holds if and only if:

1. R̂, K̂ `L,F P?

2. ∀` ∈ E : ε ∈ R̂.`
3. For all β`.Q′ exposed in Q, there exists a subexpression α`.P ′ of P? and a

w̄ ∈ R̂.`, such that R̂, K̂ `L,F α`.P ′ and α`.P ′[w̄] ≡ β`.Q′.

1 The instantiation applies the cumulative effect of all implicit substitutions
[Πur@L.`(w̄)/ur] · · · [Πu1@L.`(w̄)/u1] that have taken place during reduction—hence
unlike the approaches of Venet [16] and Feret [5] we do not need to modify the stan-
dard reduction semantics to use explicit substitutions (nor to rely on a customised
version of the semantics).

First, we observe some auxiliary properties, whose proofs are omitted. Note that
conditions (1) and (2) of Definition 1 imply (3) when reasoning about P?.

Lemma 1 (Initial Process). For all processes P? with L, F, and E as above
we have: If R̂, K̂ `L,F P? and ε ∈ R̂.` for all ` ∈ E, then R̂, K̂ |=P? P?.

Together with Theorem 1, which states the invariance of the correctness pred-
icate under the reduction relation, this lemma can be used to show that any
process derived from the initial process P? by the transitive closure of the re-
duction relation is structurally congruent to a subprocess P ′ of P?, where each
variable of P ′ is substituted by one name predicted by the analysis. This consti-
tutes the correctness of our relational analysis.

Before getting to the correctness theorem, we state some lemmas about ex-
posed subexpressions with respect to structural congruence and valid analysis
results.

Lemma 2. Let P ≡ Q be two processes. For all α`.P ′ exposed in P , there exists
a β`.Q′ exposed in Q such that α`.P ′ ≡ β`.Q′.

Lemma 3. If α`.P ′ is exposed in P and R̂, K̂ `L,F P , then R̂, K̂ `L,F α`.P ′.

The validity of the correctness predicate is invariant under structural congruence
as formalised by the following lemma.

Lemma 4. Let P?, Q, and R be processes. If Q ≡ R and R̂, K̂ |=P? Q, then
R̂, K̂ |=P? R.

Proof. Let γ`.R′ be exposed in R. As Q ≡ R, there exists β`.Q′ exposed in Q.
As R̂, K̂ |=P? Q, we know that there exists a α`.P ′ subexpression of P? and a
w̄ ∈ R̂.` such that R̂, K̂ `L,F α`.P ′ and α`.P ′[w̄] ≡ β`.Q′. By transitivity of ≡,
we obtain α`.P ′[w̄] ≡ γ`.R′ and thus R̂, K̂ |=P? R. This concludes the proof of
Lemma 4.

The validity of the correctness predicate is preserved under reduction as for-
malised by the following theorem.

Theorem 1 (Subject Reduction). Let P? be a process. If Q → R and R̂, K̂ |=P?

Q then R̂, K̂ |=P? R.

Proof. The proof is by induction on the inference of Q → R. First consider the
rule (Com)

m〈n̄p̄〉`0 .Q0 | m(n̄; ū)`1 .Q1 → Q0 | Q1[p̄/ū]

and assume that there exists α`0
0 .P0, α`1

1 .P1 subprocesses of P? as well as w̄i ∈
R̂.`i for i = 0, 1 such that

R̂, K̂ `L,F α`0
0 .P0 (1)

R̂, K̂ `L,F α`1
1 .P1 (2)

(αl0
0 .P0)[w̄0] ≡ m〈n̄p̄〉`0 .Q0 (3)

(αl1
1 .P1)[w̄1] ≡ m(n̄; ū)`1 .Q1 (4)

We need to prove that for all β`.Q′ exposed in Q0 | Q1[p̄/ū], there exists a
α`.P ′ subexpression of P? and a w̄ ∈ R̂.`, such that (a) R̂, K̂ `L,F α`.P ′ and (b)
α`.P ′[w̄] ≡ β`.Q′.
Case 1. Let β`.Q′ be exposed in Q0 and let α`0

0 = x0〈ȳ0z̄0〉. By the definition
of F, we get

` ∈ F.`0 (5)

From (3) we obtain Πx0ȳ0z̄0@L.`0(w̄0) = mn̄p̄. Together with (1), the definition
of (Rout), and (5) this yields:

mn̄p̄ ∈ K̂ (6)

R̂, K̂ `L,F P0 (7)

w̄0 ∈ R̂.` (8)

Choose w̄ = w̄0. Requirement (a) is then proven using (7) with Lemma 3. Re-
quirement (b) follows from (3), (8) using Lemma 2.
Case 2. Let β`.Q′ be exposed in Q1[p̄/ū] and let α`1

1 = x1(ȳ1; ū)`1 . Let β`.Q′ be
exposed in Q1[p̄/ū] implying

` ∈ F.`1 (9)

From (4) we obtain Πx1ȳ1@L.`1(w̄1) = mn̄. Using this fact together with (9) and
(6) we can apply rule (Rin) and obtain:

w̄1p̄ ∈ R̂.` (10)

R̂, K̂ `L,F P1 (11)

We choose w̄ = w̄1p̄ which adheres to requirement (b) by (10). Requirement (a) is
clear using Lemma 3 and (11). For requirement (b), we deduce P1[w̄1] ≡ Q1 from
(4). By the definition of F, we obtain L.` = (L.`1)ū. Together with the definition
of instantiating an expression with an analysis result we get P1[w̄] ≡ Q1[p̄/ū].
An application of Lemma 2 to this concludes the proof of the case for (Com).

We shall now consider the application of the rule (Match), that is,

[n = n]`0 .Q0 → Q0

We know that there exists [x0 = y0]`0 .P0 subexpression of P? and w̄0 ∈ R̂.`0
such that

R̂, K̂ `L,F [x0 = y0]`0 .P0 (12)
([x0 = y0]`0 .P0)[w̄0] ≡ [n = n]`0 .Q0 (13)

Let β`.Q′ be exposed in Q0. We need to show that there exists a w̄ ∈ R̂.` and
a subexpression α`.P ′ of P? such that (c) R̂, K̂ `L,F α`.P ′ and (d) (α`.P ′)[w̄] ≡
β`.Q′. As β`.Q′ is exposed in Q0, we deduce

` ∈ F.`0 (14)

By (13), we may deduce

Πx0@`0(w̄0) = Πy0@`0(w̄0) (15)
P0[w̄0] ≡ Q0 (16)

We can apply rule (Rmatch) with (15), (14), and (12) to obtain w̄0 ∈ R̂.` and
R̂, K̂ `L,F P0. If we choose w̄ = w̄0, we obtain (c) and (d) from R̂, K̂ `L,F P0 and
(16) using Lemma 3 and Lemma 2.

The result for an application of (Var) is an immediate consequence of the
induction hypothesis and Lemma 4. Let us now consider rule (Par), that is,

Q → Q′

Q | R → Q′ | R

and assume R̂, K̂ |=P? Q | R. Obviously, this implies R̂, K̂ |=P? Q and R̂, K̂ |=P?

R separately. By the induction hypothesis, we obtain R̂, K̂ |=P? Q′ and hence
R̂, K̂ |=P? Q′ | R. This argumentation can be applied analogously to rule (Res),
because the exposed expressions of (νn)Q are just those of Q. Also, the case
(Cho) is completely analogous. This concludes the proof of Theorem 1.

4.2 Implementation

We have implemented our relational analysis in the Succinct Solver [13], which
is able to efficiently compute the stable model of an expressive fragment of
predicate logic. From the analysis specification for a program P?, we generate a
clause ϕP? such that R̂, K̂ `L,F P? if and only if ` ϕP? . Each model of the clause
corresponds to an analysis solution. The generated clauses belong to the class
of Alternation-free Least Fixpoint Logic (ALFP) described in [15]. Proposition
1 of [15] states that the set of all solutions of an ALFP clause always has a
least element corresponding to the least analysis result we aim for. The Succinct
Solver computes this least solution.

Example 3. Consider the specification of the Black Box in Table 1:

! status(cari;x)4.[x = crit]5. ! alarm〈cari〉6

The clause generated for this excerpt according to rules (Rin), (Rmatch) and
(Rout) will essentially look as follows:

∃u.K̂(status, cari, u) ⇒ (
(∀u.K̂(status, cari, u) ⇒ R̂.5(u)) ∧
∃u′.(R̂.5(u′) ∧ u′ = crit) ⇒ (

(∀u′.R̂.5(u) ∧ u′ = crit ⇒ R̂.6(u′)) ∧
K̂(alarm, cari)))

Each (canonical) name corresponds to a constant in the clause. For each label `

in the program there is a |L.` |-ary relation R̂.`. Furthermore, for each message

length m, there is an m + 1-ary relation K̂. The existential parts of the clause
take care of the various reachability conditions of the form X 6= ∅, whereas the
universal parts take care of letting the information gathered in X flow to the
right places. As an aid to readability we have assumed that R̂.4 = {ε} thus not
generated any formula involving R̂.4.

4.3 Complexity

There are mainly three quantities determining the complexity of solving the
ALFP clause that is generated for a program P?. First, the size n of P?; sec-
ond, the maximal nesting depth of variables bounded by m = max`∈Lab | L.` |;
third, the length of messages bounded by k = maxx〈ȳ〉∈P?

| ȳ |. Quantities m
and k determine the maximal arity of relations, whereas n bounds the size of
the universe over which the clause is evaluated. The maximal nesting depth of
quantifiers is bounded by m. Altogether, we can apply Proposition 1 of [14],
which itself makes use of the algorithm presented in [4], to obtain a complexity
bound of O(n3+k+m) for solving the clause generated from P?.

This complexity may be exponential in the worst-case. However, the worst-
case is only realised for programs, where the number of sequenced input prefixes
(each one binding new variables) and/or the arity of sent tuples grows linearly
with the program. In contrast, we may observe that for typical programs, where
processes often consist of reception-processing-reply, m and k may be considered
constants rendering the complexity polynomial in the size of the program (with
a rather large exponent, though). For the running example and other examples
of similar size, the least solution to the analysis problem could be computed in
less than a second.

5 Conclusion

The proper modelling of services for global computing necessitates the ability
to model services in process algebras without using primitives (like the dynamic
creation of very flexible channels as in the π-calculus) that have no direct coun-
terpart in actual systems. We used a running example based on a multiplexing
device part of the accident service used in the automotive case study of the SEN-
SORIA EU-project. This increases the difficulty of validating that the models
enjoy the desired properties and at the same time calls for the use of automatic
analysis techniques to deal with the scalability issues of “realistic” models.

In this paper we have developed a new relational analysis for a π-calculus
extended with pattern matching. The core benefit of a relational analysis (in
contrast to an independent attribute analysis) is that sets of tuples of names
being received at the same time are tracked (in contrast to tuples of sets). If a
process contains output operations a〈b, b〉 and a〈c, c〉 then a relational analysis
is able to show the absence of the output operations a〈b, c〉 and a〈c, b〉—while
an independent attribute analysis is not.

We have shown that semantic correctness amounts to the invariance of a
correctness predicate under subject reduction. Furthermore, we have shown that
the analysis has polynomial time complexity on realistic programs. We have used
the analysis to validate the correct delivery of services in our running example.

In future work we plan to transfer the analysis technology to the richer set of
process calculi being developed in the SENSORIA EU-project for describing the
behaviour of services. Examples are likely to include variations of the constructs
presented in [8, 6, 3] and [7]. For that work, we will benefit from the fact that we
rely on full standard syntax and reduction semantics of π, on which [8, 6, 3, 7]
are all based. We also plan to investigate the feasibility of using annotations to
indicate which binding occurrences demand a relational treatment. This could
lead to developing a mixed independent-attribute and relational analysis. The
advantage of such an analysis would be that essentially cubic-time [12] methods
for independent-attribute analyses could be used except for those cases where a
truly relational analysis (of higher time complexity) is needed. Finally, we plan
to incorporate techniques that can tell distinct recursive instances, e.g. several
cars having an accident at the same time, apart, i.e., allow the analysis to find
out that the SOS messages contain the correct position of each car (and not the
position of another car).
Acknowledgements. The design of the pπ calculus was part of a group effort
by the following members of the Language Based Technology research group at
their retreat in Schloss Dagstuhl: C. R. Nielsen, F. Nielson, H. Pilegaard, C.
Probst, H. Riis Nielson, T. Tolstrup, and Y. Zhang.

References

1. C. Bodei, P. Degano, F. Nielson, and H. Riis Nielson. Static analysis for the π-
calculus with applications to security. Information and Computation, 168:68–92,
2001.

2. Chiara Bodei, Mikael Buchholtz, Pierpaolo Degano, Flemming Nielson, and
Hanne Riis Nielson. Static validation of security protocols. J. Comput. Secur.,
13(3):347–390, 2005.

3. M. Boreale, R. Bruni, L. Caires, R. De Nicola, I. Lanese, M. Loreti, F. Martins,
U. Montanari, A. Ravara, D. Sangiorgi, V. Vasconcelos, and G. Zavattaro. SCC: a
Service Centered Calculus. In Proc. of WS-FM 2006, 3rd Int. Workshop on Web
Services and Formal Methods, volume 4184 of Lecture Notes in Computer Science,
pages 38–57. Springer Verlag.

4. W. F. Dowling and J. H. Gallier. Linear-time algorithms for testing the satisfiability
of propositional horn formulae. J. Log. Program., 1(3):267–284, 1984.

5. Jérôme Feret. Dependency analysis of mobile systems. In Daniel Le Métayer,
editor, ESOP, volume 2305 of Lecture Notes in Computer Science, pages 314–330.
Springer, 2002.

6. C. Guidi, R. Lucchi, R. Gorrieri, N. Busi, and G. Zavattaro. A calculus for service
oriented computing. In A. Dan and W. Lamersdorf, editors, ICSOC, volume 4294
of Lecture Notes in Computer Science, pages 327–338. Springer, 2006.

7. R. R. Hansen, C. W. Probst, and F. Nielson. Sandboxing in myklaim. In Avail-
ability, Reliability and Security (ARES), pages 174–181. IEEE Computer Society,
2006.

8. A. Lapadula, R. Pugliese, and F. Tiezzi. A calculus for orchestration of web ser-
vices. In R. De Nicola, editor, Proc. of 16th European Symposium on Programming
(ESOP’07), Lecture Notes in Computer Science. Springer, 2007.

9. R. Milner. The polyadic pi-calculus: a tutorial. In F. L. Bauer, W. Brauer,
and H. Schwichtenberg, editors, Logic and Algebra of Specification, pages 203–246.
Springer-Verlag, 1993.

10. R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-
versity Press, 1999.

11. F. Nielson, H. Riis Nielson, and C. L. Hankin. Principles of Program Analysis.
Springer, 1999. Second printing, 2005.

12. F. Nielson, H. Riis Nielson, and H. Seidl. Cryptographic analysis in cubic time.
Electronic Notes of Theoretical Computer Science, 62:7–23, 2002.

13. F. Nielson, H. Riis Nielson, H. Sun, M. Buchholtz, R. R. Hansen, H. Pilegaard, and
H. Seidl. The Succinct Solver Suite. In K. Jensen and A. Podelski, editors, TACAS,
volume 2988 of Lecture Notes in Computer Science, pages 251–265. Springer, 2004.

14. F. Nielson and H. Seidl. Control-flow analysis in cubic time. In Proc. ESOP’01,
number 2028 in Lecture Notes in Computer Science, pages 252–268. Springer, 2001.

15. F. Nielson, H. Seidl, and H. Riis Nielson. A succinct solver for ALFP. Nord. J.
Comput., 9(4):335–372, 2002.

16. Arnaud Venet. Automatic determination of communication topologies in mobile
systems. In Giorgio Levi, editor, SAS, volume 1503 of Lecture Notes in Computer
Science, pages 152–167. Springer, 1998.

A Analysability and Subject Reduction

We have shown the correctness of our analysis in terms of a subject reduction
result in Theorem 1. In order to obtain invariance under subject reduction, a
correctness predicate needed to take care of the implicit substitution prevalent in
standard reduction semantics. This is indeed necessary, because mere analysabil-
ity is not preserved by subject reduction:

Proposition 1. If P → Q and R̂, K̂ `L,F P then R̂, K̂ `L,F Q does not hold
necessarily.

To see this consider the following excerpt from our running example presented
in Table 1. The following computation step of the operational semantics is due
to an application of rule (Com) describing the reception of a critical message by
the black box process.

. . . | status(cari;x)4.[x = crit]5. ! alarm〈cari〉6 → [crit = crit]5. ! alarm〈cari〉6

As shown above in Example 2, an acceptable analysis result (R̂, K̂) for the
process before the application of (Com) comprises R̂.5 = {〈ok〉, 〈crit〉} and
R̂.6 = {〈crit〉}. However, we can now observe that this cannot be part of an
acceptable analysis result for the derived process. The clause for matching,
(Rmatch), will require R̂.5 ⊆ R̂.6 since the test will hold for all the bindings of
the variables of R̂.5. But this does not hold and hence we cannot have a subject
reduction result of the form suggested above.

The stronger correctness predicate of Definition 1 does hold for the derived
process:

R̂, K̂ |=Pacc [crit = crit]5. ! alarm〈cari〉6

This is proven by choosing w̄ ∈ R̂.5 of Definition 1 to be 〈crit〉.

