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Abstract. In service-oriented computing, correlations are used to deter-
mine links between service providers and users. A correlation contains
values for some variables received in a communication. Subsequent mes-
sages will only be received when they match the values of the correlation.
Correlations allow for the implementation of sessions, local shared mem-
ory, gradually provided input, or input provided in arbitrary order – thus
presenting a challenge to static analysis.
In this work, we present a static analysis in relational form of correlations.
It is defined in terms of a fragment of the process calculus COWS that
itself builds on the Fusion Calculus. The analysis is implemented and
practical experiments allow us to automatically establish properties of
the flow of information between services.

1 Introduction

Process calculi have proved their usefulness in describing and analysing dis-
tributed systems. It is therefore natural that they are also applied to model
and analyse services made available over loosely coupled networks. Correlation
has been identified as a useful feature to model services and hence appears in
emerging service-oriented process calculi [6, 5].

Correlation is an idea that stems from executable business process languages
such as BPEL. In the presence of multiple concurrent instances of the same
service, messages sent from a user to the provider must be delivered to the
correct instance of the service. This is achieved by associating specific, already
available data in the messages to maintain a unique reference to a specific service
instance. For example, such data may be derived from personal information like
a social security number.

Technically, in process calculi, correlation may be realised by the decoupling
of name binding and input actions in combination with pattern matching in
input prefixes. Decoupling was first formulated in the Fusion Calculus [14], where
inputs are not binders. Rather, a scope construct (x)P is the only binder binding
x in P . The effect of a communication inside P may then be to fuse x with
another name, e.g., y. The names x and y will then be considered identical. The
scope of the subsequent substitution of y for x will then be all of P . This allows
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to model local, shared state, which is essential for correlations. As argued in [3],
this decoupling is impossible to encode naturally in π-calculus.

Based on these considerations we have delineated the Calculus for Web Ser-
vices, CoWS. It is mainly a fragment of the Calculus of Orchestration of Web
Services (COWS, [6]) developed in the EU project SENSORIA. In contrast to the
Fusion Calculus (or D-Fusion developed in [3]), COWS is clearly service-centred
and focuses on, among others, correlation. In CoWS, however, we discard some
of the technicalities associated with session management.

The goal of this work is not the design of a new language but the development
of a relational analysis for correlation. The insights gained here should be easily
transferable to any other correlation-based language for services.

Contribution. The study of process calculi is a challenging avenue for the de-
velopment and application of static analysis. Such analyses often tend to fall
between two extremes: rather simple 0-CFA analyses (e.g., [2]) expressing only
rudimentary properties, or extremely powerful relational and polyhedral analy-
ses (e.g., [16, 4]). The latter technology seems to be mastered by only a few, and
hence might not obtain widespread use, and furthermore seems to require that
the calculus in question be presented in a non-trivial normalised form in order
to aid the analysis thereby making it a major effort to apply the techniques. To
be specific, the work of [16] on developing relational and polyhedral analyses for
the π-calculus depends heavily on the PhD thesis of [15] that develops the non-
trivial normalised form used. We therefore consider it an important achievement
of our work that we populate the middle ground between the two extremes –
this approach was used successfully in [8] dealing with the π-calculus. Here we
apply this approach to develop a relational static analysis for correlation, which
is a challenging and highly relevant aspect of process calculi for service-oriented
computing. To the best of our knowledge [1], we are the first to develop a static
analysis for a descendant of the Fusion Calculus.

Outline. In Section 2, we shall introduce the CoWS calculus illustrating it by
giving an example of an accident service. In Section 3, we develop a static anal-
ysis in relational form for CoWS. Before we report on our implementation and
experimental results, we establish the correctness of our analysis expressed by
two major theorems, subject reduction and adequacy. It is noteworthy that our
subject reduction result does not claim that analysability is preserved under
reduction, but rather that a stronger notion of analysability of all permitted
instances is preserved under reduction. This provides a new insight in the devel-
opment of static analyses of process calculi. Section 5 reports on related work
and Section 6 concludes.

2 Calculus for Web Services

Table 1 defines the syntactic domains and the syntax of CoWS, the Calculus
for Web Services. We have three syntactic domains, names, variables, and labels.



s ::= Services

u • u′!v̄` (invoke)
| g (input-guarded choice)
| s | s (parallel composition)
| (n)s (name binding box)

| [x]`s (variable scope)
| ∗s (replication)

g ::= (input-guarded choice)
0 (nil)

| p • o?v̄`.s (request processing)
| g + g (choice)

Name Domain Symbols

Variables Var x, y
Names Name n,m
Partners Name p, p′

Operations Name o, o′

Name ∪Var u, v
Labels Lab `

Table 1. Syntax of CoWS and its syntactic domains. Service invocation, request
processing, as well as the variable scope are decorated with labels, ` ∈ Lab. An overline
denotes tuples, for instance, x̄ denotes tuples of variables.

While the latter merely serve as pointers into the syntax guiding the analysis
specification of Section 3, names denote computational values and variables are
used to bind names. In the sequel we shall always assume that the services of
interest are consistently labelled ensuring that two equally labelled actions are
either both inputs – in which case they coincide on partner and operation as well
as on the length of the input – or both outputs – in which case they coincide on
the length of the output.

The computational entities of CoWS are called services. In contrast to,
e.g., π-calculus, communication endpoints in CoWS are pairs of partners and
operations, p • o. This is employed to model several services available at the
same site. Communication endpoints at reception sites are statically determined,
because a service is supposed to know itself. In contrast, received partner and
operation names may be used for subsequent service invocation. Additionally,
CoWS has asynchronous output, input actions, input-guarded choice, parallel
composition, name binding, variable scope declaration, and replication; each with
the expected meaning. Names in input prefixes are used for pattern matching.

Variable binding and global scope are the key differences between CoWS
and π-like calculi. This is where the similarity to the Fusion Calculus comes into
play. Variables are not bound at input actions. Rather, the only variable binder
is the scope construct [x]`s: If variable x occurs in an input action, at which a
name, n, may be received, then the scope of the induced substitution, [x 7→ n],
is the whole of s; not just the continuation of the input action.

2.1 An Accident Service

Our running example is given in Table 2. It describes an arbitrary number of
cars (1-3) that have subscribed to the car accident service (4-10). Each car is
equipped with a GPS device tracking its position. In case an on-board sensor



∗(self) ∗(gps) ∗(sid) ps • oalarm!〈acc, self, sid〉1 (1)
| (self • oconfirm?〈sid〉2.ps • oconfirm!〈ok, self, sid〉3 + (2)

self • oconfirm?〈sid〉4.ps • oconfirm!〈ko, gps, sid〉5) (3)
∗[xinfo]

6 [xid]
7 [xreply]

8 [xsid]
9 ps • oalarm?〈acc, xid, xsid〉10. (4)

xid • oconfirm!〈xsid〉11 (5)
| ps • oconfirm?〈xreply, xinfo, xsid〉12. (6)

ps • oSos!〈xreply, xinfo, xsid〉13 (7)
| ps • oSos?〈ko, xinfo, xsid〉14. (8)

pamb • oSos!〈xinfo, xsid〉15 (9)
| ps • oSos?〈ok, xinfo, xsid〉16.0 (10)

Table 2. An accident service.

detects any abnormal behaviour, the alarm operation of the service centre is
invoked by the sending of an accident message containing the identity of the
driver and a nonce (1). The latter serves as a unique session identifier prevent-
ing malign session interference. The centre processes this request (4) and asks
the driver for confirmation (5) in order to exclude false alarms. The driver pro-
cesses this request (2,3) and either revokes the alarm (2) or confirms it (3). If
the alarm is revoked, the driver identity is attached to the (revocation) message.
If the alarm is confirmed, the current (GPS) position is attached to the (con-
firmation) message. In the latter case, one may think of a time-out triggering
the confirmation of the accident. In any case, the centre processes the answer
(6) and invokes another internal service (7). Depending on the driver’s answer
this service either calls an external ambulance (8,9), which is informed about
the location of the accident, or it terminates due to a false alarm (10).

Note that there may be many cars around that may have a number of false
alarms involving different locations. Due to the safety-critical nature of this ex-
ample, the service centre must be able to handle many of these service calls
concurrently without mixing up information from different sessions. In particu-
lar, we would like to guarantee that:

1. The ambulance is not called, when an ok was received.
2. Messages sent to the ambulance always contain GPS information. Note, that

the validity of this property is not obvious, since xinfo may be bound to both
driver identities and positions at run-time.

3. If several cars employ the accident service at once, then only the positions
of the ones confirming the accident are reported to the ambulance.

As we shall see, our analysis is able to provide the desired guarantees.

2.2 Labelled Transition System for CoWS

To define the semantics of CoWS we employ a notion of structural congruence as
is typical of process calculi. It is defined as the least congruence that incorporates



∗0 ≡ 0 [Repl1]
∗s ≡ s | ∗s [Repl2]

(n)0 ≡ 0 [Binder1]
(n)(m)s ≡ (m)(n)s [Binder2]
s1 | (n)s2 ≡ (n)(s1 | s2) if n 6∈ fn(s1) [Binder3]

[x](n)s ≡ (n)[x]s [Binder4]

Table 3. An excerpt of the CoWS structural congruence rules. For a given service
expression s, fn(s) denotes the set of free names.

the axioms of Table 3, contains disciplined α-renaming of names3, and asserts
that choice and parallel are associative, commutative, and have 0 as neutral
element. Note, that we do not allow the extrusion of variable scopes. In contrast,
[Binder4], which is a bit unusual, allows the binding boxes of names to migrate
freely in and out of variable scopes.

Substitutions, σ, are mappings with domain Var → Name. The application
of a substitution, [x 7→ n], to a service s is written s · [x 7→ n] and replaces free
occurrences of x in s by n. The disjoint union of two substitutions σ1 and σ2 is
written σ1 ] σ2 and the substitution with empty domain is written ∅.

The CoWS operational semantics as given in Table 4 makes use of the notion
of matching, where two tuples of names and variables are matched potentially
yielding a resulting substitution. The formal definition is as follows:

M(x, n) = x 7→ n M(n, n) = ∅ M(u1, v1) = σ1 M(ū2, v̄2) = σ2

M((u1, ū2), (v1, v̄2)) = σ1 ] σ2

As we formulate our semantics in terms of a labelled transition system, we
shall now define the transition labels α:

α ::= (p • o) � v̄` | (p • o) � ū` | p • obσcū`i n̄`o

Transition labels, (p • o) � v̄` and (p • o) � ū`, result from applying rules for
invocation and reception of values, respectively, that is, rules [Inv] and [Rec] of
Table 4. They can engage in a communication ([Com]) resulting in a transition
label, p • obσcū`i n̄`o , where σ is the substitution resulting from the communi-
cation. Note, that the only transition labels that denote observable computation
steps are those of the form p•ob∅cū`i n̄`o . We use d(α) to denote the set of names
and variables occurring in α. If α = p • obσcū`i n̄`o then d(α) contains only the
names and variables in the domain and codomain of σ.

On top level, the semantics of Table 4 is only defined for closed services,
that is, no free variables may occur when a computation step is applied. Deeper
in the inference tree there may of course be free occurrences of variables. The
3 For disciplined α-renaming, we identify each name with its defining syntactic occur-

rence, its canonical name, thus partitioning the name space into finitely many equiv-
alence classes. If names are only α-renamed using equivalent names, then canonical
names are stable under evaluation.



effect of a substitution of a value for variable x is computed only, when the
enclosing scope of x is met ([Delsub]). The substitution transition label is used
to propagate the information up to the binding scope. This ensures that the
effect of a communication is visible globally within a scope. This feature is used to
model shared memory of a session instance. Services nested under name bindings
or variable scopes can proceed normally unless the enclosing entity is mentioned
by the transition label (rules [Name] and [Scope]).

Comparison with COWS. CoWS lacks the orchestration constructs (kill and
protect) found in COWS, because we focus on correlation in this work rather
than on orchestration. The semantics of CoWS is comparable to the original
LTS semantics proposed for COWS. The most notable difference, is in the rule
[Com]: Imagine two different communications that both yield a valid match.
While our rule picks non-deterministically from the set of choices, the COWS
semantics [6] imposes a constraint selecting the match that gives rise to the
smallest substitution. In case of equally long substitutions, the choice is random.
In [6], this feature is used to distinguish (less instantiated) service definitions
from (more instantiated) service instances. However, this particular technicality
is not critical for the analysis of correlations presented in the following and
therefore it has been omitted from the development. In order to prevent malign
session interferences we adapt what is considered good style in communication
protocols, where one relies on the use of nonces or shared secrets (or indeed
shared keys) to ensure that sessions do not interfere. Note that the role of the
nonce in our running example is played by the name sid.

3 A Relational Analysis for CoWS

In this section, we develop a static analysis [9] for CoWS in relational style. That
is, for each program label ` – service invocation, processing and variable scope
– we compute sets of tuples of names to which the variables that are in scope
at ` may be bound at run-time. The fact that we track sets of tuples makes the
analysis relational, while an independent attribute analysis would track tuples
of sets thus loosing track of which variables are bound at the same time.

Auxiliary Information. We set the stage for the analysis by defining some aux-
iliary information. First, a label environment, L, is defined as a mapping

L : Lab → (Var× Lab)∗

that to each label ` associates a sequence χ̄ of pairs of variables and labels that
have been introduced before this point in the process; the label indicates the
exact scope where the variable was introduced. More formally, we shall take
L = Lε[[s]] where Lχ̄ (for χ̄ ∈ (Var×Lab)∗) is defined in Table 5. Here we write
] for joining two mappings with disjoint domains and [ ] for the mapping with
empty domain. The notation χ̄1χ̄2 stands for the concatenation of χ̄1 and χ̄2.
Furthermore, we shall write x#L.` for the label, at which x at the position ` was



[Inv] p • o!n̄`
(p•o)�n̄`

// 0 [Rec] p • o?ū`.s
(p•o)�ū`

// s

[Choice]
g1

α // s

g1 + g2
α // s

[Delsub]
s

p•obσ][x7→n]cū`i n̄`o
// s′

[x]`s
p•obσcū`i n̄`o

// s′ · [x 7→ n]

[Name]
s

α // s′ n 6∈ d(α)

(n)s
α // (n)s′

[Scope]
s

α // s′ x 6∈ d(α)

[x]s
α // [x]s′

[Com]
s1

(p•o)�ū`i // s′1 s2
(p•o)�n̄`o

// s′2 M(ū, n̄) = σ

s1 | s2
p•obσcū`i n̄`o

// s′1 | s′2

[Par]
s1

α // s′1

s1 | s2
α // s′1 | s2

[Cong]
s ≡ s1 s1

α // s2 s2 ≡ s′

s
α // s′

Table 4. CoWS operational semantics.

defined. This is formally defined by reflecting that the most recently introduced
definition of x is the rightmost:

x#〈x`1
1 , . . . , x

`k

k 〉 = `t, if t = max{i | xi = x}

This notion is only defined, when x is really among the xi, which will always be
the case, when we use it.

In the analysis we shall also need a representation of the flow of control in
the service s of interest. We shall represent this by a flow mapping F that to
each label ` associates the set of labels that will become visible once the action
labelled ` has been executed; thus

F : Lab ↪→ P(Lab)

The function F defined in Table 5 will for each service s define such a mapping
together with the set of visible labels of the service itself and we shall define
(F,E) = F [[s]]. When applying F and L to labels, we will mostly write L.` and
F.` instead of L(`) and F(`).

Example 1. The label environment computed from the running example in Table
2 is as follows:

L.1 = L.2 = L.3 = L.4 = L.5 = L.6 = ε L.7 = 〈(xinfo, 6)〉
L.8 = 〈(xinfo, 6), (xid, 7)〉 L.9 = 〈(xinfo, 6), (xid, 7), (xreply, 8)〉
L.10 = L.11 = · · · = L.16 = 〈(xinfo, 6), (xid, 7), (xreply, 8), (xsid, 9)〉



Lχ̄[[0]] = [ ]

Lχ̄[[u • u′!v̄`]] = [` 7→ χ̄]

Lχ̄[[p • o?ū`.s]] = Lχ̄[[s]] ] [` 7→ χ̄]
Lχ̄[[(n)s]] = Lχ̄[[s]]
Lχ̄[[∗s]] = Lχ̄[[s]]

Lχ̄[[[x]`s]] = Lχ̄x` [[s]] ] [` 7→ χ̄]
Lχ̄[[s1 | s2]] = Lχ̄[[s1]] ] Lχ̄[[s2]]
Lχ̄[[s1 + s2]] = Lχ̄[[s1]] ] Lχ̄[[s2]]

F [[0]] = ([ ], ∅)
F [[u • u′!v̄`]] = ([ ], {`})
F [[p • o?ū`.s]] = let (F,E) = F [[s]]

in (F ] [` 7→ E], {`})
F [[(n)s]] = F [[s]]
F [[∗s]] = F [[s]]

F [[[x]`s]] = let (F,E) = F [[s]]
in (F ] [` 7→ E], {`})

F [[s1 | s2]] = F [[s1 + s2]]
= let (F1, E1) = F [[s1]]

(F2, E2) = F [[s2]]
in (F1 ] F2, E1 ∪ E2)

Table 5. Label environment Lx̄[[s]] and flow information F [[s]]

In the sequel, we shall often write pairs like (xinfo, 6) using superscript as in x6
info.

Two examples of flow information are F.9 = {10, 12, 14, 16} and F.10 = {11}.
Finally, the set of visible labels for the running example is {1, 2, 4, 6}. ut

Analysis Domain. The abstract environments R̂ of the analysis will, given a label
`, return a set of sequences. Each element of such a sequence can either be a
name or the undefined symbol ⊥. The latter denotes cases, where a variable has
not been assigned a value yet. This helps to track gradually provided inputs.
The length of these sequences will equal that of L.`. We will thus determine the
potential values of the variables at the point determined by ` and take:

R̂ : Lab → P(Name∗⊥)

where Name⊥ = Name ∪ {⊥} and Name∗⊥ denotes tuples of elements from
Name⊥.4 We shall use w to denote elements of Name⊥. If R̂.` = ∅ it means
that the program point ` is not reachable; if R̂.` = {ε} then also L.` = ε and it
means that no variable has been introduced at that program point.

We use the following auxiliary function to determine the potential values of
a variable x at the label `: Πx@L.`(w̄), where w̄ has the same length as L.` and x
occurs in L.`. In the cases where more than one occurrence of x occurs in L.` we
always select the rightmost – corresponding to the most recently declared one.
The function is defined by

Πx@L.`(w̄) = wt

where w̄ = 〈w1, . . . , wk〉, L.` = 〈x`1
1 , . . . , x

`k

k 〉, and t = max{i | xi = x}. Note,
that the result may be ⊥. The operation is trivially extended to names, n:

Πn@L.`(w̄) = n

4 Again, all the names tracked in the analysis are canonical, that is they are identified
with their syntactic occurrence.



[RNil] R̂, K̂ `L,F 0 [RRep]
R̂, K̂ `L,F s

R̂, K̂ `L,F ∗s
[RName]

R̂, K̂ `L,F s

R̂, K̂ `L,F (n)s

[RPar]
R̂, K̂ `L,F s1 R̂, K̂ `L,F s2

R̂, K̂ `L,F s1 | s2
[RChoice]

R̂, K̂ `L,F s1 R̂, K̂ `L,F s2

R̂, K̂ `L,F s1 + s2

[RInv] R̂, K̂ `L,F u • u′!v̄` if Πuu′v̄@L.`(R̂.`) ∩Name∗ ⊆ K̂

[RScope]
R̂, K̂ `L,F s

R̂, K̂ `L,F [x]`s
if ∀`′ ∈ F.` : R̂.`× {⊥} ⊆ R̂.`′

[RRec]
X 6= ∅ ⇒ R̂, K̂ `L,F s

R̂, K̂ `L,F p • o?ū`.s
if
∀`′ ∈ F.` : X ⊆ R̂.`′

∀x ∈ {ū} ∀`x ∈ (F.(x#L.`)) : Yx ⊆ R̂.`x

where X = {w̄ ∈ R̂.` | Πpoū@L.`(w̄) ∈ K̂}
and Yx = {w̄n ∈ Name∗⊥ | w̄ ∈ R̂.(x#L.`) ∧

∃w̄′ ∈ Name∗⊥ : Πpoū@L.`(w̄nw̄
′) ∈ K̂ }

Table 6. Specification of the analysis judgement R̂, K̂ `L,F s.

Also, it is extended to sequences, ū, of variables and names, as in Πū@L.`(w̄),
and to sets, R, of such sequences, i.e., Πū@L.`(R).

The abstract communication cache

K̂ ⊆ Name×Name×Name∗

records the tuples of names that potentially are communicated over the channels.
Elements of the domain are triples representing a partner name, an operation
name, and the tuple of names communicated. In K̂, we keep track of names only,
there is no ⊥ involved.

Analysis Specification. The judgements of the analysis have the form

R̂, K̂ `L,F s

where L, F, R̂, and K̂ are as above. Intuitively, the judgements defined in Table
6 determine whether a given pair (R̂, K̂) is a valid analysis result.

The first five rules are simple recursive cases. The rule [RInv] deals with
invocations. It looks up the available bindings of the involved variables in R̂ and
records the resulting tuples in the abstract communication cache, K̂. Since the
lookup may yield undefined values, we need to intersect with Name∗.

The rule [RScope] takes care of scope definitions. It extends whatever vari-
able bindings that are available at a scope definition, `, with a single ⊥ and
passes the information on to the program points following `, reflecting the fact
that the newly introduced variable is not yet bound.



Finally, the rule [RRec] describes two different flows. First, it ensures that
all possible bindings at ` that may lead to a tuple that might be communicated
will indeed flow to the subsequent visible labels (expressed in the set X); only
if this set is non-empty is it possible to perform the input and hence the test
X 6= ∅ expresses a reachability condition for the continuation s. Second, for each
variable x of the input pattern, we record (in the set Yx) which names may
be bound to x by any communication that matches this input pattern. This
information flows to the labels just after the scope at which x was introduced
(denoted by F.(x#L.`)).

In addition to the satisfaction of the analysis judgement, we require some
initialisation information, stating that ε is available at all globally visible labels:

Definition 1. Let s be a service, (F,E) = F [[s]] its flow information, and L =
Lε[[s]] its label environment. A pair (R̂, K̂) is an acceptable analysis estimate for
s, if and only if R̂, K̂ `L,F s and ε ∈ R̂.` for all ` ∈ E.

Example 2. An acceptable analysis estimate – and in fact the least, that is, most
precise one – of the running example of Table 2 comprises:

K̂ = { 〈ps, oalarm, acc, self, sid〉, 〈ps, oconfirm, ok, self, sid〉,
〈ps, oconfirm, ko, gps, sid〉, 〈self, oconfirm, sid〉, 〈ps, oSos, ok, self, sid〉,
〈ps, oSos, ko, gps, sid〉, 〈pamb, oSos, gps, sid〉 }

Regarding the abstract environments, we state only R̂.13 and R̂.15 explicitly,
because they are most relevant with respect to the properties we are interested in.
Recall that both L.13 and L.15 amount to 〈(xinfo, 6), (xid, 7), (xreply, 8), (xsid, 9)〉.

R̂.13 = {〈self, self, ok, sid〉, 〈self,⊥, ok, sid〉, 〈gps, self, ko, sid〉, 〈gps,⊥, ko, sid〉}
R̂.15 = {〈gps, self, ko, sid〉, 〈gps, self,⊥, sid〉, 〈gps,⊥, ko, sid〉, 〈gps,⊥,⊥, sid〉}

Reconsider the three properties stated in Section 2.1. Property 1 states that the
ambulance is not called, when an ok was received. The ambulance is called at
label 15. In the analysis result, we can see that the value of xreply (the third
position in the tuples) cannot be ok proving property 1. Note that at label 13,
ok may still occur.

Property 2 requires that an ambulance is only called with location infor-
mation. This is shown by inspecting K̂, which over-approximates all messages
sent. The only message involving pamb in K̂ contains gps only, thereby proving
property 2.

Property 3 is not so easy to show for the analysis as is. We are able to
establish it, if we unfold the definition of cars a finite number of times, though.
The analysis will then show, that malign interferences are prevented by the
session id sid. The formal result justifying our reasoning about properties in this
example is stated in Theorem 2 below. ut



4 Properties of the Analysis

In this section, we shall establish the formal correctness of our analysis. We
start by defining a correctness predicate, which states the analysability of all
permitted substitutions of an analysable service, and show that its validity is
preserved under observable computation steps. This constitutes our subject re-
duction result and is formalised in Theorem 1. It is shown in Appendix A that
mere analysability is not preserved under reduction. Theorem 2 states that all
actually sent messages and all potential variable bindings are correctly recorded
in the analysis. We conclude this section by reporting on experiments using the
implementation of our analysis. The feasibility of this implementation relies on
Theorem 3 stating the Moore family property of the set of all acceptable analy-
ses; hence guaranteeing the existence of least (most precise) solutions.

4.1 Correctness

In the following we assume an arbitrary but fixed given program s?, as well as
its flow information F = F [[s?]], its label and its visible labels (L,E) = Lε[[s?]].
Moreover, we define the notion E(s) of the exposed actions of a service s, which
is a set of input and output prefixes, such that E(u • u′!v̄`) = {u • u′!v̄`}, E(p •
o?v̄`.s) = {p • o?v̄`.s}, E(∗s) = E((n)s) = E([x]s) = E(s), E(0) = ∅, E(s1 | s2) =
E(s1+s2) = E(s1)∪E(s2). Finally, we define an extended version of substitution.
Let s = p • o?v̄`.s′ or s = u • u′!ū` and let w̄ ∈ R̂.` where L.` = 〈x1, . . . , xk〉 and
w̄ = 〈w1, . . . , wk〉. Then we define

s[w̄/L.`] = (. . . (s · [xk 7→ wk]) · . . . ) · [x1 7→ w1]

where s · [x 7→ ⊥] = s.
Intuitively, the correctness predicated defined in Definition 2 holds of a service

s obtained by semantic reduction from s?, if all exposed actions s′ of s have
a counterpart s′′ in s?, such that s′′ is correctly analysed and such that s′′ is
congruent to s′ when instantiating it with information computed by the analysis.
In other words, the correctness predicate describes the analysability of permitted
substitution instances.

Definition 2 (Correctness Predicate). A service s satisfies the correctness
predicate with respect to s?, written R̂, K̂ |=s? s if and only if (1-4) hold.

1. R̂, K̂ `L,F s?

2. ∀` ∈ E : ε ∈ R̂.`
3. For all p • o?ū`.s′ ∈ E(s) there exists a subexpression p • o?v̄`.s′′ of s? s.t.

– R̂, K̂ `L,F p • o?v̄`.s′′ and
– ∃w̄ ∈ R̂.` : p • o?ū`.s′ ≡ p • o?v̄`.s′′[w̄/L.`]

4. For all v • v′!v̄` ∈ E(s) there exists a subexpression u • u′!ū` of s? s.t.
– R̂, K̂ `L,F u • u′!ū` and
– ∃w̄ ∈ R̂.` : v • v′!v̄` ≡ u • u′!ū`[w̄/L.`]



The following lemma, which shall be used in the proof of Theorem 1, states
some obvious compositionality properties of the correctness predicate. The proof
is straightforward from Definition 2.

Lemma 1 (Compositionality). Let s, s1, s2 be services, x a variable and n a
name. It holds:

– R̂, K̂ |=s? s1 | s2 if and only if R̂, K̂ |=s? s1 and R̂, K̂ |=s? s2.
– R̂, K̂ |=s? s1 + s2 if and only if R̂, K̂ |=s? s1 and R̂, K̂ |=s? s2.
– R̂, K̂ |=s? (n)s if and only if R̂, K̂ |=s? s.
– R̂, K̂ |=s? [x]`s if and only if R̂, K̂ |=s? s.

Moreover, if s1 ≡ s2 then R̂, K̂ |=s? s1 if and only if R̂, K̂ |=s? s2.

We are now able to state our subject reduction result. Note that the cor-
rectness predicate is only preserved on top-level, that is, when talking about
observable computation steps. A computation step is observable, when the sub-
stitution of the transition label is empty, that is, when all substitutions induced
by a communication have happened.

Theorem 1 (Subject Reduction). Let s1 and s2 be services. If R̂, K̂ |=s? s1

and s1
p•ob∅cū`i n̄`o

// s2 then R̂, K̂ |=s? s2.

The somewhat technical proof of the theorem is presented in Appendix B.
In fact, it requires an even stronger induction hypothesis than provided by the
correctness predicate. This is because we have to deal with all possible transition
labels, in particular with transition labels carrying non-empty substitutions. The
stronger induction hypothesis then makes a connection between these substitu-
tions and the analysis result.

The following theorem constitutes the adequacy of our analysis. It states that
every communication triggering an observed substitution and the substitution
itself are in fact recorded in the analysis information. The proof follows directly
from Theorem 1 and its proof in Appendix B.

Theorem 2 (Adequacy). If (R̂, K̂) is an acceptable analysis of s? and if

s? →∗ s
p•ob∅cū`o n̄`i

// s′ then 〈pon̄〉 ∈ K̂ and n̄ ∈ Πū@L.`i(R̂.`i).

4.2 Implementation

The basis of our implementation is the following Moore family result ensuring
both the existence and the uniqueness of a least acceptable analysis result.

Theorem 3 (Moore Family). For any service s the set of acceptable analysis
estimates under `L,F constitutes a Moore family, i.e.,

∀A ⊆ {R̂, K̂ | R̂, K̂ `L,F s} : uA ∈ {R̂, K̂ | R̂, K̂ `L,F s}.



Proof. As the analysis specification is syntax directed the result follows by
straightforward structural induction on s. ut

If we, by a change of perspective, view the analysis specification as logical for-
mulas and acceptable results as models of these formulas, then the Moore family
result turns into a model intersection property ensuring a least model corre-
sponding to the least acceptable analysis result.

We have implemented a fully functional prototype in Standard ML gener-
ating clauses that lie within the Alternation-free Least Fixed Point (ALFP)
fragment of first order logic. Least models of such formulas always exist and can
be computed efficiently by, e.g., the Succinct Solver [12, 10].

Example 3. The input communication of line (6) of Table 2 gives rise to the
following clause:

∀xinfo, xid, xreply, xsid :

R̂.12(xinfo, xid, xreply, xsid) ∧ K̂(ps, oconfirm, xreply, xinfo, xsid) ⇒

[ R̂.13(xinfo, xid, xreply, xsid) ∧ φ ∧ ψ ]

This specifies the flow into R̂.13: All variable bindings available at R̂.12 leading
to a tuple that may be communicated flow to the continuation at line (7). This
corresponds to the X set in rule [RRec]. Formula φ in the clause above corre-
sponds to the Yx set and is left out for brevity. Formula ψ in the clause above
corresponds to line (7) of the example representing the analysis of an output
according to [RInv] and specifying a flow into K̂

ψ = ∀xinfo, xid, xreply, xsid :

R̂.13(xinfo, xid, xreply, xsid) ∧ xsid 6= ⊥ ∧ xinfo 6= ⊥ ∧ xreply 6= ⊥ ⇒

K̂(ps, oSos, xreply, xinfo, xsid)

ut

Complexity. Three quantities determine the complexity of solving the derived
ALFP clause, the number n of names used in the program the maximal nesting
depth of variables, bounded by m = max`∈Lab|L.`|, and the maximal length
of any sent message, bounded by k = maxu•u′!ū∈s|ū|. The size of the logical
universe is bounded by n, while m and n decide the maximal arity of relations.
Furthermore, the maximal nesting depth is decided by m, which, by Proposition
1 of [11], results in a complexity bound of O(n3+k+m). This is exponential in the
worst case, which is only realised, however, by service specifications, s, where
the number of sequenced inputs (m) and/or the arity of sent messages (k) are/is
linear in the size (n) of s. For most realistic CoWS specifications the complexity
will be polynomial, and for the accident service the solution was found in less
than a second.



5 Related Work

The separation of the notions of scope and binding occurrence of a variable is
originally due to Parrow and Victor, who used it to model a notion of locally
shared memory in the Fusion Calculus [14]. In contrast to CoWS, there is only
one syntactic category, names, and input and output are completely symmetric.
Symmetric means that input and output designation can be exchanged while
still yielding the same fusion. Therefore, the authors of [14] suggest to use the
terminology action and co-action instead.

In [3], the calculus D-Fusion is proposed. It extends the Fusion Calculus with
another binder similar to the restriction of π-calculus to obtain more expressive-
ness. It retains the symmetry of actions, in fact, it does not even distinguish
input and output at all. Apart from the symmetry of input and output, the
D-Fusion calculus introduced in [3] is quite close to CoWS. However, we prefer
to consider CoWS as a subset of the COWS [6] calculus, because the latter is
more focused on correlations and their use in service-oriented computing.

COWS retains a variant of separation of input and name binding in order
to faithfully model correlation. In contrast to Fusion and D-Fusion, inputs and
outputs are clearly distinguished, in particular by using two syntactic categories,
names and variables, where only substitutions of names for variables are possible.
COWS also features pattern matching in input prefixes facilitating correlations.
While we, too, embrace these concepts we discard some of the technicalities asso-
ciated with session management and do not consider the fault and compensation
facilities provided by COWS.

To the best of our knowledge [1] the present static analysis is the first static
analysis, which is not a type system, developed for the Fusion Calculus or its
descendants. Also, it seems to be the first static analysis of correlation. Our
analysis is relational in form. This form has previously been investigated in the
simpler context of the π-calculus [8] equipped with a reaction style semantics.
The fact that the present development retains the simplicity of the former, even
in the context of a more complicated calculus equipped with a labelled structural
operational semantics, testifies to the flexibility of the Flow Logic specification
style [13]. In contrast, previous relational approaches [16, 4], fashioned within the
framework of Abstract Interpretation, have relied on highly customised syntax
and semantics and are not easily extended beyond the original context of the
π-calculus.

In the context of COWS, Lapadula et. al. use Type Systems in order to
enforce a set of distribution policy annotations [7]. For this approach to work the
user has to annotate each piece of data with a region of maximal dissemination
(a set of service principals). Static inference combined with a typed semantics,
performing appropriate run-time checks, then ensures that the policy is never
violated. In contrast, our approach relies neither on user-provided annotations,
nor dynamic type-checking. Rather it is fully static and automatically computes a
very precise estimate of the data-sets that may reach every single program point.
The specified information is very general; hence a region based policy can easily



be tested against the computed result. In [7] the complexity of the type system is
not discussed, but the general tendency is that checking is polynomial, whereas
inference is exponential. In the case of the Succinct Solver, however, there is no
complexity gap between checking and inference [12] – both are polynomial for
non-pathological specifications.

6 Conclusion

In this paper we have delineated the process calculus CoWS for implementing
correlation based services in order to focus on the essentials of correlation, e.g.,
separation of binding and input and pattern matching. Therefore, we expect
that our analysis of CoWS transfers easily to any other correlation based pro-
cess calculus. CoWS is formulated in a form resembling COWS but lacking its
orchestration constructs (kill and protect). In future extensions of our work we
aim at adding these missing primitives.

We then developed a relational analysis for the CoWS process calculus and
showed its usefulness for ensuring that service invocations do not interfere in ma-
lign ways. We have based our work on a recent relational analysis developed for
the π-calculus [8] thereby supporting the claim that the Flow Logic framework
facilitates transferring analysis insights between languages (being programming
languages or process calculi). While more powerful approaches to relational anal-
ysis exist, in particular the work of polyhedral analysis of certain π-processes [16,
4], they are substantially harder to transfer to other language because they rely
on a special “normal form” for processes to have been established a priori (and
in the case of the π-calculus in the PhD-thesis of [15]).

Despite the guidance offered by the Flow Logic framework and the relational
analysis developed for the π-calculus in [8] correlations or, technically, the sep-
aration of scope from binding have presented profound obstacles that we have
managed to solve. A key ingredient is the use of ⊥ to denote the “presence” of
a variable that has not yet received its value; this technique is being used in
rather deep ways to ensure the semantic correctness of the static analysis. The
correctness result follows the approach first pioneered in [8] in making use of a
subject reduction result where “analysability” is not preserved under reduction
whereas the more complex notion of “analysability of all permitted substitution
instances” is.
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A Subject Reduction Revisited

We have established a substitution based subject reduction result in Theorem
1 based upon a correctness predicate relating correct analyses results to substi-
tution instances of the programme originally analysed. Now, we shall present a
counterexample illustrating that general subject reduction with respect to cor-
rect analyses fails. Consider the following service and a computation step:

[x]1 p • o?x2.0
| p • o!a3

| p • o?x4.p • o!〈〉5
p•ob∅cx2a3

// p • o?a4.p • o!〈〉5

It is obvious that a valid analysis result of the left hand side may comprise R̂.4 =
{a,⊥} and R̂.5 = {a}, because the X in [Req] filters ⊥ away. However, analysing



the right-hand side in isolation requires X = {a,⊥} ⊆ R̂.5 which is clearly not
satisfied by the result given. The filter does not work in this case constituting
an example of standard subject reduction not holding. A key insight is that
correct analyses are not preserved whenever we have a match involving more
than constants, e.g. variables. More generally speaking, the problem occurs when
we have a static analysis with localised environments, where we incorporate the
results of matchings into these environments. This observation becomes apparent
in [8], too.

B Proof of Theorem 1

In order for the proof to work, we need to define a stronger induction hypothesis
in form of a correctness predicate parameterised by a substitution σ. Definition
2 remains unchanged except for the fact that we require the substitution to
be compatible with the element w̄ of the analysis result that we use to create
a substitution instance with. We shall write {x1, . . . , xk} to denote the vector
〈x1 . . . xk〉 (the concrete order is irrelevant) and var(ū) to denote the vector that
remains of ū after removing all non-variables.

Definition 3 (Parameterised Correctness Predicate). A service s satisfies
the parameterised correctness predicate with respect to s? and σ, written R̂, K̂ |=s?

σ

s if and only if (1-4) hold.

1. R̂, K̂ `L,F s?

2. ∀` ∈ E : ε ∈ R̂.`
3. For all p • o?ū`.s′ ∈ E(s) there exists a subexpression p • o?v̄`.s′′ of s? s.t.

– R̂, K̂ `L,F p • o?v̄`.s′′ and
– ∃w̄ ∈ R̂.` : p • o?ū`.s′ ≡ p • o?v̄`.s′′[w̄/L.`] and
Π

dom(σ)@L.`
(w̄) = σ(dom(σ)).

4. For all v • v′!v̄` ∈ E(s) there exists a subexpression u • u′!ū` of s? s.t.
– R̂, K̂ `L,F u • u′!ū` and
– ∃w̄ ∈ R̂.` : v • v′!v̄` ≡ u • u′!ū`[w̄/L.`] and
Π

dom(σ)@L.`
(w̄) = σ(dom(σ)).

Notice that Definition 3 and Definition 2 coincide for empty substitutions.
Therefore, the proof of Theorem 1 follows directly from case 3 of Lemma 2 below,
when we choose σ = ∅.

Lemma 2. Let s1 and s2 be services. The following statements hold.

1. For all σ : Var → Name holds: If R̂, K̂ |=s?
σ s1 and s1

(p•o)�n̄`

// s2 then
R̂, K̂ |=s?

σ s2 and 〈pon̄〉 ∈ K̂.
2. For all σ : Var → Name such that dom(σ) = {x | x ∈ {ū}} holds: If

R̂, K̂ |=s?
σ s1 and s1

(p•o)�ū`

// s2 and poū · σ ∈ K̂ then R̂, K̂ |=s?
σ s2.



3. If R̂, K̂ |=s?
σ s1 and s1

p•obσcū`i n̄`o

// s2 then R̂, K̂ |=s?
σ s2.

When proving Lemma 2 we make use of the fact, that Lemma 1 holds for
the parameterised correctness predicate and all substitutions. All three parts of
Lemma 2 are proven by induction on the inference tree used to establish the
semantic reduction. We start with the base case of case 1, that is, rule [Inv]. Let
σ be an arbitrary substitution and let

p • o!n̄`
(p•o)�n̄`

// 0

such that R̂, K̂ |=s?
σ p • o!n̄`. It is obvious that R̂, K̂ |=s?

σ 0. We know that there
exists u • u′!ū` in s? and w̄ ∈ R̂.` such that uu′ū[w̄/L.`] = pon̄. Hence by rule
[RInv], we obtain pon̄ ∈ K̂. The inductive cases follow easily by (the variation
of) Lemma 1.

When we prove part 2 of Lemma 2, it suffices to concentrate on the base
case, that is, rule [Rec]. So assume

p • o?ū`.s
(p•o)�ū`

// s

and let σ be an appropriate substitution such that R̂, K̂ |=s?
σ p • o?ū`.s. We know

that there exists a p • o?v`.s′ in s? and w̄ ∈ R̂.` such that

R̂, K̂ `L,F p • o?v`.s′ (1)
p • o?u`.s ≡ p • o?v`.s′[w̄/L.`] (2)
Π

dom(σ)@L.`
(w̄) = σ(dom(σ)) (3)

Effectively, according to analysis rule [RRec], it suffices to show, that w̄ ∈ X
(referring to the X in [RRec]), that is, Πpov̄@L.`(w̄) ∈ K̂. Since we know poū·σ ∈
K̂ by the assumption of part 2 of Lemma 2, and the combination of (2) and (3)
yields (p • o?u`.s) · σ ≡ p • o?v`.s′[w̄/L.`] we can conclude this requirement and
thus the proof of this part.

Proving part 3 essentially amounts to looking at two rules, [Com] and [Delsub].
We start with the first one assuming

s1
(p•o)�ū`i

// s′1 s2
(p•o)�n̄`o

// s′2 M(ū, n̄) = σ

s1 | s2
p•obσcū`i n̄`o

// s′1 | s′2

and R̂, K̂ |=s?
σ s1 | s2, hence R̂, K̂ |=s?

σ s1 and R̂, K̂ |=s?
σ s2. We can thus apply the

induction hypothesis on s2 obtaining

R̂, K̂ |=s?
σ s′2 (4)

pon̄ ∈ K̂ (5)



From (5) and M(ū, n̄) = σ we deduce poū · σ ∈ K̂, which allows us to apply
the induction hypothesis for s1 yielding R̂, K̂ |=s?

σ s′1. Together with (4), this
completes the proof of part 3 for rule [Com].

We are left to show part 3 for rule [Delsub] that looks as follows:

s
p•obσ][x7→n]cū`i n̄`o

// s′

[x]`s
p•obσcū`i n̄`o

// s′ · [x 7→ n]

The proof of this part amount to showing the following:

R̂, K̂ |=s?
σ [x]`s implies R̂, K̂ |=s?

σ][x7→n] s (6)

R̂, K̂ |=s?

σ][x7→n] s
′ implies R̂, K̂ |=s?

σ s′ · [x 7→ n] (7)

Fact 6 allows us to apply the induction hypothesis, which yields exactly the
assumption of (7). The application of (7) then concludes this case and the overall
proof (since again the inductive cases are straightforward). We are left to show
(6) since (7) is obvious from Definition 3. Observe that x#F.`i = `. We can thus
deduce (from the definition of Yx in analysis rule [RRec] that n ∈ Πx@L.`′(R̂.`′)
for all `′ ∈ F.`. This suffices to prove (6) and Lemma 2.


