
Static Analysis of Dynamic Communication Systems by
Partner Abstraction ?

Jörg Bauer1 and Reinhard Wilhelm2

1 Informatics and Mathematical Modelling; Technical University of Denmark; Kongens
Lyngby, Denmark;joba@imm.dtu.dk.

2 Informatik; Univ. des Saarlandes; Saarbrücken, Germany;wilhelm@cs.uni-sb.de.

Abstract. Prominent examples of dynamic communication systems include traffic control
systems and ad hoc networks. Dynamic communication systems are hard to verify due to
inherent unboundedness. Unbounded creation and destruction of objects and a dynamically
evolving communication topology are characteristic features.
Partner graph grammarsare presented as an adequate specification formalism for dynamic
communication systems. They are based on the single pushout approach to algebraic graph
transformation and specifically tailored to dynamic communication systems.
We propose a new verification technique based on abstract interpretation of partner graph
grammars. It uses a novel two-layered abstraction,partner abstraction, that keeps precise
information about objectsand their communication partners. We identify statically check-
able cases for which the abstract interpretation is even complete. In particular, applicability
of transformation rules is preserved precisely. The analysis has been implemented in the
hiralysis tool. It is evaluated on a complex case study, car platooning, for which many
interesting properties can be proven automatically.

1 Introduction
We propose a new static analysis for systems with an unbounded number of dynami-
cally created, stateful, linked objects with a constantly evolving communication topol-
ogy: dynamic communication systems. Prominent examples of such systems are wire-
less communication-based traffic control systems and ad-hoc networks, which have to
meet safety-critical requirements that are hard to verify due to the dynamics and un-
boundedness of dynamic communication systems. A rather obvious key observation
will facilitate both the specification and verification of dynamic communication system
later on:

The Partner Principle. The behavior of an object in a dynamic communication system
is determined by its state and by the state of its communication partners.

The partner principle drives both the choice of the specification formalism and the de-
sign of the abstraction. Dynamic communication systems are intuitively modeled us-
ing graph grammars (or graph transformation systems), because a state of a dynamic
communication system can be modeled as a graph, hence the evolution of states as
graph grammar rules. Graph grammars come in many flavors, and we refer to [1] for
an overview. Our specification formalism,partner graph grammars, employs the single
pushout approach to graph transformation with a restricted form of negative applica-
tion conditions, calledpartner constraints, to model dynamic communication systems.
Partner constraints restrict the applicability of rules and reflect the partner principle.
? This work was supported by the German Research Council (DFG) as part of the Transregional

Collaborative Research Center “Automatic Verification and Analysis of Complex Systems”
(SFB/TR 14 AVACS). Seewww.avacs.org for more information.

A partner graph grammarG consists of a set of rules and an initial graph. Thegraph
semantics[[G]] of G is the set of all graphs generated by application of rules starting from
the initial graph. For dynamic communication systems, there are typically an infinite
number of graphs of unbounded size, making verification a hard task.

We aim at automatically computing a bounded over-approximation[[G]]α of [[G]].
Our technique is based on abstract interpretation [2], where two things need to be de-
fined. First, anabstractionα(G) for a single graphG; second,abstract transformers,
i.e., how to apply rules to abstract graphs.

Abstraction of graphs is calledpartner abstraction. As the name suggests, it is again
motivated by the partner principle and summarizes objects that are conjectured to be-
have in the same way, namely, objects in the same state with similar communication
partners. As abstract transformers, we definebest abstract transformersin the spirit
of [3]. Though not computable in general, we show it can be done for partner graph
grammars using the concept ofmaterialization, a restricted form of concretizations.

Contributions.We present an intuitive specification formalism for dynamic communi-
cation systems and an implementation of our analysis that allows to verify topology
properties of them. Using graph grammars to specify and verify dynamic communica-
tion systems is, to the best of our knowledge, novel. Using our tool, we analyzed the
complex platoon case study (c.f., Section 1.1) that earlier approaches failed to verify.
Moreover, the tool proves to be well-suited for system design.

On the theoretical side, we present a static analysis of partner graph grammars,
which can handle negative application conditions. It is based on a novel abstraction
called partner abstraction. Our analysis is shown sound and even complete for some
well-defined cases that occur in practice. In particular, we obtain a result stating the
exact preservation of rule applicability by partner abstraction.

Outline.First, we present our running example: car platooning. After that, we introduce
partner graph grammars as an adequate specification formalism for dynamic commu-
nication systems. Section 3 describes the abstract interpretation of partner graph gram-
mars by partner abstraction. Section 4 reports on our implementation and experiments
with it, before we comment on related work and conclude.

1.1 Case Study: Car Platooning

Our case study is taken from the California PATH project [4], the relevant part of which
is concerned with cars driving on a highway. In order to make better use of the given
space, cars heading for the same direction are supposed to drive very close to each
other buildingplatoons. Platoons can perform actions like merging or splitting. There
are many features that make verification difficult: destruction and dynamic creation of
cars,i.e., driving onto and off the highway, an evolving and unbounded communication
topology, or concurrency. All the verification methods developed in [4] are inappropri-
ate, because they consider static scenarios with a fixed number of cars only.

A platoonconsists of aleader, the foremost car, along with a number offollowers.
A leader without any followers is calledfree agentand is considered a special platoon.
Within a platoon there are communication channels between the leader and each of its
followers. Inter-platoon communication is only between leaders. As a running example,
the platoonmerge maneuveris studied. It allows two approaching platoons to merge.
The merge maneuver is initiated by opening a channel between two distinct platoon

2

leaders,i.e. leaders or free agents. Then, the rear leader passes its followers one by one
to the front leader. Finally, when there are no followers left to the rear leader, it becomes
itself a follower to the front leader.

A Partner Graph Grammar for Platoon Merge.The merge maneuver is straightforward
to model as partner graph grammar with nodes representing cars and edges representing
communication channels. Internal states of cars are modeled as node labels. The rules
Rmerge of a partner graph grammar modeling the merge maneuver are given in Figure 1.
We refer to this figure for an intuitive understanding. The formal notions are introduced
in Section 2. We employ five node labels inRmerge. Three of the labels –ld, flw, andfa
– represent the states of a car being a leader, follower, or free agent, respectively. Two
labels –rl andfl – are used to model situations that occur during a merge maneuver.
They distinguish the leader of the rear and the front platoon during a merge. Note that
the physical position of platoons is not modeled but abstracted by nondeterminism.

The [INITMERGE] rule models the initiation of a merge maneuver. In fact, the rule
stated in Figure 1 is a shorthand denoting four rules, one for each possible combination
of leaders and free agents. Followers are handed over from the rear to the front leader in
rule [PASS]. Eventually, after passing all followers, the rule[LDR2FLW] can be applied
yielding a merged platoon. It makes use of apartner constraintrequiring the rear leader
not to have any followers left. The partner constraint is the set attached to nodeu1 in
rule [LDR2FLW]. It restricts the application of this rule to cases, where the rear leader
has an outgoing edge to a front leader and no other incident edges. There are two simple
rules,[CREATE] and[DESTROY], that are not given in Figure 1 but belong toRmerge.
The[CREATE] rule has an empty left graph and a singlefa-labeled node as right graph.
It caters for unconstrained creation of free agent cars. The[DESTROY] rule is the inverse
rule, whose application removes a free agent.

Part (b) of Figure 1 shows a sample graph generated byRmerge. SubgraphsA, B,
andF are free agent platoons.C andD are platoons of three and four cars, respectively,
whereasE depicts a snapshot during a merge maneuver. All these subgraphs are con-
nected components of the graph. As connected components become crucial later on,
we shall also call themclusters. ClusterD may evolve from clustersB andC by the
application of[INITMERGE] and a subsequent application of[LDR2FLW]. For the ap-
plication of[INITMERGE], x in this rule is set tofa andy to ld. This represents the case,
where the free agent approaches the platoon from behind.

We are interested in proving topology properties of the platoon merge maneuver.
Examples of such properties are: (i) cars have a unique leader, unless they are free
agents, or (ii) the asymmetry of the leadership relation. The latter means that there are
no two cars considering each other to be their leader.

2 Partner Graph Grammars
The purpose of this section is to introduce our formalism for the specification of dy-
namic communication systems. It is calledpartner graph grammarsand is based on the
single-pushout approach to graph transformation. Partner graph grammars are restricted
to injective matches. They feature a restricted form of negative application conditions
called partner constraints intuitively described in Section 1.1. They are an important
feature for concise specifications, because they allow to express, when a rule mustnot
be applied.

3

=⇒x y
u1 u2

x ∈ {ld, fa}
y ∈ {ld, fa}

rl fl
u′1 u′2

=⇒
u2 u3

fl

flw

rl
u′2

flrl

flw

u′3

u′1
u1

{(out, fl)}

u′1 u′2
flw ldfl =⇒

u1 u2

rl

[INITMERGE] [PASS] [LDR2FLW]
(a) Graph transformation rules for the platoon merge maneuver.

C

A

E

F

u1

u2
B

u4

u3

D

fa

fa
fa

ld

ld

flw

flw

flw
flw

flw

flw

flw
flw

flw

flw

rl
fl

(b) A sample communication topology.

Fig. 1. The platoon merge maneuver. Part (a) shows three graph transformation rules:
the initiation of a merge, the hand-over of followers from rear to front leader, and the
end of a merge. Part (b) shows a graph generated from an empty graph by these rules.
Node labels are shown inside nodes.

2.1 Preliminaries

We recall briefly some standard concepts and notations for reasoning about graphs. Let
L be a finite set ofnode labels. A finite directed, node-labeled graph—or graph—G
overL is a triple(V,E, lab), whereV is a finite set of nodes,E ⊆ V × V is a set of
edges, andlab : V → L is a labeling mapping. The set of nodes, edges, and the labeling
of a graphG are writtenVG, EG, andlabG, respectively. The set of all finite graphs over
L is writtenG(L). The unique graph without nodes is called theempty graphand written
E. The disjoint graph union ofG1 andG2 is writtenG1∪̇G2, where∪̇ is also used for
disjoint set union. LetG ∈ G(L) be a graph andv ∈ VG be a node. The set ofincoming
partnersof v is defined to be�Gv = {w ∈ VG | (w, v) ∈ VE}. Analogously, the set
v�G of outgoing partnersand the set ofpartnerspaG(v) = �Gv ∪ v�G are defined.
Let G ∈ G(L) be a graph andR ⊆ VG × VG an equivalence relation, such thatv1Rv2

implies labG(v1) = labG(v2). Thequotient graphG/R is defined to be the graphH
with VH = VG/R, EH = {([v1], [v2]) | (v1, v2) ∈ EG}, andlabH = λ[v].labG(v).
Two nodesv1, v2 ∈ VG areconnected, iff there existu1, . . . , un ∈ VG, whereu1 = v1,
un = v2, andui ∈ paG(ui+1) for 1 ≤ i < n. GraphG is connected, iff all its nodes are
pairwise connected. LetG, H ∈ G(L) be graphs. A mappingh : VG → VH is called
a morphism, iff labG(v) = labH ◦ h(v) for all v ∈ VG, and(h(v1), h(v2)) ∈ EH for
all (v1, v2) ∈ EG. GraphG is a subgraphof H, written G ≤ H, iff there exists an
injective morphism fromG to H. G andH are isomorphic, writtenG ∼= H, if G ≤ H
andH ≤ G. A connected graphG ≤ H is aconnected componentof H, iff G′ = G
for all connected graphsG′ with G ≤ G′ ≤ H. The set of all connected components of
H is writtencc(H). Often, we use the termclusterinstead of connected component.

4

2.2 Definition

LetL be an arbitrary finite set of node labels in the remainder. A partner graph grammar
is a pair(R, I) of a set ofgraph transformation rulesand aninitial graph. Each trans-
formation rule is a four-tuple(L, h, p,R), whereL andR are graphs andh maps nodes
in L to nodes inR injectively. The mappingp may associate apartner constraintwith a
node inL. A rule matchesanother graphG, iff L is a subgraph ofG due to an injective
morphismm—calledmatch— and if partner constraints are satisfied. For a given node
v in L, the partner constraintp(v) restricts the possible sets of partners ofm(v) in G.

If a transformation rule(L, h, p,R) matches graphG due to matchm, it can be
applied toG. The result of the application is the graphH, whose nodes are computed
as follows: For each nodev ∈ VL that is not in the domain ofh, the nodem(v) is
removed fromG. On the other hand, each nodev ∈ VR that is not in the codomain ofh
is disjointly added to the remaining nodes ofG, while for each nodev in the domain of
h, the nodem(v) remains inG. The edges ofH are obtained by removing edges from
G that are incident to disappearing nodes. Moreover, for all edges(v1, v2) in VL, such
that bothm(v1) andm(v2) remain inVH , the edge(m(v1),m(v2)) is removed from
G, while all edges inR are added. In Definition 1,⇀ denotes partial mappings

Definition 1 (Partner Graph Grammar).
1. A graph transformation ruler is a four-tuple(L, h, p,R), whereL,R ∈ G(L),

p : VL ⇀ ℘({in, out} × L), and h : VL ⇀ VR is injective. Apartner graph
grammarG is a pair(R, I), whereR is a finite set of graph transformation rules and
I ∈ G(L) is theinitial graph.

2. LetG ∈ G(L) be a graph and(L, h, p,R) a graph transformation rule. An injective
morphismm from L to G is called amatch, iff it satisfies partner constraints,i.e.,
if for all v ∈ dom(p): p(v) = {in} × labG(�Gm(v)) ∪ {out} × labG(m(v)�G).

3. If r = (L, h, p,R) matchesG by matchm, theresult of the applicationis the graph
H obtained as follows:

– VH = (VG \m(VL \ dom(h))) ∪̇ (VR \ h(dom(h)))
– EH = (EG∩(VH×VH))\{(m(u),m(v)) | (u, v) ∈ EL}∪{(m′(u),m′(v)) |

(u, v) ∈ ER}, wherem′ : VR → VH such thatm′(v) = m(h−1(v)), if
v ∈ h(dom(h)) andm′(v) = v otherwise.

– labH(v) = labG(v), if v 6∈ m(VL); labH(v) = labR(h(m−1(v))), if v ∈
m(VL); and labH(v) = labR(v), if v 6∈ h(dom(h)).

In this case, we writeG r H.
4. LetG = (R, I) be a partner graph grammar. For two graphsG, H ∈ G(L), we write

G R H, iff there exists anr ∈ R, such thatG R H. Thegraph semantics[[G]] of
G is the set{G ∈ G(L) | I ∗

R G} of graphs. A sequenceG1 r1 . . . rn−1 Gn

is called aderivation of lengthn.

Example 1.The partner graph grammarGmerge = (Rmerge,E), whereE is the empty
graph andRmerge was specified in Figure 1(a) (except for the simple rules[CREATE] and
[DESTROY]), serves as a running example. An element of the graph semantics[[Gmerge]]
is shown in Figure 1(b). There, rule[LDR2FLW] doesnot match clusterE, because the
partner constraint is not satisfied: Therl-labeled node has both adjacentflw andfl nodes,
whereas the partner constraint requiresfl’s only. ClusterD may evolve fromB andC
by an application of[INITMERGE] followed by an application of[LDR2FLW].

5

Remember the partner principle stated in the introduction. It observes that the be-
havior of an object is determined by its own state and the state of its communication
partners. In terms of partner graph grammars the partner principle is reflected by partner
constraints. They allow to define the application conditions of rules in terms of objects
and their communication partners. In particular, they can express theabsenceof certain
communication partners.

We conclude this section by stating an important property of partner graph gram-
mars withempty initial graphs. For every graphG in the graph semantics of a partner
graph grammar with an empty initial graph, the disjoint graph unionG∪̇G is also an
element of the graph semantics (up to isomorphism). This property is calledgraph mul-
tiplicity, and it is often observed in dynamic communication systems. For instance in
the platoon case study, it is justified to assume an empty initial highway.

Lemma 1 (Graph Multiplicity). LetG = (R,E) be a partner graph grammar. For any
graphG holds: IfG ∈ [[G]], then there exists anH ∈ [[G]] with H ∼= G∪̇G.

The proof of the lemma is by induction on the lengthn of a derivation ofG from E. If
n = 1, then the applied rule must have an empty left graph, because the initial graph
is empty. It can thus be applied toG, too, yieldingG∪̇G (up to isomorphism). Assume
n > 1 and a derivation of lengthn: E . . . G′ r G. By the induction hypothesis,
G′∪̇G′ is in [[G]]. As both occurrences ofG are not connected,r can be applied to both
occurrences independently yieldingG∪̇G.

3 Partner Abstraction
Our static analysis of dynamic communication systems modeled by partner graph gram-
mars is based on abstract interpretation [2]. Accordingly, we need to define the abstrac-
tion of a single graph first. After that, we will say how the application of transformation
rules is lifted to abstract graphs. We conclude this section by stating soundness and
completeness results.

3.1 Abstract Graphs

Abstract graphs are obtained bypartner abstraction. As the name suggests, this ab-
straction reflects the partner principle, where we observe the behavior of an object in a
dynamic communication system to be determined by its state and the states of its com-
munication partners. It is thus justified to consider two objectspartner equivalent, if
they are in the same stateand if they have communication partners in the same states.

Definition 2 (Partner Equivalence).Let G ∈ G(L) be a graph. Nodesu, v ∈ VG are
partner equivalent, writtenu 1G v, iff labG(u) = labG(v), labG(�Gu) = labG(�Gv),
and labG(u�G) = labG(v�G). We denote the equivalence class ofu wrt. partner
equivalence byu 1G.

Note that partner equivalence does not consider the number of adjacent nodes with a
given label. It only takes the existence of adjacent nodes and the direction of connecting
edges into account. This is a place, where partner abstraction loses some information.
It is obvious from Definition 2 that each equivalence classwrt. partner equivalence can
be uniquely identified by a label and a set of pairs of direction and label. Following [5],
we call such characterizing information acanonical name.

6

Definition 3 (Canonical Names).The setNames(L) = L×℘({in, out}×L) is called
the set ofcanonical names overL. Thecanonical nameof nodeu of graphG is written
canG(u) = (labG(u), {in} × labG(�Gu) ∪ {out} × labG(u�G)).

The abstraction of graphs is a hierarchical process. First, for each connected component,
i.e., for each cluster of a graph, nodes are replaced by their canonical names, which ef-
fectively computes the quotient graphwrt. partner equivalence cluster-wise. Moreover,
we distinguish between singleton equivalence classes and non-singleton equivalence
classes. The latter will be calledsummary nodesborrowing terminology from [5]. In
general, it is possible to count up to somek serving as a parameter of the abstraction as
shown in [6]. For the purpose of this work, however,k = 1 suffices.

The second abstraction step is motivated by the partner principle, too. The behavior
of an object does not depend on objects, with which it does not communicate. Therefore,
in the second abstraction step, we summarize clusters that are isomorphic after quotient
graph building. Here, we do not keep any information about the number of summarized
clusters. Note that this step summarizes clusters instead of nodes thus yielding a hierar-
chical abstraction. The notion of canonical naming proves useful for this step, because
isomorphic clusters become equal when replacing nodes by their canonical names.

Definition 4 (Abstract Clusters and Graphs).Let C ∈ G(L) be a connected graph.
Thepartner abstractionof C is the pair(H,mult), such thatH is a graph withVH =
{canC(u) | u ∈ VC}, EH = {(canC(u), canC(v)) | (u, v) ∈ EC}, and labH =
λ(a, P).a. The second component is a mappingmult : VH → {1, ω}, wheremult(u) =
1, if |u 1C| = 1, andmult(u) = ω, otherwise. We writeαc(C) = (H,mult). The pair
(H,mult) is called anabstract cluster, and a nodeu ∈ VH with mult(u) = ω is called
a summary node. A set of abstract clusters is called anabstract graph. Thepartner
abstractionof graphG ∈ G(L) is the abstract graphα(G) = {αc(C) | C ∈ cc(G)}.

Example 2.The abstraction of the graph representing a communication topology in
Figure 1(b) is presented in Figure 2. Additionally, we show the clusters that are ab-
stracted to the abstract clusters and examples of canonical names of two nodes in the
abstract graph.

Some remarks about canonical names are noteworthy:

– All nodesu in abstract cluster̂C = (C,mult) satisfycanC(u) = u.
– The number of abstract graphs is bounded in terms of the numberl of node labels.

The maximal number of nodes in an abstract cluster isn = l · 22l+1, i.e. there are
at mostc = 22n abstract clusters and2c abstract graphs.

– Partner abstraction constitutes a morphism. The abstraction

α(G) = {(C1,mult1), . . . , (Cn,multn)}

induces a morphism fromG toC1∪̇ . . . ∪̇Cn, that is a mapping fromVG toVC1∪̇. . .∪̇VCn

In the remainder, we shall call it theinduced morphismξ.

3.2 Abstract Transformers

Having defined partner abstraction, the next step is to define abstract transformers,i.e.,
the application of graph transformation rules to abstract graphs. To do so, we will follow

7

u2

EA,B,F

fa flw ld rl flflw flw

u1

C,D

u1 = (flw, {(in, ld)}) u2 = (rl, {(out, flw), (out, fl)})

Fig. 2. The partner abstraction of the graph of Figure 1(b). Summary nodes are drawn
with a thick rim. The clusters that were summarized to one abstract cluster are given
below the respective abstract clusters. Two sample node identities,i.e., canonical names,
are stated in the bottom line.

thebest abstract transformerapproach of [3]. Definition 5 first defines the notion of an
abstract match. It resembles the notion of a match as defined in Definition 1 except for
injectivity, which is lost due to summarization of nodes.

If a graph transformation ruler matches an abstract grapĥG, we apply it to all
concretizations of̂G, where a concretization of̂G is a graphG with α(G) = Ĝ. Af-
ter that, the resulting graphs will be abstracted again usingα. In general, there may be
infinitely many concretizations of̂G. Therefore, we identify a subset of all concretiza-
tions guaranteed to be finite for any abstract graphĜ. Any such concretization is called
a materializationas defined in Definition 6. In Lemma 2, we show that materializa-
tions define the same abstract transformers as concretizations. Hence, they are a way to
compute best abstract transformers.

Definition 5 (Abstract Graph Semantics).Let G = (R, I) be a partner graph gram-
mar, letr = (L, h, p,R) ∈ R be a graph transformation rule, and let̂G = {(C1,mult1),
. . . , (Cn,multn)} be an abstract graph.

1. A morphismm from L to G := C1∪̇ . . . ∪̇Cn is called anabstract matchfrom r
to Ĝ, iff for all D ∈ cc(L) and for all u ∈ VD such thatm(u) ∈ VCi

holds: If
u ∈ dom(p), thenp(u) = {in} × labCi

(�Cim(u)) ∪ {out} × labCi
(m(u)�Ci);

and|m−1(m(u)) ∩ VD |> 1 impliesmulti(m(u)) = ω.
2. Let Ĥ be an abstract graph. It is theresult of an application ofr to Ĝ, written

Ĝ α
r Ĥ, iff there exists an abstract match fromL to Ĝ and there exist graphsM

andM ′, such thatα(M) = Ĝ, M r M ′, andα(M ′) = Ĥ.
3. The abstract graph semantics[[G]]α of G is defined inductively as[[G]]α0 = α(I),

[[G]]αi+1 = [[G]]αi ∪
⋃
{Ĥ | ∃Ĝ ∈ [[G]]αi , r ∈ R.Ĝ α

r Ĥ}, and[[G]]α =
⋃

i≥0[[G]]αi .

Besides potential non-injectivity of an abstract match, there is an additional require-
ment regarding summary nodes. If more than one node of the same connected compo-
nent of the left graph of a rule match the same node in an abstract graph, this node must
be a summary node. The application of a matching rule is defined in terms of applying
the rule to concretizations. Although this definition is not constructive, we will show
how to overcome this by using materializations. The abstract graph semantics collects
all abstract clusters obtained by iterated rule applications.

Example 3.The abstract graph semantics[[Gmerge]]α of the platoon merge implementa-
tion is shown in Figure 3. Sample abstract rule applications are

(1): {C8} α
[INITMERGE] {C11} (2): {C9} α

[PASS]
{C10}

8

C12

fa flrl flrl flw
C5

ld

ld flwrl

C7

flwflflrl
C6

flw flw

rl

rl

rl

flrlflw

flrl

C1 C2 C3 C4

flw

C8

flw flw

flw flw

fl

fl

flw flwfl

C9 C10

C11

flw

Fig. 3. The abstract graph semantics of the platoon merge partner graph grammar
Gmerge. It consists of 12 abstract clusters.

In terms of platoons, a concretization justifying (1) contains two platoons of three cars
each that merge. They are abstracted to abstract{C8}. The result of the application of
[INITMERGE] is abstracted to{C11}.

We shall now derive upper bounds for the number of concretizations needed to
compute abstract transformers. Concretizations within these bounds are calledmateri-
alizations. The numbers given in Definition 6 are not always needed, because there are
many special cases, where smaller numbers suffice. This is exploited in the implementa-
tion of the analysis. In the definition, we use further notations: Given an abstract match
m and a nodeu of abstract cluster(C,mult), env(u) denotes the number of matched
partners ofu, i.e., env(u) = | paC(u) ∩ codom(m) |. For an abstractionα(G) = Ĝ
with induced morphismξ and some nodeu of Ĝ, we writemater(u) for the number of
nodes mapped tou by ξ, i.e., mater(u) = | ξ−1(u) |. We call nodes mapped tou by ξ,
nodes materialized fromu. Finally,matched(u) denotes the number of nodes matching
nodeu of an abstract graph,i.e., for an abstract matchm, matched(u) = |m−1(u) |.
Note that the size of all these entities is statically bounded in terms of the shape of left
graphs and the number of node labels.

Definition 6 (Materialization). Let Ĝ = {(C1,mult1), . . . , (Cn,multn)} be an ab-
stract graph and letr = (L, h, p,R) be a graph transformation rule such thatr matches
Ĝ with abstract matchm. A concretizationG of Ĝ is called amaterializationwith re-
spect tor andm, iff |cc(G)| ≤ |cc(L)| + n, and for eachCi and all summary nodes
u ∈ VCi : max{2,matched(u)} ≤ mater(u) andmater(u) ≤ matched(u)+2env(u)+1.

Lemma 2 (Materialization). If Ĝ α
r Ĥ with abstract matchm, then there exists a

materializationM of Ĝ wrt. r andm and graphM ′ s.t.M r M ′ andα(M ′) = Ĥ.

The proof of the lemma is based on the observation that nodes in a graph that are not
adjacent to a matched node cannot be affected by a rule application. Only matched
nodes may change their label and adjacent edges,i.e., only matched nodesor their
partnersmay change their canonical name. In any case, at least two or the number of
nodes matching a summary node must be materialized from it. If a summary nodeu is
adjacent toenv(u) matched nodes,2env(u) cases must be distinguished, because a node
materialized fromu may or may not be connected to each of the matched partners.

9

Hence, it may or may not be affected by the update. The additional factor of 2 in the
upper bound is needed because either one or more than one materialized nodes may be
affected in each of the2env(u) ways. If a summary nodeu is matched and has matched
partners, the number of of nodes matchingu must be materialized, too, yielding the
additive in the upper bound.

The bound on the number of clusters in a materialization results from the observa-
tion that at most|cc(L)| clusters can be affected by a transformation rule usingL. Since
there aren abstract clusters, and each needs to be represented in any concretization, the
bound for the number of connected components in a materialization is|cc(L)| +n.

Due to the finiteness of all entities bounding the size of materializations also the
number of materializations is finite. Lemma 2 also shows that the abstract graph se-
mantics can be computed iteratively in finite time for any partner graph grammar: Since
[[·]]αi is monotone ini and since there are only finitely many abstract graphs and finitely
many materializations of them the computation of the abstract graph semantics will
terminate. Besides termination, we obtain the following soundness result.

Theorem 1 (Soundness).LetG be a partner graph grammar. Then the abstract graph
semantics is a sound over-approximation of the graph semantics:

⋃
G∈[[G]] α(G) ⊆

[[G]]α.

The proof is obvious, because we defined abstract updates in terms of best abstract
transformers. Theorem 1 is typically used in its counterpositive form to prove properties
of partner graph grammars,i.e., of dynamic communication systems. If a graph does
not occur as a subgraph of an abstract cluster in the abstract graph semantics, it cannot
occur in the concrete graph semantics. In our running example, we can thus prove the
asymmetry and the uniqueness of the leadership relation.

In fact, Theorem 1 can be used to prove even stronger properties. Assume a transfor-
mation rule, where the right graph is a singleton node with an otherwise unused label. If
this label does not occur in the abstract graph semantics, it is guaranteed by soundness
that this rule never matches in the concrete graph semantics. The additional strength is
gained because there may be partner constraints used in the rule.

3.3 Completeness Issues

This section augments the abstract interpretation of partner graph grammars with some
unexpected completeness results: First, we identify cases, where partner abstraction
preserves precisely the applicability of rules. Second, we present statically checkable
criteria that are sufficient for an abstract graph semantics not to contain spurious clusters
or even to decide the word problem for a class of partner graph grammars.

It is clear that general completeness results cannot be expected: There is only a
bounded number of abstract graphs, whereas the structures in left graphs of transfor-
mation rules are unrestricted. However, if we exclude some pathological cases, we can
obtain completeness properties.

One pathological case is abstract clusters that include subgraphs likeb← a→ b,
where thea-labeled node is a summary node. Even though we know that all nodes
represented by it have an outgoing edge to ab-labeled node, we do not know to which of
the two. If such patterns do not occur, we speak ofunique partners. Furthermore, edges

10

between summary nodes are a source of information loss. For example, the following
cycle between summary nodes may result from abstracting a cycle of any even length
of alternatinga andb-labeled nodes:a� b.

Definition 7 (Special Graphs).Let(C,mult) be an abstract cluster. It hasunique part-
ners, iff for all u ∈ VC and for alla ∈ L both|�Cu∩ lab−1

C (a)| and|u�C ∩ lab−1
C (a)|

are at most 1. It has asummary cycle, iff there exists ann > 1 and a subgraph ofC
made up ofn distinct summary nodes and at leastn distinct edges among them.

The definition of summary cycles may seem awkward. It is justified, however, because
we are really interested in cycles, where the direction of the edges does not matter (see
the proof of Theorem 2 for details).

It is obvious that partner abstraction preserves the applicability of rules,i.e., if a rule
matchesG, it also matchesα(G). Without partner constraints, this holds for any homo-
morphic abstraction, whereas partner abstraction additionally guarantees the preserva-
tion of partner constraint satisfaction. The inverse direction,i.e. if a rule matchesα(G)
it also matchesG, does not hold in general. Consider the example of a cycle between
two summary nodes above. This abstract cluster is matched by a rule with a left graph
being a cycle of length 8 of alternatinga andb-labeled nodes. However, this rule does
not match the concretization being a cycle of length 6. Theorem 2 describes cases when
this direction holds. For simplicity, it is formulated in terms of abstract clusters.

Theorem 2 (Match). Let r = (L, h, p,R) be a transformation rule, whereL is con-
nected, and let̂C = (C,mult) be an abstract cluster. If there is an injective abstract
match fromL to {Ĉ}, and Ĉ has unique partners and no summary cycles, thenr
matches allD with αc(D) = Ĉ.

The proof exploits two key observations. First, unique partners imply the following.
If (u, v) ∈ EC , andmult(u) = 1 or mult(v) = 1, then for allu′ ∈ ξ−1(u) and
all v′ ∈ ξ−1(v), also(u′, v′) ∈ ED. W.l.o.g, assumemult(v) = 1. The observation
holds, because we know that allu′ must have an outgoing edge to alabC(v)-labeled
node. As there is only one such partner inD, u′ must be connected tov′. This results
implies that abstract matches that do not contain edges between summary nodes can be
mimicked in any concretization. For edges between summary nodes, we use the second
key observation: As there are no summary cycles, we can organize matched summary
nodes in a forest. The concrete match ofL to D is then constructed by traversing this
forest. If summary nodeu is the root of a tree, we choose an arbitraryu′ ∈ ξ−1(u)
for the concrete match. Ifu is not a root, it has only one edge to an ancestor in the
traversal. Due to the unique partner property, we can then always pick oneu′ in D that
is connected to the pick we made for the ancestor.

We will now define the notion ofcomplete clustersand will show in Theorem 3 that
complete clusters imply completeness of the abstract interpretation of partner graph
grammars. Since we need to apply the cluster multiplicity property stated in Lemma 1,
we concentrate on partner graph grammars with an empty initial graph. We shall call a
rule with an empty left graph acreate rule, because the right graph may be created in an
unconstrained way. The most intricate notion we need in Definition 8 is the notion of an
inductive summary node. A summary nodeu of abstract cluster̂C0 = (C,mult) ∈ [[G]]α

11

is inductive, iff there existŝCn = (C,mult′) ∈ [[G]]α, wheremult′(u) = 1. Moreover,
there need to be a set̂Ci = (Ci,multi) of abstract clusters, such thatu ∈ VCi for all
0 < i < n, andĈi+1 results from a rule application that does not matchu from Ĉi.
Finally, exactly once, one additional node must become partner equivalent tou by a
rule application on this path. Informally, an inductive summary node is part of a loop
incrementing its size by 1.

Example 4.The summary node of abstract clusterC8 of Figure 3 is inductive with
clustersC3 and C5. In terms of platoons, we obtain arbitrarily many followers by
constantly merging with a free agent.

Definition 8 (Complete Clusters).Let G = (R,E) be a partner graph grammar. Ab-
stract clusterĈ ∈ [[G]]α is complete, iff

1. There exists a create rule(E, h, p, R), such thatαC(R) = Ĉ andĈ does not con-
tain any summary nodes.

2. Ĉ contains exactly one summary nodeu, such thatu is inductive with complete
clusters without summary nodes.

3. Ĉ results from a rule application to complete abstract clusters, such that no sum-
mary nodes are matched in the application or created by the application.

Proving the completeness of the clusters of an abstract graph semantics amounts to
imposing a strict order on the clusters, called agenerating order. Minimal elements are
those that result from the application of a create rule.

Example 5.All clusters of[[Gmerge]]α are complete. Case 1 applies toC1. ClustersC2

andC3 come next in the order and are proven complete by case 3. The same goes for
C4, C5, andC6. As mentioned above, case 2 applies to clusterC8. All remaining
clusters result from applying[INITMERGE] to C8 using case 3.

Theorem 3 (Completeness).Let G = (R,E) be a partner graph grammar. If all̂C ∈
[[G]]α are complete, then

⋃
G∈[[G]] α(G) = [[G]]α. If, additionally,R is connected for all

(L, h, p,R) ∈ R, thenG ∈ [[G]]⇔ α(G) ∈ [[G]]α (up to isomorphism).

The proof of the theorem is only sketched here (see [6] for all the details). It is by well-
founded induction on the generating order of the clusters and mimics abstract deriva-
tions in the concrete graph semantics. First, we need to show the uniqueness—up to
isomorphism and number of nodes materialized from summary nodes—of material-
izations. Then, Theorem 2 and Lemma 1 guarantee that the loop in the definition of
inductive summary nodes can be executed arbitrarily many times, always increment-
ing the actual size of the summary node by 1. All other summary nodes evolve from
inductive summary nodes without change of size as ensured by case 3 of Definition 8.
Eventually, Lemma 1 together with connected right graphs guarantees that each abstract
cluster individually can have an arbitrary number of concretizations independently of
other clusters.

For our running example, Theorem 3 implies that we precisely know all the graphs
generated by the platoon merge partner graph grammar, because all right graphs of
rules inRmerge are connected. For this particular grammar, we can thus decide the word
problem using Theorem 3.

12

#rules #node labels#edge labels#pconstraints #abstract clusters
merge 8 5 1 1 12
split 4 6 1 4 13
combined 12 6 1 5 169
combined+ 12 6 1 9 22
queues 30 18 4 34 159
faulty 32 5 1 1 20

Table 1.Experiments conducted with thehiralysis implementation of our analysis.

4 Experimental Evaluation

We have implemented the abstract interpretation of partner graph grammars in the
hiralysis tool. It takes as input a textual representation of a partner graph gram-
mar and produces as output a graphical representation of the abstract graph semantics.
In addition to the material presented here,hiralysis supports edge labels.

Thehiralysis tool has been evaluated on the platoon case study. Some numer-
ical results are shown in Table 1. It shows the size of the input in terms of numbers of
node and edge labels, number of transformation rules, and number of partner constraints
used in the partner graph grammar. Finally, the size of the abstract graph semantics in
terms of numbers of abstract clusters is given.

Among the examples, our running example,merge, is the simplest. Its abstract
graph semantics consisting of 12 clusters was explicitly given in Figure 3. While that
figure was drawn by hand, Figure 4 in Appendix A is generated byhiralysis . Gram-
marsplit implements a split maneuver, while the two versions ofcombinedcombine
merging and splitting. Note thatcombine simply takes the union ofmerge andsplit.
The larger number of abstract clusters results from interferences, where platoons try to
merge and split simultaneously. This is a source of mistakes not taken into account in the
original PATH project [4]. Grammarcombined+repairs these mistakes by introducing
additional partner constraints that restrict the parallelism: another hint to the importance
of partner constraints. For the repaired protocol, we were again able to verify properties
like unique leaders.

Grammarqueuesextends the original PATH specification by introducing buffered
communication. An excerpt of the abstract graph semantics shown in Figure 5 in Ap-
pendix B demonstrates that quite complicated graphs may be handled by our technique.

Grammarfaulty augments the simple merge maneuver with non-deterministically
disappearing, unreliable communication links. Such a model is helpful in discovering
potential failure situations. More examples are reported on in [6].

In the experiments conducted so far, run time was not found to be a problem. All
abstract semantics’ of Table 1 were computed in fractions of seconds. Even thousands
of clusters could be handled within few seconds. However, we only encountered such
numbers for grammars, where we had introduced flaws unintentionally. Therefore, they
do not occur among the results given. Interestingly, thehiralysis output proved
extremely valuable for debugging of such grammars because of its graphical output.

Admittedly, the experiments so far are of modest size, because they are all imple-
mented by hand. We are currently exploring the automated generation ofhiralysis

13

input from more fine-grained specifications of dynamic communication systems such as
those presented in [7]. The expected partner graph grammars may consist of thousands
of rules and will give more hints to the scalability of the technique.

5 Related Work
Partner abstraction was inspired by canonical abstraction of [5], which is particularly
well-suited to reason about dynamically allocated data structures. There, reachability is
crucial, which cannot be expressed by partner abstraction making it a bad choice for
analyzing list-like graphs. However, canonical abstraction is flat, that is, it summarizes
only nodes. Partner abstraction is two-layered: it summarizes nodes in a first step and
clusters in a second step. Even though partner abstraction may be encoded in canonical
abstraction (at a price, as elaborated in [6]), our analysis works fully automatic without
intricate instrumentation predicates. Moreover, it is tailored to dynamic communication
systems, where graph transformation rules seem easier and more intuitive to write down
than the predicate update formulas of [5].

In the very active area of verification of concurrent parameterized systems, many
approaches are popping up. Prominent examples include environment abstraction [8]
and regular model checking based approaches [9–11] to name only a few. While these
techniques are able to deal with infinite-state systems in general, they are typically con-
cerned with unbounded data domains rather than unbounded evolving communication
topologies rendering them orthogonal. Even if they are interested in communication
topologies, it seems that our approach is the only one able to handle completely arbi-
trary graphs. Communication topologies are the focus of an abstract interpretation of
theπ-calculus [12]. However, we believe thatπ is too fine-grained to model topology
evolution hence requiring encoding of features that can be modeled directly using graph
grammars.

An approach to formal verification of graph grammars is given in [13]. However,
no abstraction is used there, making it inappropriate for the verification of unbounded
systems. Another orthogonal approach [14] proved very successful, but is not based
on abstract interpretation. Rather it is based on the unfolding semantics of the given
graph grammar [15] and approximates behavior by means of Petri nets. Recently, this
approach was equipped with counter-example guided abstraction refinement [16].

The only other abstract interpretation based approach was developed independently
in [17] and used for software engineering purposes. The underlying abstraction relies on
counting incoming and outgoing labeled edges,i.e. it is rather edge-centric compared
to our node-centric approach. However, our approach provides clear advantages over
[17]: we are not restricted to deterministic graphs, we have an implementation, we have
a hierarchical abstraction tailored to dynamic communication systems, and we have
completeness results. Most importantly, we support negative application conditions in
terms of partner constraints. Without this feature graph grammars are hardly usable for
dynamic communication systems.

6 Conclusion
We have presented partner graph grammars as an adequate specification formalism for
dynamic communication systems, for which we have defined an abstract interpretation
based on a novel, hierarchical abstraction called partner abstraction. The analysis was

14

shown to be sound and, in some well-defined cases, complete. We have reported on
the hiralysis implementation of the analysis that has been evaluated on the com-
plex platoon case study – automatically revealing flaws and proving so far unproven
topology properties.

Currently we are extending our work on unreliable communication links towards
probabilistic models, where links do not fail arbitrarily but as determined by a proba-
bility distribution. Also we are implementing the automatic generation ofhiralysis
input from more fine-grained models of dynamic communication systems such as those
of [7]. Extending the definition of cluster beyond connected components, making part-
ner abstraction parametric, and deepening the hierarchy in the abstraction are ways of
extending the applicability of our approach beyond dynamic communication systems.

References
1. Rozenberg, G., ed.: Handbook of Graph Grammars and Computing by Graph Transforma-

tions, Volume 1: Foundations. World Scientific (1997)
2. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis

of programs by construction of approximation of fixed points. In: Symp. on Princ. of Prog.
Lang., New York, NY, ACM Press (1977) 238–252

3. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Symp. on
Princ. of Prog. Lang., New York, NY, ACM Press (1979) 269–282

4. Hsu, A., Eskafi, F., Sachs, S., Varaiya, P.: The design of platoon maneuver protocols for
IVHS. Technical Report UCB-ITS-PRR-91-6, University of California, Berkley (1991)

5. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM Trans-
actions on Programming Languages and Systems24(3) (2002) 217–298

6. Bauer, J.: Analysis of Communication Topologies by Partner Abstraction. PhD thesis,
Universiẗat des Saarlandes, (2006) Available from http://www2.imm.dtu.dk/∼joba/phd.pdf.

7. Bauer, J., Schaefer, I., Toben, T., Westphal, B.: Specification and verification of dynamic
communication systems. In: Proc. of the 6th Conference on Application of Concurrency to
System Design (ACSD 2006), IEEE Computer Society (2006)

8. Clarke, E.M., Talupur, M., Veith, H.: Environment abstraction for parameterized verifica-
tion. In Emerson, E.A., Namjoshi, K.S., eds.: VMCAI. Volume 3855 of Lecture Notes in
Computer Science., Springer (2006) 126–141

9. Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking. In Alur, R.,
Peled, D., eds.: CAV. Volume 3114 of Lecture Notes in Computer Science., Springer (2004)
372–386

10. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular tree model check-
ing of complex dynamic data structures. In Yi, K., ed.: SAS. Volume 4134 of Lecture Notes
in Computer Science., Springer (2006) 52–70

11. Bouajjani, A., Jurski, Y., Sighireanu, M.: A generic framework for reasoning about dynamic
networks of infinite-state processes. In Grumberg, O., Huth, M., eds.: In 13th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems. (2007)

12. Venet, A.: Automatic determination of communication topologies in mobile systems. In:
Static Analysis Symposium. (1998) 152–167

13. Heckel, R.: Compositional verification of reactive systems specified by graph transformation.
In: FASE. (1998) 138–153

14. Baldan, P., Corradini, A., K̈onig, B.: Verifying finite-state graph grammars: An unfolding-
based approach. In Gardner, P., Yoshida, N., eds.: CONCUR. Volume 3170 of Lecture Notes
in Computer Science., Springer (2004) 83–98

15. Baldan, P., Corradini, A., Montanari, U.: Unfolding and event structure semantics for graph
grammars. In: FoSSaCS. (1999) 73–89

16. König, B., Kozioura, V.: Counterexample-guided abstraction refinement for the analysis of
graph transformation systems. In: Proc. of TACAS ’06, Springer (2006)

17. Rensink, A., Distefano, D.: Abstract graph transformation. Electr. Notes Theor. Comput.
Sci.157(1) (2006) 39–59

15

A Tool Output – Gmerge

Fig. 4. The abstract graph semantics of the merge implementationGmerge as generated
by thehiralysis tools. The hand-drawn version was given in Figure 3.

16

B Tool Output – Message Buffers Excerpt

Fig. 5. An excerpt of the 159 abstract clusters constituting the abstract graph seman-
tics of the buffered communication based platoon implementation. This is an example
featuring rather involved graphs compared to Figure 4. Consider the X-marked abstract
cluster. The four lighter nodes represent two merging platoons. The top dark node is a
follower being handed over. Attached to it is a node representing a message pending in
the follower’s message buffer.

17

