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Abstract. Infinite or very large state spaces often prohibit the success-
ful verification of graph transformation systems. Abstract graph trans-
formation is an approach that tackles this problem by abstracting graphs
to abstract graphs of bounded size and by lifting application of produc-
tions to abstract graphs. In this work, we present a new framework of
abstractions unifying and generalising existing takes on abstract graph
transformation. The precision of the abstraction can be adjusted accord-
ing to the properties to be verified facilitating abstraction refinement.
We present a modal logic defined on graphs, which is preserved and re-
flected by our abstractions. Finally, we demonstrate the usability of the
framework by verifying a graph transformation model of a firewall.

1 Introduction

Formal verification of graph transformation systems aims at statically proving
or inferring properties of a graph transformation system, where such properties
are typically given in some form of temporal logic. It is crucial to distinguish ver-
ification and simulation, the latter being very useful only for debugging, whereas
verification establishes a property for all computations of a graph transformation
system. Problems do arise when approaching this task. One such problem is the
possibly infinite behaviour of a system which in most cases makes it impossible
to study the whole behaviour of the system. Another problem is space: even for
a finite state space, each state can be quite big to represent.

Some approaches to formal verification of graph transformation systems in-
clude [1,2,3,4,5,6,7,8]. They can be characterised as to which approach to graph
transformation is used for modelling, which verification technique is applied, and
which applications are tackled. The technique presented in [1] feeds finite-state
graph transformation systems, given as a double pushout system, to an off-
the-shelf model checker to verify reactive systems. However, we face the more
general problem of unbounded systems. The approaches presented in [2,3] both
use backwards reachability analysis for hyperedge replacement grammars trying



to reach an initial graph by backwards search from a forbidden configuration.
The technique is applied to mechatronic systems and ad-hoc network routing,
respectively, but, unfortunately, is not guaranteed to terminate. An approxima-
tion of the behaviour of a graph transformation system in terms of Petri net
unfoldings was used in [4] to verify properties of data structures residing in the
run-time heap of programs with dynamically allocated heap memory.

In this work, we present a new take on abstract graph transformation as
introduced independently by [6] and [7]. Abstract graph transformation relies on
abstract interpretation [9] of graph transformation systems, that is, given some
equivalence relation, graphs are quotiented into abstract graphs of bounded,
finite size. Application of productions is then lifted to work on abstract graphs.
The abstraction first introduced in [10] summarises nodes with similar kind and
number of incident edges, while the abstraction of [7] considers similar adjacent
nodes. These two abstractions are generalised in this work and put into a unifying
framework. To this end, we introduce the notion of neighbourhood abstraction
as a part of a general abstraction framework. For this abstraction, nodes are
summarised if they have similar neighbourhood up to some radius i, parameter of
the abstraction. This enables abstractions with different precisions. Additionally,
the number of possible abstract graphs obtained by neighbourhood abstraction
is bounded. We introduce a logic accompanying our abstractions: given a formula
our abstraction guarantees that a) if the formula holds for the original graph,
then it holds for the abstracted graph (preservation); and b) if the formula holds
for the abstracted graph, then it holds for the original one too (reflection).

Contributions.

— Our abstraction framework unifies and generalises previous approaches on
abstract graph transformation. For this particular technique, it supposedly
establishes the most general treatment of local abstractions, that is, abstrac-
tions based on equivalence relations, where equivalence is determined by
local information on nodes. In contrast, equivalences used in shape analysis
[11] of heap programs often consider global properties like reachability.

— Technically, the most surprising result comprises the definition of a modal
logic, properties of which are preserved and reflected by our abstraction.
While preservation is necessary for the soundness of analyses based on our
abstraction, reflection is a rather unusual and strong result.

— Our framework allows for automated abstraction refinement. If a property
cannot be established given a certain neighbourhood size, one may auto-
matically increase this size to obtain more precise results. The only other
approach allowing for automated refinement is [5].

— A canonical representation of abstract graphs reduces otherwise costly iso-
morphism checks to simple equality tests.

— While, certainly, our method has its limitations, it works well for an im-
portant class of systems, dynamic communication systems. They are char-
acterised by a dynamically changing number of communicating objects and
a dynamically changing communication topology. Important examples in-
clude ad-hoc network protocols, traffic control- or mechatronic systems. Our
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Fig. 1. Two networks delimited by a firewall.

method is not suited for the analysis of graphs occurring in runtime heaps.
The latter almost always require reachability information to be taken into
account, something our approach fails to handle satisfactorily.

Outline. To start with, we shall present our case study, a firewall system, in
Sect. 1.1. Section 2 introduces graphs and the general abstraction mechanism,
as well as so called neighbourhood abstraction. In Sect. 3, we present a modal
logic that is preserved and reflected by neighbourhood abstraction. In Sect. 4, a
canonical representation of abstract graphs obtained by neighbourhood abstrac-
tion is defined, which is crucial for the representation of graphs in the actual
implementation of the transformation. Before we conclude in Sect. 6, we briefly
describe, in Sect. 5, how all ingredients can be combined for defining a fully
automatic method for system verification.

1.1 Case Study: Firewalls

Figure 1 shows a graph model of two networks delimited by a firewall (FW).
It has an internal and an external interface (IF), connected respectively to a
network of in-locations (LI) to be protected by the firewall, and a network of
out-locations (LO). Arbitrarily many packets flowing through the network can
be created at locations — safe ones at any location and unsafe ones only at out-
locations. The flow is bi-directional despite the drawing of directed c-edges. The
full set of rules implementing such a firewall are given in App. A. A property we
want to verify is that unsafe packets never reach in-locations.

2 Graphs and Graph Abstraction

We consider finite graphs whose edges are labelled from a finite set of labels,
Lab. We mimic node labels by labelling special edges whose target is a special
node L. Formally, a graph G is a tuple (Ng, Eq, srca, tgtg, labg) where Ng is a
finite set of nodes, E¢ is a finite set of edges disjoint from Ng, srcg : E¢ — Ng
and tgte : Fg — Ng U{Ll} with L ¢ (Ng U Eg) associate with each edge
its source and target nodes, and labg : Fg — Lab labels edges. Let G and H
be graphs. A graph morphism f : G — H is a function from Ng U Eg U {1}
to Ng U Eg U {1} such that f(L) = L and f~'(L) = {L}; f maps nodes to
nodes and edges to edges, i.e. f(Ng) C Ny, f(FEg) C Eg; f is compatible with



Fig. 2. Examples of abstract graphs.

source and target mappings, i.e. srcg o f = f osrcg, and tgty o f = f otgty,
and f preserves labels, f olabg = laby. A morphism f is called injective (resp.
surjective, resp. bijective) if it defines an injective (resp. surjective, resp. bijective)
map. A bijective morphism is also called an isomorphism. We extend labg to
a node to determine its set of labels, ie. labg(v) = {a € Lab | Je € E¢ :
srcg(e) = v, tgtg(e) = L, labg(e) = a}. We write v, and v<g, for the set of
a-outgoing edges and a-incoming edges of node v, respectively, i.e. v>%, = {e €
Eq | srcg(e) = v,labg(e) = a} and symmetrically for v<ig,. For a set of nodes V/,
V2, (resp. V<1%,) is the extension of >%, (resp. <0%,) on sets. Finally, for X,Y
nodes or sets of nodes, we denote X DI>2.Y the set of a-labelled edges between
X and Y, ie. X DY = X % NY <. When the graph G is clear from the
context, we may omit the subscript G. For brevity, in the sequel of the paper we
ignore the node | and simply talk about node labels.

A multiplicity approximates the cardinality of a finite set. For any natural
> 0, let M, be the set {0,1,2,..., p,w} where w ¢ N. The p-multiplicity of
a set U is denoted |U|, and defined by: [U|, = Card(U) if Card(U) < p, and
|U|,, = w otherwise. We write M for the set M, \ {0}. The usual ordering > is
extended to elements of M, by w > A for all A in M,. Sums over multiplicities
are defined as expected writing Y " for p-bounded sums. For the sequel, we fix
two naturals, v, u > 0, to denote multiplicities of sets of nodes (v) and sets of
edges (u), i.e. v and p are parameters of graph abstractions.

2.1 Abstract Graphs and Abstraction

In this section, we discuss the notion of abstract graphs. Abstract graphs, such
as the ones of Fig. 2, represent sets of (concrete) graphs called their concreti-
sations. Every node of an abstract graph is associated with a node multiplicity
indicating the number of concrete graph nodes it represents. The dotted rect-
angles are delimiting groups of nodes induced by an equivalence relation, the
grouping relation, on them. All edges have associated multiplicity information
(from M,,) in their end points: outgoing edges multiplicity, when associated to
the source of the edge, and incoming edges multiplicity when associated to the
target. Sometimes, this multiplicity is shared by several edges, indicated by the
grey arc relating them. Edge multiplicities indicate how many of the depicted
edges should be there in a concretisation. Note that edges related in one of their
end points all have their other end point in the same group of nodes, and all have
the same label. Actually, this is the condition for relating edges. More precisely,
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Fig. 3. Example concretisations of the abstract graphs on Fig. 2.

edge multiplicities are associated with a triple composed of a node, a label and
a group of nodes.

Consider the abstract graph of Fig. 2(a). It represents a set of bipartite
concrete graphs, such as the ones of Fig. 3(a), where a-nodes are connected to
b-nodes by c-edges. Each of these graphs has at least two (as v = 1, w stands
for “two or more”) a-nodes and at least three (w plus one) b-nodes. Moreover,
every a-node has at least two (i.e. w) outgoing c-edges going to b-nodes. All
b-nodes except one have only one incoming edge; the remaining b-node has at
least two incoming edges. The abstract graph of Fig. 2(b) represents a set of
concrete graphs having three a-nodes connected to each other forming b cycles,
such as in Fig. 3(b).

Let us fix some notations. Let A be a set and ~ C A x A be an equivalence
relation over A. For x € A, [z]_ denotes the equivalence class of x induced by ~;,
and A /~ is the set of ~-equivalence classes in A. If ~ and ~ are two equivalence
relations over A such that ~ C ~/, then ~ is called a refinement of ~’.

Definition 1 (abstract graph). An abstract graph S is a structure (Gg,~g
,multy s, multoys, s, multin, g) where

— Gg = (Ng, Es,srcg, tgtg, labg) is a graph;

— ~g C Ng x Ng is an equivalence relation on Ng called the grouping relation;
— mult, s : Ng — M} is a node multiplicity function;

— multous,s: NgxLabx Ng/~gs— M, is an outgoing edges multiplicity function;
— multin, s : NgxLabxNg/~g— M, is an incoming edges multiplicity function.

Moreover, for anyv € Ng, a € Lab and C € Ng/~g, we require multout, s(v, a, C')
= 0iff vy C =@, and multiy s(v,a,C) =0 iff O by v = 9.

Formally, the relation between concretisations of an abstract graph S and S is
captured by abstraction morphisms respecting multiplicity.

Definition 2 (abstraction morphism, concretisation). Let G be a graph
and S be an abstract graph. An abstraction morphism of G into S is a surjective
graph morphism s : G — Gg such that the following conditions are met:



1. for all w € Ng: multy g(w) = [s7*(w)

U’

2. for all w € Ng, for all a € Lab, for all C € Ng/~g, and for all v € s~ (w):

multeus,s(w,a,C) = |v |>f>aG(s_1(C))|M and multiy s(w,a,C) = |(s7(C)) l>i>‘&v|u.

If s : G — S is an abstraction morphism, then G is a concretisation of S. The
set of all concretisations of S is written Concr(S).

As another example, Fig. 4, page 9 shows an abstract graph for the firewall

example from Fig. 1, with v = u = 1. The corresponding abstraction morphism
summarises the two Ll-neighbours of the internal interface to the unique LI-
neighbour of the internal interface in the abstract graph. The three LO nodes
that have only LO neighbours are summarised to a unique node. All other nodes
in the abstract graph have multiplicity one and correspond to a unique node in
the concrete graph.

Note that the requirements on outgoing (resp. incoming) edge multiplicities

guarantee in particular that two different nodes v,v’ of graph G can only be
summarised by an abstraction morphism, if they have the same outgoing and
incoming edges multiplicities with respect to a label and a group of nodes.

Construction of an Abstract Graph. Definitions 1 and 2 are declarative and do
not give a hint on the effective construction of an abstract graph. This can be
done as follows: Let G be a graph and ~, = C Ng X Ng be two equivalence
relations such that = refines ~. Furthermore, assume that for any v,v’ € Ng,
for any C' € N¢ /~, and for any label a: v = v’ implies

w50, = v 5 Cl, and  |Coegu|, = |C gy,

Then = and ~ induce an abstract graph, S=(Gg, ~g, mult,, multoyt, mult;, ), and
an abstraction morphism, s : G — S as follows:

Extend the equivalence relation = to edges as follows: e = €’ if srcg(e) =
srcg(e’), tgta(e) = tgte(e’) and labg(e) = labg(e’). Then S¢ = (Ns, Es,
srcg, tgtg, labg) is the graph quotient of G w.r.t. =, i.e. Ng = Ng /=; Eg =
E¢g /=; and for any edge [e]_ in Eg, srcg([e]=) = [srcg(e)]_, tgtg([e]l=) =
[tgtg(e)]= and labg([e]=) = labg(e). Note that, because of the definition of
= on edges [e]_ is well-defined.

Mapping s : Ng U Eg — Ng U Eg is defined by s(v) = [v]_ and s(e) = [e]_
for any v € Ng and any e € Eg and extended to preserve L.

~g C Ng x Ng is the equivalence relation given by [v]_ ~g [v']_ if v ~ ¢/
for all v,v" € Ng.

mult, : Ng — M is defined by mult, (w)=|s~"(w)| for all w in Ng.
multoue, multiy : Ng x Lab x Ng /~g— M,, are mappings defined by
multou([v]= ,a,C) = [v 5O, multiy([v]= ,a,C) = [C B>,

for all v € Ng, a € Lab, and C € Ng /~s.

It is obvious that S and s are indeed a well-defined abstract graph and abstrac-
tion morphism for two such equivalence relations. The complete formalisation



and proof of this construction is in [12]. Note that not all abstract graphs can
be thus defined. Such abstract graphs necessarily have concretisations and can-
not have parallel edges, which is not the case for general abstract graphs. Still,
any abstract graph admitting concretisations and without parallel edges can be
defined this way. For a graph G and equivalence relations ~ and = as above
we write abstr_graph(G, ~,=) and abstr_morph(G, ~,=) for the abstract graph
and the corresponding abstraction morphism constructed as shown above.

2.2 Isomorphism of Abstract Graphs

Abstract graphs can be abstracted just like graphs, yielding “more abstract”
graphs. In this section we describe this abstraction relation, which is com-
poseable. We then use it to define the notion of isomorphism between abstract
graphs having the interesting property that isomorphic abstract graphs have the
same concretisations.

Definition 3 (abstraction morphism between abstract graphs). An ab-
straction morphism from an abstract graph S to an abstract graph T is a graph
morphism f : Gs — Gr that complies to the following axioms:

1. Yv,v' € Ng: v ~g v implies f(v) ~p f(v);
2. Yw € Np: multy 7(w) = (zgelfﬂ(w) multnys(v));
3. Yw € Nr, Va € Lab, VC € Nt /~1, Yv € f~1(w), it holds

m
muItout’T(w,a,C’) = Z mUltout,S(vvaaD)
D e (f~1(C))/~s

and similarly for the incoming edges multiplicity.

The axioms in the previous definition are well-defined. In the third axiom we
sum up multeus,s(v,a, D) and multy, s(v,a, D) for all D € (f~1(C)) /~g. It is
then necessary that all the triples (v, a, D) belong to the domain of multiy, s, that
is, it is necessary that any such D belongs to Ng /~g. This is indeed the case
thanks to the first axiom.

There is an analogy between an abstraction morphism between abstract
graphs (Def. 3) and an abstraction morphism from a graph into an abstract
graph (Def. 2). Namely, the second axiom in Def. 3 corresponds to the first
axiom in Def. 2, but we sum up node multiplicities instead of simply counting
nodes. Also the third axiom in Def. 3 and the second axiom in Def. 2 are anal-
ogous. Note that the composition of two abstraction morphisms yields another
abstraction morphism [12].

We can now define two abstract graphs S and T to be isomorphic if there
exists an isomorphism f : Gg — G such that both f and f~! are abstraction
morphisms. This leads us to the following interesting statement proven in [12].

Lemma 1. If two abstract graphs S and T are isomorphic, then they have the
same concretisations.



Note that the inverse is not true. To this end, consider two abstract graphs
S and T, where S has a single node of multiplicity two and no edges. T" has
two nodes, each of multiplicity one, and no edges. S and T both have a unique
concretisation (up to graph isomorphism) which is the graph with two nodes
and no edges, but S and T are clearly not isomorphic.

2.3 Neighbourhood Abstraction

So far, we have defined the notion of abstract graphs, concretisations, and ab-
straction morphisms. In our construction of abstract graphs, we assumed the
existence of equivalence relations = and ~ having particular properties. We
shall now define an interesting choice of such relations inducing the notion of
neighbourhood abstractions. This conveys the central idea of our work. In such
an abstract graph, each node represents concrete graph nodes that have similar
neighbourhood, up to some “radius” i. This ¢ is a parameter of the precision of
the neighbourhood abstraction. By gradually increasing ¢, we can obtain more
precise abstractions, if the current one is too imprecise to verify the desired prop-
erties (abstraction refinement). We shall now define equivalence between nodes
according to their neighbourhoods and, subsequently, neighbourhood abstrac-
tion.

Definition 4 (neighbourhood abstraction). Let G be a graph. For each nat-
ural © > 0, we define the i-neighbourhood equivalence relation =; over Ng re-
cursively by:

— v =g v iflabg(v) = labg(v');
— v = v ifv =0V, and v p2C, = o' p>2C

and |C >e>20[, = |C b0,
for all label a in Lab and for all C € N/ =;.

nw

The level i neighbourhood abstraction of G is abstr_graph(G,=;_1,=;) and the
corresponding abstraction morphism is abstr_morph(G,=;_1,=;).

Two nodes are mapped to the same node of the abstract graph if they are
neighbourhood equivalent up to some radius. The grouping relation is also given
by neighbourhood equivalence, but using a smaller radius. Figure 4 shows the
level 1 neighbourhood abstraction of the firewall configuration from Fig. 1 for
p=1land v =1.

It is obvious from the definition that the level ¢ 4+ 1 neighbourhood abstrac-
tion of a graph refines the level ¢ neighbourhood abstraction. This is the basis
of our abstraction refinement mechanism. The neighbourhood abstraction of a
graph is defined syntactically, which ties it to its representation. To avoid this
inconvenient situation, in the sequel by neighbourhood abstraction of a graph
we mean the isomorphism class of the actual abstract graph.

Neighbourhood abstraction behaves well w.r.t. isomorphism (Lemma 2 be-
low). In combination with Lemma 1 this shows that two graphs obtained by
neighbourhood abstraction are isomorphic iff they have the same concretisa-
tions.
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Fig. 4. The level one neighbourhood abstraction of the firewall example. Omitted node
and edge multiplicities are equal to one.

Lemma 2. Let S and T be two abstract graphs obtained by neighbourhood ab-
straction. If S and T admit a common concretisation, then they are isomorphic.

3 A Modal Logic for Graphs and Abstract Graphs

So far, we have delineated a novel abstraction to be employed by abstract graph
transformation, neighbourhood abstraction. For verification, we also need an
accompanying logic to be defined now, which can be evaluated on both concrete
and abstract graphs. A central theorem of our work states that this logic is
preserved and reflected by neighbourhood abstraction.

Before we give the formal definition, let us look at properties for the firewall
configuration of Fig. 1: (1) a packet cannot be safe and unsafe simultaneously;
(2) an in-location cannot be directly connected to an out-location; (3) an unsafe
packet never reaches an in-location; (4) a packet has at most one current posi-
tion. These can be expressed in our logic as follows, where the )at)A operator
is a forward existential modality, indicating the existence of at least A outgoing
c-edge; (at(’\ is similar, but for incoming edges; tt stands for the true formula.

(1) (safe — —unsafe) A (unsafe — —safe) (3) = (LIA (at(*-unsafe)
(2) = (LIAY)"LO) A = (LOA ) -LI) (4) Packet — —at)* it

3.1 Syntax and Semantics of the Logic

Logic formulae are defined by the following syntax (for a € Lab and A € M,,):

pu=a | ¢ | oVve [N e | @le

The nesting depth d(¢) of ¢ measures the maximal number of nested modal-
ities. It is defined recursively as: d(a) = 0, d()a)*-¢) = d((a(*-¢) = 1 + d(¢),
d(—=¢) = d(¢), d(p VvV ¢') = d(d N ¢') = maz(d(¢), d(¢')) for any a in Lab. We
write £; for the set of formulae with nesting depth at most ¢. Logic formulae are
interpreted in graph nodes. For a graph G, a node v in Ng, and a formula ¢,
the satisfaction relation G,v |= ¢ is defined recursively on the structure of ¢ by:

— G,v [Eaifae€lab(v);



G, b0 if G, i 6
GuovEovey it GuEd¢orGoEd,
Gk )a) o it [{e € ve2 | G tgt(e) b= 0}, > X
— Gok @ gif|{e € v | G,srele) = o}, = A
If G,v = ¢, we say that ¢ holds in node v. Intuitively, a formula of the form >a>A¢

holds in a node v if the y-bounded number of a-labelled edges (e) connecting it
to some node v’ (srcg(e) = v and tgto(e) = v') in which ¢ holds is at least A.

Analogously, (a(’\-¢ holds in v if the number of a-labelled edges connecting some
such v' to v is at least A.

The satisfaction relation is defined for an abstract graph almost in the same
way as for a (concrete) graph. The difference is the way it is defined for modali-
ties. There, we no longer count individual edges, but sum up edge multiplicities
instead.

— S,vE)a)yt g if A < S multoy, s(v,a,C), and
— S, @ if A < Yl x multiy s(v,a,C),

where X = {C € Ng/~g |Vw e C. S,w = ¢}. In the firewall example, IF —
(c¢("(LIVLO) holds in all nodes of the level 1 neighbourhood abstraction depicted.

3.2 Preservation and Reflection

Let s : G — S be an abstraction morphism from the graph GG to the abstract
graph S. We say that s preserves a property p if whenever p holds in the node
v of G, it also holds in the node s(v) of S. Inversely, we say that s reflects p if
whenever p holds in the node s(v) of S, it also holds in the node v of G. One
can also define in a similar manner preservation and reflection by an abstraction
morphism between abstract graphs. Preservation and reflection are very impor-
tant characterisations. If an abstraction preserves a set of safety properties, these
properties can be verified on the abstract level. If an abstraction reflects a set
of properties, then any characterisation of an abstract graph also holds for its
concretisations. If both preservation and reflection hold, verifying a property on
a graph is equivalent to verifying it on the abstract level. Neighbourhood ab-
straction features preservation and reflection of logic formulae with appropriate
nesting depth, as stated in the following theorem.

Theorem 1 (Preservation and Reflection). Let G be a graph and S the level
i neighbourhood abstraction of G, for some v > 1, with corresponding abstraction
morphism s : G — S. Then s preserves and reflects L;(Lab).*

4 Preservation of formulae with negation may seem in contradiction with the Morphism
Preservation Theorem for finite structures [13] stating that a first order formula is
preserved by morphism iff it is equivalent to an existential positive formula. Some
modal logic formulae cannot be expressed in first-order logic without negation (e.g.
ﬁ>a)A~tt). However, in our case, abstract graphs contain information on the interpre-
tation of negated formulae, by means of the multiplicity functions explaining this
apparent contradiction.
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An important consequence of it is that neighbourhood abstraction can be para-
metrised by the properties we want to verify by choosing the level of abstraction
that preserves the properties one is interested in. The following lemma formalises
the relation between the logic and neighbourhood equivalence:

Lemma 3. Two nodes v,v" of a graph G are i-neigborhood equivalent if, and
only if, the same L;(Lab) formulae hold in v and in v'.

For our running example, let G be the graph of Fig. 1 and S its level 1 neigh-
bourhood abstraction of Fig. 4. Let s : G — S be the corresponding abstraction
morphism, and let ¢ = LOA)c)"IF and ¢ = LOA)c)')e)"IF. In G, ¢ only holds
for the LO-neighbour of the out interface, and in S, ¢ only holds for the corre-
sponding abstract node. That is, ¢ of nesting depth 1 is preserved and reflected
by s, whereas v, a formula of nesting depth 2, is not reflected. Indeed, in S, ¥
holds in the LO-node with multiplicity w but only in one of the pre-images of
this node in G.

4 Canonical Representation of the Neighbourhood
Abstraction

For abstract graph transformation, it is crucial to determine whether a newly
computed abstract graph has been met before. To avoid expensive isomorphism
checks on abstract graphs, we can benefit from a canonical representation of
neighbourhood abstracted graphs. In effect, this reduces isomorphism checks to
mere equality tests and is another important contribution we make.

Canonical names. Canonical names occur frequently in literature, e.g., in [11].
Here, a canonical name is a unique representation of an equivalence class w.r.t.
a neighbourhood equivalence relation, which is independent of the underlying
graph. For instance, each equivalence class for =( contains only nodes having
the same labels and is identified by this set of labels. It becomes the canonical
name of this equivalence class. Each relation =; is equipped with a set NCan® of
canonical names.

Definition 5 (Canonical Name). The set of level i node canonical names,
NCan®, is defined inductively for 1 > 0:

NCan” = 2bab | |
NCan’t! = NCan® x (NCan’ x Lab — M,,) x (NCan’ x Lab — M,,).

The set ECan’ of level i edge canonical names is ECan’ = NCan® x Lab x NCan'.
Let G be a graph. The mapping namel, maps nodes and edges of G to their
level i canonical name as follows. For node v of G, namel(v) = labg(v), and
name ! (v) = (namel(v), out, in) where for C € NCan' and for each a € Lab
(Nc stands for the set of nodes v' such that namek (v') = C),

out(C,a) = [v g Nel, in(C,a) = [Nc o),

For edge e of G, namel;(e) = (namel, (src(e)), lab(e), namel, (tgt(e))).

11



Note that the number of different level ¢ canonical names is finite. In combina-
tion with Lemma 4 below, we conclude that the number of level ¢ neighbourhood
abstractions is also finite up to isomorphism facilitating the verification of po-
tentially infinite systems.

In the firewall example (Fig. 4), the different level zero canonical names are
C, = {FW}, Cy = {|F}, C3 = {Ll}, Cy = {LO}, Cs = {Packet,safe} and Cg =
{Packet, unsafe}. The level one canonical name for the in-interface is (Cs, 0, in),
where in = {(Cy,in) — 1,(Cs,c) — w}, and 0 is the constant zero function.
The canonical name for the bottom-most LO-node is (Cy, out, in), where out =
{(C4,¢) — 1} and in = {(C4,c) — 1}.

There is an obvious relation between canonical names and the neighbourhood
equivalence expressed in the following central theorem. As a consequence of it
and Lemma 3 we obtain that v =; v/ iff namel,(v) = namel (v'), iff v and v’
satisfy the same £; logic formulae. This closes the circle between neighbourhood
equivalence, canonical names, and logical satisfaction.

Theorem 2. For any i > 0, any graph G, any two nodes v,v’ of G and any two
edges e, €’ of G, v =; v if, and only if, namel,(v) = name (v'), and e =; €’ if,
and only if, namel,(e) = name’, (¢').

Canonical Representation of the Neighbourhood Abstraction Let G be a graph.
Consider the triple C¢ = (name’(Ng), name’(Eg), mult), where mult : name?(Ng)
M, is the function defined by mult(C) = |{v € Ng | name;(v) = C}‘U for all
C € name’(Ng). Then Cg is a canonical representation of the isomorphism class
of the level i neighbourhood abstraction of G, as stated below:

Lemma 4. Let G, H be graphs, and let © > 1. The level i neighbourhood ab-

stractions of G and H are isomorphic if, and only if, Cc and Cy are equal.

By C¢ and Cy are equal, we mean component-wise equality, that is, equality of
the sets of node and edge canonical names and equality of the node multiplicity
functions that define them. Effectively, this allows us to reduce isomorphism
checks on neighbourhood abstracted graphs to mere equality tests.

5 Towards an Automatic Verification Framework

We have defined a framework of neighbourhood abstractions having canonical
representations and showed that an accompanying logic is preserved and reflected
by it. We have not yet said how the application of a graph production rule is
lifted to work on abstract graphs. Unfortunately, for lack of space, we need to
refer the reader to [12] for a detailed treatment. In general, a rule application
consists of three stages (which is typical of abstract graph transformation in
general), where S is an abstract graph and (L, R, p) a production rule.

1. Materialisation: Transform the abstract graph S into the less abstract graph
S’, such that there is an abstraction morphism S’ — S and a matching
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m: L — S’, the image of which is a concrete sub-graph of S’; i.e. a sub-graph
in which all node and edge multiplicities are equal to one. S’ is not unique,
and the aim of materialisation is to construct the set of abstract graphs S
such that for all concretisations G of S, for all matchings m : G — S, there
exists T' € § and abstraction morphisms s : G — T, ¢t : T'— S such that the
image of s o m is concrete in 7.

2. Update: As we are dealing with concrete (sub-)graphs now, rule application
is just as usual and applied to each element of materialisation.

3. Normalisation: The graphs obtained after updates need not necessarily be in
canonical form. Therefore, we need to neighbourhood abstract them again.

We show in [12] that this abstract transformation mechanism is sound, in the
sense that it over-approximates the concrete graph abstraction. If a graph G can
be transformed by rule (L, R, p) yielding a graph H, then G’s abstraction S can
be abstractly transformed by the same rule yielding H’s abstraction 7T'.

The overall verification of a system works as follows. Start with the neigh-
bourhood abstraction of the initial graph of the system to be verified. Given
the abstract transformation defined above, successively apply it to construct an
abstract version of the graph transformation system which has neighbourhood
abstractions as states and which is guaranteed to be finite regardless the original
system. The canonical representation of the neighbourhood abstraction makes
it easy to check whether a newly derived state has already been met before,
which is a very costly operation in normal graph transformations. Moreover, the
abstraction can be parametrised by the property one wants to verify, expressed
in the modal logic. As the modal logic is preserved by the abstraction, one may
now evaluate formulas on finite, abstract graphs to obtain information about the
possibly infinite-state original system. Finally, note that our framework naturally
gives rise to abstraction refinement: If the level i neighbourhood abstraction is
not conclusive, then one can try level ¢ + 1.

Running Ezample. In the abstract graph transformation system (GTS) induced
by the level 1 abstraction of the firewall example, all reachable abstract graphs
have one FW-node and two IF-nodes, to which the different possible configu-
rations of the internal and external networks are connected. The number of
abstract configurations is bounded, whereas the number of concrete configura-
tions is infinite, because of the possibility of creating packets and connecting
new locations. Consider now the four properties listed above. They are all safety
properties, defining invariants that should hold in all state of the GTS. These
properties indeed hold in all states of the abstract GTS. As the four formulae are
of nesting depth one, by reflection of the logic we can deduce that they also hold
in all states of the concrete GTS. For this particular example, the abstraction
mechanism allows to verify the four properties using the level 1 neighbourhood
abstraction.

Usability and Limitations. Our verification framework is fully automatic and
parametrised by the properties of interest. Due to the local nature of neigh-
bourhood abstractions, it works well on systems where updates are determined

13



locally and where reachability is not important. Typical use cases include the
firewall example as given here or wireless traffic control systems as, e.g. the ones
investigated in [7]. Also an application to ad-hoc network routing is promising
but has not yet been explored.

However, our technique is not so suited for systems, where reachability is of
importance, which is often the case for verification of software with dynamically
allocated data structures. For instance, in the case of linked lists, our abstraction
(regardless of radius) cannot distinguish between circular and non circular lists,
which in practice results in lots of spurious states and transitions in the abstract
transition system (i.e. states and transitions that do not exist in the concrete
system). Also, the rather high complexity of our approach might be prohibitive
for really large examples. This is yet to be explored by careful experimentation.

6 Conclusion

We presented a framework of graph abstractions, called neighbourhood abstrac-
tion, which generalises previous approaches to abstract graph transformation, a
method for formal verification of graph transformation systems. The abstraction
is based on regrouping nodes with similar neighbourhood, and can be paramet-
rised by the radius of the neighbourhood to be considered. It is guaranteed to
yield systems of finite, bounded size facilitating their exploration. We also pre-
sented a modal logic that can be interpreted both on graphs and on abstract
graphs. The logic and the abstraction are closely related, which makes it possi-
ble to parametrise the abstraction so that it preserves and reflects the valuation
of formulas. We delineated the implementation of a fully automated verification
framework based on our novel abstractions and facilitated by a canonical form of
abstract graphs. Interestingly, this framework also allows for automated abstrac-
tion refinement. Our proposal is illustrated by an interesting and relevant graph
transformation based model of a firewall system. Usability and limitations of our
approach were clearly identified. Note that related work was already discussed
in the Introduction and that proofs and some other tedious formalities were left
out but can be found in [12].

Future Work. We plan to implement our technique within the GROOVE [14]
framework, a standard tool for graph transformations. This will allow for a more
thorough exploration of more examples and for a qualified judgement on prac-
tical scalability. We believe that our framework caters for all possible local ab-
stractions, where locality refers to the portion of the graph used to determine
the equivalence of nodes. On the other hand, this complicates the verification
of heap-manipulating programs, where reachability, a more global property, is
crucial. Therefore, we are working on abstractions taking reachability into ac-
count. This is similar to abstractions used in the work of Sagiv et al. on shape
analysis (see [11] for an overview) of heap-manipulating programs. In this work,
the authors use logical structures to represent memory states of programs; ab-
stract structures are 3-valued logical structures. Properties on these structures
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are defined using first-order logic with transitive closure (FO+TC) enabling the
definition of reachability. It seems promising to explore the opportunities offered
by FO+TC for abstract graph transformation too.
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A Complete Rules for the Firewall Example

The complete set of rules encoding our firewall example is given in Fig. 5. At

all locations arbitrarily many safe packets may be created,

whereas (arbitrarily

many) unsafe packets may only be created at out-locations (rules P0..P2). Loca-
tions can also consume packets, corresponding to a packet arriving at its destina-
tion (P3/P4). Packets can be sent through connections, which are bi-directional

(P5, P6). When a packet is received by the out-interface

of the firewall, it is

either allowed or denyed (P7, P8). Allowed packets can cross the firewall (P9),
whereas denied packets are destroyed (P10). All packets can cross the firewall
from the inside to the outside (P11). Finally, new locations can be connected

(P12/P13).
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Fig. 5. Rules encoding the functioning of the firewall.
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