
Analysis of Dynamic Communicating Systems by
Hierarchical Abstraction (Draft) ?

Jörg Bauer and Reinhard Wilhelm

Informatik; Univ. des Saarlandes; Saarbrücken, Germany.
{joba,wilhelm}@cs.uni-sb.de

Abstract. We propose a new abstraction technique for verifying topology prop-
erties of dynamic communicating systems (DCS), a special class of infinite-state
systems. DCS are characterized by unbounded creation and destruction of objects
along with an evolving communication connectivity or topology. We employ a
lightweight graph transformation system to specify DCS. Hierarchical Abstrac-
tion computes a bounded over-approximation of all topologies that can occur in a
DCS directly from its transformation rules. Hierarchical Abstraction works in two
steps. First, for each connected component, called cluster, of a topology, objects
sharing a common property are summarized to one abstract object. Then isomor-
phic abstract connected components are summarized to one abstract component,
called abstract cluster. This yields a conservative approximation of all graphs that
may occur during any DCS run. The technique is implemented.

1 Introduction

Dynamic Communicating Systems (DCS) are widespread. Prominent examples include
wireless ad-hoc networks and traffic control systems for cars, trains, and planes. Spec-
ifying and analyzing DCS is a very complex task due to their high dynamics. Both the
number of objects (e.g. laptops, cars, trains, planes) and their communication connec-
tivity vary over time. In general, DCS induce infinite-state transition systems that are
notoriously hard to verify.

Graphs are a very natural choice to model the communication topology of a DCS,
hence graph transformation systems [1] are a natural and intuitive choice to describe
the evolution of a DCS. In this work, a notion of graph transformation systems tailored
to model DCS is defined in Section 2.

A DCS graph transformation system induces an infinite-state transition system with
graphs as states. The states of a transition system are not to be confused with object
states to be defined later. The graphs themselves can be unbounded due to unlimited
creation of objects. The challenge is to analyze an unbounded system of unbounded
graphs.

One way to deal with this class of systems is abstraction in the sense of Abstract
Interpretation [2]. In Section 3, Hierarchical Abstraction is introduced. By applying

? This work was supported by the German Research Council (DFG) as part of the Transregional
Collaborative Research Center “Automatic Verification and Analysis of Complex Systems”
(SFB/TR 14 AVACS). See www.avacs.org for more information.

Fig. 1. A possible topology GT for platoons, fill style of nodes indicating the state of
objects represented by then nods.

Hierarchical Abstraction a bounded over-approximation of all possible graphs is com-
puted directly from the graph transformation system specifying a DCS. It is shown that
the abstraction is sound – the formal basis for proving safety properties of the concrete
system.

Hierarchical Abstraction works in two steps. First, each connected subgraph of a
graph is abstracted by quotient graph building wrt. an equivalence relation. Two objects
are said to be equivalent, if they are in the same state, and if the set of labels of their ad-
jacent objects are equal. Isomorphic abstract connected components, abstract clusters,
are summarized in the second step resulting in an abstract topology, i.e. a set of abstract
clusters. In Section 6.3, we show how to parameterize this notion of abstraction.

We demonstrate our ideas by an interesting, challenging, and practically relevant
case study that is introduced in Section 2.1. Earlier approaches failed to verify cru-
cial properties of this case study. Our technique is implemented and the tool is briefly
introduced in Section 4.

Clearly, Hierarchical Abstraction was inspired by Canonical Abstraction as pre-
sented in the three-valued logic approach to Shape Analysis [11]. The relation between
these to abstraction techniques are explained in Section 5.

2 Modeling Dynamic Communicating Systems

A dynamic communicating system (DCS) consists of a dynamically changing and un-
bounded number of objects with an evolving communication connectivity. Each object
is always in a state, that can change over time. Two communicating objects connected
via a channel are called partners. A maximally connected set of objects is called a clus-
ter, and the connectivity at a certain point in time is called the current communication
topology of the DCS. We assume synchronous communication over channels. A com-
munication topology is modeled as a node-labeled, directed graph with objects as nodes,
the current state of an object as node label and channels as edges. In figures objects are
drawn as circles with different fill styles denoting their states. DCS are characterized by
the following key properties:

2

1. Destruction and unbounded creation of objects.
2. Evolving communication topologies.
3. Objects changing their state depending on their own and their partners’ state. This

captures the intuition of communicating objects and is called the Transition Prin-
ciple.

4. Clusters, set of objects able to communicate with each other, are the crucial entity
of interest.

2.1 Case Study: Platoons

Our case study is taken from the California PATH project [3, 4], the relevant part of
which is concerned with cars driving on a highway. In order to make better use of the
given space, cars heading for the same direction are supposed to drive very near to each
other building platoons. Platoons consist of a leader, the foremost car, along with a
number of followers. A leader without any followers is called free agent and is consid-
ered a special platoon. Within a platoon there are communication channels between the
leader and each of its followers. Inter-platoon communication is only between leaders.
In this work, the platoon merge maneuver is studied. It allows two platoons heading
in the same direction and driving close to each other to merge. Verifying the merge
maneuver is a crucial step in the verification of the platoon case study. Platoons are
prototypical for DCS, because there is no control of how many cars enter and leave the
highway, and because maneuvers like merge imply non-trivial changes in the communi-
cation topology. It was tried to verify platoon protocols such as merge within the PATH
project using the model checker COSPAN [5]. However, the methods were inappropri-
ate, because they did not take into account any dynamics. Only a static scenario with a
fixed number of cars and platoons was considered. The proposed method remedies this
deficit.

Platoons are modeled using five different states that a car can assume. In figures
such as Figure 1, we will use filling styles to distinguish the states of the cars.

1. [LEADER]: The state of a leader car that is currently not involved in a merge ma-
neuver. In figures, this state is depicted as an empty circle.

2. [FLW]: The state of a follower car that is currently not involved in a merge maneu-
ver, depicted as a circle with black filling.

3. [FAGENT]: The state of a car that is moving around alone, depicted in gray filling.
4. [BLDR]: This state is needed to distinguish the two leaders of merging platoons. The

back leader is the one that joins the platoon in front by handing over its followers.
Depicted as nodes filled with horizontal lines.

5. [FLDR]: The front leader receiving followers from the back leader; nodes filled with
vertical lines.

Figure 1 displays a typical topology that might occur during the run of the platoon
system. We have six clusters, five of which are platoons, i.e. a cluster containing [BLDR]
and [FLDR] is not a platoon. Note that undirected edges suffice for our running example.
This is a special instance of the general technique presented in this work.

3

A merge action is initiated by opening a channel between two distinct platoon lead-
ers, i.e. leaders or free agents. In reality such an event is triggered by sensors. On open-
ing this channel the two leaders involved change their state according to their relative
position. Their new states are [BLDR] and [FLDR], respectively. Then the back leader
passes its followers one by one to the front leader. Finally, when there are no followers
to the back leader left, the back leader and the front leader change their states to [FLW]
and [LEADER], respectively.

The aim of this work is to prove topology properties of platoons. These are safety
properties like some cars are never connected shown in Section 4.

2.2 System Evolution

The evolution of a DCS is specified by graph transformation rules. In order to fit the
needs of the application domain, DCS, the single pushout (SPO) approach to graph
transformation as formally introduced in Chapter 4 of [1] is used in a much simplified
form here. Our notion of DCS graph transformation (DCS-GTS) is easy to use and
analyze yet expressive enough to capture the essence of DCS.

In general, a graph transformation system (R, I) consists of a set R of rules and an
initial graph I . Informally, a rule is a pair (L,R) of graphs, called left and right graph
with a mapping from the nodes and edges of L to the nodes and edges of R. A rule
(L,R) can be applied to a graph G, if L matches G. A match is a structure- and label-
preserving mapping m from L to a subgraph of G. After that, the subgraph matched by
L is replaced with R.

In the analysis of DCS, however, the full complexity of general graph transformation
systems is not needed. It suffices to consider three types of rules.

1. Create rules have an empty left graph
2. Destroy rules have an empty right graph
3. Edge rules have a node-bijective mapping from left to right graph

Additionally, we deviate from the standard SPO approach by

– allowing injective matches only
– allowing easy node-label changes (as compared to [6])
– allowing a mild form of negative application conditions as introduced in [7]: Part-

ner Constraints can constrain the set of neighbors of a node in order for a rule to
match

Definition 1 (DCS-GTS). Let L be a finite set of node labels.

1. A graph G over L is a triple G = (V,E, n), where V is the set of nodes and
E ⊆ V × V is the set of edges. The mapping n : V → L assigns labels to nodes.
The set of all graphs over L is written G(L). Given a graph G, VG, EG, and nG

denote the nodes, edges, and the node-labeling of G, respectively.
2. A DCS graph transformation rule r is a 4-tuple (L, h, p,R), where L,G ∈ G(L),
p : VL ⇀ 2L, h : VL → VR and either
(a) VL = ∅ (create rule)

4

(b) VR = ∅ (destroy rule)
(c) VL, VR 6= ∅ and h is bijective (edge rule)

3. A DCS graph transformation system (DCS-GTS) is a pair GTS = (R, I), where
R is a finite set of DCS graph transformation rules and I ∈ G(L) is the initial
graph.

4. A DCS-GTS rule r = (L, h, p,R) matches graph G ∈ G(L), if there is a pair
m = (mn,me) of injective mappings, where mn : VL → VG, me : EL → EG,
such that
(a) nL(v) = nG ◦mn(v) for all v ∈ VL

(b) me(v1, v2) = (mn(v1),mn(v2)) for all (v1, v2) ∈ EL

(c) If v ∈ dom(p), then p(v) = {nG(v′)|(v′,mn(v)) ∈ EG or (mn(v), v′) ∈ EG}
Conditions (a,b) define a graph homomorphism. The pair m is called a (concrete)
match from r to G. If m is a match, then mn and me denote the node and edge
mappings, respectively.

5. Let r = (L, h, p,R) be a transformation rule matching G via match m. The result
of the application of r to G wrt. m is the graph H with
(a) H = G∪̇R, if r is a create rule, and ∪̇ is the disjoint union of graphs.
(b) VH = VG \mn(VL), EH = EG ∩ (VH × VH), nH = nG |VH

, if r is a destroy
rule.

(c) If r is an edge rule, then

VH = VG

EH = (EG \me(EL)) ∪ {(mn(v1),mn(v2)) | (h(v1), h(v2)) ∈ ER}

nH(v) =
{

nR(h(v′)) if v = mn(v′)
nG(v) otherwise

6. We write G r H if H is the result of applying rule r to G. We write G R H , if
there exist a rule r ∈ R such that G r H .

7. Given a DCS-GTS GTS = (R, I), we write ∗
R for the reflexive, transitive closure

of the relation R . The semantics of GTS is defined to be

[[GTS]] =def {G | I ∗
R G}

A sequenceG1 R G2 ... R Gn is called a run of length n. The pair ([[GTS]], R)
is called the DCS transition system induced by GTS.

Later on, the notion of connected components is used frequently. Here is the formal
introduction.

Definition 2 (Connected Components). Let (G = (V,E, n) be a graph over an arbi-
trary, finite set of node labels. The set of connected components of G is defined wrt. the
equivalence relation ∼c on V :

v1 ∼c v2 ⇐⇒ def ∃u1, . . . , un ∈ V. u1 = v1 ∧ un = v2 ∧∧
1≤i<n(ui, ui+1) ∈ E ∨ (ui+1, ui) ∈ E

A connected component of G is a graph whose nodes are an element of V/∼c. The set
of all connected components ofG is written cc(G). A graph is connected, if all its nodes
are ∼c equivalent. The set of all connected graphs over node labels L is written CC(L).

5

Specification of Platoons Now, the set P of transformation rules specifying platoons is
introduced.

[CREATE] [DESTROY]
[CREATE] and [DESTROY] are the most simple rules of P . At any time a new

free agent can be created by [CREATE], an existing free agent can be destroyed by
[DESTROY]. This captures the dynamics of creation and destruction that are typical to
DCS. [CREATE] matches any graph and can always be applied, whereas [DESTROY]can
be applied to a graph with at least one [FAGENT]. [CREATE] and [DESTROY] are ob-
viously instances of create and destroy rule, whereas all the remaining rules are edge
rules.

[SENSOR1] [SENSOR2]

[SENSOR3] [SENSOR4]
These four rules model the sensor-triggered opening of a channel between platoon

leaders. Recall that also free agents can be considered platoon leaders. In [SENSOR1]
two distinct free agents get connected by a channel, while changing their states to
[BLDR] and [FLDR], respectively. The same happens to two distinct [LEADER] cars,
or to [LEADER] and [FAGENT] cars, respectively in rules [SENSOR2-4].

[PASS]

[LDR2FLW]

[PASS] formalizes the hand-over of a follower from a back to a front leader. Whenever
we find a topology with connected back and front leaders and a follower connected to
the back leader, the [BLDR]–[FLW] edge can be deleted and a new [FLDR]–[FLW] edge
can be inserted. The set of nodes remains unchanged.

Note the {[FLDR]} annotation of the [BLDR] car, v, in rule [LDR2FLW]. This is an
instance of a partner constraint. It means that, in order for [LDR2FLW] to match a graph
G via mapping m, the set of labels of m(v)’s partners in G must equal {[FLDR]}. In
this case, it codes, that the back leader has only front leaders as partners and therefore
no more followers left.

Figure 2 shows a sample run of this DCS-GTS.

The Cluster Multiplicity and the Transition Principle Before bounded abstraction of
both graphs and a whole DCS transition system are introduced, two fundamental prop-

6

[SENSOR1]

[LDR2FLW]

[SENSOR3]

[PASS]

[LDR2FLW]

Fig. 2. A platoon sample run of length 6: The names of rules applied label the transition, the
nodes that a rule matches are enclosed in gray polygons. The run merges two free agents to build
a new platoon, which afterwards merges with another platoon.

erties of the whole class of DCS are presented. The first is concerned with cluster mul-
tiplicity and is called the Cluster Multiplicity Principle:

If some cluster can evolve from the empty graph, then arbitrarily many of these
clusters can arise.

If some cluster C can be constructed starting with the empty graph, then all the nodes
that need to be created to construct an isomorphic copy C ′ of it can be created arbi-
trarily often and independently of the rest of the topology due to unlimited creation in
DCS. Also, the existence of C does not prevent C ′ from being created, because partner
constraints only affect changes within one cluster and do not affect other clusters. The
Cluster Multiplicity Principle resembles a Pumping Lemma for DCS.

The second principle reflects the way objects can change their state in DCS and is
thus called the Transition Principle.

The change of an object’s state depends on its own state and the states of its partners.

Intuitively, object states correspond to roles in protocols, and the role of an object and
the set of roles of partners determine the next transition. Due to communication between
them, partners mutually influence their states. The Transition Principle is reflected in the
partner constraints and in cluster abstraction, which is introduced in Section 3.

3 Computing the Abstract Transition System

Verifying properties of a DCS induced by a DCS graph transformation system GTS
means proving properties of unbounded sequences of graphs of unbounded size. The
challenge is to find a bounded approximation of this behavior preserving relevant prop-
erties. First, Hierarchical Abstraction abstracts arbitrary graphs to abstract topologies.
After that, the concrete graph transformation rules are directly applied to such abstract
topologies.

3.1 Abstract Topologies

For the rest of this section, if not mentioned otherwise, let L be a set of node labels and
let G ∈ G(L) be a graph over these labels.

7

Hierarchical Abstraction consists of two consecutive phases: cluster abstraction and
topology abstraction. Cluster abstraction is based on the Transition Principle, whereas
topology abstraction is based on the Cluster Multiplicity Principle.

Cluster abstraction is defined in terms of quotient graph building with respect to an
equivalence relation, where, additionally, some multiplicity information is kept in the
quotient graph. Equivalence of objects means agreement on the set of possible tran-
sitions, i.e. the choice of the relation is motivated by the Transition Principle. As a
potential change of an object’s state is mainly determined by its own and its partners’
states, two objects can be considered equivalent (with respect to the next transition) if
they are in the same state and if their partners are in the same states. In this case they are
summarized, i.e. collected into one equivalence class represented by an abstract object.

The cluster abstraction of a given graph is a quotient graph wrt. node equivalence.
It has node labels L×{0, 1}. There is an edge between two equivalence classes, if there
is an edge between two members of the two classes. The label of an equivalence class
is the label of its representatives plus a multiplicity bit. If an equivalence class consists
of more than one node, it is specially marked by a label (, 1). Such a node is called a
summary node. In figures, summary nodes are drawn with double lines. The building of
two quotient graphs is shown exemplarily in Figure 3.

Definition 3 (Cluster Abstraction). Let G ∈ CC(L) be a connected graph. The nodes
v1, v2 ∈ VG are equivalent, written v1 ∼c v2, if and only if

1. n(v1) = n(v2)
2. {n(v) | (v, v1) ∈ EG} = {n(v) | (v, v2) ∈ EG}
3. {n(v) | (v1, v) ∈ EG} = {n(v) | (v2, v) ∈ EG}

The quotient graph G/∼c ∈ G(L× {0, 1}) with

G/∼c =def (V/∼c, {([v1], [v2]) | (v1, v2) ∈ E}, λ[v].(n(v), [v] > 1)

is called the cluster abstraction of G and written αc(G). A node v with label (, 1) in a
cluster abstraction is called a summary node.

Note, that cluster abstraction is well-defined, because ∼c defines an equivalence
relation, and because all nodes summarized to an abstract one have the same label –
implying the well-definedness of the node-labeling. Two examples of quotient graph
building wrt. ∼c are given in Figure 3.

For any connected graph G the abstraction αc(G) has at most |L| ·2|2·L +1| nodes.
Each node can then be identified with its unique pair of label and set of partner labels,
its canonical name. This gives rise to the canonical representation of αc(G). The canon-
ical representation of isomorphic graphs αc(G) and αc(H) is identical simplifying the
handling of isomorphic graphs.

Definition 4 (Canonical Names). Let G ∈ G(L) be a connected graph and let H =
αc(G) be its cluster abstraction. The canonical name of node v ∈ H is the pair

kn(v) =def (nH(v), {(nH(v′), 0), (nH(v′′), 1) | (v, v′) ∈ EH , (v′′, v) ∈ EH}, |v|> 1)

8

Fig. 3. Building a quotient graph wrt. ∼c by ”crossing the dashed line”: Summary nodes are
drawn with double lines. Arrows indicate, to which equivalence class a node belongs. The addi-
tional information attached to the nodes in the quotient graph characterizes the equivalence class
by stating label and set of partner labels.

The canonical representation of H is the graph k(H) with Vk(H) = {kn(v) | v ∈ VH}
and Ek(H) = {(kn(v), kn(v′) | (v, v′) ∈ EH} as well as nk(H) = λv.nH(v′) if
v = kn(v′).

For a given set L of node labels, we write CG(L) for the set of all graphs G ∈
CC(L×{0, 1}) with VG ⊆ L×P(L×{0, 1})×{0, 1}. An element of CG(L) is called
an abstract cluster. A set of abstract clusters is called an abstract topology.

If cluster abstraction was applied to a graph G with several connected components
in the same way as defined above, it would yield a bounded abstraction of G due to the
bounded number of nodes in cluster abstracted graphs. However, in order not to mix up
nodes from different clusters – the main entity of interest in DCS – cluster abstraction
will only be applied to single connected graphs. The following lemma is obvious. It
states that cluster abstraction preserves connectivity of graphs.

Lemma 1. If G ∈ CCL, then αc(G) ∈ CCL× {0, 1}.

While cluster abstraction reflects the Transition Principle, the next abstraction step,
called topology abstraction, reflects the Cluster Multiplicity Principle. topology abstrac-
tion is an isomorphic reduction reducing a setM of graphs to its maximal subset without
distinct isomorphic elements. The isomorphic reduction is applied to the set of graphs
resulting from cluster abstraction. It makes use of the newly defined notion of canonical
representations.

The following definition introduces Hierarchical Abstraction and demonstrates it
to be the result of two successive abstraction steps: cluster abstraction and topology
abstraction. First, cluster abstraction is lifted to work element-wise on sets of connected
graphs. This models – and is, in fact, isomorphic to – graphs with an arbitrary number of
connected components. topology abstraction is the isomorphic reduction of this result
computed using canonical representations.

9

Definition 5 (Hierarchical Abstraction). Let M ∈ P(CC(L)) be a set of connected
graphs. The cluster abstraction of M is the set

αc(M) =def {αc(H) | H ∈M}

The topology abstraction of a set N ∈ P(CC(L× {0, 1})) is the set

αt(N) =def {k(H ′) | H ′ ∈ N}.

The Hierarchical Abstraction of M is the defined to be

α(M) =def αt ◦ αc(M)

The bottom line of Figure 4 shows the abstract topology α(GT), where GT was
given in Figure 1. Note the summary nodes representing more than one [FLW] node.
The canonical names of the seven nodes in the bottom line are (from left to right):

1. ([FAGENT], ∅, 0)
2. ([LEADER], {([FLW], 0), ([FLW], 1)}, 0)
3. ([FLW], {([LEADER], 0), ([LEADER], 1)}, 1)
4. ([FLW], {([BLDR], 0), ([BLDR], 1)}, 1)
5. ([BLDR], {([FLW], 0), ([FLW], 1), ([FLDR], 0), ([FLDR], 1)}, 0)
6. ([FLDR], {([FLW], 0), ([FLW], 1), ([BLDR], 0), ([BLDR], 1)}, 0)
7. ([FLW], {([FLDR], 0), ([FLDR], 1)}, 0)

Note that in the second component of the canonical names all neighbor labels occur
with both 0 and 1, denoting outgoing and incoming edges. This is because our running
example is an instance of an undirected graph.

Properties We will now state two algebraically interesting properties concerning our
abstractions. First, αc, αt, and α are shown to form Galois connections given appropri-
ate domains. So far, we have reasoned about connected graphs only. This seems reason-
able, because it is much simpler to impose a partial order on sets of connected graphs
by just taking subset inclusion. In the case of general graphs, a partial order would have
to reason about subgraphs, too.

Lemma 2. Let L be a finite set of node labels. Let L1, L2, and L3 be the complete
lattices P(CC(L)), P(CC(L × {0, 1})), and P(CG(L)), respectively; all ordered by
subset inclusion. The following four-tuples are Galois connections.

1. (L1, αc, γc, L2)
2. (L2, αt, γt, L3)
3. (L1, α, γ, L3)

where for for each f ∈ {αc, αt, α} the concretization is defined to be γf (M) =
⋃
{N |

f(N) ⊆M}.

The second algebraic observation concerns homomorphisms. Informally speaking,
the abstractions are homomorphisms between graphs. The corresponding lemma is
stated in terms of connected graphs and can, of course, be easily lifted to disjoint unions
of connected graphs, because disjoint graphs cannot interfere with he homomorphism
requirements.

10

Fig. 4. Cluster abstraction, topology abstraction, and Hierarchical Abstraction applied
to the graph GT from Figure 1 resulting in abstract topology T .

Lemma 3. For each connected component C ∈ CC(L) and its abstraction α({C}) =
{Ĉ}, there is a homomorphism uniquely determined by h : VC → VĈ by

h(v) = kn([v])

where [·] denotes the equivalence class wrt. αc.

Statements about the precision of the abstraction will be made in Section 3.3.

3.2 Abstract Rule Applications

In this section, it will be explained, how the rules of a graph transformation system
GTS are applied to abstract topologies. Informally, the major difference is that abstract
matches are not required to be injective. This is of course due to the possibility of
summary nodes in an abstract topology. Several nodes in the left side of a rule may thus
match the same summary node. In order to apply the rule as defined for the injective
match case, identical copies of the matching summary node are to be made. This process
is called node materialization.

Due to cluster abstraction, an element of an abstract topology, i.e. an abstract cluster,
may stand for an arbitrary number of concrete clusters. The consequence for abstract
matches is the possibility to allow an arbitrary number of copies of abstract clusters.
This concept is called cluster materialization. Hence, a rule is not matched against a set
of abstract clusters, but a multiset of abstract clusters. The set of multisets of a set M is
written Pm(M).

11

Definition 6. A rule (L, h, p,R) matches a setM ∈ P(CG(L)), if there exist a multiset
M ′ ∈ Pm(M) and a pair m = (mn,me) of mappings

mn : VL → ∪̇G∈M ′VG

me : EL → ∪̇G∈M ′EG

such that

1. For all v ∈ VL, if mn(v) ∈ VG for some G ∈M ′, then nL(v) = (nG ◦mn(v),).
2. me(v1, v2) = (mn(v1),mn(v2)) for all (v1, v2) ∈ EL.
3. If v ∈ dom(p) andmn(v) ∈ G for someG ∈M ′, then p(v) = {(nG(v′),)|(v′,mn(v)) ∈
EG or (mn(v), v′) ∈ EG}

4. If there are v1 6= v2 ∈ VL and G ∈ M ′ such that mn(v1),mn(v2) ∈ G and
mn(v1) = mn(v2), then nG(mn(v1)) = (, 1), i.e. a summary node.

The pair m is called an abstract match.

The first three conditions of the above definition closely resemble the conditions in
the definition of concrete matches. There are two exceptions. Node labels in an abstract
topology carry a summary bit, which is irrelevant for the first three conditions. Sec-
ondly, there are additional clauses picking one among a multiset of abstract clusters for
formulating the requirements in the definition. In fact, given an abstract topology M ,
there can be many multisets M ′ meeting the requirements in Definition 6. The multiset
formalization allows to specify cluster materialization concisely. New to the match def-
inition is requirement 4. It states, that non-injective places in a match have to occur at
summary nodes.

The issue of cluster materialization was taken care of by the multisets in Defini-
tion 6; node materialization needs to be considered now. Node materialization is done,
when a summary node v is matched. As many identical non-summary copies of v as
there are nodes in the left graph of the rule matching v are then made. After that, the
update is computed as specified for the concrete case in Definition 1. The updated graph
is abstracted again in order to guarantee boundedness. Each summary node that is ma-
terialized from induces a case distinction: Either the summary node stood for exactly
as many nodes as it was matched by and it disappears after materialization; or it stood
for one more node than it was matched by and becomes a non-summary node after ma-
terialization; or it remains unchanged. This yields a blow-up exponential in the number
of matched summary nodes. Technically, the blow-up is hidden in R0 and R1 being
arbitrary subsets of the set of matched summary nodes.

Definition 7. Let r ∈ R be a graph transformation rule and let M ∈ P(CG(L))
be an abstract topology, such that r matches M . Let M ′ be the multiset meeting the
requirements from Definition 6 and let m be the corresponding abstract match. Finally,
let G be the disjoint union of the abstract clusters in M ′. The graph G′ is a node
materialization of M wrt. rule r and abstract match m, if there are disjoint sets

R0, R1 ⊆ {v ∈ VG | nG(v) = (, 1) ∧ ∃v′ ∈ VL.mn(v′) = v}

such that

12

1. VG′ = (G∪̇{v ∈ VL | nG(mn(v)) = (, 1)}) \R0

2. EG′ = (EG ∪ {(v, v′) | v ∈ L ∧ (mn(v), v′) ∈ EG} ∪ {(v′, v) | v ∈ L ∧
(v′,mn(v)) ∈ EG}) ∩ (VG′ × VG′)

3. nG′(v) =

nG(v) if v ∈ VG \R1

(l, 0) if v ∈ R1 ∧ nG(v) = (l, 1)
(nL(v), 0) otherwise

The (concrete) match m′ = (m′
n,m

′
e), defined as follows, is called the materialization

induced match.

m′
n(v) =

{
mn(v) if nG(mn(v)) = (, 0)
v otherwise m′

e(v1, v2) = (m′
n(v1),m′

n(v2))

Some remarks about Definition 7:

– G in the definition is not an element of P(CG(L)) any more. The disjoint graph
union denies the possibility of canonical node naming.

– A materialized node carries the same ”identity” as the original node in the left graph
of the rule matching a summary node. These materialized nodes cannot be in the
original abstract cluster, because it only contains canonical node names.

– The exponential blow-up mentioned recently is hidden in the Ri sets of Defini-
tion 7. The definition requires the Ri to be some subsets of the set of all summary
nodes that are in the image of the match m.

– The pair m′ defines in fact a (concrete) match. The crucial point is that m′
e is well-

defined. This can be easily seen by plugging in the definition of m′
n and by then

examining the definition of EG′ .

Definition 8. Let GTS = (R, I) be a graph transformation system. Let r ∈ R be a
rule and let M,M ′ ∈ P(CG(L)) be abstract topologies. M ′ is a possible update of M
wrt. r, written M α

r M
′, if

1. r matches M by means of an abstract match m.
2. There is some node materializationG of M wrt. r and m, where the induced match

is m′.
3. G r G

′ wrt. m′.
4. M ′ = α(cc(G′))

If M ′ is the union of all possible updates of M wrt. r is written M →r M
′. If M ′ is the

union of all possible updates wrt. all rules in a set R of rules, we write M →R M ′.
The abstract semantics of GTS is defined as follows:

[[GTS]]0α =def α(cc(I))
[[GTS]]i+1

α =def [[GTS]]iα ∪M , where [[GTS]]iα →α
R M

[[GTS]]α =def

⋃
i≥0[[GTS]]iα

Definition 6, Definition 7, and Definition 8 are shown at work in Figure 5 and Fig-
ure 6. In the first of these figures, the rule [SENSOR1] is applied to the abstract topology
T given in the bottom of Figure 4. In the second figure, [PASS] is applied to the same
abstract topology. The set of all abstract clusters that can evolve for our case study is
computed and presented using the implementation of our analysis in Section 4.

13

Fig. 5. Abstract Application of [SENSOR1] to abstract topology T : The left graph of
the rule matches T by instantiating M ′ in Definition 6 to be the multiset {{C,C}}.
This is called cluster materialization. As no summary nodes are involved [SENSOR1]
can be applied to the disjoint graph union of {{C,C}} like in the concrete case – the
concrete update. The resulting cluster is then abstracted again and added to T . The final
outcome of the application is shown in the bottom line. This is in fact the only possible
application of r to T .

3.3 Properties

Lemma 4. The abstract semantics [[GTS]]α is a finite set for any graph transformation
system GTS

This lemma is an immediate consequence of the bounded number of canonical
names. Together with the monotonicity in the definition of [[·]]iα it guarantees the ter-
mination of an algorithm correctly implementing the technique.

The first and most important theorem is a soundness theorem. Each connected graph
that can evolve from the initial graph is in the concretization of one abstract cluster
from the abstract semantics, i.e. the abstract semantics is an over-approximation of the
concrete semantics.

14

Theorem 1 (Soundness). Let GTS be a graph transition system. For everyG ∈ [[GTS]]
and every connected component C of G, there is an abstract cluster Ĉ ∈ [[GTS]]α such
that α({C}) = {Ĉ}.

Proof Let GTS = (R, I). The proof is by induction on the length n of the sequence
deriving G.

I = G0 R G1 R . . . R Gn = G

Induction Base n = 0. In this case G = I and the correctness follows from the defini-
tion of [[GTS]]0α and the properties of α.
Induction Step: Assume we have proven the property up to some n−1, i.e. for the above
derivation the induction hypothesis reads as follows. For each C ∈ cc(Gn−1) there is
some abstract cluster Ĉ ∈ [[GTS]]α such that α({C}) = {Ĉ}. Let r ∈ R be the rule
leading to Gn−1 r Gn.

If r is a create rule, the result follows immediately, because create rules can already
be applied to [[GTS]]0α, i.e. because of (4) in Definition 8, [[GTS]]1α ⊇ α(cc(R)) for each
right graph R of each rule.

If r = (L, h, p,R) has a non-empty left graph, the proof comprises two major
subproofs: (i) A concrete match implies an abstract match; (ii) Node materialization
works fine. The rest is obvious from clauses (3) and (4) of Definition 8.
Concrete match ⇒ abstract match. Because of Gn−1 r Gn, there exist a concrete
match m = (mn,me) matching r against G. Let M denote the set of connected com-
ponents of Gn−1 matched by m, i.e.

M = {C ∈ cc(Gn−1) | VC ∩mn(VL) 6= ∅}

Because of the induction hypothesis, we know that the multiset

M ′ = ∪̇m

C∈Mα({C})

exists in [[GTS]]α. This is the choice for the multiset required in Definition 6. This point
clarifies the concept of cluster materialization. We need a multiset here, because several
concrete connected components may be abstracted to the same abstract cluster. From
now on, we deliberately confuse M ′ and the disjoint union of its elements.

Lemma 3 showed that there is a graph homomorphism fromM toM ′, the induction
hypothesis implies that there is a homomorphism from L to M . We define m′ to be the
functional composition of these two, which is also a homomorphism. Homomorphism
m′ is our choice for the abstract match. As it is a homomorphism, we have proved re-
quirements (1) and (2) of Definition 6. Requirement (3) states the fulfillment of partner
constraints, which again follows immediately from the homomorphism property of m′.
Partner constraints are obviously invariant under homomorphisms.

Consider requirement (4) and assume m′
n(v1) = m′

n(v2) for v1 6= v2 ∈ VL. This
means kn([mn(v1)]) = kn([mn(v2)]). As mn is injective and kn maps only αc equiva-
lent nodes to the same canonical name, the size of [mn(v1)] must be at least 2 – meaning
that nM ′(m′

n(v1)) = (, 1).
Node materialization. The crucial part in Definition 7 is how to pick the setsR0 andR1.
Once we have shown that one choice coincides with the application of r, the rest of the

15

proof follows immediately, because all possible choices ofR0 andR1 are considered in
Definition 8. The setR0 denotes those matched summary nodes that will disappear after
materialization; R1 stands for those becoming non-summary nodes. Hence the sets are
determined by the difference of αc equivalent nodes in G and how many of those nodes
are matched. The set S of matched summary nodes is given by

S = {v ∈ VM ′ | nM ′(v) = (1) ∧ ∃v′ ∈ VL.m
′
n(v′) = v}

The difference between matched and all nodes in an equivalence class is defined for any
v ∈ S and v′ ∈ VL such that m′

n(v′) = v:

d(v) =|[mn(v′)]| − |{u ∈ VL | mn(u) ∈ [mn(v′)]|

yielding the following choice for Ri (i = 1, 2).

Ri = {v ∈ S | d(v) = i}

ut

Corollary 1. No connected graph C ∈ CC(L) with α({C}) 6⊆ [[GTS]]α is a subgraph
of a graph in [[GTS]].

This result can be lifted to edges between nodes with distinct labels rather straight-
forwardly.

Corollary 2. If in any connected graph C ∈ CCL there is an edge between a node
labeled l1 and a node labeled l2, then there is an abstract cluster in [[GTS]]α containing
two connected nodes labeled l1 and l2, respectively.

Considering the abstract semantics for our platoon case study as given in Figure 8,
we can prove that no each follower has exactly one leader at a time and that there are
no such links as between a [LEADER] and a [BLDR] or a [LEADER] and a [FLDR].

More such results can be obtained by considering the precision of the abstraction.
Here is one result that applies to all abstract clusters, in which summary nodes are
only connected to one non-summary node. Such abstract clusters are precise up to the
number n > 2 of nodes that a summary node represents. This is in particular the case
for all abstract clusters in the abstract semantics of our platoon case study.

Lemma 5. Let Ĉ ∈ CG(L) be an abstract cluster with summary nodes v1, . . . , vn, such
that each vi has exactly one non-summary neighbor. Then for every connected graph G
with α({G}) = {Ĉ}, there exist q1, . . . , qn > 1 such that G is isomorphic to Ĉ with
summary node vi materialized qi times (where the original summary node disappears
in the materialization).

4 Implementation

The technique is implemented in a tool called hiralysis. This tool consists of app.
3000 lines of C code. It reads a textual description of a graph transformation system

16

as input and generates two output files: gts.out and result.out. Both are graph
description files in the .gdl format that can be visualized by the aisee graph viewer
[8]. The first file gives a graphical representation of the specified GTS, the second visu-
alizes the abstract semantics of the input GTS, i.e. it visualizes a set of abstract clusters.
Sample inputs and outputs to the tool are given in Figure 7 and Figure 8, respectively.

Figure 7 implements the platoon merge case study presented in this work. The tex-
tual description requires the declaration of node and edge labels (in fact, the tool imple-
ments slightly more than presented here). The user may declare an initial graph, which
is the empty graph in our case study. There is one keyword for each of the three types
of rules: create, destroy, and edge rules. The latter are simply called rule in the speci-
fication. Create and destroy rules require a single graph, edge rules require two graphs.
In the graphs, all nodes are given names, that allow to specify both the edges and the
mapping that comes with each graph transformation rule. Node names are followed by
a label. The disjoint keyword tells the tool, that this rule shall only be applied if
the connected components of the left graph match two distinct connected components
in the matching graph. The final rule displays an example of a partner constraint. The
node named x1 must have adjacent nodes, that all have the label fldr.

On the given input file, the tool computes the output in Figure 8 in less than 0.1
seconds.19 rules were applied in five iterations, where the iterations correspond to the
i in the definition of [[·]]α. An interesting effect is achieved, when the tool is applied to
the same input with the partner constraint left out. It then needs 3 seconds to apply 8913
rules in 100 iterations to obtain 96 abstract clusters. Most of these abstract clusters look
rather strange. This demonstrates the huge impact of partner constraints.

Additionally, we have implemented and analyzed a combined merge/split protocol.
During the design process the tool proved very helpful in discovering design errors,
many of them related to missing/wrong partner constraints.

5 Hierarchical versus Canonical Abstraction

Certainly, Hierarchical Abstraction was inspired by the work on Shape Analysis [11].
In that approach concrete graphs are coded as logical structures. Abstraction works
by summarizing objects indistinguishable under a set of abstraction predicates. One
major difference to our abstraction is the way edges are abstracted. Edges in abstract
topologies in our work correspond to 1/2-edges in Canonical Abstraction. Such edges
denote that there may be such an edge in the concretization. Additionally, they offer
1- or must-edges that we do not consider. Put differently, Canonical Abstraction offers
both ∀∀ and ∃∃ abstraction, whereas Hierarchical Abstraction only supports the latter.
(Even though it may be extended to have both.) Summary nodes in [11] differ for ours,
too. We distinguish 0, 1, and > 1, whereas Canonical Abstraction supports 0, 1, and
≥ 1.

It seems tedious to encode DCS transformation rules in the setting of [11], be-
cause it was designed for the analysis of heap-manipulating programs. Updates in such
programs are much more restricted than in graph transformation systems. Hierarchi-
cal Abstraction in the so far un-parameterized form is very easy to specify. It does not

17

need complicated instrumentation predicates or update formulas. Rather, it comes with
a stand-alone tool. Certainly, this comes at the price of parametricity.

A clear advantage of Canonical Abstraction over Hierarchical Abstraction is the
precise statement about property preservation made by a so-called embedding theorem.
Formulas evaluating to 0 or 1 in an abstract structure will evaluate to 0 or 1 in each
concrete structure represented by it. In the next section, we try to give some hints on
how Hierarchical Abstraction could be encoded in the other approach.

5.1 Encoding of Hierarchical Abstraction as Canonical Abstraction

Two formulas need to be specified: ψc and ψt, The first formula defines the equivalence
of nodes as in cluster abstraction, which is easy enough in first-order logic. The second
formula describes that two nodes are in the same connected component. As [11] comes
with transitive closure, this poses no problem, either. However, we cannot simply sum-
marize objects v1 and v2 if both ψt(v1, v2) and ψc(v1, v2) hold in a concrete structure,
because this would not result in a bounded abstraction. There can be arbitrarily many
connected components. Rather v1 and v2 are summarized, if ψc(v1, v2) holds and if
the sets Vi = {v | ψt(v, vi)} are isomorphic after quotient building under the equiva-
lence relation specified by ψc. This is not straightforward to formalize using Canonical
Abstraction.

The only possible way of encoding seems to use an exponential number of addi-
tional predicates, where there is a predicate for each possible abstract cluster (exponen-
tially many) being true for all nodes in such a cluster. There must be update formulas
for all of these many additional predicates, which may make the analysis very hard.

6 Ongoing Work

6.1 Properties of the Abstraction

Results about the precision of Hierarchical Abstraction are scarce so far. We are cur-
rently investigating, whether there are logics whose formulae are preserved under Hi-
erarchical Abstraction. Ideally, there would be some notion of embedding as defined in
[11]. A suitable logic together with a refined transition system (see next section below)
may allow for model-checking to be applied.

6.2 Refined Transition Systems

This paper presents the mere computation of all possible clusters. So far, Hierarchical
Abstraction does not track relations between abstract clusters and can hence only be
applied to prove some safety properties. The first step here is to track the information
which and how many abstract clusters were involved in a rule application yielding a
relation on multisets of abstract clusters. Consider the example of applying [SENSOR1]
to two [FAGENT] objects. This results in the pair

{{C1, C1}} 7→ {{C2}}

18

where C1 is the abstract cluster with a single [FAGENT], and where C2 is the abstract
cluster with the two connected [BLDR] and [FLDR]. Note that, the right hand side of 7→
can in general be a true multiset, too. Later it may even be advisable to track evolution
node-wise to refine the transition system even further.

6.3 Parameterization

Hierarchical Abstraction as presented so far is not very flexible. However, there are
several possibilities for parameterization – each presenting a further line of research.

Cluster abstraction can be performed using other equivalence relations than the one
shown for Hierarchical Abstraction. A less precise one could be considering equally
labeled nodes to be equivalent – regardless of their partners. This particular choice
would reduce complexity by an exponential factor and might still be precise enough.
Requirements for other equivalence relations are, that they must have a finite num-
ber of equivalence classes in every quotient graph. Furthermore, they must have
the property ”concrete match implies abstract match” as was shown for Hierar-
chical Abstraction. This is the case for all equivalence relations defining a (label-
preserving) homomorphism. It implies that the ”equally labeled nodes” relation is
the least precise relation satisfying these requirements.

Partner constraints can be made more or less expressive depending on the applica-
tion. However, in order to derive correctness from the soundness of Hierarchical
Abstraction the satisfaction of a partner constraint should be invariant under ab-
straction, in particular invariant under graph homomorphisms.

Multiplicity is another possible parameter to gain either precision or speed. So far,
Hierarchical Abstraction tracks only whether there are zero, one, or more than one
concrete nodes represented by nodes in abstract clusters. This could be refined arbi-
trarily. Also, one may choose to gain speed and make the multiplicity information
coarser – as is the case in [11].
Even more interesting is the second layer of multiplicity: cluster multiplicity. It
was not explicitly mentioned, but due to the Cluster Multiplicity Principle only one
multiplicity value is tracked for abstract clusters: ≥ 0. It is straightforward to be
more precise there yielding a notion of summary clusters. Certainly, this comes at
the price of a more expensive analysis.

Cluster definition Though not being arbitrary, the choice of connected components
as clusters is not mandatory. It comes with some really nice properties, however.
The Cluster Multiplicity Principle would most probably need to be dropped, if one
decided on parameterizing on the definition of clusters. Also, there may be edges
between different abstract clusters in the more general case, which inflicts technical
overhead. Unless applications require, this is the last place where one should think
of parameterization.

7 Related Work

Specifying DCS One of the earliest approaches to specify communicating systems are
Communicating Finite State Machines [9]. They are not suited for the specification of

19

DCS, though, because they lack dynamics and deal with a fixed number of communicat-
ing processes. The π-calculus [10] may be the most prominent approach of describing
communicating processes. Undoubtedly, one is able to find an encoding of DCS graph
transformation systems in the π-calculus. But we are sure, that DCS are easier to spec-
ify, understand, and analyze, if they are modeled directly using graphs. Furthermore,
we are not interested in concrete messages that are communicated, but only in the ef-
fects on the communication topology. Hence, graph transformation systems [1] seem
like the first choice to specify DCS. Our formalization is closest to the single pushout
approach of graph transformations, but slightly adapted. Relabeling of nodes is hard to
handle in the standard approach [6], but easy to use here. Negative application condi-
tions are common in graph transformation systems. Partner constraints can in fact be
coded as such. Though less expressive than full negative application conditions, they
reflect nicely the Transition Principle and are crucial for the correctness of the Cluster
Multiplicity Principle. Finally, injective matches are not required in general transforma-
tion systems. Again, they suffice for specifying DCS and simplify the formal treatment
in this work.

Graph Abstractions Finding a bounded abstraction of potentially unbounded graphs
is a widespread task in computer science. Our abstraction was originally motivated
by Canonical Abstraction [11, 12]. The relation to this approach was clarified in Sec-
tion 6.3. The graph abstraction presented in the work on Canonical Graph Shapes [13]
works by building quotient graphs – like we do – and thus lacks the expressiveness
of 1 and 1/2 edges of [11]. On the other hand, it offers a more sophisticated generic
approach to multiplicities: multiplicities algebras. Apart from that it can be straightfor-
wardly coded as Canonical Abstraction. Compared to our work it does not distinguish
different connected components at all.

Verification There are numerous papers on the verification of infinite-state transition
systems. To name only a rather recent one, there is Abstract Regular Model Checking
[14]. It is not suited for the verification of DCS in general, because configurations are
stored as finite automata that are not expressive enough to encode arbitrary graphs.

[15] presents an approach to verification of graph transformation systems that does
not use abstraction. Rather it deduces properties of a complete system by decomposing
the system into views and verifying properties for the views.

[16] observes two major lines in verification of graph transformation systems by
abstraction: the unfolding approach and the partitioning approach. The unfolding ap-
proach [17, 18] is based on the unfolding semantics of the given graph grammar [19]
and approximates its behavior by means of finite Petri net-like structures. Our approach
rather falls in the class of what is called partitioning approach in [16] due to the way ab-
stract topologies are constructed. Among this approach there is a pragmatic comparison
of concrete implementations of verification algorithms [20] that do not employ abstrac-
tion on the one hand. On the other hand there is the definition of a graph abstraction
without the construction of an abstract transition system [13]. In contrast to our work so
far, both [18] and [13] are much concerned about logic and how to define a logic such
that properties expressed in it are maintained by the abstraction.

20

8 Conclusion and Future Work

We have presented Hierarchical Abstraction, a way of computing a finite approximate
set of abstract topologies from a set of lightweight graph transformation rules. The
abstraction is proven sound, i.e. all possible topologies of a DCS are conservatively
approximated. It is one of the first works combining abstraction and (non-unfolding
based) verification of graph transformation systems in a promising way. Its usefulness
was demonstrated by a complex case study earlier approaches failed to verify. The tech-
nique is implemented and the tool showed useful in a first set of examples.

The next theoretical problem to be investigated is finding a logic that is suited to
express interesting DCS properties, such that properties are preserved under Hierar-
chical Abstraction. Together with a refined transition system, this may enable us to
model-check specifications. Several lines of ongoing and future work were presented
in Section 6. The next immediate step to take is applying the tool to larger and more
practically relevant examples.

References

1. Rozenberg, G., ed.: Handbook of Graph Grammars and Computing by Graph Transforma-
tions, Volume 1: Foundations. World Scientific (1997)

2. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis
of programs by construction of approximation of fixed points. In: Symp. on Princ. of Prog.
Lang., New York, NY, ACM Press (1977) 238–252

3. PATH: California partners for advanced transport and highway (1986-2003)
http://www.path.berkeley.edu/.

4. Hsu, A., Eskafi, F., Sachs, S., Varaiya, P.: The design of platoon maneuver protocols for
IVHS. Technical Report UCB-ITS-PRR-91-6, University of California, Berkley (1991)

5. Har’El, Z., Kurshan, P.: COSPAN user’s guide. AT&T Bell Laboratories, Murray Hill, NJ
(1987)

6. Habel, A., Plump, D.: Relabelling in graph transformation. In Corradini, A., Ehrig, H.,
Kreowski, H.J., Rozenberg, G., eds.: ICGT. Volume 2505 of Lecture Notes in Computer
Science., Springer (2002) 135–147

7. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application conditions.
Fundamenta Informaticae 26 (1996) 287–313

8. AbsInt: Angewandte Informatik GmbH (1998-2005) http://www.aisee.com.
9. Brand, D., Zafiropulo, P.: On communicating finite-state machines. Journal of the Associa-

tion for Computing Machinery 30 (1983) 323–342
10. Sangiorgi, D., Walker, D.: The Pi-Calculus: A Theory of Mobile Processes. Cambridge

University Press (2001)
11. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM Trans-

actions on Programming Languages and Systems 24 (2002) 217–298
12. Reps, T.W., Sagiv, S., Wilhelm, R.: Static program analysis via 3-valued logic. [22] 15–30
13. Rensink, A.: Canonical graph shapes. In Schmidt, D.A., ed.: ESOP. Volume 2986 of Lecture

Notes in Computer Science., Springer (2004) 401–415
14. Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking. [22] 372–386
15. Heckel, R.: Compositional verification of reactive systems specified by graph transformation.

In: FASE. (1998) 138–153

21

16. Baldan, P., König, B., Rensink, A.: Graph grammar verification through abstraction.
Dagstuhl Seminar Proceedings 04241 (2004)

17. Baldan, P., Corradini, A., König, B.: Verifying finite-state graph grammars: An unfolding-
based approach. In Gardner, P., Yoshida, N., eds.: CONCUR. Volume 3170 of Lecture Notes
in Computer Science., Springer (2004) 83–98

18. Baldan, P., König, B., König, B.: A logic for analyzing abstractions of graph transformation
systems. In Cousot, R., ed.: SAS. Volume 2694 of Lecture Notes in Computer Science.,
Springer (2003) 255–272

19. Baldan, P., Corradini, A., Montanari, U.: Unfolding and event structure semantics for graph
grammars. In: FoSSaCS. (1999) 73–89

20. Rensink, A., Schmidt, Á., Varró, D.: Model checking graph transformations: A comparison
of two approaches. In Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G., eds.: ICGT.
Volume 3256 of Lecture Notes in Computer Science., Springer (2004) 226–241

21. Lev-Ami, T., Sagiv, M.: TVLA: A framework for Kleene based static analysis. In: Static
Analysis Symposium, Springer (2000) http://www.math.tau.ac.il/∼ rumster.

22. Alur, R., Peled, D., eds.: Computer Aided Verification, 16th International Conference, CAV
2004, Boston, MA, USA, July 13-17, 2004, Proceedings. In Alur, R., Peled, D., eds.: Com-
puter Aided Verification. Volume 3114 of Lecture Notes in Computer Science., Springer
(2004)

22

Fig. 6. Abstract Application of [PASS] to abstract topology T : The left graph of the
rule matches the abstract topology T by instantiating M ′ in Definition 6 to the multiset
{{C}}. Only one cluster is thus materialized. Node 3 in [PASS] matches to the summary
node X . A possible node materialization according to Definition 7 is shown, where X
is maintained. The materialization is then updated like in the concrete case and finally
abstracted again. In fact, this figure shows only one of three possible applications of
[PASS] to T . The other applications would result in the disappearance of X or in X
becoming a non-summary node.

23

nodelabels ldr, fa, flw, bldr, fldr;

edgelabels l;

empty; // initial graph

create [{x:fa},{}];

destroy [{x:fa},{}];

rule [{x1:fa,x2:fa}, {}], disjoint,
[{x1:bldr,x2:fldr}, {(x1,x2):l}];

// sensor between two free agents

rule [{x1:ldr,x2:ldr}, {}], disjoint,
[{x1:bldr,x2:fldr}, {(x1,x2):l}];

// sensor between two leaders

rule [{x1:fa,x2:ldr}, {}], disjoint,
[{x1:bldr,x2:fldr}, {(x1,x2):l}];

// sensor between free agent and leader

rule [{x1:ldr,x2:fa}, {}], disjoint,
[{x1:bldr,x2:fldr}, {(x1,x2):l}];

// sensor between leader and free agent

rule [{x1:bldr, x2:fldr, x3: flw}, {(x1,x2):l, (x1,x3):l}],
[{x1:bldr, x2:fldr, x3: flw}, {(x1,x2):l, (x2,x3):l}];

// passing a follower from back to front leader

rule [{x1:bldr,x2:fldr}, {(x1,x2):l}, partner(x1)={fldr}],
[{x1:flw, x2:ldr},{(x2,x1):l}];

// re-establish platoon after all followers are handed over;
// an example of a "partner constraint"

Fig. 7. The implementation of our case study as input to the hiralysis tool.

24

Fig. 8. Sample output from the hiralysis tool. Twelve abstract clusters are com-
puted for our case study. The cluster on the top right shows the [FAGENT] cluster. Then,
the next two to the left denote platoons of two, respectively more than two cars. All
other abstract clusters stand for various intermediate steps occurring during a merge.
Circles with thick borders are summary nodes.

25

