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Abstract

The goal of this work is to develop compile-time algorithms for automatically
verifying properties of imperative programs that manipulate dynamically allocated
storage. The paper presents an analysis method that uses a characterization of a
procedure’s behavior in which parts of the heap not relevant to the procedure are
ignored. The paper has two main parts: The first part introduces a non-standard
concrete semantics,LSL, in which called procedures are only passedparts of the
heap. In this semantics, objects are treated specially when they separate the “local
heap” that can be mutated by a procedure from the rest of the heap, which—from
the viewpoint of that procedure—is non-accessible and immutable. The second
part concerns abstract interpretation ofLSL and develops a new static-analysis
algorithm using canonical abstraction. It also provides insight into Deutsch’s may-
alias algorithm.
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1 Introduction

The long-time research goal of our work is to develop compile-time algorithms for au-
tomatically verifying properties of imperative programs that manipulate dynamically
allocated storage. The goal is to verify properties such as the absence of null derefer-
ences, the absence of memory leaks, and the preservation of data-structure invariants.
The ability to reason about the effects of procedure calls is a crucial element in pro-
gram verification, program analysis, and program optimization. This paper presents
an approach to the modular analysis of imperative languages with procedures and dy-
namically allocated storage, based on an abstract interpretation of a novel non-standard
storeless semantics.

1.1 Store-based vs. Storeless Semantics

A straightforward way to specify semantics of programs with dynamically allocated
objects and pointers is by a store-based operational semantics, e.g., see [34]. This
semantics is very natural because it closely corresponds to concepts of the machine
architecture. Moreover, it is possible to compute the effect of a procedure on a large
heap from its effect on subheaps. This is the semantic basis for O’Hearn’s “frame
rule” [22,34], which uses assertions about disjoint parts of the heap: the post condition
of a procedure call is inferred by combining assertions that hold before the call with
ones that characterize the effect of the procedure call.

In programming languages such as Java, where addresses cannot be used explicitly
(in contrast to C’scast statements), it is possible to represent states in a more abstract
way because any two heaps with isomorphic reachable parts are indistinguishable. In
particular, garbage cells have no significance. This leads to the notion of storeless se-
mantics, which was pioneered by [24]. There, states are represented as aliases between
pointer access paths.

A first step in many heap-abstractions is to abstract away from specific memory
addresses, e.g., [13,15,23,38,40,41]. A storelessconcrete semantics has already done
this step, which relieves the designer of an abstraction from having to do it. Thus, it
is natural to base powerful pointer (shape) analysis algorithms on storeless semantics.
Unfortunately, existing storeless semantics associate the entire heap with each proce-
dure invocation and class instantiation, which makes it difficult to support procedure
and data abstraction. Another problem with storeless semantics is that it is hard to relate
properties of memory cells before and after a call. As a result, it is hard to scale these
methods to prove properties of real-life programs. By “scaling”, we mean not just cost
issues but also precision. In particular, after a procedure call some information about
the calling context may be lost.

In this paper, we present a first step towards addressing the aforementioned scaling
issues by (i) developing a storeless semantics that allows representation of parts of the
heapand relating properties before and after a call, and (ii) presenting an abstraction
of this semantics.
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1.2 Main Results

In this paper, we develop a method to characterize a procedure’s behavior in a way
that ignores parts of the heap that are not relevant to the procedure. Toward this end,
the paper introduces a non-standard storelessconcrete semantics,LSL, for Localized-
heap Store-Less. In this semantics, a called procedure is only passed apart of the
heap. Based on this semantics, a new static-analysis algorithm is developed using
canonical abstraction [40]. This allows us to prove properties of programs that were
not automatically verified before. We believe that the modular treatment of the heap
will allow the implementation of these abstractions to scale better on larger code bases.
The approach also provides insights into Deutsch’s may-analysis algorithm [15].

The paper has two main parts: The first part (Sec. 4) concernsLSL, the non-
standard concrete storeless semantics. The second part (Sec. 5) concerns abstract-
interpretation of this semantics.

LSL is based on the following ideas: Objects in the heap reachable from an ac-
tual parameter are treated differently when they separate the “local heap” that can be
accessed by a procedure from the rest of the heap, which—from the viewpoint of that
procedure—is non-accessible and immutable. We call these objectscutpoints. An
objectbelongs to the local-heap when it is reachable from a procedure’s actual param-
eters. Such an object is acutpoint when it is reached via a pointer-access path that
starts at a variable of apending call and does nottraverse the local-heap. When a pro-
cedure returns, the cutpoints are used to update the caller’s local-heap with the effect
of the call. Because our goal is to perform static analysis,LSL is a storeless seman-
tics [24]; every dynamically allocated objecto is represented by the set ofaccess paths
that reacho. In particular, unreachable objects are not represented.LSL is different
from previous storeless semantics based on pointer-access paths [13,41] in the follow-
ing way. It does not represent access paths that start from variables of pending calls in
the “local state” of the current procedure. This means that a procedure has a local view
that only includes objects that are reachable from the procedure’s parameters and, in
addition, any objects that it allocates.

We characterize the manner in whichLSL simulates a standard store-based seman-
tics and identify a class of observations for whichLSL is equivalent to the standard
store-based semantics. This allows us to prove properties ranging from the absence of
runtime errors to partial and total correctness with respect to the standard store-based
semantics. We study the properties ofLSL. In particular, we show that it has a number
of standard properties including full abstraction and determinism.

The second part of the paper usesLSL as the starting point for static-analysis
algorithms that treat the heap in a more local, more modular way than previous work.
In this part of the paper, we make the following contributions:

• LSL provides insight into previous work on static may-alias analyses based on
pointer-access paths [15]—in particular, the treatment of variables of pending
calls, which is one of the most complicated aspects of [15]. For instance, a
surprising aspect of the method given in [15] is that recursive procedures are
handled in a more precise way than loops. The intuitive reason is that the ab-
stractions of values of variables in the current procedure is different from the

5



abstraction used for values of variables in pending procedures. Specifically, we
show that the abstract domain used in [15] is an abstraction ofLSL.

• Using an abstraction ofLSL, we present a new interprocedural shape-analysis
algorithm for programs that manipulate dynamically allocated storage. This al-
lows us to prove properties of programs that were not automatically verified be-
fore (e.g., destructive merge of two singly-linked lists by a recursive procedure,
see Fig. 21). Furthermore, the analysis is done in a way that is more likely to
scale up. In particular, our analysis benefits from the fact that the heap is local-
ized: the behavior of a procedure only depends on the contents of its local-heap.
This allows analysis results to be reused for different contexts.

1.3 Outline

The remainder of the paper is organized as follows: Sec. 2 sets the scene by defining
EAlgol, a simple imperative language, and defining its standard store-based seman-
tics. It also introduces our running example. Sec. 3 defines cutpoints and describes
their use inLSL. Sec. 4 definesLSL semantics forEAlgol and states its properties.
Sec. 5 presents the two aforementioned abstractions ofLSL. Sec. 6 reviews closely
related work. Sec. 7 concludes our work.

2 Preliminaries

In this section, we introduce a simple imperative language calledEAlgol. We define
its standard semantics, which is operational, large-step, store-based (as opposed to
storeless), and global, i.e., the entire heap is passed to a procedure. We refer to this
semantics asGSB, for Global-heap Store-Based.

2.1 Syntax of EAlgol

Programs inEAlgol consist of a collection of functions including amain function.
The programmer can also define her own types (`a la C structs) and refer to heap-
allocated objects of these types using pointer variables. Parameters are passed by value.
Formal parameters cannot be assigned to. Functions return a value by assigning it to a
designated variableret.

The syntax ofEAlgol is defined in Fig. 1. The notation̄z denotes a sequence
of z’s. We define the syntactic domainsx, y ∈ VarId , f ∈ FieldId , p ∈ FuncId ,
t ∈ TypeId , and lb ∈ Labels of variables, field names, functions identifiers, type
names, and program-labels, respectively. For a functionp, V p denotes the set of its local
variables andFp denotes the set of its formal parameters. We assumeFp ⊆ Vp and that
all the variables inVp \ Fp are declared at the beginning of a function declaration.

2.2 Running Example

TheEAlgol program shown in Fig. 2 is our running example. The program consists of
a type definition for an element in a linked list (Sll); three list-manipulating functions:
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P ∈ prog ::= rcdecl fndecl
rcdecl ::= record t := { tname f }
tname ::= int | t
fndecl ::= tname p(tnamex) :=vdecl st
vdecl ::= tname VarId

st ∈ stms ::= x=c | x=y | x=y op z | x=y.f |
x.f= null | x.f=y | x = alloc t |
y=p(x) | lb : st | while (cnd) do st od |
st ; st | if (cnd) then st else st fi

cnd ::= x == y | x ! = y | x == c | x ! = c
c ∈ const ::= null | n

Figure 1: Syntax ofEAlgol.

create (crt), destructive append (app), and destructive reverse (reverse); and a
main function.

The program allocates three acyclic linked lists. It then destructively appends the
list pointed-to byt2 to the tails of the lists pointed-to byt1 andt3. As a result, at
program pointlbc, just beforereverse is invoked,x points-to an acyclic list with
five elements,z points-to an acyclic list with five elements, and the two lists share their
last two elements as a common tail.

The invocation ofreverse, which is the core of our running example, (destruc-
tively) reverses the list passed as an argument. As a result, atlbr, reverse’s return-
site,y points-to the head of the reversed-list. Note that the shared tail of the list pointed-
to byz has also changed.

2.3 Global-Heap Store-Based Semantics

We now define theGSB semantics forEAlgol. For simplicity, the semantics tracks
only pointer values and assumes that every pointer-valued field or variable is assigned
null before being assigned a new value.1 In addition, we assume that before a func-
tion terminates it assign anull value to every pointer variable that is not a formal
parameter.2

Fig. 3 defines the semantic domains.Loc is an unbounded set of memory locations.
A memory state for a functionp, σp

G ∈ Σp
G, keeps track of the allocated memory

locations,L, an environment mappingp’s local variables to values,ρ, and a mapping

1Special care need to be taken when handling statements in which the same variable appears both in
left-side of the assignment and in its right-side, e.g.,x = x.f. Such statements require additional source-
to-source transformations and the introduction of temporary variables.

2These conventions simplify the definition of bothGSB semantics andLSL; in principle, different ones
could be used with minor effects on the capabilities of our approach. For clarity, our example programs do
not adhere to these restrictions.
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record Sll := { Sll n; int d }
Sll reverse(Sll h):= lbe :

Sll p,q,t;
p=h;
while (p!=null) do

q=p.n; p.n=t; t=p; p=q od;
ret = t lbx :

int main():=
Sll x,y,z,t1,t2,t3;
t1=crt(3); t2=crt(2); t3=crt(3);
x=app(t1,t2);
z=app(t3,t2);
t1=null; t2=null; t3=null;

lbc : y = reverse(x); lbr :
ret=0

Figure 2: The running example. The code of functionscrt andapp appears in
App. A.

l ∈ Loc
v ∈ Val = Loc ∪ {null}
ρ ∈ Envp = Vp → Val
h ∈ HeapG = Loc × FieldId → Val
σG, 〈L, ρ, h〉 ∈ Σp

G = 2Loc × Envp × HeapG

Figure 3: Semantic domains of theGSB semantics.

from fields ofallocated locations to values,h. Due to our simplifying assumptions, a
value is either a memory location ornull.

The meaning of statements is described by a transition relation
G�⊆ (σG×stms)×σG.

Fig. 4 shows theaxioms for assignments. Theinference rule for function calls is given
in Fig. 5. All other statements are handled as usual using a two-level store semantics
for pointer languages.

Example 2.1 The memory state atlbc, the call-site toreverse, is de-
picted graphically in Fig. 6 (labeledσ c

G). Allocated locations are depicted
as rectangles labeled by the location name. The value of each variable
is depicted as an arrow from the variable name to the memory location it
points-to. The value of a field is depicted by a directed edge labeled with
the field name.

The invocation ofreverse starts in stateσe
G. The heap ofσe

G is identical
to the one ofσc

G, but its environment only mapsh, reverse’s formal
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〈x = null, 〈L, ρ, h〉〉 G� 〈L, ρ[x �→ null], h〉
〈x = y, 〈L, ρ, h〉〉 G� 〈L, ρ[x �→ ρ(y)], h〉
〈x = y.f, 〈L, ρ, h〉〉 G� 〈L, ρ[x �→ h(ρ(y), f)], h〉 ρ(y) �= null

〈x.f = null, 〈L, ρ, h〉〉 G� 〈L, ρ, h[(ρ(x), f) �→ null]〉 ρ(x) �= null

〈x.f = y, 〈L, ρ, h〉〉 G� 〈L, ρ, h[(ρ(x), f) �→ ρ(y)]〉 ρ(x) �= null

〈x = alloc t, 〈L, ρ, h〉〉 G� 〈L∪{l}, ρ[x �→ l], h∪I(l)〉 l �∈ L

Figure 4: Axioms for atomic statements in theGSB semantics.I initializes all pointer
fields atl to null.

〈body ofp, 〈Le, ρe, he〉〉 G� 〈Lx, ρx, hx〉
〈y = p(x1, . . . , xk), 〈Lc, ρc, hc〉〉 G� 〈Lr, ρr, hr〉

where

Le = Lc, ρe(v) =
{

ρc(xi) v = zi

null otherwise , he = hc

Lr = Lx, ρr = ρc[y �→ ρx(ret)], hr = hx

Figure 5: Inference rule for function invocation in theGSB semantics, assuming the
formal variables ofp arez1, . . . , zk and thatp’s return value is a pointer.

parameter, tol0, the value of the actual parameterx. The execution of
reverse’s body ends withret pointing to the head of the reversed list.
The memory state at the exit point,lbx, is denoted byσx

G, the state after
the invocation ofreverse is denoted byσr

G. Note that the heap inσr
G

is as inreverse’s exit-point, and the environment is as in the call-site,
except that the return value (ret) is assigned toy.

2.4 Observable Properties

In this section, we introduce access paths, which are the only means by which a pro-
gram can observe a state. Note that the program cannot observe location names.

Definition 2.2 (Field Paths) A field path δ ∈ ∆ = FieldId ∗ is a (possibly empty)
sequence of field identifiers. The empty sequence is denoted by ε.

Definition 2.3 (Access path) An access path α = 〈x, δ〉 ∈ Vp × ∆ of a function p is
a pair consisting of a local variable of p and a field path. AccPath p denotes the set
of all access paths of function p. AccPath denotes the union of all access paths of all
functions in a program.
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σc
G :
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z �� l5
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n
��

Ac :
{x}, {x.n}, {x.n.n}, {x.n.n.n, z.n.n.n}, {x.n.n.n.n, z.n.n.n.n},

{z}, {z.n}, {z.n.n}

σe
G :

h �� l0
n �� l1

n �� l2
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n �� l4

l5
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n
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�

h
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h.n
�
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h.n.n
�
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�
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cpl

�
,

�
h.n.n.n.n

cpl.n

�

σx
G :

h �� l0 l1
n�� l2

n�� l3
n�� l4

n��

l5
n �� l6

n �� l7

n
��

ret

��
Ax :

�
h, cpl.n.n.n
ret.n.n.n.n

�
,

�
cpl.n.n,

ret.n.n.n

�
,

�
cpl.n,

ret.n.n

�
,

�
cpl

ret.n

�
, {ret}

σr
G :

x �� l0 l1
n�� l2

n�� l3
n�� l4

n��

z �� l5
n �� l6

n �� l7

n
��

y

��
Ar :

�
x, y.n.n.n.n,
z.n.n.n.n.n.n

�
,

�
y.n.n.n,

z.n.n.n.n.n

�
,

�
y.n.n,

z.n.n.n.n

�
,

�
y.n,

z.n.n.n

�
, { y },

{ z }, { z.n }, { z.n.n }

global heap local heap cpl = ̂{h.n.n.n}

Figure 6: Memory states that arise during the execution of the running example ac-
cording to theGSB semantics (left column) and theLSL semantics (right column).
We show the memory states atlbc, the call-site toreverse (first row); lbe, the entry
toreverse (second row);lbx, reverse’s exit point (third row); andlbr, the return-
site fromreverse (fourth row). For the local-heap semantics, the figure shows only
the heap (sets of aliased access paths); the memory states atlbc, lbe, lbx, andlbr are

defined asσc
L = 〈∅, Ac〉, σe

L = 〈{ ̂{h.n.n.n}}, Ae〉, σx
L = 〈{ ̂{h.n.n.n}}, Ax〉, and

σr
L = 〈∅, Ar〉 respectively.

Apart from the above formal definitions, we will sometimes use the notationx.n.n
for access paths, because its syntax is familiar from a number of programming lan-
guages, where it denotes a sequence of field dereferences. Because states and access
paths are always associated with a (unique) functionp, in the rest of the paper, we omit
p whenever it is clear from the context. Also, to simplify notation, we assume that we
work with a fixed arbitrary programP .

Definition 2.4 (Access path value) The value of an access path α = 〈x, δ〉 in state
〈L, ρ, h〉, denoted by [[α]]G〈L, ρ, h〉, is defined to be ĥ(ρ(x), δ), where

ĥ : Val × ∆ → Val such that

ĥ(v, δ) =


v ifδ = ε

ĥ(h(v, f), δ′) ifδ = fδ′, v ∈ Loc
null otherwise

Note that the value of an access path that traverses anull-valued field is defined to
benull. This definition simplifies the notion of equivalence between theGSB semantics
andLSL, our new semantics. Alternatively, we could have defined the value of such
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a path to be⊥. The semantics given in Fig. 4 checks that a null-dereference is not
performed (see the side-conditions listed in the caption).

Definition 2.5 (Access-path equality) Access paths α and β are equal in a given
state σG, denoted by [[α = β]]G(σG), if they have the same value in that state, i.e.,
[[α]]G(σG) = [[β]]G(σG). An access path is equal to null, denoted by [[α = null]]G(σG),
if [[α]]G(σG) = null.

Our semantics is a natural semantics; the stack of activation records is maintained
implicitly. However, we need the notion of an access path that starts at a variable of
a pending call (i.e., not the current call). In a small-step semantics, this would be
an access path that starts at a variable allocated in the activation record of a pending
call. We use the term apending variable for a local variable of a pending call, and a
pending access path for an access path that starts at a pending variable. When we wish
to emphasize that a variable (resp. access path) is of the current call, we use the term a
current variable (resp. acurrent access path). For example, in stateσ e

G, at the entry to
reverse, x is a pending variable, andz.n.n.n is a pending access path; the only
current variable ish andh.n.n.n is a current access path.

3 Cutpoints and their Use

In this section, we define cutpoints and describe their use inLSL. To assist the
reader, we provide some intuition by referring to the global store-based semantics (see
Sec. 2.3) and to a small-step (stack-based) operational semantics.LSL is a storeless
semantics, i.e., memory cells are not identified by locations. Thus, we cannot talk about
locations as in Sec. 2.3. Instead, we use the termobjects.

In LSL, every dynamically allocated objecto is represented by the set of pointer-
access paths that reacho. Unlike existing storeless semantics [13], inLSL, pending
access paths are not represented as parts of the local state of the current procedure.
The advantage of our approach is that when a procedure is invoked, it operates only on
a part of the heap, namely, the objects that are reachable from the procedure’s actual
parameters. The downside of this approach is that the memory state just after the call
cannot always be defined in terms of the state prior to the call. The intuitive reason
for this deficiency is that the description of an object may change due to destructive
updates. For example, in the running example, to determine that the pointer-access
pathsy.n.n andz.n.n.n are aliased after the invocation ofreverse, we need to
know that the list element pointed-to byh.n.n.n when the execution ofreverse
begins, is pointed-to byret.n when the execution ends. To capture this kind of
temporal relationship,LSL tracks the effect of a function oncutpoints. Cutpoints are
the objects that separate the part of the heap that an invoked function can access from
the rest of the heap (excluding the objects pointed-to by actual parameters).

Definition 3.1 (Cutpoints) A cutpoint for an invocation of function p is a heap-allocated
object that, in the program state in which the execution of p’s body starts, is: (i) reach-
able from a formal parameter of p (but not pointed-to by one) and (ii) pointed-to by a
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Figure 7: An illustration of the cutpoints for an invocation in a store-based small-step
(stack-based) operational semantics. The figure depicts the memory state at the entry
tozoo. The stack of activation record is depicted on the left side of the diagram. Each
activation record is labeled with the name of the function it is associated with. Heap-
allocated objects are depicted as rectangles labeled with their location. The value of
a pointer variable (resp. field) is depicted by an edge labeled with the name of the
variable (resp. field). The shaded cloud marks the part of the heap thatzoo can access.
The cutpoints for the invocation ofzoo (u7 andu9 ) are heavily shaded. Note thatu10
is not a cutpoint although it is pointed-to by pending access paths that do not traverse
through the shaded part of the heap, e.g.,x2 andy.f1.f1. This is becauseu10 is
also pointed-to byh, zoo’s formal parameter.

pending access path that does not pass throughany object that is reachable from one
of p’s formal parameters.

For example, in memory stateσc
G, the list element at locationl3 is a cutpoint be-

cause it is pointed-to by then-field of the list element at locationl7, which is not
reachable from the (only) actual parameterx. For an additional example, see Fig. 7.

Technically,LSL usescutpoint-labels to relate the post-state of the function with
its pre-state. Cutpoint-labels mark the cutpoints at—and throughout—an invocation.

Definition 3.2 (Cutpoint Labels) A cutpoint-label cpl ∈ 2Fp×∆ for function p is a
set of access paths that start at a formal parameter of p. The set 2Fp×∆ is denoted
by CPLbsp.

In every function invocation,LSL labels all the cutpoints. A cutpoint-label is the
set of all access paths that start with a formal parameter (of the invoked function) and
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point-to the cutpoint when the function execution starts. The label of a cutpoint does
not change throughout the execution of the function’s body, even if the heap is modified
by destructive updates.

For example, the fourth list element inx’s list is a cutpoint for the invocation
y=reverse(x). The label of this cutpoint is{h.n.n.n} becauseh.n.n.n is the (only)
access path that points-to the cutpoint at the entry to the function. A good analogy for
the role of cutpoint-labels in our semantics is the use of auxiliary variables in formal
verification. Auxiliary variables are used to record variable values at the entry to a
function; a cutpoint-label is used to record the access paths that reach a cutpoint at
function entry. To emphasize this similarity, we use the notationâ wherea ∈ CPLbs p

for cutpoint-labels for functionp.
LSL is able to infer the effect of an invoked function on the heap of its caller by

including in the representation of an object all the field paths that reach it and start at a
cutpoint.

Definition 3.3 (Cutpoint-anchored paths) A cutpoint-anchored path α = 〈cpl, δ〉 ∈
CPLbsp × ∆ for a function p is a cutpoint-label for function p and a (possibly empty)
sequence of fields.

For example, at the memory state after the execution ofreverse’s body, the

cutpoint-anchored path ̂{h.n.n.n}.n is aliased with the access pathret .n.n. From this
information, our semantics can infer that in themain function, at the state after the
invocation ofreverse, z.n.n.n.n is aliased withy.n.n.

Technically, during the invocation of a function, an object is represented by the
access paths and cutpoint-anchored paths that point-to it.

Definition 3.4 (Generalized access paths) A generalized access path for a function p
is either an access path of p or a cutpoint-anchored path of p. GAccPath p denotes the
set of all access paths of function p. GAccPath denotes the union of all access paths
of all functions in a program.

When there is no risk of confusion, we abbreviate a generalized access path of the
form 〈r, ε〉 by r. Note thatr can be either a variable, or a cutpoint-label.

Remark 3.5 Cutpoint-labels isolate the information about the part of the heap that a
function cannot access, to the sharing patternof the cutpoints, i.e., to the set of access
paths that—at the entry to the function—point-to a cutpoint. Furthermore, the isolation
is achieved in a parametric way: although a cutpoint-label expresses the fact that an
object is also pointed-to by a pending access path, it is described in terms of the invoked
function’s formal parameters. This allows us to infer the meaning of a cutpoint-label
in a context-independent way.

Remark 3.6 Note that because of the “garbage-collecting nature” of storeless seman-
tics, there is a non-trivial technical difficulty in obtaining a local semantics for the
storeless model. If a garbage-collection scan was to collect the heap using only the
procedure’s local variables as the roots, then elements would be garbage collected
that are accessible in the global state; adding the cutpoint-labels to the set of “roots”
prevent this potential source of unsoundness.
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r ∈ Rootp = Vp ∪ CPLbsp

α, β ∈ GAccPathp = Rootp × ∆
o ∈ Obj p

L = 2GAccPathp Objects
A, Ap ∈ Heapp

L = 2Objp
L Heaps

σL, 〈CPLp, Ap〉 ∈ Σp
L = 2CPLbsp × Heapp

L Memory state

Figure 8: Semantic domains of memory states for functionp. We use the syntactic
domainsVp, CPLbsp, andGAccPathp as semantic domains, too (and use italics font
to denote a semantics value.)

4 The Localized-Heap Storeless Semantics and its Prop-
erties

In this section, we presentLSL, the Localized-heap Store-Less semantics and investi-
gate its properties. The semantics is defined in Sec. 4.1. Its properties are described in
Sec. 4.2. In Sec. 4.3 we define a language of assertions over access paths and show that
LSL preserves partial and total correctness of assertions expressed in this language.

4.1 The Localized-Heap Storeless Semantics

In this section, we defineLSL, the Localized-heap Store-Less semantics. The seman-
tics is a natural semantics and, as before, tracks only pointer values.

To define the semantics, we use the function·.·, defined in Fig. 9. It is used as an
infix operator. The applicationα.δ concatenates the sequence of field identifiersδ to
α. We say that a generalized access pathα is a prefix of a generalized access pathβ,
denoted byα ≤ β, when there is a field pathδ ∈ ∆, such thatβ = α.δ. We say that
α is aproper prefix of β, denoted byα < β, whenδ �= ε. The function·.· is lifted to
handle sets of access paths and sets of sequences of field identifiers.

In addition, we make use of theflat functional, well-known from functional pro-
gramming.flat M returns the set of all elements ofM , if M is a set of sets. Formally,

flat M
def= {x | ∃A ∈ M : x ∈ A}.

4.1.1 Memory States

In this section, we define the representation of memory states inLSL. Traditionally, a
storeless semantics represents the heap by an equivalence relation over a set of access
paths, where equivalence classes (implicitly) represent allocated objects. For readabil-
ity, we use the equivalence classes directly.

A memory state for a functionp is a pair〈CPLp, Ap〉 of a set of cutpoint-labels,
(denoted byCPLp) and a heap (denoted byAp). A heap is a finite (but unbounded)
set of objects. An object (denoted byo) is described by a (possibly infinite) set of
generalized access paths. Fig. 8 gives the semantic domains used inLSL for a memory
state of a functionp.
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A memory state〈CPLp, Ap〉 at a given point in an execution is composed of the
labels of all the cutpoints of the current invocation (CPLp) and a representation of the
heap (Ap) at that the point in the execution. To exclude states that cannot arise in any
program, we now define the notion ofadmissible states.

Definition 4.1 (Admissible memory states) A memory state 〈CPLp, Ap〉 for a func-
tion p at a given point in an execution is admissible iff (i) A generalized access path
points-to (at most) one object, i.e., ∀o, o ′ ∈ Ap if o �= o′, then o ∩ o′ = ∅; (ii) A is
right-regular, i.e., ∀o1, o2 ∈ Ap if α, β ∈ o1 and α.δ ∈ o2 then β.δ ∈ o2; (iii) Ap

is prefix-closed, i.e., if α.f ∈ flat Ap, then α ∈ flat Ap; and (iv) a root of every
access path in the description of any object is either a local variable of p or a label
of one of the cutpoints, i.e., if 〈r, δ〉 ∈ flat Ap then either r ∈ Vp or r ∈ CPLp;
(v) ∅ �∈ A; (vi) CPLp satisfies the following requirements: (a) the cutpoint-labels
in CPLp are mutually disjoint, (b) CPLp is right-regular (but not necessarily-prefix
closed), (c) ∅ �∈ CPLp.

The first three conditions are standard in storeless semantics. The fourth condition
limits the set of cutpoint-anchored paths that are tracked during an invocation to be
rooted at a cutpoint of the invocation. The fifth condition is because we only represent
objects that are pointed-to by a current or a pending access path. The sixth requirement
captures the fact that the set of cutpoints is actually a subset of the objects in the heap
when the function is invoked. Thus,CPLp satisfies the first two requirements of
heaps. However, because it is only a subset, it is not necessarily prefix-closed. The fact
that the empty set is never inCPLp is immediate once we recall that cutpoint-labels
are generated only for objects that can be reached from the actual parameters when the
function is invoked.

BecauseLSL preserves admissibility of states (see Lem. 4.9), in the sequel, when-
ever we refer to anLSL state, we mean anadmissible LSL state.

It is possible to extract aliasing relationships from the sets of generalized access
paths that describe the objects in a heap, and in particular to observe the heap structure
as follows: a current variablex points-to an objecto iff the access path〈x, ε〉 is in o.
Similarly, cutpoint-labelcpl labels objecto iff 〈cpl, ε〉 is in o. The fieldf of an object
o1 points-to objecto2 iff for every generalized access path〈r, δ〉 in o1, the general-
ized access path〈r, δf〉 is in o2. A generalized access pathα points-to (resp. passes
through) an objecto, if α ∈ o (resp.∃β < α such thatβ ∈ o). An objecto is reachable
from a variablex, if there exists a field pathδ ∈ ∆ such that〈x, δ〉 ∈ o.

Example 4.2 The heap of the running example at the state in whichreverse
is invoked is shown in the first row in the second column of Fig. 6 (labeled
Ac). It shows eight sets of generalized access paths. Each set represents
one allocated list-element. AtAc, x.n.n.n andz.n.n.n point-to the same
object. The set of cutpoint-labels at the call site is empty. This is always
the case for the main function. The fourth element inx’s list is a cutpoint
for the invocation ofreverse: it is reachable from an actual parame-
ter (its representation includesx.n.n.n) and by a field of an object that is
not passed to the invoked function (then-field of the third object inz’s
list). The heap at the beginning ofreverse (shown in Fig. 6, labeled
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by Ae) differs fromAc in three ways: (i) there are only five objects in the

heap; (ii) the set of cutpoint-labels containŝ{h.n.n.n}, which labels the
fourth element in the list; and (iii) objects are represented in terms of the

generalized access paths that start either withh or with ̂{h.n.n.n}.

4.1.2 Inference Rules

The meaning of statements is described by a transition relation
L�⊆ (σL × stms)×σL.

We give axioms for assignments and an inference rule for procedure calls in Fig. 10
and Fig. 11, respectively. All other statements are handled in the standard way [25]. To
simplify notation, we assumeA with a certain index (resp. prime) to be the heap com-
ponent of a stateσL with the same index (resp. prime). We use the same convention
for indexed (or primed) versions ofCPL and a state’s cutpoint-labels component.

4.1.2.1 Helper Functions To define the inference rules, we use the following func-
tions: [·]·, rem(·, ·) andadd(·, ·), which are defined in Fig. 9. We usea as a metavari-
able ranging over sets of generalized access paths, which are not necessarily objects,
whereaso always stands for objects.

The function[α]A returns the object thatα points-to in heapA. Whenα does not
point-to any object,[α]A returns the empty set (which by definition never describes an
object pointed-to by a current, or even a pending, access path).

The functionrem takes as its arguments a heapA and a set of generalized access
pathsa. It removes from the description of every object in heapA all the access paths
that have a prefix ina. Wheneverrem removes all the (generalized) access paths from
the description of an object, that object is removed from the description of the heap.
The functionadd(A, a, α) yields a modified version of heapA, where to every object
o ∈ A reachable fromα by following some field pathδ ∈ ∆, the generalized access
pathsa.δ are added.

In addition, we make use ofmap() , another well known functional from functional
programming. The functionalmap(f) M appliesf to every element ofM and returns

the resulting set. Formally,map(f) M
def= {f(x) | x ∈ M}.

4.1.2.2 Atomic Statements Theaxioms for atomic statements are given in Fig. 10.
We simplify the semantics by making the same assumptions as in Sec. 2.3.

Assigningnull to a variablex does not modify the link structure of the heap. We
only need to eliminate all the access paths that start withx, using therem function.

The semantics for the assignmentx = y copies the value of the variabley into x
by adding an access path〈x, δ〉 to any objecto that can be reached fromy by following
a field pathδ, i.e.,〈y, δ〉 points-too. This is accomplished by applyingadd to the given
heap, the singleton set{x}, and the access pathy.

The rule for field dereferencex = y.f is similar. It adds the access path〈x, δ〉 to
any object that can be reached fromy by following fieldf, and then continuing with
field pathδ. Note, however, that the rule can be applied only ify points-to an object,
i.e., the semantics checks that a null-dereference is not performed.
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. : GAccPath × ∆ → GAccPath s.t.

〈r, δ〉.δ′ def= 〈r, δδ′〉
. : 2GAccPath × ∆ → 2GAccPath s.t.

a.δ
def= {α.δ | α ∈ a}

. : 2GAccPath × 2∆ → 2GAccPath s.t.

a.D
def= {α.δ | α ∈ a, δ ∈ D}

[] : GAccPath × HeapL → Obj L s.t.

[α]A
def= {β ∈ a | a ∈ A, α ∈ a}

rem : HeapL × 2GAccPath → HeapL s.t.

rem(A, a) def= (map(λo.o \ a.∆) A) \ {∅}
add : HeapL × 2GAccPath × GAccPath → HeapL s.t.

add(A, a, α) def= map(λo. o ∪ a.{δ ∈ ∆ | α.δ ∈ o}) A

Figure 9: Helper functions.

〈x = null, 〈CPL, A〉〉 L� 〈CPL, rem(A, {x})〉
〈x = y, 〈CPL, A〉〉 L� 〈CPL, add(A, {x}, y)〉
〈x = y.f, 〈CPL, A〉〉 L� 〈CPL, add(A, {x}, y.f)〉 y ∈ flat A

〈x.f = null, 〈CPL, A〉〉 L� 〈CPL, rem(A, [x]A.f)〉 x ∈ flat A

〈x.f = y, 〈CPL, A〉〉 L� 〈CPL, add(A, [x]A.f, y)〉 x ∈ flat A

〈x = alloc t, 〈CPL, A〉〉 L� 〈CPL, A ∪ {{x}}〉

Figure 10: Axioms for atomic statements in the local heap semantics. Note that the set
of cutpoint-labels is not changed. The side-conditionx ∈ flat A (resp.y ∈ flat A)
means thatx’s (resp.y) value is notnull.

A destructive updatex.f = null (potentially) modifies the link structure of the
heap. Thus, everygeneralized access path that has a prefix aliased with〈x, f〉 is re-
moved from the description of every object in the heap. Note, that[x] A returns all
the access paths that are aliased withx. Concatenating[x]A with f returns the set of
prefixes of affected access paths. Again, the rule can be applied only ifx points-to an
object.
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An assignmentx.f = y also has a (potential) effect on all the access paths that are
aliased withx. After this assignment, any objecto that can be reached by following the
field pathδ from y, i.e.,〈y, δ〉 ∈ o, is also reachable by traversing some (generalized)
access path aliased withx, followed by anf-field, and continuing withδ. As this is
a place where cycles can be created,add does not necessarily return a right-regular
heap. Therefore we apply the operator·̄. Ā is defined to be the set of equivalence
classes obtained from the least right-regular, prefix-closed, equivalence relation that is
a superset of the equivalence relation induced byA.3 Note that this definition may only
add access paths to the description of existing objects.

The (deterministic) semantics of memory allocationx = alloc t adds a new
object that is described by{x} to the heap. Note that this definition (implicitly) initial-
izes the fields of the new object tonull.

4.1.2.3 Function Calls The inference rule for function calls is defined in Fig. 11.
The rule defines the program stateσr

L that results from an invocationy=p(x1, . . . , xk)
at memory stateσc

L, assuming that the execution of the body ofp at memory stateσ e
L

results in memory stateσx
L. The heapsAc andAr are described by sets of generalized

access paths starting at the caller’s variables and cutpoint-labels, whereas the heaps
Ae andAx are described by sets of generalized access paths that start at the callee’s
formal parameters, cutpoint-labels, and return variable. The rule provides the means to
reconcile the different representations.

The rule uses the functionsCall y=p(x1,... ,xk)
q andRety=p(x1,... ,xk)

q , which are pa-

rameterized for each call statement in the program.Call y=p(x1,... ,xk)
q computes the

memory stateσe
L that results at the entry ofp wheny = p(x1, . . . , xk) is invoked byq

in memory stateσc
L. The caller’s memory state after the invocation is restored by the

functionRety=p(x1,... ,xk)
q . This function computes the memory state of the caller at

the return-site (σr
L) according toq’s memory state at the call-site (σ c

L) andp’s memory
state at the exit-site (σx

L). In the rest of this section we describe the rule for an arbi-
trary call statementy = p(x1, . . . , xk) by an arbitrary functionq. The rule utilizes
additional helper functions, defined in Fig. 12, which we gradually explain.

The main idea behind the rule is to utilize the fact that a function cannot modify
objects that are not in its local-heap (i.e., in the part of the heap that isnot reachable
from any actual parameter when the function is invoked). In particular, becauseLSL
describes objects in terms of the (generalized) access paths that point-to them, these
“inaccessible” objects have the same description before and after the call. Thus, only
the description of the objects in the function’s local-heap (i.e., in the part of the heap
that the function can access) is (possibly) updated. The update is carried out using the
cutpoints of the invocation.4 In essence, the semantics freezes the initial descriptions
of the cutpoints and arranges for them to persist throughout the execution of the called
function. This sets up a relation between values on entry to values on exit. At the
return, the frozen information is used to update the description of objects in the called
function’s local-heap via an operation that is (roughly) similar to a relational join [9].

3The operator̄· is similar to theρrstc operator in [14].
4The same mechanism is used to compute the description of objects that the callee allocates.
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Cally=p(x1,... ,xk)
q : Σq

L → Σp
L s .t .

Cally=p(x1,... ,xk)
q (〈CPLc, Ac〉) def=

Let

�



Oargs
c = {[xi]Ac | 1 ≤ i ≤ k, [xi]Ac �= ∅}

Opassed
c = RObjs(Ac) Oargs

c

Ocp
c = CPObjsq(〈CPLc, Ac〉) (Oargs

c , Opassed
c )

bindargs = λo ∈ Oargs
c .{〈hi, ε〉 | 1 ≤ i ≤ k, xi ∈ o}

bindcp = λo ∈ Ocp
c .{〈sub(bindargs) o, ε〉}

bindcall = λo ∈ Oargs
c ∪ Ocp

c .

{
bindargs(o) o ∈ Oargs

c

bindcp(o) o ∈ Ocp
c

in
〈map(sub(bindargs)) Ocp

c , map(sub(bind call)) Opassed
c 〉

Rety=p(x1,... ,xk)
q : Σq

L × Σp
L → Σq

L s .t .

Rety=p(x1,... ,xk)
q (〈CPLc, Ac〉, 〈CPLx, Ax〉) def=

Let
�
bindret = λa ∈ range(bind call) ∪ {{〈ret, ε〉}}.{ {〈y, ε〉} a = {〈ret , ε〉}

Bypass(Opassed
c ) ◦ bind−1

call(a) otherwise
in
〈CPLc, (Ac \ Opassed

c ) ∪ map(sub(bindret)) Ax〉

〈body ofp, σe
L〉 L� σx

L

〈y = p(x1, . . . , xk), σc
L〉 L� σr

L

where
σe

L = Cally=p(x1,... ,xk)
q (σc

L)
σr

L = Rety=p(x1,... ,xk)
q (σc

L, σx
L)

Figure 11: The inference rule for function calls inLSL. The rule is given for an
arbitrary call statementy = p(x1, . . . , xk) by an arbitrary functionq. We assume that
the formal parameters ofp areh1, . . . , hk.

(The operation is not a “pure” relational join because of some name adjustments that
are needed due to the different representation of objects by the caller and by the callee.)

To find which objects are in the local-heap of the called function, i.e., reachable
from the actual parameters (x1, . . . , xk), we first compute the set of objects that are
pointed-to by p’s actual parameters (Oargs

c ). Then, the auxiliary functionRObjs finds
the part of the caller’s heap (Ac) that is reachable from these objects (Opassed

c ).
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RObjs : HeapL → (2ObjL → 2ObjL) s.t.

RObjs(A) O
def= {o ∈ A | o′ ∈ O, δ ∈ ∆, o′.δ ⊆ o}

Bypass : 2ObjL → (Obj L → 2GAccPath) s.t.

Bypass(O) o
def= {〈r, δ〉 ∈ o | ∀δ′ < δ. 〈r, δ′〉 �∈ flat O}

sub : (2GAccPath → 2GAccPath ) → (Obj L → 2GAccPath ) s.t.

sub(bind) o
def= flat

{
bind(a).δ

∣∣∣∣ a ∈ dom(bind),
δ ∈ ∆, a.δ ⊆ o

}
CPObjsq : Σq

L → (2Objq
L × 2Objq

L → 2Objq
L) s.t.

CPObjsq(〈CPLc, Ac〉) (Oargs
c , Opassed

c ) def=
Let

Odeep = Opassed
c \ Oargs

c

Ovars = {[〈x, ε〉]Ac ∈ Odeep | x ∈ Vq}
Ofld =

{
o ∈ Odeep

∣∣∣∣ ∃o′ ∈ Ac \ Opassed
c ,

∃f ∈ FieldId , o′.f ⊆ o

}
Ocpl = {[〈cpl , ε〉]Ac ∈ Odeep | cpl ∈ CPLc}

in
Ovars ∪ Ocpl ∪ Ofld

Figure 12: Helper functions for the function-call rule. The functionCPObjs q is pa-
rameterized for every functionq in the program. Recall thatV q is the set ofq’s local
variables.

The description of the objects after the call should account for the mutations (de-
structive updates) of the heap performed by the callee. However, because the invoked
function cannot modify objects that it cannot access, it can only modify fields of objects
in Opassed

c . Thus, to compute the (possibly) updated description of objects inO passed
c

(as well as of objects that the callee allocates) it is sufficient to have a description of
every object inOpassed

c (and of every object allocated by the callee) comprised of the
(generalized) access paths that start at objects that separateOpassed

c from the rest of the
caller’s heap: When the function returns, we just replace any (generalized) access paths
〈rp, δp〉 in the description of every object in the heap of the callee (Ax) that start at a
“separating object”o′, by access paths of the caller〈rq , δqδp〉 such that〈rq, δq〉 points-
to o′, but does not pass throughOpassed

c (and thus cannot be modified). Technically,
this is done as described below.

The auxiliary functionCPObjs q (cf. Fig. 12) determines the cutpoints for this
function invocation (Ocp

c ). Cutpoints are the objects that “separate”Opassed
c from the

rest of the caller’s heap. For expository reasons, we do not want to consider objects
that are pointed-to by actual parameters as cutpoints. Thus, the functionCPObjs q,
which is passed the caller’s memory state as well as the previously computedO args

c

andOpassed
c , considers only objects inOdeep = Opassed

c \ Oargs
c as possible cutpoints.
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Following the intuition of cutpoints as “separating objects”, an objecto ∈ Odeep is
qualified as a cutpoint if (and only if) one of the following holds:

• o is pointed-to by a local variable of the caller (Ovars ), or

• o is pointed-to by an object in the part of the caller’s heap that is not passed to
the function (Ofld ), or

• o separates the heap of thecaller from the heap of one of the pending calls, i.e.,
o is a cutpoint of the invocation of the caller (Ocpl ).

Back in Fig. 11 we define several binding mappings to bridge the gap between
the two different representations of objects (in terms of access paths of the caller and
in terms of access paths of the callee). The functionbind args maps objects pointed-
to by actual parameters to the set of “trivial” access paths that are made up of the
corresponding formal parameters. The functionbind cp maps every cutpoint (in the
caller representation) to the set of access paths that start with a formal parameter of the
caller and point-to that cutpoint at the entry to the function, i.e.,bind cp maps a cutpoint
to its label (see Sec. 3). To compute the label of a cutpointo, we applysub(bind args).
The latter denotes a function that replaces every access path that starts with an actual
parameter〈xi, δ〉 in the representation ofo by an access path〈h i, δ〉 that starts with the
corresponding formal parameter. (sub is defined in Fig. 12.) Thebind call combines
the previous two mappings trivially as they have disjoint domains.

Having defined these mapping functions, computing the memory state ofp in which
its body will be evaluated (i.e., the description of the heap at the function entry) is
straightforward. The set of cutpoint-labels (CPLe) is computed by applyingbind cp to
every cutpoint. The heap component (Ae) is constructed by applyingbind call to every
object inOpassed

c . Note that in the resulting description, objects are described by the set
of (generalized) access paths that point-to them and start either at a formal parameter
or at a cutpoint object.

To handle the return of functionp, we use an additional binding,bind ret . This
mapping is the inverse ofbind call (hence getting back to the caller’s representation of
the object) composed with the functionBypass(Opassed

c ), which filters out generalized
access paths (of the caller) thatpass through the part of the heap thatp had access
to (Opassed

c ). In addition, it also takes care of replacing access paths starting with
special variableret with the same access paths starting with result variabley. Note
that applyingbind ret is well defined becauseCPLx andCPLe are equal (the callee
cannot modify the set of objects that separate its own local-heap from the local-heap of
of some pending call5).

The cutpoint-labels component of the state after the return ofp is the same as before
the invocation (CPLc) because the callee (p) cannot modify the set of objects that
separate the heap of its caller (q) from the heap of some other (earlier) pending-call.
The new heap is calledAr. It is derived by removing from the heap at the call-site the
passed objects (Opassed

c ), plugging in the heap that results from evaluatingp’s body
(Ax), and substituting the description of all the objects by applyingsub(bind ret) to
every object inAx.

5Note that in any transition〈σL, st〉 L� σ′
L, the cutpoint-labels component inσL andσ′

L is the same.
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Example 4.3 Applying the function-call rule for the invocation ofreverse
in our running example results in the following sets and mappings:

Oargs
c = {{x}}

Opassed
c = {{x}, {x.n}, {x.n.n}, {x.n.n.n, z.n.n.n}, }

Ocp
c = {z.n.n.n, x.n.n.n}

bindargs = {x} �→ {h}
bindcp = {z.n.n.n, x.n.n.n} �→ { ̂{h.n.n.n}}
bindret = {{x} �→ {h}, { ̂{h.n.n.n}} �→ {z.n.n.n}, {ret} �→ {y}}

In particular, the fourth element inx’s list is a cutpoint for the invoca-

tion of reverse (see Sec. 4.1.1) and its label iŝ{h.n.n.n}. Thus, when
the execution ofreverse’s body starts, the cutpoint is represented by

the following set of (generalized) access paths:{h.n.n.n, ̂{h.n.n.n}}.
When the execution of the function body ends, the cutpoint-anchoredpaths
in the representation of every object inAx (see Fig. 6) are replaced by
access paths that start withz.n.n.n, the only access path that points-to
the cutpoint at the call-site andbypasses the objects that were passed

to reverse. For example, the cutpoint-anchored patĥ{h.n.n.n}.n in
the representation of the third element in the returned list is replaced by
z.n.n.n.n.

4.2 Properties of the Semantics

The only means by which a program can observe a state is by access paths. In par-
ticular, the program cannot refer to the cutpoint-labels component of the state. To
state the theorems, we need some preliminary definitions about access-path equality
and observational equivalence. We use the same simplifying notational conventions as
in Sec. 4.1.2. Note that in both semantics an access path is equal tonull when it has
a prefix which is equal tonull.

Definition 4.4 (Access path equality) Access paths α and β are equal in a given state
σL, denoted by [[α = β]]L(σL), if ∀a ∈ A. α ∈ a ⇐⇒ β ∈ a. An access path α is
equal to null in state σL, denoted by [[α = null]]L(σL), if α �∈ flat A.

Definition 4.5 (Observational equivalence) Let p be a function. The states σL ∈ Σp
L

and σG ∈ Σp
G are observationally equivalent if for all α, β, γ ∈ AccPathp,

(i) [[α = β]]L(σL) ⇔ [[α = β]]G(σG), and

(ii) [[γ = null]]L(σL) ⇔ [[γ = null]]G(σG).

We also define observational equivalence between states in LSL in the same way.
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4.2.1 Semantic Equivalence

The following theorem is the main theorem in the paper. It states thatLSL is equivalent
toGSB, in the sense that both behave equivalently w.r.t. termination, and that execution
of statements preserves observational equivalence.

Theorem 4.6 (Equivalence) Let p be a function. Let σL ∈ Σp
L and σG ∈ Σp

G be
observationally equivalent states. Let st be an arbitrary statement in p. The following
holds:

〈st , σL〉 L� σ′
L ⇐⇒ 〈st , σG〉 G� σ′

G.

Furthermore, σ′
L and σ′

G are observationally equivalent.

We prove The. 4.6 by establishing a stronger property of theLSL semantics: the
preservation ofContext-Aware Equivalence. Informally, theContext-Aware Equiva-
lence theorem shows that the cutpoints are, in a sense, the “store-based part” ofLSL:
they are used to label and fix certain objects, something that is done automatically if
we have locations. The theorem is formally stated and proved in App. C.3.

The following theorem states thatLSL can be used to: (i) verify data-structure
invariants that are expressed by access-path equalities at a program point; and (ii) assert
the absence ofnull-valued pointer dereferences. Formally, a property is an invariant at
a (labeled) statement if is satisfied in any memory-state that occurs just before the
(labeled) statement is executed.

Corollary 4.7 Let P be a program, p a function , lb a program point in p. For any
α, β ∈ AccPathp, [[α = β]]L is an invariant of P at lb iff [[α = β]]G is an invariant of
P at lb.

The following theorem states thatLSL can detect memory leaks6 without investi-
gating reachability fromroots of pending access paths. A memory leak can occur only
when a variable or a field is assignednull. The “leaked objects” are the ones that are
not pointed-to only by suffixes of the nullified variable (or field).

Corollary 4.8 A memory leak can occur only when a variable or a field is assigned
null. Furthermore,

• Executing a statement x = null in a memory state 〈CPL, A〉 leaks an object o
iff o ⊆ x.∆.

• Executing a statement x.f = null in a memory state 〈CPL, A〉 leaks an ob-
ject o iff o ⊆ [〈x, ε〉]A.f .∆.

6By a memory leak we mean an object that is not pointed-to by any access path; i.e., neither by an access
path of the current call nor by one of a pending call.
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4.2.2 Standard Properties

The following theorems state that theLSL semantics has certain standard properties.

The following lemma ensures that theLSL semantics preserves admissible states.

Lemma 4.9 (Admissibility) Let st be a statement and σL an admissible state. If

〈st, σL〉 L� σ′
L then σ′

L is also an admissible state.

Furthermore,LSL is a deterministic semantics; this holds because memory allocation
is deterministic. (In contrast, most store-based semantics do not have a deterministic
memory-allocation mechanism.)

Lemma 4.10 (Determinism) Let st be a statement and σL an admissible state. If

〈st, σL〉 L� σ′
L and 〈st, σL〉 L� σ′′

L, then σ′
L = σ′′

L.

The following lemma states thatLSL is fully abstract. To state this property, we
use the notationP [·] for program contexts. The denotation [[st]]L of a statement is

defined to be the (partial) functionλσL.σ′
L where〈σL, st〉 L� σ′

L.

Lemma 4.11 (Full Abstraction) Let st1 and st2 be two statements such that for all
program contexts P [·] and all states σL the states [[P [st1]]]L(σL) and [[P [st2]]]L(σL)
are observationally equivalent. Then [[st1]]L = [[st2]]L.

4.2.3 Modularity

The following theorems state thatLSL manipulates the heap in a “modular” way.
Thanks to these properties, theanalysis (see Sec. 5) can also be a modular.

The following theorem states that a function has no effect on the observable prop-
erties of the unreachable part of the heap.

Theorem 4.12 (Framed Execution) Let q be a function. Let σ c
L, σr

L ∈ Σq
L be states

of function q such that 〈σc
L, y = p(x1, . . . , xk)〉 L� σr

L. Let Opassed
c be the objects in

σc
L that are reachable from x1, . . . , xk. Let α, β, γ ∈ GAccPathq \ y.∆ be arbitrary

generalized access paths of function q that do not start with y and do not pass through
objects in Opassed

c . The following properties hold:

(i) [[α = β]]L(σc
L) ⇐⇒ [[α = β]]L(σr

L), and

(ii) [[γ = null]]L(σc
L) ⇐⇒ [[γ = null]]L(σr

L).

Note that the above theorem is also applicable for access paths thatpoint-to objects in
the part of the heap that the function can access, but do not pass through this part.7

The following theorem states that a function cannot observe its context, i.e., that
the execution of the function body is not affected by the cutpoint-labels component of
the state.

7Recall that an access pathα passes through an objecto if there exists a proper prefixα′ < α such
thatα′ points-too.
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Theorem 4.13 (Context Indifference) Let p be a function. Let σ 1
L, σ2

L ∈ Σp
L be ob-

servationally equivalent states of p. Let st be an arbitrary statement in p. The following
holds:

〈σ1
L, st〉 L� σ1′

L ⇐⇒ 〈σ2
L, st〉 L� σ2′

L .

Furthermore, σ1′
L and σ2′

L are observationally equivalent.

The following theorem states that a function has a similar effect on contexts that
differ only by thecontents of the part of the heap that is not reachable from actual
parameters. Practically speaking, this theorem justifies the reuse of the results of an
analysis of a function invocation (see Sec. 5) in “similar” contexts.

Theorem 4.14 (Heap Modularity) Let p be a function. For i = 1, 2, let q i be a func-
tion, σci

L ∈ Σqi

L be a state of function qi, yi = p(xi
1, . . . , xi

k) be a statement in func-

tion qi, and σei

L = Cally
i=p(xi

1,... ,xi
k)

qi
(σci

L ) ∈ Σp
L be the state that results at the entry

to function p when it is invoked at σci

L . If σe1
L and σe2

L are observationally equivalent
then the following properties hold:

(i) 〈σc1
L , y1 = p(x1

1, . . . , x1
k)〉 L� σr1

L ⇐⇒ 〈σc2
L , y2 = p(x2

1, . . . , x2
k)〉 L� σr2

L , and

(ii) if CPLe2 ⊆ CPLe1 and 〈σe1
L , body of p〉 L� σx1

L , then

σr2
L = gc(Rety2=p(x2

1,... ,x2
k)

q2
(σc2

L , σx1

L )), where gc(〈CPL, A〉) def= 〈CPL, A\∅〉.

We need to applygc to the heap produced byRet y2=p(x2
1,... ,x2

k)
q2

(σc2
L , σx1

L ) because
of the following technical reason: it is possible that some of the objects inAx1 are
reachable only from objects that are cutpoints whenp is invoked atσ c1

L but not when it
is invoked atσc2

L . Thus, some objects that are reachable (i.e., pointed-to by a current
or a pending access path) atσr1

L might not be reachable atσr2
L .

4.3 Assertion Language

In this section, we defineAssnAP, a language of assertions over access paths.LSL
preserves validity of invariants and of partial-correctness and total-correctness asser-
tions expressed inAssnAP. Our aim, in this section, is to provide a syntactic charac-
terization ofAssnAP. In particular, we do not develop a proof system.

The definition ofAssnAP is similar to [42, Ch. 6]. First, we extend the syntactic
category ofAccPath q to includeaccess-path variables over which we can quantify. As
indicated by its name, an access-path variable ranges over access paths. The extended
syntactic categoryEAccPath q of access paths for functionq is defined in Fig. 13 (1).
An extended access pathe is either an access path of functionq (α), an access-path
variable (χ), or a concatenation of an extended access path with some field path (e.δ).

The syntax of assertions inAssnAP is defined in Fig. 13 (2).AssnAP is a first-
order language with3 relation symbols (i.e.,atomic assertions): al , isNull , and≤.

The intended meaning of theatomic assertions is:
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al(e1, e2) : the extended access pathse1 ande2 denote the same object (ornull).

isNull(e) : the extended access pathe denotesnull.

e1≤e2 : the extended access pathe1 is a prefix of the extended access pathe2.

The meaning of an assertion is defined using aninterpretation for access-path vari-
ables. An interpretationI : AccPathVar → AccPath q associates an access-path vari-
able with a particular access path. We lift an interpretationI to Î : EAccPathq →
AccPathq as follows:

Î(e) =


I(e) e ∈ AccPathVar
e e ∈ AccPathq

Î(e1).f e = e1.f.

We useÎ to specify when a stateσL ∈ Σq
L (resp. σG ∈ Σq

G) satisfies an assertion
ass ∈ AtmAssrtq w.r.t.I, denoted byσL |=I

L ass (resp.σG |=I
G ass). The satisfaction

relation between states inLSL (resp. GSB), interpretations and atomic assertions
is specified in Fig. 13(3) (resp. Fig. 13(4)). Note that by interpreting access-path
variables as access paths (and not, for example, as locations) we can use thesame
interpretation in the definition of the satisfaction relation for bothLSL andGSB. The
satisfaction relation for non-atomic assertions is defined by structural induction in a
standard manner (e.g., see [42, Ch. 6]).

Example 4.15

• For any interpretation, the assertion¬isNull(x.n) holds in any state
in which then-field of the objectx points-to does not have anull
value.

• The assertion〈x, ε〉≤χ holds in any state, provided that the interpre-
tationI mapsχ to an access path that starts withx; i.e., there exists
a field pathδ ∈ ∆ such thatI(χ) = x.δ.

• The assertionass = 〈x, ε〉≤χ∧¬isNull(χ) is satisfied ifχ is mapped
to an access path that points-to an object that is reachable fromx. For
example,ass is satisfied in stateσc

L, the state in whichreverse is
invoked (see Fig. 6), w.r.t. an interpretation that mapsχ to 〈x, nnnn〉
but not w.r.t. an interpretation that mapsχ to either〈x, nnnnnnn〉
or to 〈y, nnnn〉.

The following lemma states that for the same interpretation, observationally equiv-
alent states satisfy the same assertions.

Lemma 4.16 (Equivalence w.r.t. AssnAP) Let p be a function. Let σL ∈ Σp
L and

σG ∈ Σp
G be observationally equivalent states. For any assertion ass ∈ Assrtp and for

any interpretation I ∈ AccPathVar → AccPathp, σL |=I
L ass ⇐⇒ σG |=I

G ass .
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(1)

e ∈ EAccPathq ::= α | χ | e.f
α ∈ AccPathq

χ ∈ AccPathVar
f ∈ FieldId

(2)
atmAss ∈ AtmAssrtq ::= al(e1, e2) | isNull(e) | e1≤e2

ass ∈ Assrtq ::= atmAss | ¬ass | ass1 ∧ ass2 |
∃χ.ass

(3)
σL |=I

L al (e1, e2) ⇐⇒ [[Î(e2) = Î(e2)]]L(σL)
σL |=I

L isNull(e) ⇐⇒ [[Î(e) = null]]L(σL)
σL |=I

L e1≤e2 ⇐⇒ Î(e2) ≤ Î(e2)

(4)
σG |=I

G al(e1, e2) ⇐⇒ [[Î(e2) = Î(e2)]]G(σG)
σG |=I

G isNull(e) ⇐⇒ [[Î(e) = null]]G(σG)
σG |=I

G e1≤e2 ⇐⇒ Î(e2) ≤ Î(e2)

Figure 13: (1) The extended syntactic categoryEAccPath q of access paths for function
q. (2) Syntax of assertions inAssnAP for functionq. We also use the symbols<, ∨,
=⇒ , and∀ as shorthands in a standard manner. (3) The satisfaction relation between
states, interpretations, and atomic assertions in theLSL semantics. (4) The satisfaction
relation in theGSB semantics.

An immediate corollary of Lem. 4.16 is that we can strengthen Cor. 4.7 in the
following manner:

Corollary 4.17 Let P be a program, p a function, and lb a program point in p. A closed
assertion ass ∈ Assrtp is an invariant of P at lb according to the LSL semantics
iff ass is an invariant of P at lb according to the GSB semantics.

Example 4.18 The following assertions are invariants of the running ex-
ample atlbc:

• ¬isNull(x), expressing thatx points-to an object, and

• ∃χ, 〈x, ε〉 < χ ∧ isNull(χ), expressing thatx points-to an acyclic
list (e.g.,null-terminated).

Having defined the satisfaction relation between interpretations, states inLSL
(resp.GSB) and assertion inAssnAP, we define the notion ofvalidity of partial
(resp. total) correctness assertions inLSL (resp.GSB) in a standard manner (see [42,
Ch. 6]). The following theorem states thatLSL preserves validity of partial and total-
correctness assertions expressed inAssnAP.
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Theorem 4.19 (Preservation-of-Correctness Assertion) Let p be a function.
Let P, Q ∈ Assrtq be arbitrary assertions in AssnAP for function p. Let st be an
arbitrary statement in p.

(i) A partial correctness assertion {P} st {Q} is valid in LSL if and only if it is
valid in GSB.

(ii) A total correctness assertion [P ] st [Q] is valid in LSL if and only if it is valid
in GSB.

Example 4.20 The partial-correctness assertion{ass 1}reverse(x){ass2}
where

ass1 = ∃χ1, 〈x, ε〉≤χ1 ∧ al(χ2, χ1) ∧ al(χ3, χ2.n) ∧
∀χ′

1≤χ1 : (∀χ′
2 < χ2 : ¬al(χ′

1, χ
′
2)) ∧

(∀χ′
3 < χ3 : ¬al(χ′

1, χ
′
3))

ass2 = ∃χ4 : 〈y, ε〉≤χ4 ∧ al(χ4, χ3) ∧ al(χ3.n, χ2)

is valid in stateσc
L, the state in whichreverse is invoked (see Fig. 6). It

asserts that the invocation ofreverse(x) results in a reversed list. Note
that the access-path variablesχ2 andχ3 are bounded to the same access
paths in the state before the call and in the state after the call. The precon-
dition assumes that in the state before the call,χ2 points-to the predecessor
of the object thatχ3 points-to inx’s list, and, in addition, that no prefix of
eitherχ2 or χ3 points-to an object inx’s list. The postcondition ensures
that after the call,χ2 points-to the successor of the object thatχ3 points-to
in the returned list.

5 Abstract Interpretation

In this section, we use theLSL semantics to automatically compute a safe approxi-
mation to the set of possible program states using an iterative abstract-interpretation
algorithm. The main idea is that every abstract state finitely represents a potentially
infinite number of concreteLSL states. The program is interpreted according to an

abstract semantics (
L�

�) that over-approximates the concrete transition relation (
L�).

Termination of the the abstract-interpretation algorithm is guaranteed by the finiteness
of the set of abstract states.

The algorithm isconservative, it describes any memory state that can arise (at
any program point) in any execution. This means that we can conservatively deter-
mine properties of the program such as the absence of null-dereferences, absence of
garbage, and validity of invariants by checking these properties on the (generated) ab-
stract states. However, because the description isconservative, the algorithm might
represent concrete states that are infeasible according to the concrete semantics. This
leads to incompleteness in the sense that we may fail to establish assertions that hold
for every execution.
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Neither Sec. 5.1 nor Sec. 5.2 gives the full details of the analyses. In particular,
the abstract transfer functions are not defined. This paper focuses on the abstraction of
LSL memory states. We plan to report on the shape-analysis algorithm in more details
once its implementation is complete.

5.1 The May-Alias Abstraction

In this section, we show that Deutsch’s abstract-interpretation algorithm [15] can be
seen as an abstraction of theLSL semantics. Also, we provide insight into the clever
interprocedural aspects of the analysis. App. B provides a more detailed description
of [15] than the description provided in this section. It also gives the actual details of
the Galois connection.

May-alias algorithms find an upper approximation for the sets of aliased access
paths at every program point. The algorithm of [15] is interprocedural, flow-sensitive,
and context-sensitive. It handles dynamically allocated memory, recursive functions,
and recursive data structures. The algorithm computes (in polynomial time) a (bounded)
representation of all the pairs of aliased access paths at every program point.

One of the most intricate aspects of the interprocedural analysis in [15] is the de-
layed propagation of the effect of destructive updates performed by an invoked function
on pending access paths. The algorithm does not represent pending access paths explic-
itly. Instead, it tracks the effect of the function body on field paths that start at—what
we call—cutpoints of the invocation. In particular, it represents (values of) current
access paths and (values of) pending access path differently.

This simple observation suffices to see why the analysis ofrevr, a recursive
function that (destructively) reverses a singly linked list (shown in Fig. 14, originally
in [15]) manages to verify that reversing an acyclic list returns an acyclic list, whereas
the analysis fails to verify this property for a list-reversal function that uses a loop, e.g.,
our running example.

The functionrevr reverses a list recursively by invoking itself with the tail (t) of
the (original) list, which is not reversed yet, and a pointer to the already reversed part
(r). The analysis handles the destructive update precisely because it can distinguish
between the value oft in the current call and its values in pending calls by abstracting
them differently. However, in the analysis of the loop-basedreverse function in our
running example (where variablep plays the same role ast in Fig. 14) , the analysis
cannot distinguish between the value ofp in the different iterations. Note that this loss
of information is inherent in the may-alias analysis. In particular, it does not depend
on the algorithm that abstracts the access paths.

5.2 Interprocedural Shape Analysis with Local-Heaps

In this section, we present a new interprocedural shape-analysis algorithm for programs
that manipulate singly-linked lists. The algorithm finds a finite description of all the
memory states that arise during program execution. Useful information regarding the
program’s behavior can be extracted from the computed descriptors. For example,
an analysis of the running example successfully verifies that the program does not
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Sll revr(Sll t, Sll r):=
Sll tn;
if (t == null) then

ret = r
else

tn = t.n;
ld : t.n = r;
ret = revr(tn, t);

fi

Figure 14: A function thatrecursively reverses a list.

reference null; does not create garbage; and that whenreverse returns, the variables
z andy point-to acyclic linked lists with a shared tail.

The algorithm is flow-sensitive and context-sensitive. It creates asummary trans-
former for each functionp by tabulating input/output descriptors. The tabulation is
restricted to input descriptors that occur at the entry top. The algorithm is sound by
construction: it is an abstract interpretation [11] ofLSL.

The algorithm is presented in terms of the3-valued-logic framework for program
analysis of [40]. This framework provides for the automatic generation of abstract
interpreters (i.e., analysis algorithms) based on a specification of the programming lan-
guage’s concrete semantics. The most demanding task on the analysis designer is the
choice of the memory-state properties that the analysis should track. Once the choice
is made, the rest of the algorithm is synthesized in a provably-correct fashion. Techni-
cally, 3-valued logical structures are used to represent unbounded memory states. The
tracked properties are encoded as predicates.

In this paper, we focus on the abstraction ofLSL memory states. Due to lack of
space, we do not give the full details of the analyses. In particular, the abstract transfer
functions are not defined. Instead, we specify the analysis using thebest abstract trans-
former [12]. A detailed description of the shape-analysis algorithm is given in [39].

5.2.1 Representing LSL Memory States by 3-Valued Logical Structures

Kleene’s3-valued logic is an extension of ordinary2-valued logic with the special
value of 1

2 (unknown) for cases in which predicates could have either value,1 (true) or
0 (false). We say that0 and1 aredefinite values, whereas12 is anindefinite value. The
information partial order on the set{0, 1

2 , 1} is defined as0 � 1
2 � 1, and0 � 1 = 1

2 .
A 3-valued logical structure S is comprised of a set of individuals (nodes) called

a universe, denoted byU S , and an interpretation over that universe for a (finite) set
of predicate symbols. The interpretation of a predicate symbolp in S is denoted by
pS . For every predicatep of arity k, pS is a functionpS : (US)k → {0, 1

2 , 1}. A 2-
valued structure is a3-valued structure with an interpretation limited to{0, 1}. The
set of2-valued logical structure is denoted by2-Struct, and the set of3-valued logical
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to2VLS : ΣL → 2-Struct s.t.
to2VLS(〈CPL, A〉) = S where US = A ∪ CPL and

isListS(v) = v ∈ A

isLabelS(v) = v ∈ CPL
xS(v) = v ∈ A andx ∈ v
nS(v1, v2) = v1 ∈ A, v2 ∈ A andv1.n ⊆ v2

rS
x (v1) = ∃α ∈ v1 s.t. 〈x, ε〉 ≤ α

ilsS(v) = ∃α.n ∈ v, β.n ∈ v s.t. [α]A �= [β]A
cS(v) = ∃α ∈ v, β ∈ v s.t. α < β
eqS(v1, v2) = v1 = v2

lblS(v1, v2) = v1 ∈ CPL, v2 ∈ A and〈v1, ε〉 ∈ v2

cpS(v) = ∃r ∈ CPL s.t. 〈r, ε〉 ∈ v
rS
cp(v) = ∃r ∈ CPL, δ ∈ ∆ s.t. 〈r, δ〉 ∈ v

Figure 15: The functionto2VLS maps states inΣL to 2-valued logical structures.

structures is denoted by3-Struct.
To establish the Galois connection between the set of program states (ordered by

set inclusion) and3-Struct, it suffices to show arepresentation function that maps a
program state to its “most-precise representation” in3-Struct (e.g., see [31]). We de-
fine the functionβshape : ΣL → 3-Struct, which maps a local-heap to its most precise
representation as a3-valued logical structure.β shape is a composition of two functions:
(i) to2VLS : ΣL → 2-Struct, which maps a local-heapσL to an unbounded2-valued
logical structureS, and (ii)canonical abstraction : 2-Struct → 3-Struct which conser-
vatively boundsS (defined as usual in [40]). The Galois connection(2 ΣL , α : 2ΣL →
23-Struct, γ : 23-Struct → 2ΣL , 23-Struct) is defined in a standard manner:

α(AA) = {βshape(σL) | σL ∈ AA} and γ(SS) = {σL ∈ ΣL | βshape(σL) ∈ SS}.

5.2.1.1 Representing a Local-Heap by a 2-Valued Logical Structure. The func-
tion to2VLS, defined in Fig. 15, maps a local heapσL = 〈CPL, A〉 to a2-valued logical
structureS. Every objecto ∈ A and every cutpoint-labelcpl ∈ CPL is represented
by a unique node inU S. Tracked properties of the memory state are recorded by the
predicates given in Tab. 1. We denote the set of predicates used to represent a memory
state byP .

2-valued logical structures are depicted as directed graphs. A directed edge be-
tween nodesu1 andu2 that is labeled with binary predicate symbolp indicates that
pS(u1, u2) = 1. Also, for a unary predicate symbolp, we drawp inside a nodeu when
pS(u) = 1; conversely, whenpS(u) = 0 we do not drawp in u.

We explain the predicates’ intended meanings through an example. In the example,
we applyto2VLS to σe

L, the memory state at the entry point ofreverse (shown in
Fig. 6). The resulting2-valued logical structure, denoted byS e, is depicted in Fig. 16.
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Predicate Intended Meaning
isList(v) Is v a list element?
isLabel(v) Is v a cutpoint-label?

x(v) Is v pointed-to by a (current) variablex?
n(v1, v2) Does then-field of v1 point-tov2?
rx (v) Is v2 reachable from (current) variablex using

n-fields?
ils(v) Is v locally shared? i.e., isv pointed-to by more

than onen-fields of objects in thelocal-heap?
c(v) Doesv reside on a directed cycle ofn-fields?

eq(v1, v2) Are v1 andv2 the same object or cutpoint-label?

lbl(v1, v2) Is list elementv2 labeled by cutpoint-labelv1?
cp(v) Is list elementv a cutpoint?
rcp(v) Is the list elementv reachable from a cutpoint

usingn-fields?

Table 1: The predicates used to represent states inΣL. There are separate predicatesx
andrx for every program variablex.

The universe ofSe contains six nodes. The nodesu0–u3 represent the list elements.

The nodeu6 represents the cutpoint-label̂{h.n.n.n}.

• The predicatesisList andisLabel record whether a node represents a list element or
a cutpoint. We draw nodesu that represent list elements, i.e.,isList S(u) = 1, as
rectangles, e.g., nodesu0–u3; and we draw nodesv that represent cutpoint-labels,
i.e., isLabelS(v) = 1, as circles, e.g., nodeu6.

• The predicatesh, n, rh , ils , c, andeq are an adaptation to local-heaps of the standard
predicates used in the analysis of singly linked lists [28,40].

- For each pointer variableh, there is a unary predicateh. The value ofh S(u) is 1 if
variableh points-to the list element represented byu. The value of theh-predicate
is depicted via an edge from the predicate nameh to the node that represents the
list element thath points-to. In Fig. 16, only nodeu0 is pointed-to by a variable.

- The pointed-to-by-a-field relation between list elements is represented by the bi-
nary predicaten, i.e.,nS(v1, v2) = 1 if the n-field of the list element represented
by v1 points-to the list element represented byv2. For example; then-labeled
edge fromu0 to u1a indicates thatu1a represents then-successor of the list ele-
ment represented byu0; u1b represents the successor ofu1a, etc.

- The unary predicaterh holds for list elements that are reachable by an access path
that starts at a local variableh of thecurrent call. In σe

L, all the list elements are
reachable fromh. Thus, inSe, the value of the predicaterh is 1 for all the nodes
that represent list elements.
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- The unary predicateils captureslocal-heap sharing information. The predicate
has the value1 at a nodeu that represents a list element that is pointed-to by the
n-fields of two or more list elements in thelocal heap. In σ e

L, no list element is
locally shared. Thus, the value ofils Se is 0 for all of the nodes inU Se . Note that
the predicate records onlylocal sharing. In particular,ils Se(u2) = 0, although in
a “global-view” of the heap, the list element represented byu 2 is then-successor
of two list elements: one in the local heap (represented byu1b) and one not in the
local heap (the third element in the list pointed-to byz).

- The unary predicatec holds at a node that resides on a cycle ofn-fields. Because
the list pointed-to byh is acyclic,cSe(u) = 0 for all the nodes.

- The binary predicateeq records the equality relation. It is not drawn in the pictures.

• The predicateslbl , cp, andrcp record information that is special for the abstraction
of anLSL state.

- The binary predicatelbl relates a node that represents a cutpoint-label to the node
that represents the corresponding cutpoint. For example,lbl S(u6, u2) = 1, be-
causeu6 represents the label of the cutpoint represented byu2.

- The unary predicatecp records the property that a list element is a cutpoint,
e.g.,cpSe(u2) = 1 becauseu2 represents the (only) cutpoint inSe; for all other
nodesu, cpSe(u) = 0.

- The unary predicatercp records the property that a list element is reachable by
a cutpoint-anchored path. For example,rSe

cp (u2) = 1 and rSe
cp (u3) = 1 because

(only) u2 andu3 represent list elements that can be reached from the cutpoint (by

the cutpoint-anchored paths〈 ̂{h.n.n.n}, ε〉 and〈 ̂{h.n.n.n}, n〉, respectively). For
all other nodesu, rSe

cp (u) = 0.

The predicatescp andrcp are used to record information regarding cutpoint-anchored
paths in a similar manner to the wayh andrh record information regarding access-
paths. However, unlike local variables, the number of cutpoints is unbounded. Thus,
we cannot have a predicate recording the reachable list-elements from every cutpoint.
Instead, we use individuals to represent cutpoint-labels, and “mark” cutpoint objects
with thecp predicate.

5.2.1.2 Canonical Abstraction. The main idea in canonical abstraction is to repre-
sent several list elements (or cutpoint-labels) by a single node, i.e., the mapping from
list elements and cutpoint-labels to the universe of the3-valued logical structure is a
surjective function, but not necessarily an injective function. A node that represents
more than one list element (or more than one cutpoint-labels), is called asummary
node.

Informally, the3-valued logical structureS � that (conservatively) represents a memory-
stateσL is obtained by “merging”all the nodes in the2-valued logical structureS =
to2VLS(σL) that have the same values forall the unary predicates (and using these
values for the unary predicates at the “merged” node). The value of a binary predicate
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h �� u0 :
rh

n �� u1a :
rh

n �� u1b :
rh

n �� u2 : cp,
rh , rcp

n �� u3 :
rh , rcp

��������u6

lbl

�����������

u0 = { h }, u1a = { h.n }, u1b = {h.n.n }, u2 =

{
h.n.n.n,
̂{h.n.n.n}

}
, u3 =

{
h.n.n.n.n,
̂{h.n.n.n}.n

}
,

u6 = ̂{h.n.n.n}

Figure 16: The2-valued logical structure that results by applyingto2VLS to σ e
L, the

memory state at the entry point ofreverse (σe
L is shown in Fig. 6). We denote this

structure bySe.

pS�

(u�
1, u

�
2) is set to adefinite value (0 or1) only when the predicatepS(u1, u2) has this

value for all the nodesu1 andu2 in US that are “merged” intou�
1 andu�

2, respectively.
Formally, a3-valued logical structureS � is acanonical abstraction of a 2-valued

logical structureS if there exists a surjective functionf : U S → US�

satisfying the
following conditions: (i) For allu1, u2 ∈ US , f(u1) = f(u2) iff for all unary predi-
catesp ∈ P , pS(u1) = pS(u2), and (ii) For all predicatesp ∈ P of arity k and for all
k-tuplesu�

1, u
�
2, . . . , u�

k ∈ US�

,

pS�

(u�
1, u

�
2, . . . , u�

k) =
⊔

u1,... ,uk∈Us

f(ui)=u�
i

pS(u1, u2, . . . , uk).

We say that a nodeu� ∈ US�

represents nodeu ∈ U , whenf(u) = u�.

By definition [40, Def 3.4.1] every2-valued logical structure has a3-valued logical
structure that is its canonical abstraction.

Example 5.1 The3-valued logical structureS �
e, depicted in Fig. 17 (first

row, second column), (conservatively) represents the memory stateσ e
L,

represented bySe.

3-valued logical structures are also drawn as directed graphs. Definite val-
ues are drawn as for 2-valued structures. Binary indefinite predicate values
( 1
2 ) are drawn as dotted directed edges. Summary nodes are depicted by a

double frame.

The universe ofSe contains 6 nodes. The only nodes that have the same
values for all the unary predicates areu1a andu1b. Thus, the universe
of S�

e contains five nodes. The mappingf : U Se → US�
e induced by the

canonical abstraction isf(u0) = u�
0, f(u1a) = f(u1b) = u�

1, f(u2) = u�
2,

f(u3) = u�
3, andf(u6) = u�

6. Note that the value of every unary predicate
is the same for a nodeu ∈ U S and for the node that representsu in U S�

.
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h �� u�
0 : rh ,

rret , rcp

u�
1 :

rret , rcp
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2 : rret ,
cp, rcp

n�� u�
3 :

rret

n�� ret��

	
�����u�
6

lbl

���������

S�
r S�

x

Figure 17: Representative3-valued logical structures that arise during the analysis of
the running example atlbc, the call-site toreverse (first row, first column);lbe, the
entry toreverse (first row, second column);lbx, reverse’s exit point (second row,
second column); andlbr, the return-site fromreverse (second row, first column).

The only summary node inS �
e is u�

1, which represents bothu1a andu1b.
This is recorded by the predicateeq, which has an indefinite value atu �

1,
i.e., eqS�

e(u�
1, u

�
1) = 1

2 . The value ofnS�
e(u�

0, u
�
1) is indefinite because

then-field of the first list element (represented byu�
0) points-to the sec-

ond list element (represented byu�
1) but not to the third list element (also

represented byu�
1).

We see that any memory state represented byS �
e contains one cutpoint la-

bel (the nodeu�
6 is not a summary node). The cutpoint is represented by

u�
2. This is recorded in two ways: (i) the value of the predicatelbl S�

e(u�
6, u

�
2) =

1 and (ii) u�
2 represents a list element that is labeled, as indicated by the

value of the unary predicatecpS�
e(u�

2) = 1.

We also see that in any memory state represented byS �
e there is no garbage

(i.e., all the list elements are reachable fromh, as indicated by the fact that
the value of the predicaterh is 1 (true) at all of them); the list pointed-to by
h is acyclic (the value of the predicatec is 0 (false) at all the nodes); and
the only cutpoint object is the list element that precedes the last element in
the list. However, we no longer know the number of elements in the list.

5.2.2 Abstract Interpretation

The specification of the abstract interpretation is given by “abstract” inference rules
in the same style as the natural semantics. The abstract inference rules operate on3-
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〈st, S〉 L�
�

{βshape(σ′
L) | σL ∈ γ(S), 〈st, σL〉 L� σ′

L}

Figure 18: A specification of the abstract inference rules for atomic statements.

〈body of p, XSp〉 L�
�

XS′
p

〈y = p(x1, . . . , xk), XSq〉 L�
�

XS′
q

where

{Callpq(σc
L) | σc

L ∈ γ(XSq)} ⊆ γ(XSp)Retp
q(σ

c
L, σx

L)

∣∣∣∣∣∣
σc

L ∈ γ(XSq),
σx

L ∈ γ(XS′
p),

compatible(σc
L, σx

L)

 ⊆ γ(XS′
q)

Figure 19: A specification of the abstract inference rules for function calls. The func-
tionsCall y=p(x1,... ,xk)

q andRety=p(x1,... ,xk)
q are defined in Fig. 11. Note that we apply

Rety=p(x1,... ,xk)
q only for compatible pairs of memory states. Memory statesσ c

L and
σx

L are compatible when the sharing pattern that results from the invocation ofp at σ c
L

matches the description of the context inσx
L, the state ofp at the exit-site. Formally,

compatible(σc
L, σx

L) ⇐⇒ (CPLe = CPLx ∧ ∀h, h′ ∈ Fp.[[h = h′]]L(σe
L) ⇐⇒

[[h = h′]]L(σx
L) ∧ ∀h ∈ Fp.[[h = null]]L(σe

L) ⇐⇒ [[h = null]]L(σx
L)), where

σe
L = Cally=p(x1,ldots,xk)

q (σc
L).

valued logical structures. Fig. 18 and Fig. 19 shows the specification of the abstract
inference rules for atomic statements and function-calls respectively. These rules are
declarative in the style of the best abstract transformer [12]: every abstract inference
rule emulates a corresponding concrete inference rule using represented states (see
Fig. 20).

Example 5.2 Fig. 17 shows an application of the function-call inference
rule from Fig. 19 to the running example. The logical structures are:S �

c,
which arises atlbc, the call-site toreverse; S�

e, which ariseslbe, the
entry toreverse; S�

x which arises atlbx, the exit-point ofreverse;
andS�

r , the structurecomputed at the return-site.

In S�
x, the list pointed-to byret is reversed. As a result,u�

0 is now reach-
able from the cutpoint at the exit-site. Therefore, even though the list-
element pointed-to byz is not explicitly represented inS �

x, the inference
rule allows us to conclude that atS �

r, the return-site’s logical structure,u�
0
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set of valid
memory states

[[st]] �� set of valid
memory states

abstraction

��
3-valued
structure

concretization

��

set of 3-valued
structures

Figure 20: The best abstract semantics of a statementst with respect to3-valued
structures.[[st]] is the operational semantics ofst applied pointwise to every admissi-
ble memory state. Conceptually, the most precise (also calledbest) conservative effect
of a program statement on a3-valued logical structureS is defined in three stages:
(i) find each admissible memory stateσL represented byS (concretization); (ii) apply
the statement’s concrete operational semantics to every such stateσL, and (iii) abstract
each of the resulting memory states by a3-valued structure (abstraction).

becomes reachable fromz. Similarly, u�
3 is no longer reachable fromz.

To conclude, definite values of many of the tracked properties ofz can be
established after the function call returns.

5.2.3 Discussion

In our abstraction, when a program state is mapped to a2-valued logical structure,
no information is tracked regarding the contents of their labels. Furthermore, we do
not differentiate between different cutpoints. This may lead to a significant loss of
precision when multiple cutpoints arise. For example, passing two lists with shared
tails will be handled very conservatively.

Nevertheless, even with this simple abstraction, our abstract domain is precise
enough to analyze the singly-linked-list-manipulating programs analyzed in [23, 38]
and verify that they do not dereference null-valued pointers, do not create garbage,
and do not create cyclic lists. Moreover, we can handle programs not handled before
by [23, 38]. For example, we can verify that a recursive function that destructively
merges two acyclic lists, returns an acyclic list.

6 Related Work

6.1 Storeless Semantics

Storeless semantics was first introduced by Jonkers [24]. The original work does not
handle procedure calls. Intraprocedural storeless semantics is also used in [5] to de-
velop a logic that allows to express regular properties of unbounded data structures.

A storeless semantics that handles function-calls is defined in [14]. The semantics
is used to develop a may-alias algorithm. In contrast toLSL, in [14] pending access
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paths are explicitly represented.
The interprocedural may-alias algorithm of [15] uses a storeless representation of

the heap. The algorithm is polynomial and can handle function calls, dynamic memory
allocation and destructive updates. The algorithm isnot shown to be an abstract inter-
pretation of [14]. One can define a Galois connection between memory states inLSL
with the abstract domain of [15]; see [36].

6.2 Interprocedural Shape Analysis

The original motivation for our work comes from our attempt to apply interprocedural
shape analysis (e.g., [40]) to heap-manipulating programs in a modular fashion. In [35,
Chap. 6] this objective was achieved, but based on a weaker technique: (i) a procedure
operates on the part of the heap that is reachable from the actual parameters, where the
heap is considered as anundirected graph; and (ii) pending access paths that point-to
objects in the passed part of the heap are represented. In this paper, the heap is treated
as a directed graph and pending access paths are not represented. In addition, [35] does
not handle recursive procedures.

Interprocedural shape analysis has been studied in [23,38]. In [38], the main idea is
to make the runtime stack an explicit data structure and abstract it as a linked list. In this
method, the entire heap and run-time stack are represented at every program point. As a
result, the abstraction may lose information about properties of the heap,for parts of the
heap that cannot be affected by the procedure at all. In [23], procedures are considered
as transformers from the (entire) program heap before the call, to the (entire) program
heap after the call. Every heap-allocated object is represented at every program point;
on the other hand, only the values of the local variables of the current procedure are
represented, which means that the irrelevant parts of the heap are summarized to a
single summary node during the analysis of an invoked procedure.

A modular interprocedural shape-analysis algorithm is presented in [6]. A proce-
dure is analyzed only in the part of the heap that is reachable from its parameters. The
algorithm is able to relate the memory states at the procedure-entry with the memory
states at the procedure-exit by labelingevery abstract node. However, the mapping is
determined by the sharing within the part of the heap that is passed to the procedure,
and not by the sharing pattern with the context—which is what is needed.

6.3 Local Reasoning

Local reasoning [22,34] provides a way of proving properties of a procedure indepen-
dent of its calling contexts by using the “frame rule”, which allows proofs to be carried
out in a local fashion. The main idea is to partition the heap into disjoint parts using the
∗ operator,8 and reason about each part separately. Inferring the effect of a procedure
on a heap described byP ∗ Q9 by (only) reasoning about its effect on a heapP is
possible, as long as there is no need to reason about thecontents of the heap described

8Mutual references between the different parts of the heap are permitted.
9P ∗ Q asserts that the heap can be partitioned into two disjoint parts, one satisfyingP and one satisfy-

ing Q.
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by Q. Although the partitioning of the heap according to the formulaeP ∗ Q is not
deterministic, the frame rule remains sound in any partition.

In some sense, the approach used in this paper is in the spirit of local reasoning.
Our semantics resembles the frame rule in the sense that the effect of a procedure call
on a large heap can be obtained from its effect on a subheap. However, while the
frame rule allows for an arbitrary partitioning of the heap, in our semantics, an invoked
procedure operates on the subheap reachable from the actual parameters. In particular,
the partitioning of the heap according to theLSL semantics is deterministic. (However,
in theanalysis, when the distinction between several cutpoints is lost, the analysis has
to take into account every possible matching between the cutpoints at the entry-site
and the cutpoint at the exit-site.) As in local reasoning, the procedure can manipulate
references to objects outside the part of the heap that it may dereference.

Local reasoning relies on user-supplied specifications, e.g., loop invariants, for the
reasoning. In contrast, in our work, the partitioning of the heap is built into the concrete
semantics, and abstract interpretation is used to establish properties in the absence of
user-supplied specifications.

6.4 Encapsulation

Another relevant body of work is that concerningencapsulation (also known ascon-
finement or ownership) [1–4, 7, 8, 17, 20, 27, 29, 33]. These works allow modular rea-
soning about heap-manipulating (object-oriented) programs. The common aspect of
this work, as described in [32], is that they all place various restrictions on the types of
data structures that a program is allowed to manipulate—in particular, on the sharing
patterns permitted in the manipulated data structures. For programs that adhere to their
restrictions, they provide a “frame rule”. This is done, for example, in [30].

In contrast, in our work, theLSL semantics does not placeany restriction on the
data structures that the program uses. Also, the shape-analysis algorithm for list-
manipulating programs, described in Sec. 5.2, does not place any restriction on the
sharing between different lists. However, we expect that the analysis would benefit
when analyzing encapsulated programs, because we anticipate that encapsulated pro-
grams would have few cutpoints.

6.5 Rule of Adaptation

The first proof rule for procedure calls, therule of adaptation, was given in [18]. It
allows to reuse a proof of a procedure body in different invocations of the procedure.
Later work, e.g., [16, 21], simplified the use of this rule by providing arule of invari-
ance, also known as aframe axiom. It enables one to prove that any predicate that does
not refer to variables changed by the execution of a procedure can be assumed to remain
true during the execution of a call to that procedure [16]. However, [16, 16, 18, 21] do
not handle heap-manipulating programs. [19] gives proof rules for heap-manipulating
programs. These rules are only valid for programs that use tree-like data structures,
i.e., programs that do not use sharing.

In this work we do not provide a proof system per-se. However, abstract-interpretation
can be seen as a mechanism for automatic program verification [10]. As discussed in
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Sec. 6.4, theLSL semantics does not place any restrictions on the sharing in the data
structures that the program manipulates. The semantics (re)constructs the caller’s heap
at the return-site by (re)using the description at the call-site of that part of the heap that
is not passed to the procedure. The “mimicry” of this behavior by the static-analysis
algorithm can be seen as a utilization of a (reachability-based) frame rule that is “built
into” the semantics. The reuse of the results of an analysis of a procedure-body for
different calling-contexts with similar sharing patterns can be seen as a utilization of (a
limited form of) an “adaptation rule”.

7 Conclusions

In this paper, we developLSL, a storeless semantics for languages with dynamic mem-
ory allocation, destructive updating and procedure calls. Our storeless semantics is
unique in that called procedures are only passedparts of the heap. We characterize the
manner in which the semantics is equivalent with the standard store-based semantics.
This allows us to identify a class of assertions for which the non-standard concrete se-
mantics is equivalent to the standard store-based semantics (c.f. Cor. 4.7, Cor. 4.17, and
The. 4.19). In addition,LSL is fully abstract, i.e., whenever two code blocks are indis-
tinguishable in every program context, the two code blocks have the same semantics
(cf. Lem. 4.11).

The development of a storeless semantics that does not represent all the heap has
been challenging. Intuitively, storeless semantics means that memory locations are not
explicitly represented. Instead, every dynamically allocated objectO is represented by
the set of pointer-access paths whoseR-value equalsO’s l-value. In languages with
destructive updates, a procedure can modify theR-value of access paths that start at
variables of pending calls (i.e., pending access paths). Thus, existing storeless seman-
tics [13, 41] represent access paths that start from pending variables, although these
variables cannot be accessed by the procedure. In contrast, our semantics only repre-
sents access paths that start from visible variables. This means that a procedure has a
local view that only includes objects that are reachable from the procedure’s parame-
ters.

Our main insight is that the side-effects of a procedure invocation onR-values of
pending access paths can be delayed to the procedure return—even though the memory
cells do not have unique identifiers, e.g., locations. The main idea is to track the effect
of destructive updates on access paths that start with the set of objects that separate the
part of the heap the procedure can reach from the rest of the heap (objects that we call
thecutpoints of the invocation). A similar observation regarding the uniform effect of
a procedure on pending access paths was made by [13, 26] for pointer analysis. We
believe we are the first ones to use it in semantics. We believe thatLSL can be used
to justify formally previous analyses that rely on this observation by showing that these
analyses are an abstract interpretation ofLSL. In App. B, we show the first stage of
such a proof: establishing a Galois connection between the concrete program states
and the analysis’s abstract domain.

LSL was designed with its precise and efficient abstractions in mind: information
about the context provided by the rest of the heap is isolated to the sharing patterns of
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the cutpoints—which are expressible in a context-independent manner. An analysis
benefits from the fact that the heap is localized: the behavior of a procedure only
depends on the part of the heap that is reachable from actual parameters, and on the
sharing patterns that create cutpoints. Furthermore, analysis results can be reused for
different contexts that have similar sharing patterns.

Using an abstraction of the non-standard concrete semantics, we present a new
interprocedural shape-analysis algorithm for programs that manipulate dynamically al-
located storage. Our approach is markedly different from previous works that analyze
a function invocation in the calling context [23, 38]. The new algorithm can prove
properties of programs that were not automatically verified before, (e.g., to establish
that a recursive, destructive merge of two acyclic singly-linked lists returns an acyclic
singly-linked list—see Fig. 21). In particular, it provides a way to establish properties
with fewer program-specific instrumentation predicates. We believe that the modu-
lar treatment of the heap will allow the implementation of these abstractions to scale
better on larger pieces of code. The approach also provides insights into an existing
may-analysis algorithm [15].

Two design choices were made during the development of the new shape-analysis
algorithm: One is to use a “storeless” semantics. The other is to concentrate on a
superset of a program’s footprint, based on reachability, rather than the actual foot-
print. While the ideas underlying our approach apply also to store-based semantics,
the choice of a storeless semantics was a natural one to make (see Sec. 1.2). We spec-
ified the semantics using an equivalence relation of pointer access-paths (and not, for
example, by logical structures as done in [40]) because the naming scheme we use for
cutpoints (cutpoint-labels) fits naturally with the explicit manipulation of access paths
done in this type of semantics. The decision to concentrate on a superset of a program’s
footprint (inferable via static analysis), was a pragmatic choice for the present study. In
future work, we plan to investigate the use of user-supplied assertions about preserved
portions of the heap.

The notion of acutpoint seems to be an important concept both in storeless se-
mantics and in store-based semantics. For instance, garbage collection of local heaps
becomes unsound unless cutpoints are considered as part of the root set. Our store-
less semantics takes sets of access paths ascutpoint-labels. This provides a context-
independent representation for the cutpoints of the invocation.

In some sense, the approach used in this paper is in the spirit of local reasoning [22,
34], which provides a way to prove properties of a procedure independent of its calling
contexts. In local reasoning, the “frame rule” allows proofs to be carried out in a local
fashion: the main idea is to partition the heap into disjoint parts and reason about the
parts separately. Our semantics resembles the frame rule in the sense that the effect of
a procedure call on a large heap can be obtained from its effect on a subheap.

Limitations. The non-standard concrete semantics assumes that programs do not per-
form either pointer-arithmetic or casts between pointers and integers. This prevents us
from handling assembly programs and non-ANSI standard C programs. It may be pos-
sible to generalize our approach to handle such features by checking that the procedure
does not refer beyond the local heap. The details of such generalizations are beyond
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the scope of this paper.
Another limitation of our approach is that not all program properties are preserved

in the non-standard concrete semantics. For instance, the property that an object is
pointed to by a field of an object from outside the local heap is not preserved. We
remark that our semantics preserves the following properties: (i) the values computed
by arbitrary code blocks and program expressions; (ii) partial correctness for program
properties expressed in the assertion language we define (see Sec. 4.3), in particu-
lar, the absence of null-dereferences and the maintenance of data-structure invariants;
(iii) infinite executions and total correctness for program properties expressed using the
aforementioned assertion language; and (iv) the absence of garbage.
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typedef struct List{
struct List* n; int d;

} *L;

L merge(L p, L q) {
L r;
if (p == NULL) return q;
if (q == NULL) return p;
if (p->d < q->d ) {

r = merge(p->n,q);
p->n = r;
return p;

} else {
r = merge(p,q->n);
q->n = r;
return q;

}
}

Figure 21: A recursive C procedure that merges two singly linked lists using destructive
updates.

A Additional Code

Fig. 21 shows the code for themerge function. Fig. 22 shows the code for the func-
tionscrt andapp used in the running example.
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Sll crt(int k) :=
Sll p,q;
int t;
if (k==0) then

ret = null
else

p = alloc Sll;
p.d = k;
t = k-1;
q = crt(t);
p.n = q;
ret = p

fi

Sll app(Sll p,
Sll q) :=

Sll t1,t2;
if (p==null) then
ret = q

else
t1 = p.n;
t2 = app(t1,q);
p.n = t2;
ret = p

fi

(a) (b)

Figure 22: (a)crt creates a list withk elements; (b)app destructively appends listq
at the tail of listp;
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B The May-Alias Abstraction

In this section we define a Galois connection between sets ofLSL states and the ab-
stract domain of [15] for may-alias analysis.

The algorithm of [15] computes (in polynomial time) at every program pointl a
set ofsymbolic alias pairs (SAPs). The computed set represents (in a bounded way)
any pair ofcurrent access paths that are aliased atl. As explained in Sec. 5.1, The
algorithm does not represent pending access paths explicitly. Instead, at the call-site,
the algorithmgeneralizes anySAP representing an alias with an access path that starts
at an actual parameter. The generalizedSAP contains: (i) a representation of the access
path that starts at the actual parameter, where the root of the access path (i.e., the actual
parameter) is substituted by its corresponding formal parameter, and (ii) a name of a
generic object. A generic object represent—what we call—a cutpoint of the invocation.
The name of the generic object is determined uniquely by the access path it is aliased
with. We denote byAPG the set of access paths enriched with generic object names
(i.e.,APG contains access paths that start at a variable or a generic object name.).

In our terminology, generic objects are an abstraction of the cutpoints of the invo-
cation, and the name of the generic object is an abstraction of the cutpoint-label based
on its content. The use of generic object names in the analysis of a return statement is
an approximation of the way cutpoint-labels are used inLSL.

The actual representation of symbolic alias pairs (SAPs) is immaterial for the def-
inition of the Galois connection. All we rely on is that the setUR = 2 SAP of all
symbolic alias relation forms a lattice ordered by�SAP and equipped with a join oper-
ator�SAP.10 We make use of the functionFactor : AccPath×AccPath → SAP, defined
in [15], which maps a pair of unbounded (aliased) access paths, possibly starting with
a generic object name, to its most precise representation by aSAP. We also make use
of the functionmakeGenericName : AccPath → APG, also defined in [15], which
maps an access path that starts with a formal parameter to the generic object name it
determines.

To establish the Galois connection between the set of program states (ordered by
set inclusion) andUR, it suffices to show arepresentation function that maps a pro-
gram state to its “most precise representation” inUR (e.g., see [31]). The function
βp

may : Σp
L → SAP, defined in Fig. 23 is a representation function. It is parameterized

for every functionp in the program by the set of thep’s local variables (V p) and formal
parameters (Fp).

The functionβp
may is defined as a composition of two functions: (i)toPairsp : Σp

L →
2APG×APG, which maps a program state of functionp, σ p

L ∈ Σp
L, to pairs of (unbounded)

access paths enriched with object names; and (ii)boundPairs : 2APG×APG → UR, which
bounds the resulting set by mapping it to a (bounded) set of symbolic access pairs.

The functiontoPairs converts a program state to a (bounded) alias relation in two
steps: (i) it creates the equivalence relation (AP) by pairing any two generalized access
paths that belong to the same equivalence class; (ii) it “recovers” the generic object
names out of any generalized access path that starts with a cutpoint or a formal pa-

10In [15], The setUR is actually parameterized by the numeric lattice used in the analysis. Since the
parameterization is not relevant for our purposes, we ignore this issue.
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βp
may : Σp

L → UR s.t.
βp

may = boundPairs ◦ toPairsp

toPairsp : Σp
L → 2APG×APG s.t.

toPairsp(〈CPL, A〉) = Let
AP = {〈α, β〉 | ∃a ∈ A, s.t.α ∈ a andβ ∈ a}

in
⋃

〈α,β〉∈AP

{
〈α′, β′〉

∣∣∣∣ α′ ∈ genericp(CPL, α),
β′ ∈ genericp(CPL, β)

}
Where

genericp : 2CPL × GAccPath → 2APG s.t.
genericp(CPL, 〈r, δ〉) =

{〈r, δ〉} r ∈ Vp \ Fp

{〈r, δ〉, 〈makeGenericName(〈r, ε〉), δ〉} r ∈ Fp

{〈makeGenericName(α), δ〉 | α ∈ r} r ∈ CPL

boundPairs : 2APG×APG → UR s.t.
boundPairs(AliasRel) =⊔

SAP{Factor(〈α, β〉) | 〈α, β〉 ∈ AliasRel}

Figure 23:βp
may is a representation function that maps a memory state of functionp to

its most precise representation as sets of symbolic access path.

rameter by invokinggeneric. The special treatment for formal parameters is required
because [15] considers objects pointed-to by actual parameters as (trivial) cutpoints,
where we do not. A bounded representation is achieved by applyingFactor pointwise
and taking the least upper bound of the resulting set of symbolic access paths.11

C Proofs

In this section we prove our main theorem, The. 4.6 (preservation of observational
equivalence). In Sec. C.1, we prove some properties of theGSB semantics. In Sec. C.2,
we state, and prove, additional properties of theLSL semantics. In Sec. C.3, we define
the notion of context-aware equivalence between states inLSL and states inGSB,
and prove a stronger theorem than the equivalence theorem, i.e., the preservation of
context-aware equivalence.

As in Sec. 4.2, we assume,A andCPL with a certain index (resp. prime) to be the
heap, resp. cutpoint-labels component of a stateσL with the same index (resp. prime).
Similarly, we assumeL, ρ, andh with a certain index (resp. prime) to be the set of
allocated locations, resp. environment, resp. heap of a stateσG with the same index

11In [15], special care needs to be taken in case the analysis is parameterized by a lattice with infinite
chains. In particular,�SAP is not necessarily bounded. For simplicity, we assume this is not the case.
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(resp. prime). In addition, we use the notations[[α �= β]]L(σL), [[α �= null]]L(σL),
[[α �= β]]G(σG), and [[α �= null]]G(σG) as shorthand for¬[[α = β]]L(σL), resp.
¬[[α = null]]L(σL), resp.¬[[α = β]]G(σG), resp.¬[[α = null]]G(σG).

C.1 Properties of the GSB Semantics

In this section, we introduce the notions ofheap paths andgeneralized heap paths.
We also prove some properties of theGSB semantics which are used in the proof of
The. 4.6.

Definition C.1 (Heap path) A heap path ζ = 〈l, δ〉 ∈ Loc ×∆ is a pair consisting of
a location and a field path. HeapPath denotes the set Loc × ∆.

Definition C.2 (Generalized heap path) A generalized heap path ζ ∈ AccPath p ∪
HeapPath of a function p is an access path of p or a heap path. GHeapPath p denotes
the set of all generalized heap paths of function p. GHeapPath denotes the union of
all generalized heap paths of all functions in a program.

Definition C.3 (Generalized heap path value) The value of a generalized heap path
ζ in memory state 〈L, ρ, h〉 of function p is defined to be:

[[ζ]]G〈L, ρ, h〉 =
{

ĥ(ρ(x), δ) ζ = 〈x, δ〉, x ∈ Vp

ĥ(l, δ) ζ = 〈l, δ〉, l ∈ L

whereĥ is as defined in Def. 2.4. Note that the above definition generalizes Def. 2.4
(value of an access path in theGSB semantics). The following definition generalizes
Def. 2.5 (equality of access paths in theGSB semantics).

Definition C.4 (Generalized heap path equality) Generalized heap paths ζ1 and ζ2

are equal in a given state σG, denoted by [[ζ1 = ζ2]]G(σG), if they have the same value
in that state, i.e., [[ζ1]]G(σG) = [[ζ2]]G(σG). A generalized heap path ζ is equal to null
in a given state σG, denoted by [[ζ = null]]G(σG), if [[ζ]]G(σG) = null.

The following lemma states that a function invocation cannot modify fields of ob-
jects that are allocated, but which are not reachable from an actual parameter, when a
function is invoked.
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Lemma C.5 (Unreachable locations not modified) Let σc
G, σr

G be states in ΣG such

that 〈y = p(x1, . . . , xk), σc
G〉 G� σr

G. Let Lreach ⊆ Lc be the location in Lc that are
reachable from the actual arguments at σc

G, i.e.,

Lreach =
⋃

1≤i≤k

{l ∈ Lc | ∃δ ∈ ∆, l = [[〈xi, δ〉]]G(σc
G)}.

For any generalized access path ζ = 〈r, δ〉 ∈ GHeapPath such that [[ζ]]G(σc
G) ∈

Lc \ Lreach the following holds:

1. [[ζ]]G(σc
G) = [[ζ]]G(σr

G), and

2. for any f ∈ FieldId , [[〈r, δf〉]]G(σc
G) = [[〈r, δf〉]]G(σr

G).

Sketch of Proof: The lemma states that a function cannot modify the content of loca-
tions it cannot access (reach). The proof is by induction on the derivation tree. We
track the set of reachable locations from every variable of the invoked function and
prove that a variable cannot point-to (and thus potentially modify) locations that are
allocated when the function is invoked and are not reachable from any actual param-
eter. Note that for anyl ∈ Lreach and anyδ ∈ ∆, [[〈l, δ〉]]G(σr

G) is defined because
Lc ⊆ Lr.

The following lemma formally states that any access path that extends a null valued
access path has a null value. Similarly, any prefix of a non null valued access path
points to a location.

Lemma C.6 (Null valued access paths) Let σG ∈ Σq
G be a GSB state for function q,

1. For a generalized heap path α = 〈r, δ0δ1〉 ∈ GHeapPathq , it holds that [[α]]G(σG) =
[[〈[[〈r, δ0〉]]G(σG), δ1〉]]G(σG).

2. For any (generalized) access path α ∈ GHeapPath q,

a. if [[α = null]]G(σG), then for any generalized heap path α ′ such that α ≤ α′,
[[α′ = null]]G(σG),

b. if [[α �= null]]G(σG), then for any generalized heap path α ′ such that α′ ≤ α,
[[α′ �= null]]G(σG).

Proof: Immediate from Def. C.3 (generalized heap-path value).

C.2 Properties of the LSL Semantics

In this section, we prove certain properties of theLSL semantics. These properties
are needed in the proof of the Context-Aware Equivalence theorem, however, they are
mere technicalities of the definition ofLSL as given in Fig. 10 and Fig. 11.

The following lemma establishes some of the properties of the[·] · function defined
in Fig. 9. In particular, it states certain properties related to equality of access-paths.
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Lemma C.7 (Properties of [·]·) Let σL = 〈CPL, A〉 ∈ Σq
L be an (admissible) memory

state for function q. For any generalized access paths α, β ∈ GAccPath q the following
holds:

1. [[α = null]]L(σL) ⇐⇒ [α]A = ∅
2. [[α = β]]L(σL) ⇐⇒ [α]A = [β]A

3. [[α = null]]L(σL) =⇒ (∀α′, α ≤ α′ =⇒ [[α′ = null]]L(σL))

4. [[α �= null]]L(σL) =⇒ (∀α′, α′ ≤ α =⇒ [[α′ �= null]]L(σL))

5. [α]A ∈ A ∪ {∅}
6. ∀cpl ∈ CPL : [〈cpl , ε〉]A �= ∅

Sketch of Proof: 1-5 are immediate from the definitions of:[[· = ·]]L, [·]·, and ad-
missibility. Lem. C.7(6) is proven using an induction on the derivation tree where the
key observation is that objects never lose their labels, i.e., an access path of the form
〈cpl , ε〉, wherecpl ∈ CPL, is never removed from the description of an object.

The following lemma states certain properties of the sets of objects and the various
mappings defined in the function call inference rule (see Fig. 11).

Lemma C.8 (Properties of the function call inference rule) Let σc
L = 〈CPLc, Ac〉 ∈

Σq
L be an admissible memory state for function q in which the statement y = p(x1, . . . , xk)

is executed. Let 〈CPLe, Ae〉, 〈CPLx, Ax〉, 〈CPLr, Ar〉, Oargs
c , Opassed

c , Ocp
c , Ocp

c ,
bindargs , bindcp , bindcall , and bind ret be as defined in Fig. 11. Let α ∈ GAccPath q

be an arbitrary generalized access path of function q. The following holds.

1. ∅ �∈ Opassed
c .

2. (Ac \ Opassed
c ) ∩ map(sub(bind ret)) Ax = ∅.

3. If [α]Ar �= ∅ and [α]Ar �∈ (Ac \Opassed
c ), then [α]Ar ∈ map(sub(bind ret)) Ax.

4. ∀a, a′ ∈ dom(bind ret) : a �= a′ =⇒ ∀α ∈ bind ret(a) : ∀β ∈ bind ret(a′) :
α �≤ β ∧ β �≤ α.

5. ∀a ∈ dom(bind ret) : ∀α, β ∈ bind ret(a) : α �= β =⇒ α �≤ β ∧ β �≤ α.

6. ∀a ∈ range(bind ret) : ∀α ∈ a.∀α′ < α, [α′]Ac �∈ Opassed
c .

7. ∅ �∈ range(bind ret)
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Proof: We only sketch the proof of 3. The other properties are derived immediately
from the definition of theLSL semantics.
1. [α]Ar �= ∅, [α]Ar �∈ Ac \ Opassed

c Assumption
2. Ar = (Ac \ Opassed

c ) ∪map(sub(bindret)) Ax SeeFig. 11.
3. (Ac \ Opassed

c ) ∩ map(sub(bind ret)) Ax = ∅ Lem. C.8(2)
4. [α]Ar ∈ map(sub(bindret)) Ax 1 − 3

The following lemma establishes certain properties of the memory states that occur
during a function invocation at the call-site, at the entry-site, at the exit-site, and at the
return-site. Informally, it states the following properties:

1. Properties of cutpoint-labels:

(a) Cutpoint labels are never empty.

(b) At the entry state, every access path in a cutpoint-label points to the corre-
sponding cutpoint.

2. When a function returns, an access path can point to one of the following: to an
object which was not passed to the function, to an object that was in the invoked
function local heap, or to null.

3. When a function returns, an access path that points to an object which was not in
the callee local heap does not point to such an object when the function has been
invoked.

4. The functionsub(bind ret) is injective for all objects that are reachable at the
return site. Furthermore, it maps all unreachable objects to the empty set.

5. When a function returns, every access path that points to the invoked function’s
local heap, has a unique prefix which starts either with the return value, an object
pointed-to by an actual parameter, or a cutpoint of that invocation.

Lemma C.9 (Properties of function calls) Let σc
L, q, y = p(x1, . . . , xk), 〈CPLe, Ae〉,

〈CPLx, Ax〉, 〈CPLr, Ar〉, Oargs
c , Opassed

c , Ocp
c , Ocp

c , bindargs , bindcp , bindcall , bind ret ,
and α ∈ GAccPathq be as in Lem. C.8. The following holds:

1. For any cpl ∈ CPLe, the following holds:

(a) ∅ �= cpl ⊆ Fq × ∆, and

(b) for any α′ ∈ cpl and any δ ∈ ∆, [[α′.δ = 〈cpl , δ〉]]L(σe
L).

2. If [α]Ar �∈ (Ac \ Opassed
c ), then for any generalized access path α′ such that

α ≤ α′, [α′]Ar ∈ {∅} ∪ map(sub(bind ret)) Ax.

3. If [α]Ar ∈ (Ac\Opassed
c ), then for every generalized access path α′ ≤ α it holds

that [α′]Ac �∈ Opassed
c .

4. For any o, o′ ∈ Ax, if o �= o′, then either sub(bind ret) o �= sub(bind ret) o′ or
sub(bind ret) o = sub(bindret) o′ = ∅.

5. (a) If 〈y, ε〉 ≤ α, then [[〈y, δ〉 = null]]L(σr
L) ⇐⇒ [[〈ret , δ〉 = null]]L(σx

L)
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(b) If 〈y, ε〉 �≤ α and ∀α′ ≤ α.[α′]Ac �∈ Opassed
c , then [[α = null]]L(σr

L)) ⇐⇒
[[α = null]]L(σc

L).

(c) If [α]Ac ∈ Oargs
c ∪ Ocp

c and α ∈ Bypass(Opassed
c ) [α]Ac then there exists

a (unique) rα
1 ∈ dom(bindret) such that α ∈ bind ret rα

1 . Furthermore for
any δ ∈ ∆, [[α.δ = null]]L(σr

L) ⇐⇒ ∀αp ∈ rα
1 , [[αp.δ = null]]L(σx

L)

6. For any o ∈ Ax such that [α]Ar = sub(bindret) o and [α]Ar �= ∅, there exists
a unique α0 ≤ α such that α0 ∈ flat (range(bind ret)). Furthermore, one (and
only one) of the following holds:

(a) α0 = 〈y, ε〉
(b) [α0]Ac ∈ Oargs

c and α0 ∈ Bypass(Opassed
c ) [α0]Ac

(c) [α0]Ac ∈ Ocp
c and α0 ∈ Bypass(Opassed

c ) [α0]Ac

and, in addition, rα
1 .δα

1 ⊆ o where α = α0.δ
α
1 , rα

1 .δα
1 �= ∅ and

rα
1 =


{〈ret , ε〉} (if case 6a holds)
bindargs [α0]Ac (if case 6b holds)
bindcp [α0]Ac (if case 6c holds)

Proof:
Properties 2–5 are immediate. We prove properties 1 and 6.

1.
(i) By definition,CPLe = map(sub(bindargs)) Ocp

c . To show that∅ �∈ CPLe ⊆ 2Fq×∆ ,
we show that∀o ∈ Opassed

c .∅ �= sub(bindargs) o ⊆ Fq × ∆. This proves (i), because
Ocp

c ⊆ Opassed
c . Recall that

Opassed
c = RObjs(Ac)Oargs

c = {o ∈ Ac | o′ ∈ Oargs
c , δ ∈ ∆, o′.δ ⊆ o}

Thus,
5. o ∈ Opassed

c ⇐⇒ ∃o′ ∈ Oargs
c , ∃δ ∈ ∆. o′.δ ⊆ o.

By definition (see Fig. 11),
6. ∅ �∈ Oargs

c , and
7. bindargs = λo ∈ Oargs

c .{〈hi, ε〉 | 1 ≤ i ≤ k, xi ∈ o}.
Thus, for anyo ∈ Opassed

c ,
8. sub(bindargs)(o) = flat {bindargs(a).δ | a ∈ dom(bindargs), δ ∈ ∆, a.δ ⊆ o}

= flat {bindargs(o′).δ | o′ ∈ Oargs
c , δ ∈ ∆, o′.δ ⊆ o}

which gives (by5, 6) that∅ �∈ sub(bind args)(o), and (by5, 7) thatsub(bind args)(o) ⊆ Fq × ∆.

To prove (ii), we recall (see Fig. 11) that
9. CPLe = map(sub(bindargs)) Ocp

c ,
10. Ocp

c ⊆ Opassed
c ,

11. bind cp = λo ∈ Ocp
c .{〈sub(bindargs) o, ε〉}, and

12. bind call = λo ∈ Oargs
c ∪ Ocp

c .

{
bindargs(o) o ∈ Oargs

c

bind cp(o) o ∈ Ocp
c

,

13. Ae = map(sub(bindcall )) Opassed
c .
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Thus, for anycpl ∈ CPLe and for anyo ∈ Ae,
14. 〈cpl , δ〉 ∈ o ⇐⇒ 13
15. ∃o′ ∈ Opassed

c : o = sub(bind call) o′ ∧ 〈cpl , δ〉 ∈ sub(bindcall )o′ ⇐⇒

16.
∃o′ ∈ Opassed

c : o = sub(bindcall ) o′ ∧
〈cpl , δ〉 ∈ flat

{
bindcall(a1).δ1

∣∣∣∣ a1 ∈ dom(bindcall ),
δ1 ∈ ∆, a1.δ1 ⊆ o′

} ⇐⇒ Def. of sub

17.
∃o′ ∈ Opassed

c : o = sub(bindcall ) o′ ∧
∃o′′ ∈ Ocp

c : 〈cpl , δ〉 = 〈sub(bindargs) o′′, δ〉 ∧ o′′.δ ⊆ o′ ⇐⇒ 9, 7, 11, 12

18.
∃o′ ∈ Opassed

c : o = sub(bindcall ) o′ ∧
∃o′′ ∈ Ocp

c : 〈cpl , δ〉 = 〈sub(bindargs) o′′, δ〉 ∧
∀o′′′ ∈ Oargs

c : ∀δ′ ∈ ∆ : o′′′.δ′ ∈ o′′ =⇒ o′′′.δ′.δ ∈ o′
⇐⇒ Admissibility of σc

L

Opassed
c = RObjs(Ac)Oargs

c

19.
∃o′ ∈ Opassed

c : ∃o′′ ∈ Ocp
c : 〈cpl , δ〉 = 〈sub(bindargs) o′′, δ〉 ∧

sub(bindargs) o′′.δ ⊆ sub(bindargs) o′ ⇐⇒ 18, 8, Def. of bind args

20. ∀α′ ∈ cpl : α′.δ ∈ o ⇐⇒ 19

6.
21. [α]Ar �= ∅, o ∈ Ax, [α]Ar = sub(bindret) o Assumptions
22. α ∈ sub(bind ret) o 21, Def. of [·]·
23. α ∈ flat {bindret(a).δα

1 | a ∈ dom(bindret), δα
1 ∈ ∆, a.δα

1 ⊆ o} 22, Def. of sub
24. ∃a ∈ dom(bind ret) : ∃δα

1 ∈ ∆: a.δα
1 ⊆ o ∧ α ∈ (bind ret a).δα

1 23, Def. offlat
25. ∃a ∈ dom(bind ret) : ∃δα

1 ∈ ∆: ∃α0 ∈ bindret(a) : a.δα
1 ⊆ o ∧ α = α0.δ

α
1 24, Def. of ·.·

26. ∃!a ∈ dom(bind ret) : ∃δα
1 ∈ ∆: ∃α0 ∈ bindret(a) : a.δα

1 ⊆ o ∧ α = α0.δ
α
1 25, Lem. C.8(4),

α0 ≤ α
27. ∃!a ∈ dom(bind ret) : ∃!δα

1 ∈ ∆: ∃!α0 ∈ bind ret(a) : a.δα
1 ⊆ o ∧ α = α0.δ

α
1 26, Lem. C.8(5),

α0 ≤ α
28. Let a, α0, δ

α
1 be the unique values satisfying27. We continue with

a case analysis of the possible values ofa ∈ dom(bind ret)
29. α0 ∈ flat (range(bind ret)) ∧ ∀α′ ≤ α : α′ ∈ flat (range(bind ret)) =⇒

α′ = α0 27 − 28
30. dom(bind ret) = {{〈ret , ε〉}} ∪ map(bindargs) Oargs

c ∪ map(bind cp) Ocp
c Def. of bind ret

31. Assumea = {〈ret , ε〉} (Case6a)
32. bindret({〈ret , ε〉}) = {〈y, ε〉} Def. of bind ret

33. α0 = 〈ret , ε〉 29, 32
34. {〈ret , ε〉}.δ2 ⊆ o 27, 28, 33
35. Assumea ∈ map(bindargs) Oargs

c (Case6b)
36. ∃o′ ∈ Oargs

c , a = bindargs o′ 35
37. α0 ∈ bindret(a) 28
38. ∃o′ ∈ Oargs

c , a = bindargs o′, α0 ∈ Bypass(Opassed
c ) o′ 35 − 37, Def. of bind ret

39. a = bindargs([α0]Ac), α0 ∈ Bypass(Opassed
c ) [α0]Ac 38, Def. of bind ret

andBypass
40. bindargs [α0]Ac .δα

1 ⊆ o 28, 39
41. Assumea ∈ map(bindargs) Oargs

c (Case6c)
42. proof analogous to case6b

Note that, by Lem. C.8(7),r1
α �= ∅.

In the following, we sketch the proofs of additional properties ofLSL which are stated
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in Sec. 4.2.

Sketch of Proof (The. 4.12):

(i) For access paths that in memory stateσc
L point to an object which is not inOpassed

c ,
the proof is immediate from admissibility ofσ r

L and the fact
thatAc \ Opassed

c ⊆ Ar.

For accesses pathsα, β that in memory stateσc
L point-to (the same) object in

Opassed
c , but do notpass through any object inOpassed

c , the proof follows from
Lem. C.9(5c).

(ii) For access paths that are equalnull in σc
L, the proof is immediate from Lem. C.9(5b).

Sketch of Proof (The. 4.13):
The proof is done by induction on the shape of the derivation tree. The base case is

immediate because in every statement in bothσ1
L andσ2

L:

• the same set of access paths that start with a variable, are added / removed from
the description of every object, and

• the side-conditions for executing a statement involve only access paths that start
with a variable.

The induction step for (non-atomic) intraprocedural statements is also immediate be-
cause of the aforementioned nature of side-conditions in theLSL semantics. To see
why the induction step holds for a function call, we observe that in bothσ 1

L andσ2
L:

• the same objects are reachable from the actual parameters, and

• at function return, the update of access paths that start with a variable, is done
using the same cutpoints.

C.3 Context-Aware Equivalence

In this section, we state and prove the context-aware equivalence theorem (The. C.15).
The. 4.6 is an immediate corollary of The. C.15.

Definition C.10 (Renaming function) Given an LSL state 〈CPL, A〉 of function p,
and a GSB state 〈L, ρ, h〉 of function p, a function f : CPL → L is a renaming
function if it is total and injective. We lift f to f̂ : GAccPathp → GHeapPathp as
follows:

f̂(〈r, δ〉) =
{ 〈r, δ〉 : r ∈ Vp

〈f(r), δ〉 : otherwise
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Definition C.11 (Context-Aware Equivalence) Let p be a function. The states σL =
〈CPL, A〉 ∈ Σp

L and σG = 〈L, ρ, h〉 ∈ Σp
G are context-aware equivalent w.r.t.

a renaming function f : CPL → L, denoted by σL ∝f σG, if for all α, β, γ ∈
GAccPathp,

1. [[α = β]]L(σL) ⇐⇒ [[f̂(α) = f̂(β)]]G(σG),

2. [[γ = null]]L(σL) ⇐⇒ [[f̂(γ) = null]]G(σG).

The states σL and σG are context-aware equivalent if there exists a renaming function
f s.t. σL ∝f σG.

The following lemma is rather technical. It states that any extension of a renamed
access path points to the same location as the renamed extended access path.

Lemma C.12 Let σL ∈ Σq
L and σG ∈ Σq

G be context-aware equivalent states w.r.t a
renaming function f . For any α, α0 ∈ GAccPathq and any δ ∈ ∆ such that α = α0.δ,
[[f̂(α)]]G(σG) = [[f̂(α0).δ]]G(σG) = [[〈[[f̂(α0)]]G(σG), δ〉]]G(σG).

Proof: Immediate from the definition of̂f , the definition of·.·, and Lem. C.6(1).

The following lemma shows that context-aware equivalence at the call-site, implies
context aware equivalence at the entry-site. Furthermore, it defines an appropriate
renaming function (fe). Property 1 shows thatfe is indeed a renaming function and
Property 2 proves that the entry states are context aware equivalent with respect tof e.
Properties 3–5 establish certain properties offe.

Lemma C.13 (Context-aware equivalence of invoked functions)
Let σc

L = 〈CPLc, Ac〉 ∈ Σq
L and σc

G = 〈Lc, ρc, hc〉 ∈ Σq
G be context-aware equivalent

states w.r.t. a renaming function f , i.e., σc
L ∝f σc

G. Let y = p(x1, . . . , xk) be a
call to function p whose formal parameters are h1, . . . , hk. Let σe

L = 〈CPLe, Ae〉,
σx

L = 〈CPLe, Ax〉, σr
L = 〈CPLc, Ar〉, Oargs

c , Opassed
c , Ocp

c , bindargs , bind cp , and
bindcall be as defined in Fig. 11. Let σe

G = 〈Le, ρe, he〉, σx
G = 〈Lx, ρx, hx〉, and

σr
G = 〈Lr, ρr, hr〉 be as defined in Fig. 5. Let Lreach be as defined in Lem. C.5. Let

fe : CPLe → Le such that fe(cpl ) = [[α]]G(σe
G) where α ∈ cpl . The following holds:

1. fe is a renaming function.

2. σe
L ∝fe σe

G.

3. (a) For any o ∈ Oargs
c , for any αq ∈ Bypass(Opassed

c ) o, for any αp ∈
bindargs o, [[f̂(αq)]]G(σc

G) = [[f̂e(αp)]]G(σe
G).

(b) For any o ∈ Ocp
c , for any αq ∈ Bypass(Opassed

c ) o, for any αp ∈ bind cp o,
[[f̂(αq)]]G(σc

G) = [[f̂e(αp)]]G(σe
G).

4. For any α ∈ GAccPathq , [α]Ac ∈ Opassed
c ⇐⇒ [[f̂(α)]]G(σc

G) ∈ Lreach

5. For any αp ∈ ({h1, . . . , hk}∪CPLe)×{ε}, [[f̂e(αp)]]G(σe
G) = [[f̂e(αp)]]G(σx

G).
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Proof: 1.
The functionfe is a total function fromCPLe to Le. It is well defined because, by
construction ofCPLe:

• everycpl ∈ CPLe contains at least one generalized access path (see Lem. C.8(1)),
and

• for everyα1, α2 ∈ cpl , [[α1 = α2]]L(σe
L).

The functionfe is injective because, by construction ofCPLe, for everycpl 1, cpl2 ∈
CPLe such thatcpl 1 �= cpl2 for everyα1 ∈ cpl1 andα2 ∈ cpl2 [[α1 �= α2]]L(σe

L).
2.

1. σe
L and σe

G are observationally equivalent: For any access paths〈h i, δ〉 and
〈hj , δ

′〉, where1 ≤ i, j ≤ k andδ, δ′ ∈ ∆, [[〈hi, δ〉 = 〈hj , δ
′〉]]L(σe

L) ⇐⇒
[[〈xi, δ〉 = 〈xj , δ

′〉]]L(σc
L) ⇐⇒ [[〈xi, δ〉 = 〈xj , δ

′〉]]G(σc
G) ⇐⇒ [[〈hi, δ〉 =

〈hj , δ
′〉]]G(σe

G). The proof for the preservation of equality withnull of access
paths that start at a formal variable is analogous. All other variablesx ∈ Vp \Fp

are equal tonull at function entry by definition.

2. σe
L andσe

G are context-aware equivalent w.r.tfe. We prove this by case analysis.

• Assumeα = 〈hi, δ〉 and β = 〈hj , δ
′〉. Then [[α = β]]L(σe

L) ⇐⇒
[[f̂e(α) = f̂e(β)]]G(σe

G), becauseσe
L andσe

G are observationally equiva-
lent; and, by Def. C.10,α = f̂e(α) andβ = f̂e(β).

• Assumeα = 〈cpl , δα〉 andβ = 〈h, δβ〉 for somecpl ∈ CPLe, δα, δβ ∈ ∆
andh ∈ Fp

[[α = β]]L(σe
L) ⇐⇒

∀α′ ∈ cpl : [[α′.δα = β]]L(σe
L) ⇐⇒ Lem. C.9(1), transi-

tivity of [[· = ·]]L
∀α′ ∈ cpl : [[α′.δα = β]]G(σe

L) ⇐⇒ σe
L andσe

G are obs-
ervationally equivalent

∀α′ ∈ cpl : [[f̂e(α′.δα) = f̂e(β)]]G(σe
G) ⇐⇒ Def. C.10

∀α′ ∈ cpl : [[f̂e(α′.δα)]]G(σe
G) = [[f̂e(β)]]G(σe

L) ⇐⇒ Def. of equality
∀α′ ∈ cpl : [[〈f̂e(α′), δα〉]]G(σe

G) = [[f̂e(β)]]G(σe
L) ⇐⇒ Lem. C.12

[[〈fe(cpl ), δα〉]]G(σe
G) = [[f̂e(β)]]G(σe

L) ⇐⇒ fe(cpl ) = [[α′]]G(σe
L),

α′ ∈ cpl , cpl �= ∅
∀α′ ∈ cpl : [[f̂e(〈cpl , δα〉) = f̂e(β)]]G(σe

L)

• The proof for the preservation of equality withnull and equality between
two cutpoint-anchored paths is analogous.

3.
Immediate from the definition offe; the substitution of actual parameters by formal
parameters as defined in Fig. 5 and Fig. 11; and the fact that theh e = hc.
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4.
43. ∀α ∈ GAccPathq :

[α]σc
L
∈ Opassed

c ⇐⇒ Definition ofOpassed
c ,

[α]Ac �= ∅ ∧
∃i, 1 ≤ i ≤ k : ∃δ ∈ ∆: [[α = 〈xi, δ〉]]L(σc

L) ⇐⇒ (see proof for
Lem. C.14(1))

[[α �= null]]L(σc
L) ∧

∃i, 1 ≤ i ≤ k : ∃δ ∈ ∆: [[α = 〈xi, δ〉]]L(σc
L) Lem. C.7(1)

44. ∀α ∈ GAccPathq :
[[f̂(α)]]G(σc

G) ∈ Lreach ⇐⇒ By definition ofLreach

[[f̂(α)]]G(σc
G) ∈ Lc ∧

∃i, 1 ≤ i ≤ kv : ∃δ ∈ ∆: [[f̂(α) = 〈xi, δ〉]]G(σc
G) ⇐⇒ Def. of equality

with null
[[f̂(α) �= null]]G(σc

G) ∧
∃i, 1 ≤ i ≤ k.∃δ ∈ ∆.[[f̂(α) = 〈xi, δ〉]]G(σc

G)
45. ∀α ∈ GAccPathq : ∀i, 1 ≤ i ≤ k : ∀δ ∈ ∆:

[[α �= null]]L(σc
L) ∧ [[α = 〈xi, δ〉]]L(σc

L) ⇐⇒ σc
L ∝f σc

G

[[f̂(α) �= null]]G(σc
G) ∧ [[f̂(α) = 〈xi, δ〉]]G(σc

G)
46. ∀α ∈ GAccPathq :

[α]σc
L
∈ Opassed

c ⇐⇒ [[f̂(α)]]G(Ac) ∈ Lreach 43 − 45
5.
Immediate from the following facts:

1. formal parameters are not assigned;

2. Le ⊆ Lx; and

3. by definition of[[·]]G, for anycpl ∈ CPLe,

[[f̂e(〈cpl , ε〉)]]G(σe
G) = fe(cpl) = [[f̂e(〈cpl , ε〉)]]G(σx

G).

The following lemma shows that context-aware equivalence at the call-site is pre-
served at the corresponding return-site for access paths that do not traverse the local
heap of the invoked function (1–2). Furthermore, it asserts that if the exit-states are
context-aware equivalent w.r.tfe (as defined in the previous lemma), then the return
states are also context-aware equivalent w.r.t.fe (3). This is the main lemma used in
the proof of The. C.15.
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Lemma C.14 (Context-aware equivalence at return sites) Let σ c
L, σc

G, f , y = p(x1, . . . , xk),
p, σe

L, σx
L, σr

L, Oargs
c , Opassed

c , Ocp
c , bindargs , bind cp , bindcall , σe

G, σx
G, Lreach , and

fe be as in Lem. C.13. The following holds,

1. ∀α ∈ GAccPathq if [α]Ar �= ∅ ∧ [α]Ar ∈ Ac \ Opassed
c then (i) [α]Ar = [α]Ac

and (ii) [[f̂(α)]]G(σr
G) = [[f̂(α)]]G(σc

G) �∈ Lreach .

2. For any o ∈ Opassed
c , for any αq ∈ Bypass(Opassed

c ) o, [[f̂(αq)]]G(σc
G) =

[[f̂(αq)]]G(σr
G).

3. If σx
L ∝fe σx

G then σr
L ∝f σr

G.

Proof:
1.
47. [α]Ar ∈ Ac \ (Opassed

c ∪ {∅}) Assumption
48. [α]Ac = [α]Ar Admissibility of σc

L

49. [α]Ac �∈ RObjs(Oargs
c )

47 − 48,
Opassed

c = RObjs(Oargs
c )

50. ∀o ∈ Ac, ∀o′ ∈ Oargs
c , ∀δ ∈ ∆, o′.δ ⊆ o =⇒ α �∈ o 49, def. ofRObjs(Oargs

c )
51. ∀o ∈ Ac, ∀i, 1 ≤ i ≤ k, ∀δ ∈ ∆,

([xi]Ac �= ∅ ∧ [xi]Ac .δ ⊆ o) =⇒ α �∈ o 50, def. ofOargs
c

52. [α]Ac �= ∅ 47 − 48
53. ∀i, 1 ≤ i ≤ k, ∀δ ∈ ∆, [α]Ac �= [〈xi, δ〉]Ac 51, 52
54. ∀i, 1 ≤ i ≤ k, ∀δ ∈ ∆, [[α �= 〈xi, δ〉]]L(σc

L) 53, def. of equality

55. ∀i, 1 ≤ i ≤ k, ∀δ ∈ ∆, [[f̂(α) �= 〈xi, δ〉]]G(σc
G)

54, σc
L ∝f σc

G,

f̂(〈xi, δ〉) = 〈xi, δ〉
56. ∀i, 1 ≤ i ≤ k, ∀δ ∈ ∆, [[f̂(α)]]G(σc

G) �= [[〈xi, δ〉]]G(σc
G) 55, def. of [[· = ·]]G

57. [[f̂(α)]]G(σc
G) �∈ Lreach 56, def. ofLreach

58. [[f̂(α)]]G(σc
G) = [[f̂(α)]]G(σr

G) 57, Lem. C.5

2.
Immediate from the definition ofBypass , Lem. C.14(1), Lem. C.5(2), and the fact that
a callee cannot modify the value of pending variables.

3
Let α = 〈rα, δα〉, β = 〈rβ , δβ〉, andγ = 〈rγ , δγ〉 be any generalized access paths

of functionp. We show that

1. [[α = β]]L(σr
L) =⇒ [[f̂(α) = f̂(β)]]G(σr

G) and

2. [[γ = null]]L(σr
L) =⇒ [[f̂(γ) = null]]G(σr

G).

The proof of the other direction, (i.e., that[[ f̂(α) = f̂(β)]]G(σr
G) =⇒ [[α = β]]L(σr

L)
and[[f̂(γ) = null]]G(σr

G) =⇒ [[γ = null]]L(σr
L)) is analogous, and it is not shown.
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The proof is done by case analysis.

1. Proving[[α = β]]L(σr
L) ⇒ [[f̂(α) = f̂(β)]]G(σr

G)

a. Assuming[[α �= null]]L(σr
L) and[[β �= null]]L(σL) and

1. [α]Ar ∈ Ac \ Opassed
c and[β]Ar ∈ Ac \ Opassed

c .

2. [α]Ar ∈ Ac \ Opassed
c and[β]Ar �∈ Ac \ Opassed

c .

3. [α]Ar �∈ Ac \ Opassed
c and[β]Ar ∈ Ac \ Opassed

c .

4. [α]Ar �∈ Ac \ Opassed
c and[β]Ar �∈ Ac \ Opassed

c .

b. Assuming[[α = null]]L(σr
L) and[[β = null]]L(σr

L).

2. Proving[[γ = null]]L(σr
L) ⇒ [[f̂(γ) = null]]G(σr

G)

a. rγ = y.

b. rγ �= y and

1. ∀γ′ ≤ γ, [γ′]Ar ∈ (Ac \ Opassed
c ) ∪ {∅}.

2. ∃γ′ ≤ γ, [γ′]Ar �∈ (Ac \ Opassed
c ) ∪ {∅}.

Case 1(a)1:
59. [α]Ar �= ∅ [[α �= null]]L(σr

L), Lem. C.7(1)
60. [α]Ar ∈ Ac \ Opassed

c Assumption
61. [α]Ac = [α]Ar 59 − 61, Lem. C.14(1)
62. [[f̂(α)]]G(σc

G) = [[f̂(α)]]G(σr
G) 59 − 61, Lem. C.14(1)

63. [β]Ac = [β]Ar �= ∅ Analogous to59 − 61
64. [[f̂(β)]]G(σc

G) = [[f̂(β)]]G(σr
G) Analogous to62

65. [α]Ar = [β]Ar [[α = β]]L(σr
L), Lem. C.7(2)

66. [α]Ac = [β]Ac 61, 63, 65
67. [[α = β]]L(σc

L) 66, Lem. C.7(2)
68. [[f̂(α) = f̂(β)]]G(σc

G) 67, σc
L ∝f σc

G

69. [[f̂(α)]]G(σc
G) = [[f̂(β)]]G(σc

G) By def. of equality
70. [[f̂(α)]]G(σr

G) = [[f̂(β)]]G(σr
G) 62, 64, 69

71. [[f̂(α) = f̂(β)]]G(σr
G) 70, def. of equality

Case 1(a)2: This case is impossible.
72. [α]Ar ∈ Ac \ Opassed

c , [α]Ar �= ∅ SeeCase 1(a)1.
73. [β]Ar �= ∅ [[β �= null]]L(σr

L), Lem. C.7(1)
74. [β]Ar ∈ map(sub(bind ret)) Ax \ {∅} 73, [β]Ar �∈ Ac \ Opassed

c

Lem. C.9(2)
75. (Ac \ Opassed

c ) ∩ map(sub(bindret)) Ax ⊆ {∅} Lem. C.8(2)
76. [α]σr

L
= [β]σr

L
[[α = β]]L(σr

L), Lem. C.7(2)
77. Contradiction 72, 73, 74 − 76

Case 1(a)3: This case is also impossible (see proof for Case 1(a)2).
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Case 1(a)4:
78. [α]Ar �= ∅ [[α �= null]]L(σr

L),
Lem. C.7(1)

79. [α]Ar ∈ (map(sub(bind ret)) Ax) \ {∅} 78, Assumption,
Lem. C.9(2)

80. [β]Ar �= ∅ [[β �= null]]L(σr
L),

Lem. C.7(1)
81. [β]Ar ∈ (map(sub(bindret)) Ax) \ {∅} 80, Assumption,

Lem. C.9(2)
82. [α]Ar = [β]Ar [[α = β]]L(σr

L),
Lem. C.7(2)

83. ∃!o ∈ Ax, [α]Ar = [β]Ar = sub(bind ret) o �= ∅ 78 − 82,
Def. ofmap,
Lem. C.9(4)

84. Let o be the unique object inAx which satisfies83.
Let α0, r

α
1 , δα

1 be the unique values determined byLem. C.9(6) for o andα.

Let β0, r
β
1 , δβ

1 be the unique values determined byLem. C.9(6) for o andβ.
85. α0 �= 〈y, ε〉 =⇒

α0 ∈ Bypass(Opassed
c ) [α0]σc

L
, [α0]Ac ∈ Oargs

c ∪ Ocp
c ,

[α0]Ac ∈ Oargs
c =⇒ rα

1 = bindargs [α0]Ac �= ∅
[α0]Ac ∈ Ocp

c =⇒ rα
1 = bind cp [α0]Ac �= ∅ Lem. C.9(6)

86. [[f̂(α0)]]G(σr
G) =

{
[[f̂(〈y, ε〉)]]G(σr

G) α0 = 〈y, ε〉
[[f̂(α0)]]G(σr

G) α0 �= 〈y, ε〉 Lem. C.9(6)

87. [[f̂(α0)]]G(σr
G) =

{
[[〈y, ε〉]]G(σr

G) α0 = 〈y, ε〉
[[f̂(α0)]]G(σc

G) α0 �= 〈y, ε〉
Def. of f̂
85, Oargs

c ∪ Ocp
c ⊆ Opassed

c ,
Lem. C.14(2)

88. [[f̂(α0)]]G(σr
G) =

{
[[〈ret , ε〉]]G(σx

G) α0 = 〈y, ε〉
[[f̂e(αp)]]G(σe

G) α0 �= 〈y, ε〉, αp ∈ rα
1

Def. ofGSB see Fig. 5
85, Lem. C.13(3)

89. [[f̂(α0)]]G(σr
G) =

{
[[f̂e(〈ret , ε〉)]]G(σx

G) α0 = 〈y, ε〉
[[f̂e(αp)]]G(σx

G) α0 �= 〈y, ε〉, αp ∈ rα
1

Def. of f̂e

88, Lem. C.13(5)
90. ∀αp ∈ rα

1 , [[f̂(α0)]]G(σr
G) = [[f̂e(αp)]]G(σx

G) 89, α0 = 〈y, ε〉
⇒ rα

1 = {〈ret , ε〉}
91. [[f̂(α)]]G(σr

G) = [[〈[[f̂ (α0)]]G(σr
G), δα

1 〉]]G(σr
G) α = α0.δ

α
1 , Lem. C.6(1),

Lem. C.12
92. ∀βp ∈ rβ

1 , [[f̂(β0)]]G(σr
G) = [[f̂e(βp)]]G(σx

G) Analogous to85 − 90
93. [[f̂(β)]]G(σr

G) = [[〈[[f̂ (β0)]]G(σr
G), δβ

1 〉]]G(σr
G) Analogous to91

94. rα
1 .δα

1 ⊆ o, rβ
1 .δβ

1 ⊆ o 84, Lem. C.9(6)
95. ∀αp ∈ rα

1 , ∀βp ∈ rβ
1 , [[αp.δ

α
1 = βp.δ

β
2 ]]L(σx

G) 94, Lem. C.7(2),
Admissibility of σx

L

96. σx
L ∝fe σx

G Assumption
97. ∀αp ∈ rα

1 , ∀βp ∈ rβ
1 , [[f̂e(αp.δ

α
1 ) = f̂e(βp.δ

β
2 )]]G(σx

G) 95 − 96
98. ∀αp ∈ rα

1 , ∀βp ∈ rβ
1 , [[f̂e(αp.δ

α
1 )]]G(σx

G) = [[f̂e(βp.δ
β
2 )]]G(σx

G) 97, Def. of equality
99. ∀αp ∈ rα

1 , ∀βp ∈ rβ
1 ,

[[〈[[f̂e(αp)]]G(σx
G), δα

1 〉]]G(σx
G) = [[〈[[f̂e(βp)]]G(σx

G), δβ
1 〉]]G(σx

G) 98
100. [[〈[[f̂(α0)]]G(σr

G), δα
1 〉]]G(σx

G) = [[〈[[f̂ (β0)]]G(σr
G), δβ

1 〉]]G(σx
G) 90, 92, 99,

85 (rα
1 �= ∅, rβ

1 �= ∅)
101. [[〈[[f̂(α0)]]G(σr

G), δα
1 〉]]G(σr

G) = [[〈[[f̂ (β0)]]G(σr
G), δβ

1 〉]]G(σr
G) 100, hr = hx, Def. of [[·]]G

102. [[f̂(α)]]G(σr
G) = [[f̂(β)]]G(σr

G) 91, 93, 101
103. [[f̂(α) = f̂(β)]]G(σr

G) 102, Def. of equality
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Case 1b:
104. [[α = null]]L(σr

L) Assumption
105. [[β = null]]L(σr

L) Assumption
106. [[f̂(α) = null]]G(σr

G) 104, σc
L ∝f σc

G, Case 2
107. [[f̂(β) = null]]G(σr

G) 105, σc
L ∝f σc

G, Case 2
108. [[f̂(α) = f̂(β)]]G(σr

G) 106, 107

Case 2a:
109. [[〈y, δγ〉 = null]]L(σr

L) By assumption
110. [[〈ret , δγ〉 = null]]L(σx

L) Lem. C.9(5a)
111. σx

L ∝fe σx
G σc

L ∝fe σc
G, the induction assumption

112. [[f̂e(〈ret , δγ〉) = null]]G(σx
G) 110, 111

113. [[〈ret , δγ〉 = null]]G(σx
G) 112, Def. of f̂e

114. [[〈y, δγ〉 = null]]G(σr
G) hr = hc, ρr(y) = ρx(ret)

Case 2(b)1:
115. ∀γ′ ≤ γ, [γ′]Ar ∈ (Ac \ Opassed

c ) ∪ {∅} Assumption
116. Ar = (Ac \ Opassed

c ) ∪ map(sub(bindret)) Ax Def. ofLSL (see Fig. 11).
117. ∀γ′ ≤ γ, [γ′]σc

L
�∈ Opassed

c 116, Lem. C.9(3), Lem. C.8(1)
118. [[γ = null]]L(σc

L) 115, 117, γ ≤ γ, Lem. C.9(5b)
119. [[f̂(γ) = null]]G(σc

L) 118, σc
L ∝f σc

G

We continue with case analysis w.r.t. the value
of [[〈rγ , ε〉]]G(σc

G)
• Assume[[〈rγ , ε〉]]G(σc

G) = null
120. [[γ = null]]L(σr

L) ∀γ′ ≤ γ[[γ′ �= null]]L(σr
L)

121. rγ ∈ Vq \ {y} 120, Lem. C.7(6), Assumption(rγ �= y)
122. [[〈rγ , ε〉 = null]]L(σc

L) 120− 121, Lem. C.9(5a)
123. [[f̂(〈rγ , ε〉) = null]]G(σc

G) 122, σc
L ∝f σc

G

124. [[〈rγ , ε〉 = null]]G(σc
G) Def. of f̂

125. [[〈rγ , ε〉 = null]]G(σr
G) Def. ofGSB

126. [[γ = null]]G(σr
G) 125, 〈rγ , ε〉 ≤ γ, Lem. C.6(2a)

• Assume[[〈rγ , ε〉]]G(σc
G) �= null

127. ∃!s ∈ FieldId , ∃!γ′.s ≤ γ, [[f̂(γ′) �= null]]G(σc
L)∧

∀γ′′, γ′.s ≤ γ′′, [[f̂(γ′′) = null]]G(σc
L) 119, Lem. C.6(2a − 2b), Lem. C.12

128. Let f andγ ′ be the unique values satsfying127
129. [[f̂(γ′)]]G(σc

L) �∈ Lreach 117, 128, Lem. C.13(4)
130. [[f̂(γ′)]]G(σc

L) ∈ Lc \ Lreach 129, [[f̂(γ′) �= null]]G(σc
L)

131. [[f̂(γ′).s]]G(σc
L) = [[f̂(γ′).s]]G(σr

L) 130, Lem. C.5, Lem. C.12
132. [[f̂(γ′).s]]G(σr

L) = null 127− 128, 131, Lem. C.12
133. [[f̂(γ′).s = null]]G(σr

L) 132, Def. of equality w.null
134. [[f̂(γ) = null]]G(σr

L) 128, 133, Lem. C.6(2a), Lem. C.12
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Case 2(b)2:
135. [γ]σr

L
= ∅ Lem. C.7(1)

([[γ = null]]L(σr
L))

136. ∃γ′ ≤ γ, [γ′]Ar �∈ (Ac \ Opassed
c ) ∪ {∅} Assumption

137. ∃γ′, γ′ < γ, [γ′]σr
L
∈ map(sub(bind ret)) Ax \ {∅},

∀γ′′, γ′ ≤ γ′′ =⇒ [γ′′]σr
L
∈ map(sub(bindret)) Ax ∪ {∅} 135 − 136, Lem. C.9(2)

138. ∃γ′, γ′ < γ, [γ′]σr
L
∈ map(sub(bind ret)) Ax \ {∅}, 137, [[γ = null]]L(σr

L),
∀γ′′, γ′ ≤ γ′′ =⇒ [γ′′]σr

L
∈ map(sub(bindret)) Ax ∪ {∅} Lem. C.7(1)

139. ∃s ∈ FID, ∃γ′, γ′.s ≤ γ ∧ [γ′]σr
L
∈ map(sub(bindret)) Ax∧

[[γ′ �= null]]L(σr
L) ∧ ∀γ′′, γ′.s ≤ γ′′ =⇒ [[γ′′ = null]]L(σr

L) 138, Lem. C.7(1, 3, 4)
140. ∃s ∈ FID, ∃γ′, γ′.s ≤ γ, ∃o ∈ Ax, [γ′]σr

L
= sub(bind ret) o∧

[[γ′ �= null]]L(σr
L) ∧ [[γ′.s = null]]L(σr

L) 139, Def. ofmap
141. Let γ′, s, o be the unique values satisfying140
142. let γ′

0, r
γ′
1 , δγ′

1 be the unique values determined byLem. C.9(6) for o andγ ′.
143. ∀γp ∈ rγ′

1 , [[γp.δ
γ′
1 s = null]]L(σx

L) Lem. C.9(5c)
144. σx

L ∝fe σx
G Assumption

145. ∀γp ∈ rγ′
1 , [[f̂e(γp.δ

γ′
1 s) = null]]G(σx

L) 143 − 144
146. ∀γp ∈ rγ′

1 , [[f̂e(γp.δ
γ′
1 s)]]G(σx

L) = null 145
147. ∀γp ∈ rγ′

1 , [[[[f̂e(γp.δ
γ′
1 )]]G(σx

L).s]]G(σx
L) = null 146, Lem. C.12

148. ∀γp ∈ rγ′
1 , [[[[[[f̂e(γp)]]G(σx

L).δγ′
1 ]]G(σx

L).s]]G(σx
L) = null 147, Lem. C.12

149. ∀γp ∈ rγ′
1 , [[f̂(γ0)]]G(σr

G) = [[f̂e(γp)]]G(σx
G), rγ′

1 �= ∅ See proof forCase 1(a)4
150. [[[[[[f̂(γ0)]]G(σr

L).δγ′
1 ]]G(σx

L).s]]G(σx
L) = null 148 − 149

151. [[[[[[f̂(γ0)]]G(σr
L).δγ′

1 ]]G(σr
L).s]]G(σr

L) = null 150, hx = hr (See Fig. 11)
152. [[γ′.s]]G(σr

L) = null 151, Lem. C.12
153. [[γ′.s = null]]G(σr

L) 152, Def. of [[·]]G
154. [[γ = null]]G(σr

L) γ′.s ≤ γ, Lem. C.6(2a)

Theorem C.15 (Context-aware Equivalence Preservation) Let p be a function. Let
σL ∈ Σp

L and σG ∈ Σp
G be context-aware equivalent states w.r.t. to a renaming function

f , i.e., σL ∝f σG. Let st be an arbitrary statement in p. The following holds:

1. For any state σ′
L ∈ Σp

L such that 〈st , σL〉 L� σ′
L, there exists a state σ′

G ∈ Σp
G

such that:

• 〈st , σG〉 G� σ′
G, and

• σ′
L ∝f σ′

G.

2. For any state σ′
G ∈ Σp

G such that 〈st , σG〉 G� σ′
G, there exists a state σ′

L ∈ Σp
L

such that:

• 〈st , σL〉 L� σ′
L, and

• σ′
L ∝f σ′

G.
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Proof: Let q be a function. LetσL = 〈CPL, A〉 ∈ Σq
L andσG = 〈L, ρ, h〉 ∈ Σq

G

context-aware equivalent states w.r.t. to a renaming functionf , i.e.,σL ∝f σG.
We prove (i) and (ii) simultaneously using an induction on the shape of the deriva-

tion tree. The proof is done by case analysis of the statement in the transition which
labels the root of the derivation tree.

Base case: The transition which labels the root of the derivation tree contains an atomic
statement, i.e., the derivation tree is a leaf. Thus, we only need to show that the states
that result by executing the same (atomic) statement inσL andσG are also context-
aware equivalent w.r.t. tof . The proof is done by a case analysis.

x=null The axiom for this statement has no side-condition, thus this statement is guar-
anteed to terminate in any state. In particular, it is true that

∃σ′
L ∈ Σq

L, s.t.〈x = null, σL〉 L� σ′
L and∃σ′

G ∈ Σq
G, s.t.〈x = null, σG〉 G� σ′

G.
By definition,σ′

L = 〈CPL, rem(A, {x})〉 = 〈CPL, {(map(λo.o \ {x}.∆) A) \ {∅}〉 =
〈CPL, {a \ x.∆ | a ∈ A} \ {∅}〉 andσ′

G = 〈L, ρ[x �→ null], h〉.
Let α = 〈rα, δα〉, β = 〈rβ , δβ〉, andγ = 〈rγ , δγ〉 be generalized access paths of
functionq.

[[α = β]]L(σ′
L) ⇐⇒

∀a′ ∈ {a \ {x}.∆ | a ∈ A} \ {∅}, α ∈ a′ ⇐⇒ β ∈ a′ ⇐⇒
∀a′ ∈ {a \ {x}.∆ | a ∈ A}, α ∈ a′ ⇐⇒ β ∈ a′ ⇐⇒

rα �= x, rβ �= x, ∀a ∈ A, α ∈ a ⇐⇒ β ∈ a or
rα = x, rβ �= x, ∀a ∈ A, β �∈ a or
rα �= x, rβ = x, ∀a ∈ A, α �∈ a or
rα = x, rβ = x

⇐⇒


rα �= x, rβ �= x, [[α = β]]L(σL) or
rα = x, rβ �= x, [[β = null]]L(σL) or
rα �= x, rβ = x, [[α = null]]L(σL) or
rα = x, rβ = x

⇐⇒ (σL ∝f σG)


rα �= x, rβ �= x, [[f̂(α) = f̂(β)]]G(σG) or
rα = x, rβ �= x, [[f̂(β) = null]]G(σG) or
rα �= x, rβ = x, [[f̂(α) = null]]G(σG) or
rα = x, rβ = x

⇐⇒

[[f̂(α)]]G(σ′
G) = [[f̂(β)]]G(σ′

G) ⇐⇒
[[f̂(α) = f̂(β)]]G(σ′

G)
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[[γ = null]]L(σ′
L) ⇐⇒

∀a′ ∈ {a \ {x}.∆ | a ∈ A} \ {∅}, γ �∈ a′ ⇐⇒
∀a′ ∈ {a \ {x}.∆ | a ∈ A}, γ �∈ a′ ⇐⇒{

rγ �= x, ∀a ∈ A, γ �∈ a or
rγ = x

⇐⇒{
rγ �= x, [[γ = null]]L(σL) or
rγ = x

⇐⇒ (σL ∝f σG){
rγ �= x, [[f̂ (γ) = null]]G(σG) or
rγ = x

⇐⇒
[[f̂(γ)]]G(σ′

G) = null ⇐⇒
[[f̂(γ) = null]]G(σ′

G)

x=y Analogous to [x=null].

x=y.f Analogous to [x=null].

x.f=null Analogous to [x=null].

x.f=y Analogous to [x=null].

x=alloc t Analogous to [x=null].

Induction step (intraprocedural): The transition labeling the root of the derivation
tree contains a non-atomic intraprocedural control statement. Thus, the induced deriva-
tion tree is not a leaf. The proof is done by a case analysis.

seq Assume thatst = st1; st2 and that〈st 1; st2, σL〉 L� σ′
L.

155. 〈st1; st2, σL〉 L� σ′
L Assumption

156. ∃σ′′
L.〈st1, σL〉 L� σ′′

L ∧ 〈st2, σ′′
L〉 L� σ′

L Def. of [seq] inLSL

157.
∃σ′′

L.∃σ′′
G.〈st1, σL〉 L� σ′′

L ∧ 〈st2, σ
′′
L〉 L� σ′

L ∧
〈st1, σG〉 G� σ′′

G ∧ σ′′
L ∝f σ′′

G

σL ∝f σG

Induction assumption
for st1, σL, andσG

158. ∃σ′′
G.∃σ′

G.〈st1, σG〉 G� σ′′
G ∧ 〈st2, σ

′′
G〉 G� σ′

G ∧
σ′

L ∝f σ′
G

σ′′
L ∝f σ′′

G

Induction assumption
for st2, σ

′′
L, andσ′′

G

159. ∃σ′
G.〈st1; st2, σG〉 G� σ′

G ∧ σ′
L ∝f σ′

G
Def. of [seq] inGSB

The proof in the other direction is analogous.

if-tt Analogous to [seq].

if-ff Analogous to [seq].

while Analogous to [seq].
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Induction step (interprocedural):
The transition labeling the root of the derivation tree contains a a function call.

Thus, the induced derivation tree is not a leaf. Without loss of generality, assume that
the invocation isy=p(x1, . . . ,xk). To simplify notations, we assume thatσc

L = σL

and thatσc
G = σG.

Assume that〈y = p(x1, . . . , xk), σc
L〉 L� σr

L.

160. 〈y = p(x1, . . . , xk), σc
L〉 L� σr

L Assumption

161. ∃σe
L, σx

L ∈ Σp
L, σr

L ∈ Σq
L, s.t. 〈body of p, σe

L〉 L� σx
L; and Def. of function call inLSL

σe
L, σx

L andσr
L are as defined in Fig. 11

162.
Let σe

G be that state that arise at the entry top whenp
is invoked atσc

G

Suchσe
G exists because in

GSB there are no side-
conditions for function calls

163.
Let fe be that renaming function defined as in Lem. C.14
for σe

L andσe
G

164. σe
L ∝fe σe

G 162, 163, Lem. C.13(2)

165. ∃σx
G ∈ Σq

G.〈body of p, σe
G〉 G� σx

G ∧ σx
L ∝fe σx

G 161, 164, Induction
assumption forσe

L, σe
G, andfe

166. ∃σr
G ∈ Σq

G.〈y = p(x1, . . . , xk), σc
G〉 G� σr

G s.t.
σr

G is as defined in Fig. 5 forσc
G andσx

G

165

167. σr
L ∝f σr

G 164, 165, Lem. C.14(3)

The proof in the other direction is analogous.
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