A Semantics for Procedure Local Heaps

and its Abstractions
AVACS-TR-1

Noam Rinetzky* Jorg Bauet! Thomas Rep$
Mooly SagiV* Reinhard Wilhelrd

1 School of Comp. Sci.; Tel Aviv Univ.; Tel Aviv 69978; Israel.
{maon,msagiv} @post.tau.ac.il
2 Informatik; Univ. des Saarlandes; Saartkén, Germany.
{joba,wilhelm} @cs.uni-sb.de
3 Comp. Sci. Dept.; Univ. of Wisconsin; Madison, Wl 53706; USA.
reps@cs.wisc.edu

Abstract

The goal of this work is to develop compile-time algorithms for automatically
verifying properties of imperative programs that manipulate dynamically allocated
storage. The paper presents an analysis method that uses a characterization of a
procedure’s behavior in which parts of the heap not relevant to the procedure are
ignored. The paper has two main parts: The first part introduces a non-standard
concrete semantic€S £, in which called procedures are only pasgeds of the
heap. In this semantics, objects are treated specially when they separate the “local
heap” that can be mutated by a procedure from the rest of the heap, which—from
the viewpoint of that procedure—is non-accessible and immutable. The second
part concerns abstract interpretation&f £ and develops a new static-analysis
algorithm using canonical abstraction. It also provides insight into Deutsch’s may-
alias algorithm.

*Supported in part by a grant from the the Israeli Academy of Science.

TSupported by the German Research Council (DFG) as part of the Transregional Collaborative Re-
search Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS). See
www. avacs. or g for more information.

fSupported by the office of Naval Research under contract NO0014-01-1-0796.

Contents

1 Introduction 4
1.1 Store-basedvs. Storeless Semantics. 4
12 MainResults 5
1.3 Outline 6

2 Preliminaries 6
2.1 SyntaxofEAlgol 6
2.2 RunningExample o 6
2.3 Global-Heap Store-Based Semantics..... 7
2.4 Observable Properties 9

3 Cutpointsand their Use 11

4 TheLocalized-Heap Storeless Semantics and its Properties 14
4.1 The Localized-Heap Storeless Semantics. 14

4.1.1 MemoryStates e 14
41.2 InferenceRules., 16
4.2 Propertiesofthe Semantics, 22
4.2.1 Semantic Equivalence 23
4.2.2 Standard Properties 24
423 Modularity 24
4.3 AssertionLanguageo e 25

5 Abstract Interpretation 28
5.1 The May-Alias Abstraction 29
5.2 Interprocedural Shape Analysis with Local-Heaps.... 29

5.2.1 RepresentingSL Memory States bg-Valued Loglcal Struc—

tures. 30
5.2.2 Abstract Interpretation oL L 35
523 Discussion 37

6 Related Work 37
6.1 StorelessSemantics o 37
6.2 Interprocedural Shape Analysis 38
6.3 LocalReasoning 38
6.4 Encapsulation 39
6.5 Ruleof Adaptation 39

7 Conclusions 40

A Additional Code 47

B TheMay-Alias Abstraction 49

C Proofs
C.1 Properties of th§SB Semantics.
C.2 Propertiesof th€éSL Semantics.
C.3 Context-Aware Equivalence

1 Introduction

The long-time research goal of our work is to develop compile-time algorithms for au-
tomatically verifying properties of imperative programs that manipulate dynamically
allocated storage. The goal is to verify properties such as the absence of null derefer-
ences, the absence of memory leaks, and the preservation of data-structure invariants.
The ability to reason about the effects of procedure calls is a crucial element in pro-
gram verification, program analysis, and program optimization. This paper presents
an approach to the modular analysis of imperative languages with procedures and dy-
namically allocated storage, based on an abstract interpretation of a novel non-standard
storeless semantics.

1.1 Store-based vs. Storeess Semantics

A straightforward way to specify semantics of programs with dynamically allocated
objects and pointers is by a store-based operational semantics, e.g., see [34]. This
semantics is very natural because it closely corresponds to concepts of the machine
architecture. Moreover, it is possible to compute the effect of a procedure on a large
heap from its effect on subheaps. This is the semantic basis for O'Hearn’s “frame
rule” [22,34], which uses assertions about disjoint parts of the heap: the post condition
of a procedure call is inferred by combining assertions that hold before the call with
ones that characterize the effect of the procedure call.

In programming languages such as Java, where addresses cannot be used explicitly
(in contrastto C'sast statements), it is possible to represent states in a more abstract
way because any two heaps with isomorphic reachable parts are indistinguishable. In
particular, garbage cells have no significance. This leads to the notion of storeless se-
mantics, which was pioneered by [24]. There, states are represented as aliases between
pointer access paths.

A first step in many heap-abstractions is to abstract away from specific memory
addresses, e.g., [13, 15,23, 38,40, 41]. A storaessrete semantics has already done
this step, which relieves the designer of an abstraction from having to do it. Thus, it
is natural to base powerful pointer (shape) analysis algorithms on storeless semantics.
Unfortunately, existing storeless semantics associate the entire heap with each proce-
dure invocation and class instantiation, which makes it difficult to support procedure
and data abstraction. Another problem with storeless semantics is thatitis hard to relate
properties of memory cells before and after a call. As a result, it is hard to scale these
methods to prove properties of real-life programs. By “scaling”, we mean not just cost
issues but also precision. In particular, after a procedure call some information about
the calling context may be lost.

In this paper, we present a first step towards addressing the aforementioned scaling
issues by (i) developing a storeless semantics that allows representation of parts of the
heapand relating properties before and after a call, and (ii) presenting an abstraction
of this semantics.

1.2 Main Results

In this paper, we develop a method to characterize a procedure’s behavior in a way
that ignores parts of the heap that are not relevant to the procedure. Toward this end,
the paper introduces a non-standard storelessrete semantics£S L, for Localized-

heap Sore-Less. In this semantics, a called procedure is only passedraof the

heap. Based on this semantics, a new static-analysis algorithm is developed using
canonical abstraction [40]. This allows us to prove properties of programs that were
not automatically verified before. We believe that the modular treatment of the heap
will allow the implementation of these abstractions to scale better on larger code bases.
The approach also provides insights into Deutsch’s may-analysis algorithm [15].

The paper has two main parts: The first part (Sec. 4) concéfs, the non-
standard concrete storeless semantics. The second part (Sec. 5) concerns abstract-
interpretation of this semantics.

LSL is based on the following ideas: Objects in the heap reachable from an ac-
tual parameter are treated differently when they separate the “local heap” that can be
accessed by a procedure from the rest of the heap, which—from the viewpoint of that
procedure—is non-accessible and immutable. We call these olggpEnts. An
objectbelongsto the local-heap when it is reachable from a procedure’s actual param-
eters. Such an object isatpoint when it is reached via a pointer-access path that
starts at a variable ofjgending call and does ndaraverse the local-heap. When a pro-
cedure returns, the cutpoints are used to update the caller’s local-heap with the effect
of the call. Because our goal is to perform static analy&is_ is a storeless seman-
tics[24]; every dynamically allocated objegis represented by the setadcess paths
that reaclv. In particular, unreachable objects are not represenfe&L is different
from previous storeless semantics based on pointer-access paths [13,41] in the follow-
ing way. It does not represent access paths that start from variables of pending calls in
the “local state” of the current procedure. This means that a procedure has a local view
that only includes objects that are reachable from the procedure’s parameters and, in
addition, any objects that it allocates.

We characterize the mannerin whi€ls £ simulates a standard store-based seman-
tics and identify a class of observations for whi€§ L is equivalent to the standard
store-based semantics. This allows us to prove properties ranging from the absence of
runtime errors to partial and total correctness with respect to the standard store-based
semantics. We study the propertiest# L. In particular, we show that it has a number
of standard properties including full abstraction and determinism.

The second part of the paper us€SL as the starting point for static-analysis
algorithms that treat the heap in a more local, more modular way than previous work.
In this part of the paper, we make the following contributions:

e LSL provides insight into previous work on static may-alias analyses based on
pointer-access paths [15]—in particular, the treatment of variables of pending
calls, which is one of the most complicated aspects of [15]. For instance, a
surprising aspect of the method given in [15] is that recursive procedures are
handled in a more precise way than loops. The intuitive reason is that the ab-
stractions of values of variables in the current procedure is different from the

abstraction used for values of variables in pending procedures. Specifically, we
show that the abstract domain used in [15] is an abstractidiaf.

e Using an abstraction ofSL, we present a new interprocedural shape-analysis
algorithm for programs that manipulate dynamically allocated storage. This al-
lows us to prove properties of programs that were not automatically verified be-
fore (e.g., destructive merge of two singly-linked lists by a recursive procedure,
see Fig. 21). Furthermore, the analysis is done in a way that is more likely to
scale up. In particular, our analysis benefits from the fact that the heap is local-
ized: the behavior of a procedure only depends on the contents of its local-heap.
This allows analysis results to be reused for different contexts.

1.3 Outline

The remainder of the paper is organized as follows: Sec. 2 sets the scene by defining
EAlgol, a simple imperative language, and defining its standard store-based seman-
tics. It also introduces our running example. Sec. 3 defines cutpoints and describes
their use iINCSL. Sec. 4 define£S L semantics folEAlgol and states its properties.
Sec. 5 presents the two aforementioned abstractiosSaf. Sec. 6 reviews closely
related work. Sec. 7 concludes our work.

2 Prdiminaries

In this section, we introduce a simple imperative language c#lladigol. We define

its standard semantics, which is operational, large-step, store-based (as opposed to
storeless), and global, i.e., the entire heap is passed to a procedure. We refer to this
semantics agSB, for Global-heap Store-Based.

2.1 Syntax of EAlgol

Programs irnE Algol consist of a collection of functions includingrai n function.
The programmer can also define her own typeda(C structs) and refer to heap-
allocated objects of these types using pointer variables. Parameters are passed by value.
Formal parameters cannot be assigned to. Functions return a value by assigning itto a
designated variableet .

The syntax ofEAlgol is defined in Fig. 1. The notation denotes a sequence
of z's. We define the syntactic domainsy € Varld, f € Fieldld, p € Funcld,
t € Typeld, andib € Labels of variables, field names, functions identifiers, type
names, and program-labels, respectively. For a fungtidf denotes the set of its local
variables and, denotes the set of its formal parameters. We asskine V,, and that
all the variables ir/, \ F), are declared at the beginning of a function declaration.

2.2 Running Example

TheEAlgol program shown in Fig. 2 is our running example. The program consists of
a type definition for an elementin a linked li€ (|); three list-manipulating functions:

P € prog = rcdecl fndec
rcdecl := recordt:= {tnamef}
tname := int|t
fndecl ::= tnamep(inamez) :=vdecl st
vdecl = tname Varld
st € sms = z=c|z=y| z=yopz|a=y.f|
x.f=null | z.f=y | x = alloct |
y=p(T) | Ib: st | while (cnd) do st od |
st; st | if (cnd) then st else st fi
cnd n= x==yl|z!=yla==c|z!=c
¢ € const == null|n

Figure 1: Syntax oEAlgol.

create €¢rt), destructive appendapp), and destructive reversedver se); and a
mai n function.

The program allocates three acyclic linked lists. It then destructively appends the
list pointed-to byt 2 to the tails of the lists pointed-to lyl andt 3. As a result, at
program pointb,, just beforer ever se is invoked,x points-to an acyclic list with
five elementsz points-to an acyclic list with five elements, and the two lists share their
last two elements as a common tail.

The invocation of ever se, which is the core of our running example, (destruc-
tively) reverses the list passed as an argument. As a resilit,, atever se’s return-
site,y points-to the head of the reversed-list. Note that the shared tail of the list pointed-
to by z has also changed.

2.3 Global-Heap Store-Based Semantics

We now define th&/SB semantics folEAlgol. For simplicity, the semantics tracks
only pointer values and assumes that every pointer-valued field or variable is assigned
nul | before being assigned a new vatuén addition, we assume that before a func-
tion terminates it assign maul | value to every pointer variable that is not a formal
parametef.

Fig. 3 defines the semantic domaiiisc is an unbounded set of memory locations.
A memory state for a functionp, 0%, € %Y., keeps track of the allocated memory
locations,L, an environment mappings local variables to valueg, and a mapping

1Special care need to be taken when handling statements in which the same variable appears both in
left-side of the assignment and in its right-side, exg.+= X. f. Such statements require additional source-
to-source transformations and the introduction of temporary variables.

2These conventions simplify the definition of bafi§ B semantics and.SL; in principle, different ones
could be used with minor effects on the capabilities of our approach. For clarity, our example programs do
not adhere to these restrictions.

record SIl := { Sl n; int d}
Sl reverse(SlIl h):= [b.:
Sl p,q,t;
p=h;
while (p!'=null) do
g=p.n; p.n=t; t=p; p=q od,
ret =t [bg:
int main():=
Sl x,y,z,t1,t2,t3;
tl=crt(3); t2=crt(2); t3=crt(3);
x=app(t1,t2);
z=app(t3,t2);
tl=null; t2=null; t3=null;
I'b.: 'y =reverse(x); Ib.:
ret=0

Figure 2: The running example. The code of functi@ard andapp appears in
App. A.

Loc

Val = Loc U {null}

Env, =V, — Val

Heap, = Loc x Fieldld — Val
P, = 2L°c x Env, x Heap,,

>N S
MMMMM

aa, <L,p, h>

Figure 3: Semantic domains of tli&S B semantics.

from fields ofallocated locations to values;. Due to our simplifying assumptions, a
value is either a memory location pull.

The meaning of statements is described by a transition I'E|&G’éi@'l(UG X stms) X o¢-.
Fig. 4 shows thexioms for assignments. Thieference rule for function calls is given
in Fig. 5. All other statements are handled as usual using a two-level store semantics
for pointer languages.

Example 2.1 The memory state db., the call-site tar ever se, is de-
picted graphically in Fig. 6 (labeled,). Allocated locations are depicted

as rectangles labeled by the location name. The value of each variable
is depicted as an arrow from the variable name to the memory location it
points-to. The value of a field is depicted by a directed edge labeled with
the field name.

The invocation of ever se starts in state'&,. The heap o, is identical
to the one ofs§, but its environment only mags, r ever se’s formal

X

null, (L, p, h)) (L, plz — null], k)
¥, (L, p, b)) < <L plz = p(y)l, k)

X

x =y.5,(L,p,h)) < <L plz = hp(y),)] h) p(y) # null
x.f = mull, (L, p, h)) < (L, p, hl(p(x), f) — null]) p(x) # null
x.t =y, (L, p,h)) % (L, p, hl(p(x), f) = p(y)]) p(x) # null

(
(
(
(
(
(

)
x = alloct, (L, p, h)) 5 (LU{l}, plz — 1], hUI(1)) 1 ¢ L

Figure 4: Axioms for atomic statements in &5 semantics./ initializes all pointer
fields at! to null.

(body 0fp, (Le, pes he)) 5 (L, oy)
G
(y=p(@1,...,21), (Le, pes he)) ~ (L, pry hy)
where

_ | pelwi) v =z B
Le = Le, pe(v) = { null otherwise he = he

Ly =Ly, pr = pC[y = px(ret)]a hy = hy

Figure 5: Inference rule for function invocation in tG&B semantics, assuming the
formal variables op arez, ... , zx and thatp's return value is a pointer.

parameter, tdg, the value of the actual parameter The execution of
rever se’s body ends witlr et pointing to the head of the reversed list.
The memory state at the exit poitib,,, is denoted by %, the state after
the invocation ofr ever se is denoted by .. Note that the heap iag;

is as inr ever se’s exit-point, and the environment is as in the call-site,
except that the return value€t) is assigned tg .

24 Observable Properties

In this section, we introduce access paths, which are the only means by which a pro-
gram can observe a state. Note that the program cannot observe location names.

Definition 2.2 (Field Paths) A field path 6 € A = Fieldld™ is a (possibly empty)
sequence of field identifiers. The empty sequenceis denoted by e.

Definition 2.3 (Access path) An access path o = (z,d) € V, x A of afunction p is
a pair consisting of a local variable of p and a field path. AccPath, denotes the set
of all access paths of function p. AccPath denotes the union of all access paths of all
functionsin a program.

{z}, {z.n}, {z.n.n}, {x.n.n.n, zn.nn}, {z.n.n.n.n, zn.nnn},

{z}, {z.n}, {z.n.n}

A°:

e h.n.n.n, h.n.n.n.n
A { h Y { hn), { hnn },{ - }{ o }

= . h, cpl.n.n.n cpl.n.n, cpl.n, cpl
AT ret.n.n.n.n }’ { ret.n.n.n }’ { ret.n.n ’ ret.n » {ret}

T, Yy.n.n.n.n, Yy.n.n.n, y.n.n, y.n,
zZ.n.n.n.n.n.n ’ zZ.n.n.n.n.n ’ z.n.n.n.n ’ z.n.n.n

{z},{zn}, {znn}

global heap local heap cpl = {h,./n.;n}

}7{@/},

Figure 6: Memory states that arise during the execution of the running example ac-
cording to theGSB semantics (left column) and th&SL semantics (right column).

We show the memory stateslat, the call-site ta ever se (first row); Ib., the entry

tor ever se (second row)tb,, r ever se’s exit point (third row); andb,., the return-

site fromr ever se (fourth row). For the local-heap semantics, the figure shows only
the heap (sets of aliased access p@sl the memory stadbes IMQC, andlb, are
defined asr§ = (0, A°), o¢ = ({{h.n.n.n}}, A%), oF = ({{h.n.n.n}}, A*), and

o’ = (0, A") respectively.

Apart from the above formal definitions, we will sometimes use the notation n
for access paths, because its syntax is familiar from a number of programming lan-
guages, where it denotes a sequence of field dereferences. Because states and access
paths are always associated with a (unique) fungtjon the rest of the paper, we omit
p whenever it is clear from the context. Also, to simplify notation, we assume that we
work with a fixed arbitrary prograr®.

Definition 2.4 (Access path value) The value of an access path « = (z,d) in state
(L, p, h), denoted by [a] (L, p,), is defined to be h(p(z), §), where

h: Val x A — Val such that

X v ifd =€
h(v,8) =< h(h(v, f),d') if6 = f&' v e Loc
null otherwise

Note that the value of an access path that traversedl-aalued field is defined to
benull. This definition simplifies the notion of equivalence betweerfadi® semantics
and LS L, our new semantics. Alternatively, we could have defined the value of such

10

a path to bel.. The semantics given in Fig. 4 checks that a null-dereference is not
performed (see the side-conditions listed in the caption).

Definition 2.5 (Access-path equality) Access paths o and § are egual in a given
state o, denoted by [a =] ¢(o¢), if they have the same value in that state, i.e.,
[a]c(oa) = [B]a(oa). Anaccesspathisequal to null, denoted by [ao = null] ¢ (o),
if [[Oz]]g(ag) = null.

Our semantics is a natural semantics; the stack of activation records is maintained
implicitly. However, we need the notion of an access path that starts at a variable of
a pending call (i.e., not the current call). In a small-step semantics, this would be
an access path that starts at a variable allocated in the activation record of a pending
call. We use the term pending variable for a local variable of a pending call, and a
pending access path for an access path that starts at a pending variable. When we wish
to emphasize that a variable (resp. access path) is of the current call, we use the term a
current variable (resp. aurrent access path). For example, in stafe, at the entry to
rever se, x is a pending variable, arzl n. n. n is a pending access path; the only
current variable i& andh. n. n. n is a current access path.

3 Cutpointsand their Use

In this section, we define cutpoints and describe their us€S. To assist the
reader, we provide some intuition by referring to the global store-based semantics (see
Sec. 2.3) and to a small-step (stack-based) operational semafifigsis a storeless
semantics, i.e., memory cells are not identified by locations. Thus, we cannot talk about
locations as in Sec. 2.3. Instead, we use the thjrects.

In LS L, every dynamically allocated objeetis represented by the set of pointer-
access paths that reash Unlike existing storeless semantics [13],4% £, pending
access paths are not represented as parts of the local state of the current procedure.
The advantage of our approach is that when a procedure is invoked, it operates only on
a part of the heap, namely, the objects that are reachable from the procedure’s actual
parameters. The downside of this approach is that the memory state just after the call
cannot always be defined in terms of the state prior to the call. The intuitive reason
for this deficiency is that the description of an object may change due to destructive
updates. For example, in the running example, to determine that the pointer-access
pathsy. n. n andz. n. n. n are aliased after the invocationioéver se, we need to
know that the list element pointed-to by n. n. n when the execution afever se
begins, is pointed-to by et . n when the execution ends. To capture this kind of
temporal relationship.S L tracks the effect of a function arutpoints. Cutpoints are
the objects that separate the part of the heap that an invoked function can access from
the rest of the heap (excluding the objects pointed-to by actual parameters).

Definition 3.1 (Cutpoints) A cutpoint for aninvocation of function p isa heap-allocated
object that, in the program state in which the execution of p’sbody starts, is: (i) reach-
able from a formal parameter of p (but not pointed-to by one) and (ii) pointed-to by a

11

)

fi
h el
fl

Z00 X2

>

>
g X1
= y
2 |
< Ele
é - //,22
2 main ///zl
Stack Heap

Figure 7: An illustration of the cutpoints for an invocation in a store-based small-step
(stack-based) operational semantics. The figure depicts the memory state at the entry
tozoo. The stack of activation record is depicted on the left side of the diagram. Each
activation record is labeled with the name of the function it is associated with. Heap-
allocated objects are depicted as rectangles labeled with their location. The value of
a pointer variable (resp. field) is depicted by an edge labeled with the name of the
variable (resp. field). The shaded cloud marks the part of the heapdbatan access.

The cutpoints for the invocation afbo (u7 andu9) are heavily shaded. Note that0

is not a cutpoint although it is pointed-to by pending access paths that do not traverse
through the shaded part of the heap, ex@.,andy. f 1. f 1. This is because10 is

also pointed-to by, zoo’s formal parameter.

pending access path that does not pass througlany object that is reachable from one
of p'sformal parameters.

For example, in memory statef., the list element at locatiofy is a cutpoint be-
cause it is pointed-to by the-field of the list element at locatioh;, which is not
reachable from the (only) actual parametefFor an additional example, see Fig. 7.

Technically,LS L usescutpoint-labelsto relate the post-state of the function with
its pre-state. Cutpoint-labels mark the cutpoints at—and throughout—an invocation.

Definition 3.2 (Cutpoint Labels) A cutpoint-label cpl € 274 for function p is a
set of access paths that start at a formal parameter of p. The set 27»*2 is denoted
by CPLbs,.

In every function invocationfS L labels all the cutpoints. A cutpoint-label is the
set of all access paths that start with a formal parameter (of the invoked function) and

12

point-to the cutpoint when the function execution starts. The label of a cutpoint does
not change throughout the execution of the function’s body, even if the heap is modified
by destructive updates.

For example, the fourth list element iis list is a cutpoint for the invocation
y=r ever se(x) . Thelabel of this cutpointi§h.n.n.n} becausé.n.n.n is the (only)
access path that points-to the cutpoint at the entry to the function. A good analogy for
the role of cutpoint-labels in our semantics is the use of auxiliary variables in formal
verification. Auxiliary variables are used to record variable values at the entry to a
function; a cutpoint-label is used to record the access paths that reach a cutpoint at
function entry. To emphasize this similarity, we use the notaiiamerea € CPLbs
for cutpoint-labels for functiop.

LSL is able to infer the effect of an invoked function on the heap of its caller by
including in the representation of an object all the field paths that reach it and start at a
cutpoint.

Definition 3.3 (Cutpoint-anchored paths) A cutpoint-anchored path o = {(cpl, §) €
CPLbs, x A for afunction p is a cutpoint-label for function p and a (possibly empty)
sequence of fields.

For example, at the memory state after the executionenfer se’s body, the

cutpoint-anchored pat{hﬁn}.n is aliased with the access pattt.n.n. From this
information, our semantics can infer that in ttmai n function, at the state after the
invocation ofr ever se, z.n.n.n.n is aliased withy.n.n.

Technically, during the invocation of a function, an object is represented by the
access paths and cutpoint-anchored paths that point-to it.

Definition 3.4 (Generalized access paths) A generalized access path for afunctionp
is either an access path of p or a cutpoint-anchored path of p. GAccPath , denotesthe
set of all access paths of function p. GAccPath denotes the union of all access paths
of all functionsin a program.

When there is no risk of confusion, we abbreviate a generalized access path of the
form (r, €) by r. Note thatr can be either a variable, or a cutpoint-label.

Remark 3.5 Cutpoint-labels isolate the information about the part of the heap that a
function cannot access, to the sharing patteriof the cutpoints, i.e., to the set of access
paths that—at the entry to the function—point-to a cutpoint. Furthermore, theisolation
is achieved in a parametric way: although a cutpoint-label expresses the fact that an
object isalso pointed-to by a pending access path, it is described in terms of the invoked
function’s formal parameters. This allows us to infer the meaning of a cutpoint-label
in a context-independent way.

Remark 3.6 Notethat because of the“ garbage-collecting nature” of storel ess seman-
tics, there is a non-trivial technical difficulty in obtaining a local semantics for the
storeless model. If a garbage-collection scan was to collect the heap using only the
procedure’s local variables as the roots, then elements would be garbage collected
that are accessible in the global state; adding the cutpoint-labels to the set of “ roots’
prevent this potential source of unsoundness.

13

r € Root, =V, U CPLbs),

a, 3 € GAccPath, = Root, x A

0 € Objl = 2GAccPathy Objects

A A, € Heaph =2°%L Heaps
or,(CPL,,A,) € ¥ =20PLbss x Heap? Memory state

Figure 8: Semantic domains of memory states for functioWe use the syntactic
domainsV,,, CPLbs,, and GAccPath, as semantic domains, too (and use italics font
to denote a semantics value.)

4 ThelL ocalized-Heap Storeless Semanticsand itsProp-
erties

In this section, we presemiS L, the Localized-heap Store-Less semantics and investi-
gate its properties. The semantics is defined in Sec. 4.1. Its properties are described in
Sec. 4.2. In Sec. 4.3 we define a language of assertions over access paths and show that
LS L preserves partial and total correctness of assertions expressed in this language.

4.1 TheLocalized-Heap Storeless Semantics

In this section, we definéS L, the Localized-heap Store-Less semantics. The seman-
tics is a natural semantics and, as before, tracks only pointer values.

To define the semantics, we use the functiandefined in Fig. 9. Itis used as an
infix operator. The application.§ concatenates the sequence of field identifiets
«. We say that a generalized access pafh aprefix of a generalized access path
denoted by < 3, when there is a field pathe A, such that3 = «.§. We say that
« is aproper prefix of 5, denoted byxy < 3, whend # €. The function-.- is lifted to
handle sets of access paths and sets of sequences of field identifiers.

In addition, we make use of th&at functional, well-known from functional pro-
gramming.flat M returns the set of all elements df, if M is a set of sets. Formally,

ﬂath:Ef{x|3A€M:x € A}

411 Memory States

In this section, we define the representation of memory statés it Traditionally, a
storeless semantics represents the heap by an equivalence relation over a set of access
paths, where equivalence classes (implicitly) represent allocated objects. For readabil-
ity, we use the equivalence classes directly.

A memory state for a functionp is a pair(CPL,, A,) of a set of cutpoint-labels,
(denoted byCPL,) and a heap (denoted by,). A heap is a finite (but unbounded)
set of objects. An object (denoted by is described by a (possibly infinite) set of
generalized access paths. Fig. 8 gives the semantic domains ug&ésidnfor a memory
state of a functiom.

14

A memory state{ CPL,, A,) at a given point in an execution is composed of the
labels of all the cutpoints of the current invocati@i{L ,,) and a representation of the
heap (4,) at that the point in the execution. To exclude states that cannot arise in any
program, we now define the notionadmissible states.

Definition 4.1 (Admissible memory states) A memory state (CPL,, A,,) for a func-
tion p at a given point in an execution is admissible iff (i) A generalized access path
points-to (at most) one object, i.e,, Yo,0’ € A, ifo # o', thenono’ = §; (ii) A is
right-regular, i.e., Yoi,02 € A, ifa,5 € 0y and a.d € oq then 5.6 € og; (iii) A,
is prefix-closed, i.e, if a.f € flat Ay, then o € flat A,; and (iv) a root of every
access path in the description of any object is either a local variable of p or a label
of one of the cutpoints, i.e., if (r,0) € flat A, then either » € V), or r € CPLy;
v) 0 ¢ A; (vi) CPL, satisfies the following requirements: (a) the cutpoint-labels
in CPL, are mutually dioint, (b) CPL,, is right-regular (but not necessarily-prefix
closed), (c) § € CPL,,.

The first three conditions are standard in storeless semantics. The fourth condition
limits the set of cutpoint-anchored paths that are tracked during an invocation to be
rooted at a cutpoint of the invocation. The fifth condition is because we only represent
objects that are pointed-to by a current or a pending access path. The sixth requirement
captures the fact that the set of cutpoints is actually a subset of the objects in the heap
when the function is invoked. Thug/PL, satisfies the first two requirements of
heaps. However, because it is only a subset, it is not necessarily prefix-closed. The fact
that the empty set is never iiPL,, is immediate once we recall that cutpoint-labels
are generated only for objects that can be reached from the actual parameters when the
function is invoked.

BecauseLS L preserves admissibility of states (see Lem. 4.9), in the sequel, when-
ever we refer to aSL state, we mean aadmissible LS L state.

It is possible to extract aliasing relationships from the sets of generalized access
paths that describe the objects in a heap, and in particular to observe the heap structure
as follows: a current variabbe points-to an objecto iff the access patki, €) is in o.
Similarly, cutpoint-labetpl labels objecto iff {cpl, €) is in o. The fieldf of an object
01 points-to objectos iff for every generalized access path) in o1, the general-
ized access patfr,df) is in oo. A generalized access pathpoints-to (resp. passes
through) an objecb, if « € o (resp.33 < « such thaf3 € o). An objecto is reachable
from a variabler, if there exists a field path € A such thatz,) € o.

Example 4.2 The heap of the running example at the state in whieher se

is invoked is shown in the first row in the second column of Fig. 6 (labeled
A°). It shows eight sets of generalized access paths. Each set represents
one allocated list-element. A1¢, x.n.n.n andz.n.n.n point-to the same
object. The set of cutpoint-labels at the call site is empty. This is always
the case for the main function. The fourth element®list is a cutpoint

for the invocation ofr ever se: it is reachable from an actual parame-

ter (its representation includesn.n.n) and by a field of an object that is

not passed to the invoked function (thefield of the third object inz’s

list). The heap at the beginning okver se (shown in Fig. 6, labeled

15

by A€) differs from A€ in three ways: (i) there are only five objects in the

heap; (ii) the set of cutpoint-labels contaif.n.n.n}, which labels the
fourth element in the list; and (iii) objects are represented in terms of the

generalized access paths that start either fwibh with {hﬁn}.

4.1.2 InferenceRules

The meaning of statements is described by a transition relaftai@ (o X stms) X o,.

We give axioms for assignments and an inference rule for procedure calls in Fig. 10
and Fig. 11, respectively. All other statements are handled in the standard way [25]. To
simplify notation, we assumé with a certain index (resp. prime) to be the heap com-
ponent of a state;, with the same index (resp. prime). We use the same convention
for indexed (or primed) versions @PL and a state’s cutpoint-labels component.

4.1.2.1 Helper Functions To define the inference rules, we use the following func-
tions: [-] , rem(-, -) andadd(-, -), which are defined in Fig. 9. We useas a metavari-

able ranging over sets of generalized access paths, which are not necessarily objects,
whereas always stands for objects.

The function[a] , returns the object that points-to in heapd. Whena does not
point-to any objecta] , returns the empty set (which by definition never describes an
object pointed-to by a current, or even a pending, access path).

The functionrem takes as its arguments a hed@and a set of generalized access
pathsa. It removes from the description of every object in helgll the access paths
that have a prefix im. Wheneverem removes all the (generalized) access paths from
the description of an object, that object is removed from the description of the heap.
The functionadd (A4, a, «) yields a modified version of heap, where to every object
o € A reachable from by following some field patld € A, the generalized access
pathsa.é are added.

In addition, we make use ofap() , another well known functional from functional
programming. The functionahap(f) M appliesf to every element oM and returns

the resulting set. Formallypap(f) M dZEf{f(x) | z € M}.

4.1.2.2 Atomic Statements Theaxiomsfor atomic statements are given in Fig. 10.
We simplify the semantics by making the same assumptions as in Sec. 2.3.

Assigningnul | to a variablex does not modify the link structure of the heap. We
only need to eliminate all the access paths that startxyitising therem function.

The semantics for the assignment= y copies the value of the variabyeinto x
by adding an access path, §) to any objecb that can be reached froyby following
afield pathy, i.e.,(y, §) points-too. This is accomplished by applyiragld to the given
heap, the singleton sét}, and the access paih

The rule for field dereference = y. f is similar. It adds the access pdth §) to
any object that can be reached frgnioy following field f , and then continuing with
field pathd. Note, however, that the rule can be applied only ffoints-to an object,
i.e., the semantics checks that a null-dereference is not performed.

16

: GAccPath x A — GAccPath s.t.
def

(r,0).6" = (r,66")
E QGAccPath X A — 2GAccPath st
def

a.d = {ad|a€a}l

ot QGAccPath X 2A — QGACCPath s.t.

aDd—Ef{aMaeaéeD}

[|: GAccPath x Heap; — Obj; s.t.
[a] 4 def{ﬁ€a|a€Aa€a}

rem: Heap; x 264ccPath — Feqp, st
rem(A, a) def (map(Xo.o\ a.A) A)\ {0}

add: Heap; x 264¢Path x GAccPath — Heap S.t.
add (A4, a,a) def map(Mo.oUa.{6 € A|a.d €o}) A

Figure 9: Helper functions.

x = null, (CPL, A)) % (CPL, rem(A, {z}))
v, (CPL, A)) % (CPL, add(A, {z},v))

(

(x =

(x = y.£, (CPL, A)) % (CPL, add(A, {z},y.f)) y € flat A
(x.f =null, (CPL, A>> & (CPL rem(A, [2] ,.f)) x € flat A
(x.£ =y, (CPL, A)) % (CPL, add (A, [z] ,.f.)) x € flat A
(

x = alloct, (CPL, A)) & (CPL, AU {{z}})

Figure 10: Axioms for atomic statements in the local heap semantics. Note that the set
of cutpoint-labels is not changed. The side-conditioa flat A (resp.y € flat A)
means thax’s (resp.y) value is notull.

A destructive updatg. f = nul | (potentially) modifies the link structure of the
heap. Thus, evergeneralized access path that has a prefix aliased withf) is re-
moved from the description of every object in the heap. Note, [thaf returns all
the access paths that are aliased wittConcatenatinge] , with f returns the set of
prefixes of affected access paths. Again, the rule can be applied onpoints-to an
object.

17

Anassignmemnt. f = y also has a (potential) effect on all the access paths that are
aliased withe. After this assignment, any objegthat can be reached by following the
field pathé fromy, i.e., (y,d) € o, is also reachable by traversing some (generalized)
access path aliased with followed by anf -field, and continuing with. As this is
a place where cycles can be creatadt] does not necessarily return a right-regular
heap. Therefore we apply the operatorA is defined to be the set of equivalence
classes obtained from the least right-regular, prefix-closed, equivalence relation that is
a superset of the equivalence relation inducedbyNote that this definition may only
add access paths to the description of existing objects.

The (deterministic) semantics of memory allocation= al | oc t adds a new
object that is described by} to the heap. Note that this definition (implicitly) initial-
izes the fields of the new object toill.

4.1.2.3 Function Calls Theinference rule for function calls is defined in Fig. 11.
The rule defines the program statg that results from an invocatiorep(x1, . . . , xg)
at memory state ¢, assuming that the execution of the bodyait memory state §
results in memory state?. The heapsi© and A”™ are described by sets of generalized
access paths starting at the caller’s variables and cutpoint-labels, whereas the heaps
A€ and A® are described by sets of generalized access paths that start at the callee’s
formal parameters, cutpoint-labels, and return variable. The rule provides the means to
reconcile the different representations.

The rule uses the functiorGall¥=""""*) and Ret?=P{"*~:"*), which are pa-

rameterized for each call statement in the progra@hllg:p(“““’“) computes the
memory stater§ that results at the entry pfwheny = p(x1,. .. , zx) is invoked byg
in memory states§ . The caller's memory state after the invocation is restored by the
function RetZZf’(“*“’“). This function computes the memory state of the caller at
the return-site{}) according ta;’'s memory state at the call-site {) andp’s memory
state at the exit-sites{). In the rest of this section we describe the rule for an arbi-
trary call statemeny = p(z1,...,xx) by an arbitrary functior;. The rule utilizes
additional helper functions, defined in Fig. 12, which we gradually explain.

The main idea behind the rule is to utilize the fact that a function cannot modify
objects that are not in its local-heap (i.e., in the part of the heap timat iachable
from any actual parameter when the function is invoked). In particular, becatiSe
describes objects in terms of the (generalized) access paths that point-to them, these
“inaccessible” objects have the same description before and after the call. Thus, only
the description of the objects in the function’s local-heap (i.e., in the part of the heap
that the function can access) is (possibly) updated. The update is carried out using the
cutpoints of the invocation.* In essence, the semantics freezes the initial descriptions
of the cutpoints and arranges for them to persist throughout the execution of the called
function. This sets up a relation between values on entry to values on exit. At the
return, the frozen information is used to update the description of objects in the called
function’s local-heap via an operation that is (roughly) similar to a relational join [9].

3The operatof is similar to thep,s;. operator in [14].
4The same mechanism is used to compute the description of objects that the callee allocates.

18

Cally=Pm o) 538 50 st

Cally=r(-0) (CPLe, Ac)) %
Let
0 = {[zi] g | 1 < i <k, [2i] 4o 7 0}
Oé)assed — RObjS(AC) Ogrgs
O = CPObjs ,({(CPLE, A°)) (Ogr9s, Opassed)
® ¢ bindgrgs = do € 02 {(hi,e) |1 <i <k, z; €0}
bindcp, = Ao € O {(sub(bind grgs) 0,€) }

_ bind grgs(0) 0 € OF9%
— args cp args c
bind cqu = Ao € OF9° U OZP. { bind oy (0) o€ O

mn

<ma’p(sub(bindargs)) ng, map(SUb(bZ"]’dea”)) Ogassed>

Retfl’:p(“"“’x’“): I x B -3 st
Rety=r(@171)((CPL®, A°), (CPL*, A”))
Let
®
bind et = Aa € range(bind qqu) U {{(ret, €)}}.
{ {{y,e)} a={(ret,e)}

Bypass(0?**¢?) o bind)} (a) otherwise

def

m
(CPLE, (A°\ OF**et) U map (sub(bindyer)) A”)

(body ofp, o) % o

T
L
L
<y = p($1, ce afk)a02> ~ 0-2
where
0§ = Cally=r(1;--- ,wk)(gz)
q

ro_ Y=p(T1,-.- ,Tk) (zC LT
0p = Retq (0%,0%)

Figure 11: The inference rule for function calls #/&5£. The rule is given for an
arbitrary call statement = p(z1, ... ,zx) by an arbitrary functiory. We assume that
the formal parameters gfareh, ... , hy.

(The operation is not a “pure” relational join because of some name adjustments that

are needed due to the different representation of objects by the caller and by the callee.)
To find which objects are in the local-heap of the called function, i.e., reachable

from the actual parameters{, ... ,xx), we first compute the set of objects that are

pointed-to by p's actual parameterg)?"9®). Then, the auxiliary functioRObjs finds

the part of the caller’s heapi() that is reachable from these objeat&(ss¢).

19

RObjs: Heap; — (29%r — 20WL) st.
def

RObjs(A) O = {o€ A|d € 0,0 € A, .5 C o}
Bypass: 20%1 — (Obj — 2CACR) gt
Bypass(0) o d:ef{<7", d) €o |V <6.(r,d) & flat O}

sub: (2GAccPath N 2GAccPath) N (ObjL _ 2GAccPath) st.

. def _ a € dom(bind),
sub(bind) o = flat {bmd(a)-(s §eA, adCo }

CPObjs,,: £ — (29%% x 20%L — 20WL) st.
CPObjs ((CPLE, A%)) (Ogrss | Opassed) B

Let
Odeep - O;gassed \ 0groe
O'Ua’l‘s = {[<x7 6>]Ac € Odeep/ | T e ‘\/:1} d
) 30 € A° Qpassed
Opa = 0 € Ogeep 3af € Fieldld, o'.f Co
Ocpl = {[<Cpl;€>]Ac € Odeep | Cpl € CPLC}

m
Ovars U Ocpl U Oﬂd

Figure 12: Helper functions for the function-call rule. The funct@RObjs , is pa-
rameterized for every functiopin the program. Recall that, is the set of;'s local
variables.

The description of the objects after the call should account for the mutations (de-
structive updates) of the heap performed by the callee. However, because the invoked
function cannot modify objects that it cannot access, it can only modify fields of objects
in Orassed Thus, to compute the (possibly) updated description of objeats?iti*c?

(as well as of objects that the callee allocates) it is sufficient to have a description of
every object inD??s*¢? (and of every object allocated by the callee) comprised of the
(generalized) access paths that start at objects that sepdtté? from the rest of the
caller's heap: When the function returns, we just replace any (generalized) access paths
(rp, dp) in the description of every object in the heap of the calléé&)(that start at a
“separating objectd’, by access paths of the callet,, §,0,) such thatr,, d,) points-

to o/, but does not pass through??**¢ (and thus cannot be modified). Technically,

this is done as described below.

The auxiliary functionCPObjs , (cf. Fig. 12) determines the cutpoints for this
function invocation Q7). Cutpoints are the objects that “separat&s*¢¢ from the
rest of the caller’'s heap. For expository reasons, we do not want to consider objects
that are pointed-to by actual parameters as cutpoints. Thus, the furciions ,
which is passed the caller's memory state as well as the previously comptéd
andO?rassed | considers only 0bjects i@ je., = OP25¢4 \ 029 as possible cutpoints.

20

Following the intuition of cutpoints as “separating objects”, an objeet O 4 iS
qualified as a cutpoint if (and only if) one of the following holds:

e ois pointed-to by a local variable of the calle&p {,,), or

e o is pointed-to by an object in the part of the caller's heap that is not passed to
the function O n4), or

e o separates the heap of toaler from the heap of one of the pending calls, i.e.,
o is a cutpoint of the invocation of the callep(,;).

Back in Fig. 11 we define several binding mappings to bridge the gap between
the two different representations of objects (in terms of access paths of the caller and
in terms of access paths of the callee). The functioni ,,,, maps objects pointed-
to by actual parameters to the set of “trivial” access paths that are made up of the
corresponding formal parameters. The functieénd ., maps every cutpoint (in the
caller representation) to the set of access paths that start with a formal parameter of the
caller and point-to that cutpoint at the entry to the function, ba.¢d ., maps a cutpoint
to its label (see Sec. 3). To compute the label of a cutpgine applysub(bind orgs).

The latter denotes a function that replaces every access path that starts with an actual
parametetz;, d) in the representation afby an access patfh ;, §) that starts with the
corresponding formal parameteruf is defined in Fig. 12.) Théind ..; combines

the previous two mappings trivially as they have disjoint domains.

Having defined these mapping functions, computing the memory staia afich
its body will be evaluated (i.e., the description of the heap at the function entry) is
straightforward. The set of cutpoint-labelSRL“) is computed by applyingind ., to
every cutpoint. The heap componeAty) is constructed by applyinbind ..;; to every
objectinOress¢d Note that in the resulting description, objects are described by the set
of (generalized) access paths that point-to them and start either at a formal parameter
or at a cutpoint object.

To handle the return of functiop, we use an additional bindingjnd ;. This
mapping is the inverse dfind ..;; (hence getting back to the caller’s representation of
the object) composed with the functidtypass (O P2*°¢), which filters out generalized
access paths (of the caller) thadss through the part of the heap that had access
to (Oressed), In addition, it also takes care of replacing access paths starting with
special variableret with the same access paths starting with result varigbldlote
that applyingbind ,.; is well defined becaus€PL” and CPL® are equal (the callee
cannot modify the set of objects that separate its own local-heap from the local-heap of
of some pending cal).

The cutpoint-labels component of the state after the retuprisihe same as before
the invocation CPL°) because the calleg)(cannot modify the set of objects that
separate the heap of its callef) from the heap of some other (earlier) pending-call.
The new heap is called”. It is derived by removing from the heap at the call-site the
passed objectgjr*ss¢?), plugging in the heap that results from evaluatirg body
(A*), and substituting the description of all the objects by applyialy bind ,.;) to
every object inA”®.

SNote that in any transitiofioy, , st) L o', , the cutpoint-labels componentdn, ando’, is the same.

21

Example 4.3 Applying the function-call rule for the invocation pkver se
in our running example results in the following sets and mappings:

0w = {{a}}

Orassed — (L) Len}, {z.nn}, {znnn, znnn},}
O = {zn.n.n,znn.n}

bind args = {2} — {h}

bindep = {z.n.n.n,znnn} — {{h.n.n.n}}

bindrer = {{x} — {h}, {{h.n.n.n}} — {z.nnn}, {ret} — {y}}

In particular, the fourth element ix’s list is a cutpoint for the invoca-

tion of r ever se (see Sec. 4.1.1) and its Iabel«ﬁhmn}. Thus, when
the execution of ever se’s body starts, the cutpoint is represented by

the following set of (generalized) access patf&.n.n.n, {h?.n\.n}}.
When the execution of the function body ends, the cutpoint-anchored paths
in the representation of every object #i* (see Fig. 6) are replaced by
access paths that start wittn.n.n, the only access path that points-to
the cutpoint at the call-site anoypasses the objects that were passed

torever se. For example, the cutpoint-anchored pdﬂaﬁn}.n in
the representation of the third element in the returned list is replaced by

4.2 Properties of the Semantics

The only means by which a program can observe a state is by access paths. In par-
ticular, the program cannot refer to the cutpoint-labels component of the state. To
state the theorems, we need some preliminary definitions about access-path equality
and observational equivalence. We use the same simplifying notational conventions as
in Sec. 4.1.2. Note that in both semantics an access path is equadl kowhen it has

a prefix which is equal taul | .

Definition 4.4 (Access path equality) Accesspaths« and 3 areequal in a given state
or, denoted by [a = B] (o), if Va € A.a € a < [€ a. An access path « is
equal to null in state o, denoted by [ov = null] . (oL), if a & flat A.

Definition 4.5 (Observational equivalence) Let p bea function. The stateso ;, € X7
and o € X7, are observationally equivalent if for all «, 3,7 € AccPath,,

(i) [a=Plrlor) & [a=Plalog), and
(i) [y =null]i(or) & [y =null]g(og).

Wk al so define observational equivalence between statesin LS L in the same way.

22

4.2.1 Semantic Equivalence

The following theorem is the main theorem in the paper. It statethA4tis equivalent
to GSB, in the sense that both behave equivalently w.r.t. termination, and that execution
of statements preserves observational equivalence.

Theorem 4.6 (Equivalence) Let p be a function. Let o, € X7 and o € X%, be
observationally equivalent states. Let st be an arbitrary statement in p. The following
holds:

(st,oL) 5 o) = (st,oq) % ol
Furthermore, ¢, and o¢, are observationally equivalent.

We prove The. 4.6 by establishing a stronger property ofi8€ semantics: the
preservation ofContext-Aware Equivalence. Informally, the Context-Aware Equiva-
lence theorem shows that the cutpoints are, in a sense, the “store-based pastZof
they are used to label and fix certain objects, something that is done automatically if
we have locations. The theorem is formally stated and proved in App. C.3.

The following theorem states th&S.L can be used to: (i) verify data-structure
invariants that are expressed by access-path equalities at a program point; and (ii) assert
the absence afull-valued pointer dereferences. Formally, a property is an invariant at
a (labeled) statement if is satisfied in any memory-state that occurs just before the
(labeled) statement is executed.

Corollary 4.7 Let P be a program, p a function , Ib a program point in p. For any
a, B € AccPathy, [o =] isaninvariant of P at Ib iff [a = §] ¢ isaninvariant of
Patlb.

The following theorem states th4tSL can detect memory leaksvithout investi-
gating reachability fronnoots of pending access paths. A memory leak can occur only
when a variable or a field is assigned! | . The “leaked objects” are the ones that are
not pointed-to only by suffixes of the nullified variable (or field).

Corollary 4.8 A memory leak can occur only when a variable or a field is assigned
nul | . Furthermore,

e Executingastatementx = nul | inamemory state (CPL, A) leaks an object o
iffo C xz.A.

e Executing a statement x. f = nul | ina memory state (CPL, A) leaks an ob-
jectoiffo C [(z,€)] 4.f.A.

6By a memory leak we mean an object that is not pointed-to by any access path; i.e., neither by an access
path of the current call nor by one of a pending call.

23

4.2.2 Standard Properties

The following theorems state that tii& £ semantics has certain standard properties.
The following lemma ensures that tii& £ semantics preserves admissible states.

Lemma 4.9 (Admissibility) Let st be a statement and o, an admissible state. If
(stor) & o’ then o isalso an admissible state.
Furthermore£S L is a deterministic semantics; this holds because memory allocation
is deterministic. (In contrast, most store-based semantics do not have a deterministic
memory-allocation mechanism.)
Lemma 4.10 (Determinism) Let st be a statement and o an admissible state. If
(st o) + o) and (st o) < o, then o, = o

The following lemma states th&SL is fully abstract. To state this property, we
use the notatiorP|[-] for program contexts. The denotation [st] ;, of a statement is
defined to be the (partial) functiow ..o, where(or, st) 4 0.

Lemma4.11 (Full Abstraction) Let st; and sto be two statements such that for all
program contexts P[] and all states o, the states [P[st;]] (o) and [P[st2]]r(oL)
are observationally equivalent. Then [st1]r = [st2]r.

4.2.3 Modularity
The following theorems state th@lS.L manipulates the heap in a “modular” way.
Thanks to these properties, thsalysis (see Sec. 5) can also be a modular.

The following theorem states that a function has no effect on the observable prop-
erties of the unreachable part of the heap.
Theorem 4.12 (Framed Execution) Let ¢ be a function. Let o§,07 € X9 be states

of function ¢ such that (o$,y = p(z1,... ,zx)) & o” . Let Oressed pe the objects in
0§ that arereachablefromzy, ... ,zx. Let o, 8,7 € GAccPathg \ y.A be arbitrary
generalized access paths of function ¢ that do not start with ¢y and do not pass through
objectsin Orassed_ The following properties hold:

() [o = Bl(0%) < [a=Bl(0}), and

(i) [y =mull],(05) < [y =null]L(o}).

Note that the above theorem is also applicable for access pathmothiato objects in
the part of the heap that the function can access, but do not pass through tHis part.

The following theorem states that a function cannot observe its context, i.e., that
the execution of the function body is not affected by the cutpoint-labels component of
the state.

"Recall that an access pathpasses through an objecto if there exists a proper prefid < o such
thata’ points-too.

24

Theorem 4.13 (Context Indifference) Let p be a function. Let o} ,0% € ¥ beob-
servationally equivalent states of p. Let st bean arbitrary statement in p. The following
holds:

L ’ L ’
(01, 8t) ~ 0F <= (0%, st) ~ 07
Furthermore, o} and 0% are observationally equivalent.

The following theorem states that a function has a similar effect on contexts that
differ only by thecontents of the part of the heap that is not reachable from actual
parameters. Practically speaking, this theorem justifies the reuse of the results of an
analysis of a function invocation (see Sec. 5) in “similar” contexts.

Theorem 4.14 (Heap Modularity) Let p beafunction. For i = 1,2, let ¢; be a func-
tion, o7’ € ¥ bea state of function ¢;, y* = p(z%, ... ,z}) be a statement in func-
tion ¢;, and o’ = Cally, =P{"1-7) (%) € ¥¥ be the state that results at the entry
to function p when it isinvoked at o§*. If o' and o are observationally equivalent
then the following properties hold:

. L L
() (o7 y' =plal,... ap)) ~ o <= (0?,y> =p(at,... ,23)) ~> o, and

(i) if CPL® C CPL** and (o', body of p) < o, then
0F? = ge(Rett, V@D (%2 07)), where ge((CPL, A)) %' (CPL A\0).

We need to applgc to the heap produced bBetgjz”(ﬁ"“”i)(o?,oI’jl) because

of the following technical reason: it is possible that some of the objects*nare
reachable only from objects that are cutpoints whéninvoked atr ;' but not when it

is invoked ato7*. Thus, some objects that are reachable (i.e., pointed-to by a current
or a pending access path)at’ might not be reachable at;>.

4.3 Assertion Language

In this section, we definAssnap, a language of assertions over access pafi$s
preserves validity of invariants and of partial-correctness and total-correctness asser-
tions expressed iAssnap. Our aim, in this section, is to provide a syntactic charac-
terization ofAssnap. In particular, we do not develop a proof system.

The definition ofAssn ap is similar to [42, Ch. 6]. First, we extend the syntactic
category ofAccPath, to includeaccess-path variables over which we can quantify. As
indicated by its name, an access-path variable ranges over access paths. The extended
syntactic categoryAccPath, of access paths for functianis defined in Fig. 13 (1).

An extended access pathis either an access path of functigr{«), an access-path
variable (), or a concatenation of an extended access path with some fieldepgth (

The syntax of assertions ifissnap is defined in Fig. 13 (2)Assnap is a first-
order language witB relation symbols (i.eatomic assertions): al, isNull, and<.

The intended meaning of tlatomic assertions is:

25

al(e1,e2): the extended access pathsande, denote the same object (oul |).
isNull(e): the extended access patienotesull.
e1<es: the extended access pathis a prefix of the extended access path

The meaning of an assertion is defined usingn#er pretation for access-path vari-
ables. An interpretatioh: AccPathVar — AccPath, associates an access-path vari-
able with a particular access path. We lift an interpretafido I : FEAccPathy —
AccPath, as follows:

I(e) e € AccPathVar
I(e)=14 ¢ e € AccPathg

I(e1).f e=-e.f.

We use! to specify when a state; € 29 (resp. o €) satisfies an assertion
ass € AtmAssrt, w.rt. I, denoted by, =1 ass (resp.oc =L ass). The satisfaction
relation between states IBSL (resp. GSB), interpretations and atomic assertions
is specified in Fig. 13(3) (resp. Fig. 13(4)). Note that by interpreting access-path
variables as access paths (and not, for example, as locations) we can gamdhe
interpretation in the definition of the satisfaction relation for b6$. andGSB. The
satisfaction relation for non-atomic assertions is defined by structural induction in a
standard manner (e.g., see [42, Ch. 6]).

Example 4.15

e For any interpretation, the assertiois Null(z.n) holds in any state
in which then-field of the objectx points-to does not have raull
value.

e The assertiorz, €)<x holds in any state, provided that the interpre-
tation I mapsy to an access path that starts withi.e., there exists
a field pathy € A such thatl(x) = z.9.

e Theassertionss = (z, e) <yA-isNull(x) is satisfied ify is mapped
to an access path that points-to an object that is reachablefr&or
exampleass is satisfied in state¢ , the state in which ever se is
invoked (see Fig. 6), w.r.t. an interpretation that mgps (x, nnnn)
but not w.r.t. an interpretation that magdo either(z, nnnnnnn)
or to (y, nnnn).

The following lemma states that for the same interpretation, observationally equiv-
alent states satisfy the same assertions.

Lemma 4.16 (Equivalencew.r.t. Assnap) Let p be a function. Let o7, € X} and
o € X, beobservationally equivalent states. For any assertion ass € Assrt, and for
anyinterpretation I € AccPathVar — AccPath,, o, EL ass <= o EL ass.

26

e € FEAccPathy == a| x| ef
(1) o € AccPathg
x € AccPathVar
f € Fieldld
atmAss € AtmAssrt, = al(e1,e2) | isNull(e) | e1<es
(2) ass € Assrt, n= atmAss | —ass | assy A assz |
dx.ass
op [y, al(eres) <= [L(e2) = I(e2)]r(or)
(3) or EL isNull(e) <= [Z(e) =null]p(or)
or EL e1<es — I(ea2) < I(eg)
oG G aller,e2) <= [L(e2) = I(e2)]c(oc)
4) o EL isNull(e) <+ [L (e) = I{ull]]g(o’c;)
oG ':é e1<ey < 1(62) < 1(62)

Figure 13: (1) The extended syntactic categbrecPath , of access paths for function

q. (2) Syntax of assertions iAssn o p for functiong. We also use the symbols, v,

=, andV as shorthands in a standard manner. (3) The satisfaction relation between
states, interpretations, and atomic assertions i£th& semantics. (4) The satisfaction
relation in theGSB semantics.

An immediate corollary of Lem. 4.16 is that we can strengthen Cor. 4.7 in the
following manner:

Corollary 4.17 Let P beaprogram, p afunction, and /b aprogrampointinp. A closed
assertion ass € Assrt, is an invariant of P at Ib according to the £LS£ semantics
iff assisaninvariant of P at Ib according to the GSB semantics.

Example 4.18 The following assertions are invariants of the running ex-
ample atlb..:

e —isNull(x), expressing that points-to an object, and

o Ty, (z,e) < x A isNull(x), expressing that points-to an acyclic
list (e.g.,null-terminated).

Having defined the satisfaction relation between interpretations, statésh
(resp.GSB) and assertion iMssnap, We define the notion ofalidity of partial
(resp. total) correctness assertion€iHiL (resp.GSB) in a standard manner (see [42,
Ch. 6]). The following theorem states thaf £ preserves validity of partial and total-
correctness assertions expresseAd#sn Ap.

27

Theorem 4.19 (Preservation-of-CorrectnessAssertion) Let p be a function.
Let P, € Assrt, be arbitrary assertions in Assnap for function p. Let st be an
arbitrary statement in p.

(i) A partial correctness assertion { P} st {Q} isvalid in £LSL if and only if it is
validin GSB.

(ii) Atotal correctness assertion [P] st [Q] isvalidin £LSL if and only if it is valid
inGSB.

Example 4.20 The partial-correctness assertiorss | jreverse(x){ass2}

where
ass1 = 3dx1, (r,€)<x1 A al(xz,x1) A al(xs, x2-n) A
Vx1<x1 s (Vxh < x2: —al(xg, xb)) A
(Vx5 < x3: —al(x}, x5))
assy = 3xa: (y,€)<xa A al(xa, x3) A al(xz.n, X2)

is valid in states§ , the state in which ever se is invoked (see Fig. 6). It
asserts that the invocationioéver se(x) results in a reversed list. Note
that the access-path variablgg andy3 are bounded to the same access
paths in the state before the call and in the state after the call. The precon-
dition assumes that in the state before the gallpoints-to the predecessor

of the object thaj s points-to inx’s list, and, in addition, that no prefix of
eitherys or x3 points-to an object ix’s list. The postcondition ensures
that after the cally» points-to the successor of the object thatpoints-to

in the returned list.

5 Abstract Interpretation

In this section, we use th8SL semantics to automatically compute a safe approxi-
mation to the set of possible program states using an iterative abstract-interpretation
algorithm. The main idea is that every abstract state finitely represents a potentially
infinite number of concret€SL states. The program is interpreted according to an

abstract semanticsLj() that over-approximates the concrete transition relatiér).(
Termination of the the abstract-interpretation algorithm is guaranteed by the finiteness
of the set of abstract states.

The algorithm isconservative, it describes any memory state that can arise (at
any program point) in any execution. This means that we can conservatively deter-
mine properties of the program such as the absence of null-dereferences, absence of
garbage, and validity of invariants by checking these properties on the (generated) ab-
stract states. However, because the descripti@monservative, the algorithm might
represent concrete states that are infeasible according to the concrete semantics. This
leads to incompleteness in the sense that we may fail to establish assertions that hold
for every execution.

28

Neither Sec. 5.1 nor Sec. 5.2 gives the full details of the analyses. In particular,
the abstract transfer functions are not defined. This paper focuses on the abstraction of
LS L memory states. We plan to report on the shape-analysis algorithm in more details
once its implementation is complete.

5.1 TheMay-Alias Abstraction

In this section, we show that Deutsch’s abstract-interpretation algorithm [15] can be
seen as an abstraction of ti& £ semantics. Also, we provide insight into the clever
interprocedural aspects of the analysis. App. B provides a more detailed description
of [15] than the description provided in this section. It also gives the actual details of
the Galois connection.

May-alias algorithms find an upper approximation for the sets of aliased access
paths at every program point. The algorithm of [15] is interprocedural, flow-sensitive,
and context-sensitive. It handles dynamically allocated memory, recursive functions,
and recursive data structures. The algorithm computes (in polynomial time) a (bounded)
representation of all the pairs of aliased access paths at every program point.

One of the most intricate aspects of the interprocedural analysis in [15] is the de-
layed propagation of the effect of destructive updates performed by an invoked function
on pending access paths. The algorithm does not represent pending access paths explic-
itly. Instead, it tracks the effect of the function body on field paths that start at—what
we call—cutpoints of the invocation. In particular, it represents (values of) current
access paths and (values of) pending access path differently.

This simple observation suffices to see why the analysisedr, a recursive
function that (destructively) reverses a singly linked list (shown in Fig. 14, originally
in [15]) manages to verify that reversing an acyclic list returns an acyclic list, whereas
the analysis fails to verify this property for a list-reversal function that uses a loop, e.g.,
our running example.

The functionr evr reverses a list recursively by invoking itself with the tai) Ef
the (original) list, which is not reversed yet, and a pointer to the already reversed part
(r). The analysis handles the destructive update precisely because it can distinguish
between the value df in the current call and its values in pending calls by abstracting
them differently. However, in the analysis of the loop-baseder se function in our
running example (where variabfeplays the same role dsin Fig. 14) , the analysis
cannot distinguish between the valugpah the different iterations. Note that this loss
of information is inherent in the may-alias analysis. In particular, it does not depend
on the algorithm that abstracts the access paths.

5.2 Interprocedural Shape Analysiswith L ocal-Heaps

In this section, we present a new interprocedural shape-analysis algorithm for programs
that manipulate singly-linked lists. The algorithm finds a finite description of all the

memory states that arise during program execution. Useful information regarding the
program’s behavior can be extracted from the computed descriptors. For example,
an analysis of the running example successfully verifies that the program does not

29

SII revr(SIl t, SII r):=

Sl tn;

if (t == null) then
ret =r

el se
tn = t.n;

lg: t.n =r;
ret = revr(tn, t);
fi

Figure 14: A function thatecursively reverses a list.

reference null; does not create garbage; and that wbeeer se returns, the variables
z andy point-to acyclic linked lists with a shared tail.

The algorithm is flow-sensitive and context-sensitive. It creatsrenary trans-
former for each functiorp by tabulating input/output descriptors. The tabulation is
restricted to input descriptors that occur at the entry.tdhe algorithm is sound by
construction: it is an abstract interpretation [11]&8 L.

The algorithm is presented in terms of thealued-logic framework for program
analysis of [40]. This framework provides for the automatic generation of abstract
interpreters (i.e., analysis algorithms) based on a specification of the programming lan-
guage’s concrete semantics. The most demanding task on the analysis designer is the
choice of the memory-state properties that the analysis should track. Once the choice
is made, the rest of the algorithm is synthesized in a provably-correct fashion. Techni-
cally, 3-valued logical structures are used to represent unbounded memory states. The
tracked properties are encoded as predicates.

In this paper, we focus on the abstractiondd £ memory states. Due to lack of
space, we do not give the full details of the analyses. In particular, the abstract transfer
functions are not defined. Instead, we specify the analysis usitgshabstract trans-
former [12]. A detailed description of the shape-analysis algorithm is given in [39].

521 Representing LSL Memory States by 3-Valued L ogical Structures

Kleene’'s3-valued logic is an extension of ordina2yvalued logic with the special
value of% (unknown) for cases in which predicates could have either val(teye) or
0 (false). We say thal and1 aredefinite values, wherea% is anindefinite value. The
information partial order on the s€0, 1,1} is defineda® = 2 J1,ando U1 = 1.

A 3-valued logical structure S is comprised of a set of individuals (nodes) called
a universe, denoted by °, and an interpretation over that universe for a (finite) set
of predicate symbols. The interpretation of a predicate symbolS is denoted by
p°. For every predicatp of arity k, p* is a functionp®: (U%)F — {0,4,1}. A 2-
valued structure is 8-valued structure with an interpretation limited 40, 1}. The
set of2-valued logical structure is denoted [BStruct, and the set o8-valued logical

30

to2VLS: ¥, — 2-Sruct s.t.

t02VLS((CPL, A)) = S where U® = AUCPL and
isList’(v) = wveA
isLabel®(v) = wve CPL
2% (v) = vedandzev
n¥(vi,v2) = w € Ajvy € Aandv.n C o
79 (v1) = Jae€wv st (z,¢) <a
ils® (v) = Jamnewv, fnev st o], # (0],
*(v) = Ja€v,fev sta<p
eq®(v1,v2) = w1 =
lbls(vl,vg) = v € CPL, vy € Aand(vy,€) € vy
cp®(v) = Jr e CPL st (re €w
2, (v) = FIreCPL deA st (r,d)ecv

Figure 15: The functioto2VLSmaps states il ; to 2-valued logical structures.

structures is denoted 8¢Sruct.

To establish the Galois connection between the set of program states (ordered by

set inclusion) an@-Sruct, it suffices to show aiepresentation function that maps a
program state to its “most-precise representatior8-@ruct (e.g., see [31]). We de-
fine the functionBsape: ¥ ;, — 3-Sruct, which maps a local-heap to its most precise
representation asdavalued logical structure?sape iIs @ composition of two functions:
(i) to2VLS: ¥; — 2-Struct, which maps a local-heap;, to an unbounde@-valued
logical structureS, and (i) canonical abstraction: 2-Struct — 3-Struct which conser-
vatively boundsS (defined as usual in [40]). The Galois connectidrrz, a: 2%z —
23 8ruet ., 93 8ruet _, 9%, 93Sruct) g defined in a standard manner:

a(AA) = {Bsape(or) | o € AA} and y(SS) = {01 € X} | Behape(or) € SS}.

5211 Representing aLocal-Heap by a 2-Valued Logical Structure. The func-
tionto2VLS defined in Fig. 15, maps a local heap = (CPL, A) to a2-valued logical
structureS. Every objecto € A and every cutpoint-labedpl € CPL is represented
by a unique node it/ °. Tracked properties of the memory state are recorded by the
predicates given in Tab. 1. We denote the set of predicates used to represent a memory
state bypP.

2-valued logical structures are depicted as directed graphs. A directed edge be-
tween nodes:; andus that is labeled with binary predicate symhoindicates that
p®(u1,uz) = 1. Also, for a unary predicate symbg|we drawp inside a node: when
p®(u) = 1; conversely, whep® (u) = 0 we do not dravp in u.

We explain the predicates’ intended meanings through an example. In the example,
we applyto2VLSto o¢, the memory state at the entry pointraéver se (shown in
Fig. 6). The resultin@-valued logical structure, denoted By, is depicted in Fig. 16.

31

Predicate | Intended Meaning

isList(v) | Iswv alist element?
isLabel(v) | Iswv a cutpoint-label?

z(v) Is v pointed-to by a (current) variable?

n(vy, va) Does then-field of v; point-tov,?

74 (V) Is v, reachable from (current) variabeusing
n-fields?

ils(v) Isv locally shared? i.e., is pointed-to by more
than onen-fields of objects in théocal-heap?

c(v) Doesw reside on a directed cycle offields?

| eq(vi,v2) | Arew; andv, the same object or cutpoint-labe)?

Ibl(vi,v2) | Islist elements labeled by cutpoint-label; ?

cp(v) Is list element a cutpoint?

Tep(V) Is the list element reachable from a cutpoint

usingn-fields?

Table 1: The predicates used to represent statEs inThere are separate predicaies
andr, for every program variable.

The universe ob. contains six nodes. The nodeg—u3 represent the list elements.
The nodeug represents the cutpoint-labgh.n.n.n}.

e The predicatessList andisLabel record whether a node represents a list element or
a cutpoint. We draw nodes that represent list elements, i.esList® (u) = 1, as
rectangles, e.g., nodes—us; and we draw nodes that represent cutpoint-labels,
i.e.,isLabel® (v) = 1, as circles, e.g., node.

e The predicatek, n, r, ils, ¢, andeq are an adaptation to local-heaps of the standard
predicates used in the analysis of singly linked lists [28, 40].

- For each pointer variable, there is a unary predicate The value of ® (v) is 1 if
variableh points-to the list element representedibyl he value of thé-predicate
is depicted via an edge from the predicate nadne the node that represents the
list element thah points-to. In Fig. 16, only node is pointed-to by a variable.

- The pointed-to-by-a-field relation between list elements is represented by the bi-
nary predicate, i.e.,n®(vy,vy) = 1 if the n-field of the list element represented
by v; points-to the list element representeddy For example; then-labeled
edge fromu to uy, indicates that,;, represents tha-successor of the list ele-
ment represented hyy; uq, represents the successongf,, etc.

- The unary predicatey, holds for list elements that are reachable by an access path
that starts at a local variableof thecurrent call. Inc¢, all the list elements are
reachable fronn. Thus, inS., the value of the predicate, is 1 for all the nodes
that represent list elements.

32

- The unary predicatéls capturedocal-heap sharing information. The predicate
has the valué at a nodeu that represents a list element that is pointed-to by the
n-fields of two or more list elements in thecal heap. In ¢ ¢, no list element is
locally shared. Thus, the value @ is 0 for all of the nodes it/ <. Note that
the predicate records onlgcal sharing. In particularils > (ug) = 0, although in
a “global-view” of the heap, the list element represented bys then-successor
of two list elements: one in the local heap (represented{y and one not in the
local heap (the third element in the list pointed-toz)y

- The unary predicate holds at a node that resides on a cycladfelds. Because
the list pointed-to by is acyclic,c% (u) = 0 for all the nodes.

- The binary predicateq records the equality relation. Itis notdrawn in the pictures.

e The predicate#!, c¢p, andr, record information that is special for the abstraction
of anLSL state.

- The binary predicaté! relates a node that represents a cutpoint-label to the node
that represents the corresponding cutpoint. For exarmdlﬁ(uﬁ,uQ) = 1, be-
causeug represents the label of the cutpoint represented by

- The unary predicatep records the property that a list element is a cutpoint,
e.g.,cp(us) = 1 becauser, represents the (only) cutpoint i ; for all other
nodesu, cp¥<(u) = 0.

- The unary predicate., records the property that a list element is reachable by
a cutpoint-anchored path. For examptés (u;) = 1 andrZs (us) = 1 because
(only) us andug represent list elements that can be reached from the cutpoint (by

the cutpoint-anchored path$hﬁn}, €) and({hﬁn}, ny, respectively). For
all other nodes, ris (u) = 0.

The predicatesp andr, are used to record information regarding cutpoint-anchored
paths in a similar manner to the wayandr;, record information regarding access-
paths. However, unlike local variables, the number of cutpoints is unbounded. Thus,
we cannot have a predicate recording the reachable list-elements from every cutpoint.
Instead, we use individuals to represent cutpoint-labels, and “mark” cutpoint objects
with the ¢p predicate.

5.2.1.2 Canonical Abstraction. The main idea in canonical abstraction is to repre-
sent several list elements (or cutpoint-labels) by a single node, i.e., the mapping from
list elements and cutpoint-labels to the universe of3halued logical structure is a
surjective function, but not necessarily an injective function. A node that represents
more than one list element (or more than one cutpoint-labels), is caltedaary

node.

Informally, the3-valued logical structures ! that (conservatively) represents a memory-
stateo, is obtained by “mergingall the nodes in th@-valued logical structureS =
to2VLYo 1) that have the same values falt the unary predicates (and using these
values for the unary predicates at the “merged” node). The value of a binary predicate

33

B —] Up - n Ulq - n U1p - n Ug: Cp, n usg:
Th Th Th ThyTep ThyTep

h.n.n.n, h.n.n.n.n,
up=9{h}, uie={hn}, up={hnn}, UQZ{ — }, u?,:{ },

ug = {h?n\n}

Figure 16: The2-valued logical structure that results by applyiegVLSto o ¢, the
memory state at the entry point oéver se (¢¢ is shown in Fig. 6). We denote this
structure bysS..

pSu (u’i, ug) is set to alefinite value () or 1) only when the predicate® (u1, us) has this
value for all the nodes; andu; in U* that are “merged” int@c’i andug, respectively.
Formally, a3-valued logical structureS* is acanonical abstraction of a 2-valued
logical structures if there exists a surjective functiofi: U — Ust satisfying the
following conditions: (i) For alkuy,us € U®, f(u1) = f(us) iff for all unary predi-
catesp € P, p¥(u1) = p°(uz), and (ii) For all predicateg € P of arity k& and for all

k-tuplesuf, ub, ... ,ub € US",
¢
ps (ug,ug,...,uﬁ): |_| pS(ul,uQ,...,uk).
Uy, up €US
Flui)=ul

We say that a node € US" representsnodeu € U, whenf (u) = u?.

By definition [40, Def 3.4.1] everg-valued logical structure has & valued logical
structure that is its canonical abstraction.

Example 5.1 The 3-valued logical structureS?, depicted in Fig. 17 (first

row, second column), (conservatively) represents the memory state
represented by..

3-valued logical structures are also drawn as directed graphs. Definite val-
ues are drawn as for 2-valued structures. Binary indefinite predicate values
(%) are drawn as dotted directed edges. Summary nodes are depicted by a
double frame.

The universe of5, contains 6 nodes. The only nodes that have the same
values for all the unary predicates are, anduy,. Thus, the universe

of S¢ contains five nodes. The mappirig U S« — US¢ induced by the
canonical abstraction if(wo) = uf, f(u1e) = f(u1) = uf, f(ug) = ul,

flug) = ug andf (ug) = uﬁﬁ Note that the value of every unary predicate

is the same for a node € U~ and for the node that represents Us'.

34

Ao b : Eoas | '
x —>{ %o O wat o ug: ils |n uh:
T Tz Tz, Tz Tay Tz
. T
i, I
z—>| Ya* Al us:
Tz Ty
Sc
.
Y
5 § toils | 'y
r—> Yo'Tw lZ.| W1 | whidls |n | owuh:
Ty, Tz Ty, Tz Ty, T2 Ty
V. n. "L._ 7
. v
2 —| Uai LTS U5t
Tz T

Y
, [] # ;
ug : n |l wui: nl uj:oc n, U
h —> 0 > 1 pE 2+ CP,s 3
Th Th Ths Tep Thy Tep
Se
e
N .
#. g. f. .
Ug: Ths . Uyt | Ugt Trety [L Ug :
Trets Tep Trets Tep CP, Tep Tret

Figure 17: Representatiavalued logical structures that arise during the analysis of

the running example &b, the call-site ta ever se (first row, first column)ib,, the
entry tor ever se (first row, second columnjb,, r ever se’s exit point (second row,

second column); anidb,., the return-site from ever se (second row, first column).

The only summary node iS§ is u‘{ which represents both,, andu.
This is recorded by the predicate, which has an indefinite value aﬁ,
1. The value ofn5¢ (uf, u%) is indefinite because
the n-field of the first list element (represented bﬂ) points-to the sec-
ond list element (represented bf}) but not to the third list element (also
represented by*).

ie., eqSt (uf,ul)

We see that any memory state representef bgontains one cutpoint la-

bel (the nodetfj is not a summary node). The cutpoint is represented by

u}. This is recorded in two ways: (i) the value of the predidaté (v}, u5) =

1 and (ii) ug represents a list element that is labeled, as indicated by the

value of the unary predicatg)55 (ug) =1

We also see that in any memory state representetftigere is no garbage
(i.e., all the list elements are reachable fronas indicated by the fact that
the value of the predicaits, is 1 (true) at all of them); the list pointed-to by
h is acyclic (the value of the predicatds 0 (false) at all the nodes); and
the only cutpoint object is the list element that precedes the last elementin
the list. However, we no longer know the number of elements in the list.

5.2.2 Abstract Interpretation

The specification of the abstract interpretation is given by “abstract” inference rules
in the same style as the natural semantics. The abstract inference rules op&-ate on

35

(,5) 5" (Baapelc) | o1 € 1(S), (&, 01) % o)

Figure 18: A specification of the abstract inference rules for atomic statements.

#
(body of p, X S,,) % XS/

#
(y=p(z1,...,2K), XS,) & XS,

where
{Call?(0%) | 0%, € ¥(X5,)) C A(XS,)
0 € v(XSy),
Rety(0f,07)| of €v(XS)), C (XS

compatible (o, 07)

Figure 19: A specification of the abstract inference rules for function calls. The func-
tions Cally=t"1+*¥) andRet?=P("*--"*) are defined in Fig. 11. Note that we apply

Retg:p(ml““ @) only for compatible pairs of memory states. Memory stateg and
o} are compatible when the sharing pattern that results from the invocatioatof ¢
matches the description of the contextifi, the state op at the exit-site. Formally,
compatible(o§,07) <= (CPL® = CPL® A VYh,h' € F,.[h = W|p(0}) <=
[h=Rh]r(c}) AN Vh € Fy.[h = null] (o) <= [h = null]z(o7)), where
Ui — Callg:p(zl,ldots,mk)(O_z).

valued logical structures. Fig. 18 and Fig. 19 shows the specification of the abstract
inference rules for atomic statements and function-calls respectively. These rules are
declarative in the style of the best abstract transformer [12]: every abstract inference
rule emulates a corresponding concrete inference rule using represented states (see
Fig. 20).

Example 5.2 Fig. 17 shows an application of the function-call inference
rule from Fig. 19 to the running example. The logical structures &re:
which arises atb,, the call-site tor ever se; S¢, which arisedb,, the
entry tor ever se; S% which arises atb,, the exit-point ofr ever se;
andsS? , the structur&omputed at the return-site.

In S%, the list pointed-to by et is reversed. As a result,g is now reach-
able from the cutpoint at the exit-site. Therefore, even though the list-
element pointed-to keyis not explicitly represented if ¢, the inference
rule allows us to conclude that &f, the return-site’s logical structure/,

36

set of valid [st] set of valid
memory states memory states

concretization abstraction
3-valued set of 3-valued
structur structures

Figure 20: The best abstract semantics of a statesienwvith respect to3-valued
structures]st] is the operational semantics &f applied pointwise to every admissi-
ble memory state. Conceptually, the most precise (also chdigiiconservative effect
of a program statement on3avalued logical structures is defined in three stages:
(i) find each admissible memory statg represented by (concretization); (ii) apply
the statement’s concrete operational semantics to every suclr gtaded (iii) abstract
each of the resulting memory states b3~ealued structuregpstraction).

becomes reachable from Similarly, u% is no longer reachable from.
To conclude, definite values of many of the tracked propertiesaain be
established after the function call returns.

5.2.3 Discussion

In our abstraction, when a program state is mapped 2evaued logical structure,

no information is tracked regarding the contents of their labels. Furthermore, we do
not differentiate between different cutpoints. This may lead to a significant loss of
precision when multiple cutpoints arise. For example, passing two lists with shared
tails will be handled very conservatively.

Nevertheless, even with this simple abstraction, our abstract domain is precise
enough to analyze the singly-linked-list-manipulating programs analyzed in [23, 38]
and verify that they do not dereference null-valued pointers, do not create garbage,
and do not create cyclic lists. Moreover, we can handle programs not handled before
by [23, 38]. For example, we can verify that a recursive function that destructively
merges two acyclic lists, returns an acyclic list.

6 Related Work
6.1 Storeless Semantics

Storeless semantics was first introduced by Jonkers [24]. The original work does not
handle procedure calls. Intraprocedural storeless semantics is also used in [5] to de-
velop a logic that allows to express regular properties of unbounded data structures.

A storeless semantics that handles function-calls is defined in [14]. The semantics
is used to develop a may-alias algorithm. In contrasf&cC, in [14] pending access

37

paths are explicitly represented.

The interprocedural may-alias algorithm of [15] uses a storeless representation of
the heap. The algorithm is polynomial and can handle function calls, dynamic memory
allocation and destructive updates. The algorithmoisshown to be an abstract inter-
pretation of [14]. One can define a Galois connection between memory staiS<in
with the abstract domain of [15]; see [36].

6.2 Interprocedural Shape Analysis

The original motivation for our work comes from our attempt to apply interprocedural
shape analysis (e.g., [40]) to heap-manipulating programs in a modular fashion. In [35,
Chap. 6] this objective was achieved, but based on a weaker technique: (i) a procedure
operates on the part of the heap that is reachable from the actual parameters, where the
heap is considered as andirected graph; and (ii) pending access paths that point-to
objects in the passed part of the heap are represented. In this paper, the heap is treated
as a directed graph and pending access paths are not represented. In addition, [35] does
not handle recursive procedures.

Interprocedural shape analysis has been studied in [23,38]. In [38], the main idea is
to make the runtime stack an explicit data structure and abstract it as a linked list. In this
method, the entire heap and run-time stack are represented at every program point. As a
result, the abstraction may lose information about properties of the toearts of the
heap that cannot be affected by the procedureat all. In [23], procedures are considered
as transformers from the (entire) program heap before the call, to the (entire) program
heap after the call. Every heap-allocated object is represented at every program point;
on the other hand, only the values of the local variables of the current procedure are
represented, which means that the irrelevant parts of the heap are summarized to a
single summary node during the analysis of an invoked procedure.

A modular interprocedural shape-analysis algorithm is presented in [6]. A proce-
dure is analyzed only in the part of the heap that is reachable from its parameters. The
algorithm is able to relate the memory states at the procedure-entry with the memory
states at the procedure-exit by labelivgry abstract node. However, the mapping is
determined by the sharing within the part of the heap that is passed to the procedure,
and not by the sharing pattern with the context—which is what is needed.

6.3 Local Reasoning

Local reasoning [22, 34] provides a way of proving properties of a procedure indepen-
dent of its calling contexts by using the “frame rule”, which allows proofs to be carried
outin a local fashion. The main idea is to partition the heap into disjoint parts using the
* operato® and reason about each part separately. Inferring the effect of a procedure
on a heap described by * Q° by (only) reasoning about its effect on a heBgs
possible, as long as there is no need to reason aboobhtents of the heap described

8Mutual references between the different parts of the heap are permitted.
9P % Q asserts that the heap can be partitioned into two disjoint parts, one satigfying one satisfy-

ing Q.

38

by Q. Although the partitioning of the heap according to the formutae Q is not
deterministic, the frame rule remains sound in any partition.

In some sense, the approach used in this paper is in the spirit of local reasoning.
Our semantics resembles the frame rule in the sense that the effect of a procedure call
on a large heap can be obtained from its effect on a subheap. However, while the
frame rule allows for an arbitrary partitioning of the heap, in our semantics, an invoked
procedure operates on the subheap reachable from the actual parameters. In particular,
the partitioning of the heap according to th8 £ semantics is deterministic. (However,
in theanalysis, when the distinction between several cutpoints is lost, the analysis has
to take into account every possible matching between the cutpoints at the entry-site
and the cutpoint at the exit-site.) As in local reasoning, the procedure can manipulate
references to objects outside the part of the heap that it may dereference.

Local reasoning relies on user-supplied specifications, e.g., loop invariants, for the
reasoning. In contrast, in our work, the partitioning of the heap is built into the concrete
semantics, and abstract interpretation is used to establish properties in the absence of
user-supplied specifications.

6.4 Encapsulation

Another relevant body of work is that concerniegcapsulation (also known ason-
finement or ownership) [1-4,7, 8,17, 20, 27,29, 33]. These works allow modular rea-
soning about heap-manipulating (object-oriented) programs. The common aspect of
this work, as described in [32], is that they all place various restrictions on the types of
data structures that a program is allowed to manipulate—in particular, on the sharing
patterns permitted in the manipulated data structures. For programs that adhere to their
restrictions, they provide a “frame rule”. This is done, for example, in [30].

In contrast, in our work, th&€S L semantics does not plaaey restriction on the
data structures that the program uses. Also, the shape-analysis algorithm for list-
manipulating programs, described in Sec. 5.2, does not place any restriction on the
sharing between different lists. However, we expect that the analysis would benefit
when analyzing encapsulated programs, because we anticipate that encapsulated pro-
grams would have few cutpoints.

6.5 Ruleof Adaptation

The first proof rule for procedure calls, thele of adaptation, was given in [18]. It
allows to reuse a proof of a procedure body in different invocations of the procedure.
Later work, e.g., [16, 21], simplified the use of this rule by providingile of invari-
ance, also known as &ame axiom. It enables one to prove that any predicate that does
not refer to variables changed by the execution of a procedure can be assumed to remain
true during the execution of a call to that procedure [16]. However, [16, 16, 18,21] do
not handle heap-manipulating programs. [19] gives proof rules for heap-manipulating
programs. These rules are only valid for programs that use tree-like data structures,
i.e., programs that do not use sharing.

In this work we do not provide a proof system per-se. However, abstract-interpretation
can be seen as a mechanism for automatic program verification [10]. As discussed in

39

Sec. 6.4, the€SL semantics does not place any restrictions on the sharing in the data
structures that the program manipulates. The semantics (re)constructs the caller’s heap
at the return-site by (re)using the description at the call-site of that part of the heap that
is not passed to the procedure. The “mimicry” of this behavior by the static-analysis
algorithm can be seen as a utilization of a (reachability-based) frame rule that is “built
into” the semantics. The reuse of the results of an analysis of a procedure-body for
different calling-contexts with similar sharing patterns can be seen as a utilization of (a
limited form of) an “adaptation rule”.

7 Conclusions

In this paper, we develofiS L, a storeless semantics for languages with dynamic mem-
ory allocation, destructive updating and procedure calls. Our storeless semantics is
unique in that called procedures are only pagsetk of the heap. We characterize the
manner in which the semantics is equivalent with the standard store-based semantics.
This allows us to identify a class of assertions for which the non-standard concrete se-
mantics is equivalent to the standard store-based semantics (c.f. Cor. 4.7, Cor. 4.17, and
The. 4.19). In additionfSL is fully abstract, i.e., whenever two code blocks are indis-
tinguishable in every program context, the two code blocks have the same semantics
(cf. Lem. 4.11).

The development of a storeless semantics that does not represent all the heap has
been challenging. Intuitively, storeless semantics means that memory locations are not
explicitly represented. Instead, every dynamically allocated objastrepresented by
the set of pointer-access paths whdsealue equalg)’s I-value. In languages with
destructive updates, a procedure can modifyRhealue of access paths that start at
variables of pending calls (i.e., pending access paths). Thus, existing storeless seman-
tics [13, 41] represent access paths that start from pending variables, although these
variables cannot be accessed by the procedure. In contrast, our semantics only repre-
sents access paths that start from visible variables. This means that a procedure has a
local view that only includes objects that are reachable from the procedure’s parame-
ters.

Our main insight is that the side-effects of a procedure invocatioR-ealues of
pending access paths can be delayed to the procedure return—even though the memory
cells do not have unique identifiers, e.g., locations. The main idea is to track the effect
of destructive updates on access paths that start with the set of objects that separate the
part of the heap the procedure can reach from the rest of the heap (objects that we call
the cutpoints of the invocation). A similar observation regarding the uniform effect of
a procedure on pending access paths was made by [13, 26] for pointer analysis. We
believe we are the first ones to use it in semantics. We believethétcan be used
to justify formally previous analyses that rely on this observation by showing that these
analyses are an abstract interpretatiolSfC. In App. B, we show the first stage of
such a proof: establishing a Galois connection between the concrete program states
and the analysis’s abstract domain.

LS L was designed with its precise and efficient abstractions in mind: information
about the context provided by the rest of the heap is isolated to the sharing patterns of

40

the cutpoints—which are expressible in a context-independent manner. An analysis
benefits from the fact that the heap is localized: the behavior of a procedure only
depends on the part of the heap that is reachable from actual parameters, and on the
sharing patterns that create cutpoints. Furthermore, analysis results can be reused for
different contexts that have similar sharing patterns.

Using an abstraction of the non-standard concrete semantics, we present a new
interprocedural shape-analysis algorithm for programs that manipulate dynamically al-
located storage. Our approach is markedly different from previous works that analyze
a function invocation in the calling context [23, 38]. The new algorithm can prove
properties of programs that were not automatically verified before, (e.g., to establish
that a recursive, destructive merge of two acyclic singly-linked lists returns an acyclic
singly-linked list—see Fig. 21). In particular, it provides a way to establish properties
with fewer program-specific instrumentation predicates. We believe that the modu-
lar treatment of the heap will allow the implementation of these abstractions to scale
better on larger pieces of code. The approach also provides insights into an existing
may-analysis algorithm [15].

Two design choices were made during the development of the new shape-analysis
algorithm: One is to use a “storeless” semantics. The other is to concentrate on a
superset of a program’s footprint, based on reachability, rather than the actual foot-
print. While the ideas underlying our approach apply also to dtased semantics,
the choice of a storeless semantics was a natural one to make (see Sec. 1.2). We spec-
ified the semantics using an equivalence relation of pointer access-paths (and not, for
example, by logical structures as done in [40]) because the naming scheme we use for
cutpoints (cutpoint-labels) fits naturally with the explicit manipulation of access paths
done in this type of semantics. The decision to concentrate on a superset of a program’s
footprint (inferable via static analysis), was a pragmatic choice for the present study. In
future work, we plan to investigate the use of user-supplied assertions about preserved
portions of the heap.

The notion of acutpoint seems to be an important concept both in storeless se-
mantics and in store-based semantics. For instance, garbage collection of local heaps
becomes unsound unless cutpoints are considered as part of the root set. Our store-
less semantics takes sets of access patlestpsint-labels. This provides a context-
independent representation for the cutpoints of the invocation.

In some sense, the approach used in this paper is in the spirit of local reasoning [22,
34], which provides a way to prove properties of a procedure independent of its calling
contexts. In local reasoning, the “frame rule” allows proofs to be carried out in a local
fashion: the main idea is to partition the heap into disjoint parts and reason about the
parts separately. Our semantics resembles the frame rule in the sense that the effect of
a procedure call on a large heap can be obtained from its effect on a subheap.

Limitations. The non-standard concrete semantics assumes that programs do not per-
form either pointer-arithmetic or casts between pointers and integers. This prevents us
from handling assembly programs and non-ANSI standard C programs. It may be pos-

sible to generalize our approach to handle such features by checking that the procedure
does not refer beyond the local heap. The details of such generalizations are beyond

41

the scope of this paper.

Another limitation of our approach is that not all program properties are preserved
in the non-standard concrete semantics. For instance, the property that an object is
pointed to by a field of an object from outside the local heap is not preserved. We
remark that our semantics preserves the following properties: (i) the values computed
by arbitrary code blocks and program expressions; (ii) partial correctness for program
properties expressed in the assertion language we define (see Sec. 4.3), in particu-
lar, the absence of null-dereferences and the maintenance of data-structure invariants;
(iii) infinite executions and total correctness for program properties expressed using the
aforementioned assertion language; and (iv) the absence of garbage.

Acknowledgments. We are grateful for the helpful comments of E. Yahav, G. Yorsh,
and the anonymous referees of the POPL paper [37].

42

References

[1] P. S. Almeida. Balloon types: Controlling sharing of state in data typesture
Notesin Computer Science, 1241, 1997.

[2] A. Banerjee and D. A. Naumann. Representation independence, confinement,
and access control. 8/mp. on Princ. of Prog. Lang., 2002.

[3] B. Bokowski and J. Vitek. Confined types. @onference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA), 1999.

[4] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object encapsula-
tion. In Cindy Norris and Jr. James B. Fenwick, editédhsceedings of the 30th
ACM S GPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL-03), volume 38:1 ofACM SIGPLAN Notices, pages 213-223, New York,
January 15-17 2003. ACM Press.

[5] M. Bozga, R. losif, and Y. Laknech. Storeless semantics and alias logic. In
Proceedings of the 2003 ACM S GPLAN workshop on Partial evaluation and
semantics-based program manipulation, pages 55-65. ACM Press, 2003.

[6] S. Chong and R. Rugina. Static analysis of accessed regions in recursive data
structures. IrBAS 2003.

[7] D. Clarke, J. Noble, and J. Potter. Simple ownership types for object containment.
In European Conference on Object-Oriented Programming, 2001.

[8] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias protec-
tion. In Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), pages 48—-64, 1998.

[9] E. F. Codd. A relational model of data for large shared data bab&smunica-
tions of the ACM, 13(6):377-387, 1970.

[10] P. Cousot. Automatic verification by abstract interpretation, invited tutorial. In
L.D. Zuck, P.C. Attie, A. Cortesi, and S. Mukhopadhyay, editéhxceedings
of the Fourth International Conference on Verification, Model Checking and Ab-
stract Interpretation (VMCAI 2003), pages 20-24, Courant Institute, NYU, New
York, N.Y., USA, January 9-11 2003. LNCS 2575, Springer, Berlin.

[11] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixed pointSymp.
on Princ. of Prog. Lang., pages 238—-252, New York, NY, 1977. ACM Press.

[12] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
In Symp. on Princ. of Prog. Lang., pages 269-282, New York, NY, 1979. ACM
Press.

43

[13] A. Deutsch. Operational Models of Programming Languages and Representa-
tions of Relations on Regular Languages with Application to the Satic Determi-
nation of Dynamic Aliasing Properties of Data. PhD thesis, LIX, Ecole Polytech-
nique, F-91128, Palaiseau, France, 1992,

[14] A. Deutsch. A storeless model for aliasing and its abstractions using finite repre-
sentations of right-regular equivalence relationsIBEE International Confer-
ence on Computer Languages, pages 2—13, Washington, DC, 1992. IEEE Press.

[15] A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting.
In SSGPLAN Conf. on Prog. Lang. Design and Impl., pages 230-241, New York,
NY, 1994. ACM Press.

[16] D. Gries and G. Levin. Assignment and procedure call proof rulesns. on
Prog. Lang. and Syst., pages 564-579, October 1980.

[17] C. Grothoff, J. Palsberg, and J. Vitek. Encapsulating objects with confined types.
In Conference on Object-Oriented Programming Systems, Languages, and Appli-
cations (OOPSLA), 2001.

[18] C. A. R. Hoare. Procedures and parameters: An axiomatic apprdacture
Notesin Mathematics, 188:102-116, 1971.

[19] C. A.R. Hoare. Proof of correctness of data representathmtalnf., 1:271-281,
1972.

[20] J. Hogg. Islands: Aliasing protection in object-oriented languageSomfierence
on Object-Oriented Programming Systems, Languages, and Applications (OOP-
S A), Phoenix, Arizona, 1991.

[21] S. lgarashi, R. L. London, and D. C. Luckham. Automatic program verification
I: A logical basis and its implementatioActa Inf., 4:145 — 182, 1974.

[22] S. S. Ishtiag and P. W. O’Hearn. Bl as an assertion language for mutable data
structures. IBymposium on Principles of Programming Languages, pages 14—
26, 2001.

[23] B. Jeannet, A. Loginov, T. Reps, and M. Sagiv. A relational approach to interpro-
cedural shape analysis. 8mtic Analysis Symposium, 2004.

[24] H.B.M. Jonkers. Abstract storage structures. In de Bakker and van Vllet, editors,
Algorithmic Languages, pages 321-343. IFIP, North Holland, 1981.

[25] G. Kahn. Natural semantics. #th Annual Symposium on Theoretical Aspects of
Computer Sciences on STACS 87, pages 22—39. Springer-Verlag, 1987.

[26] W. Landi and B. G. Ryder. A safe approximate algorithm for interprocedural
aliasing. InProceedings of the ACM SIGPLAN 1992 conference on Programming
language design and implementation, pages 235-248. ACM Press, 1992.

44

[27] K. Rustan M. Leino, A. Poetzsch-Heffter, and Y. Zhou. Using data groups to
specify and check side effects. Rnoceedings of the ACM SSGPLAN 2002 Con-
ference on Programming Language Design and I mplementation, pages 246-257.
ACM Press, 2002.

[28] T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting static analysis to work
for verification: A case study. IRroc. of the Int. Symp. on Software Testing and
Analysis, pages 26—38, 2000.

[29] P. Mliller and A. Poetzsch-Heffter. Universes: A type system for alias and depen-
dency control. Technical Report 279, Fernunivextditagen, 2001.

[30] P. Muller, A. Poetzsch-Heffter, and G. T. Leavens. Modular specification of frame
properties in jml. InECOOP 2001 Workshop on Formal Techniques for Java
Programs, 2001.

[31] F. Nielson, H. R. Nielson, and C. HankinPrinciples of Program Analysis.
Springer, 1999.

[32] J. Noble, R. Biddle, E. Tempero, A. Potanin, and D. Clarke. Towards a model
of encapsulation. IiThe First International Workshop on Aliasing, Confinement
and Ownership in Object-Oriented Programming (IWACO), 2003. available at
http://www.cs.uu.nkdave/iwaco/index.html.

[33] J. Noble, J. Vitek, and J. Potter. Flexible alias protectionProceedings of the
European Conference on Object-Oriented Programming (ECOOP), 1998.

[34] J. Reynolds. Separation logic: a logic for shared mutable data structutesgitn
in Computer Science, pages 55-74, 2002.

[35] N. Rinetzky. Interprocedural shape analysis. Master’s thesis, Technion Israel
Institute of Technology, Haifa, Israel, 2001.

[36] N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wilhelm. A semantics for pro-
cedure local heaps and its abstractions. Tech. Rep. 1, AVACS, October 2004.
Available at ‘http://www.avacs.org’”.

[37] N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wilhelm. A semantics for pro-
cedure local heaps and its abstractionsSymp. on Princ. of Prog. Lang., 2005.

[38] N. Rinetzky and M. Sagiv. Interprocedural shape analysis for recursive programs.
In Int. Conf. on Comp. Construct., pages 133—-149, 2001.

[39] N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural functional shape analysis
using local heaps. Tech. Rep. 26, Tel Aviv Uni., November 2004. Available at
“http: //mww.math.tau.ac.il/ ~maon”.

[40] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued
logic. ACM Transactions on Programming Languages and Systems, 24(3):217—-
298, 2002.

45

[41] A. Venet. Automatic analysis of pointer aliasing for untyped prografsgence
of Computer Programming, 35(2):223-248, 1999.

[42] G. Winskel. The Formal Semanticsof Programming Languages: An Introduction.
MIT Press, 1993.

46

typedef struct List{
struct List* n; int d;
borL

L merge(L p, L a) {
Lr;
if (p == NULL) return q;
if (g == NULL) return p;
if (p->d <qg->d) {
r = merge(p->n,q);
p->n =r;
return p;
} else {
r = merge(p, q->n);
g->n =r;
return g;

Figure 21: Arecursive C procedure that merges two singly linked lists using destructive
updates.

A Additional Code

Fig. 21 shows the code for threer ge function. Fig. 22 shows the code for the func-
tionscrt andapp used in the running example.

47

S crt(int k) := Sl app(Sll p,
Sl p,q; Sl qg) :=
int t; Sl t1,t2;
if (k==0) then if (p==null) then
ret = null ret =q
el se el se
p =alloc SII; tl = p.n;
p.d = k; t2 = app(tl,q);
t = k-1; p.n =1t2;
g =crt(t); ret = p
p.n = q; fi
ret =p
fi
(a) (b)

Figure 22: (arrt creates a list withk elements; (bapp destructively appends ligt
at the tail of listp;

48

B TheMay-Alias Abstraction

In this section we define a Galois connection between sefsSdf states and the ab-
stract domain of [15] for may-alias analysis.

The algorithm of [15] computes (in polynomial time) at every program pbant
set ofsymbolic alias pairs (SAPs). The computed set represents (in a bounded way)
any pair ofcurrent access paths that are aliased.afAs explained in Sec. 5.1, The
algorithm does not represent pending access paths explicitly. Instead, at the call-site,
the algorithmgeneralizes any SAP representing an alias with an access path that starts
at an actual parameter. The generali3aB contains: (i) a representation of the access
path that starts at the actual parameter, where the root of the access path (i.e., the actual
parameter) is substituted by its corresponding formal parameter, and (ii) a name of a
generic object. A generic object represent—what we call—a cutpoint of the invocation.
The name of the generic object is determined uniquely by the access path it is aliased
with. We denote byAPG the set of access paths enriched with generic object names
(i.e.,APG contains access paths that start at a variable or a generic object name.).

In our terminology, generic objects are an abstraction of the cutpoints of the invo-
cation, and the name of the generic object is an abstraction of the cutpoint-label based
on its content. The use of generic object names in the analysis of a return statement is
an approximation of the way cutpoint-labels are used$c.

The actual representation of symbolic alias pa®8Hs) is immaterial for the def-
inition of the Galois connection. All we rely on is that the $#R = 25 of all
symbolic alias relation forms a lattice ordereddyap and equipped with a join oper-
atorUsap.1% We make use of the functidfactor : AccPath x AccPath — SAP, defined
in [15], which maps a pair of unbounded (aliased) access paths, possibly starting with
a generic object name, to its most precise representatiorPaWe also make use
of the functionmakeGenericName : AccPath — APG, also defined in [15], which
maps an access path that starts with a formal parameter to the generic object name it
determines.

To establish the Galois connection between the set of program states (ordered by
set inclusion) andJR, it suffices to show aepresentation function that maps a pro-
gram state to its “most precise representationUR (e.g., see [31]). The function
Blay: ¥? — SAP, defined in Fig. 23 is a representation function. It is parameterized
for every functiorp in the program by the set of th¢s local variablesY,) and formal
parametersK(,).

The functionsh,, is defined as a composition of two functions:téipairs” : ¥ —
2APGXAPG 'which maps a program state of functignr 7 € 7, to pairs of (unbounded)
access paths enriched with object names; antdiipdPairs: 2AP6*APG _, UR, which
bounds the resulting set by mapping it to a (bounded) set of symbolic access pairs.

The functiontoPairs converts a program state to a (bounded) alias relation in two
steps: (i) it creates the equivalence relati@R) by pairing any two generalized access
paths that belong to the same equivalence class; (i) it “recovers” the generic object
names out of any generalized access path that starts with a cutpoint or a formal pa-

101 [15], The setUR is actually parameterized by the numeric lattice used in the analysis. Since the
parameterization is not relevant for our purposes, we ignore this issue.

49

Bhey: 7 — UR sit.
By = boundPairs o toPairs?

toPairs’: Xf — 2APCXAPG gt
toPairs”((CPL, A)) = Let
AP = {{a,0) | Ja € A, st.acaandgca}

i ;| @ € generic?’(CPL, a), }
in .

(a,ﬁL>J€AP {<a P01 5 € genericr(CPL,)
Where

generic? : 2°PL x GAccPath — 24PC st

generic?(CPL, (r,)) =

{(r,8)} reV,\F,
{(r, 0), (makeGenericName((r,¢)),d)} r e F,
{(makeGenericName(«),d) |a € r} r € CPL

boundPairs: 2APGXAPG _, UR s.t.
boundPairs(AliasRel) =
Usap{Factor ((o, 3)) | («, B) € AliasRel}

Figure 23:8F,, is a representation function that maps a memory state of fungtion
its most precise representation as sets of symbolic access path.

rameter by invokingieneric. The special treatment for formal parameters is required
because [15] considers objects pointed-to by actual parameters as (trivial) cutpoints,
where we do not. A bounded representation is achieved by apgfarigr pointwise

and taking the least upper bound of the resulting set of symbolic access'paths.

C Proofs

In this section we prove our main theorem, The. 4.6 (preservation of observational
equivalence). In Sec. C.1, we prove some properties @y &1¢ semantics. In Sec. C.2,

we state, and prove, additional properties offl#& semantics. In Sec. C.3, we define

the notion of context-aware equivalence between state&Sid and states ilGSB,

and prove a stronger theorem than the equivalence theorem, i.e., the preservation of
context-aware equivalence.

As in Sec. 4.2, we assumd,andCPL with a certain index (resp. prime) to be the
heap, resp. cutpoint-labels component of a statevith the same index (resp. prime).
Similarly, we assumd., p, andh with a certain index (resp. prime) to be the set of
allocated locations, resp. environment, resp. heap of a stateith the same index

n [15], special care needs to be taken in case the analysis is parameterized by a lattice with infinite
chains. In particularizsap is not necessarily bounded. For simplicity, we assume this is not the case.

50

(resp. prime). In addition, we use the notatidns# 5] .(or), [o # null]r(or),
[# Ble(og), anda # null]g(og) as shorthand forJa = S]r(or), resp.
—[a =null]g(or), resp.—fa = fla(og), resp.—Ja = null]g(og).

C.1 Propertiesof the GSB Semantics

In this section, we introduce the notions lfap paths and generalized heap paths.
We also prove some properties of &3 semantics which are used in the proof of
The. 4.6.

Definition C.1 (Heap path) Aheappath ¢ = (I,0) € Loc x A isapair consisting of
alocation and a field path. HeapPath denotesthe set Loc x A.

Definition C.2 (Generalized heap path) A generalized heap path { € AccPath, U
HeapPath of afunction p is an access path of p or a heap path. GHeapPath , denotes
the set of all generalized heap paths of function p. G HeapPath denotes the union of
all generalized heap paths of all functionsin a program.

Definition C.3 (Generalized heap path value) The value of a generalized heap path
¢ inmemory state (L, p, h) of function p is defined to be:

[Cla(L, p, h) = { h(p(x),d) g: (x,0), €V,

h(1,) =(,8),leL

whereh is as defined in Def. 2.4. Note that the above definition generalizes Def. 2.4
(value of an access path in t§& B semantics). The following definition generalizes
Def. 2.5 (equality of access paths in i85 semantics).

Definition C.4 (Generalized heap path equality) Generalized heap paths (; and ¢
areequal inagiven state o, denoted by [¢1 = (2] ¢ (o), if they have the same value
inthat state, i.e, [¢1]c(og) = [¢2]e (o). A generalized heap path ¢ is equal to null
in a given state o, denoted by [¢ = null]¢(og), if [(Ja(og) = null.

The following lemma states that a function invocation cannot modify fields of ob-
jects that are allocated, but which are not reachable from an actual parameter, when a
function is invoked.

51

Lemma C.5 (Unreachablelocations not modified) Let o¢., o be statesin X, such

that (y = p(z1,... ,2%),0&) & of,. Let Lmeech C L bethelocation in L¢ that are
reachable from the actual argumentsat o¢,, i.e.,

Lreach _ U {l c L° | 30 € A,l = [[<xz;5>]]G(JE¥)}
1<i<k

For any generalized access path ¢ = (r,d) € GHeapPath suchthat [(Ja(cs) €
Le\ Leeh the following holds:

1. [¢le(cg) = [Cla (o), and
2. forany f € Fieldld, [(r,0f)]c(o&) = [(r,0f)]c(og).

Sketch of Proof: The lemma states that a function cannot modify the content of loca-
tions it cannot access (reach). The proof is by induction on the derivation tree. We
track the set of reachable locations from every variable of the invoked function and
prove that a variable cannot point-to (and thus potentially modify) locations that are
allocated when the function is invoked and are not reachable from any actual param-
eter. Note that for any € L™" and anys € A, [(l,0)]c(oF) is defined because
LeC L".

The following lemma formally states that any access path that extends a null valued
access path has a null value. Similarly, any prefix of a non null valued access path
points to a location.

Lemma C.6 (Null valued access paths) Let o € ¢, bea GSB state for function ¢,

1. For ageneralizedheappatha = (r,061) € GHeapPath,, itholdsthat [a]c(oc) =
[(I(r, d0)la(oc), 61)]a(oq).

2. For any (generalized) access path o € GHeapPath,,

a. if Ja = null]g(og), then for any generalized heap path o’ such that o < o/,
[o/ =null]g(og),

b. if [a # null]e(og), then for any generalized heap path o’ such that o’ < a,
[o/ # null]g(og).

Proof: Immediate from Def. C.3 (generalized heap-path value).

C.2 Propertiesof the LSL Semantics

In this section, we prove certain properties of i8L semantics. These properties
are needed in the proof of the Context-Aware Equivalence theorem, however, they are
mere technicalities of the definition afSL as given in Fig. 10 and Fig. 11.

The following lemma establishes some of the properties of th&unction defined
in Fig. 9. In particular, it states certain properties related to equality of access-paths.

52

Lemma C.7 (Propertiesof [-]) Leto, = (CPL, A) € X9 bean (admissible) memory
state for function ¢. For any generalized accesspaths o, 5 € GAccPath , thefollowing
holds:

1 [a =null](og) < [a], =10

Na=Blulon) < [a], =[8]4

. o =null]i(or) = (Vo/;a <o = [of =null]i(or))
(01) = (Vo/,o/ <o = [o/ #null] (o))

o], € AU{0}

2
3
4. [a # null]y
5
6. Vepl € CPL : [(cpl,€)] 4 # 0

Sketch of Proof: 1-5 are immediate from the definitions of: = -] ., []., and ad-
missibility. Lem. C.7(6) is proven using an induction on the derivation tree where the
key observation is that objects never lose their labels, i.e., an access path of the form
(epl,€), whereepl € CPL, is never removed from the description of an object.

The following lemma states certain properties of the sets of objects and the various
mappings defined in the function call inference rule (see Fig. 11).

Lemma C.8 (Propertiesof the function call inferencerule) Leto§ = (CPL?, A°) €
¥4 beanadmissiblememory statefor function ¢ inwhichthestatementy = p(z1,... ,zx)
is executed. Let (CPL®, A°), (CPL", A%), (CPL", A"), 0795, Qrassed Qv Ocp,
bind args, bind cp, bind c.qu, and bind ., be asdefined in Fig. 11. Let o« € GAccPath,

be an arbitrary generalized access path of function ¢. The following holds.

1. @ g Oé)assed.

2. (A¢\ Orassed) N map(sub(bind ret)) A* = 0.

3. 1f [a] 4 # Dand[a] 4. & (A°\ OF®se?), then[a] 4, € map(sub(bind,e;)) A®.
4

. Va,d’ € dom(bind,et) : a # d = Va € bind,ei(a) : VB € bind ei(a’) :
af BABLa.

Va € dom(bind,et) : Vo, 8 € bindyer(a) :a# 5 — a L BAL L a.

o

6. Va € range(bind ;) : Vo € aVa' < a, [@] 4. & OPassed,

0 & range(bind et)

~

53

Proof: We only sketch the proof of 3. The other properties are derived immediately
from the definition of theCS L semantics.

—_

- LN

(] 4 # 0, [a] 4 & AC\ OPassed Assumption
AT = (A¢\ OPassed) U map(sub(bind ;) A* SeeFig. 11.
(Ac\ Oressed) My map(sub(bind,e;)) A =0 Lem. C.8(2)
[a] 4 € map(sub(bind,e)) A® 1-3

The following lemma establishes certain properties of the memory states that occur
during a function invocation at the call-site, at the entry-site, at the exit-site, and at the
return-site. Informally, it states the following properties:

1.

Properties of cutpoint-labels:

(a) Cutpoint labels are never empty.

(b) Atthe entry state, every access path in a cutpoint-label points to the corre-
sponding cutpoint.

. When a function returns, an access path can point to one of the following: to an

object which was not passed to the function, to an object that was in the invoked
function local heap, or to null.

. When a function returns, an access path that points to an object which was not in

the callee local heap does not point to such an object when the function has been
invoked.

. The functionsub(bind ;) is injective for all objects that are reachable at the

return site. Furthermore, it maps all unreachable objects to the empty set.

. When a function returns, every access path that points to the invoked function’s

local heap, has a unique prefix which starts either with the return value, an object
pointed-to by an actual parameter, or a cutpoint of that invocation.

Lemma C.9 (Propertiesof function calls) Leto$,q,y = p(x1,... ,zx), (CPL®, A°),
(CPL*, A%), (CPL", A™), 095, Oressed \OP OCP, bind args, bind cp, bind cair, bind et
and o € GAccPathg beasin Lem. C.8. The following holds:

1

5.

For any cpl € CPL®, the following holds:

(@ 0# cepl CF,x A, and
(b) foranya’ € eplandanyd € A, [o.6 = (cpl, §)]L(05).

If [a] . & (A°\ Oressed) then for any generalized access path o’ such that
a<d, o] 4 € {0} Umap(sub(bindet)) A”.

If [a] 4. € (A%\ OFesse?), thenfor every generalized accesspath o’ < « it holds
that [/] ,. & OPassed,

For any 0,0’ € A%, if o # o', then either sub(bind et) o # sub(bind,et) o' or
sub(bind ret) 0 = sub(bind,e;) o = 0.

(@ If (y,e) < o, then [(y,6) = null](o}) < [(ret,d) =null]r(c})

54

(b) If(y,€) £ aandVa' < a.[o/] 1. & OP®¢d then[a = null].(0})) <
[oo = null] L (0%).

(©) If [a] 4o € 029* U O and a € Bypass(OP**°?) [a] ,. then there exists
a(unique) r¢ € dom(bind,.:) suchthat o € bind,.; . Furthermore for
anyd € A, Ja.d =null](o}) < Va, € r{, [ap.0 =null]i(o¥)

6. For any o € A” suchthat [,. = sub(bind,e;) o and [a] 4~ # 0, there exists
aunique oy < « such that aig € flat (range(bind.:)). Furthermore, one (and
only one) of the following holds:

(a) Qg = <ya €>
(b) [ao] 4o € 029 and a € Bypass(OP*¢d) [ap) 4.
(©) [ap) 4 € OP and oy € Bypass(OPassed) (o] 4c

and, in addition, 7{.6¢" C o where a = .6¢, r{.6% # () and

{(ret,€e)} (if case 6a holds)
Y =1 bindargs (0] 4e (if case 60 holds)
bindcp (0] pe (if case 6¢ holds)
Proof:
Properties 2-5 are immediate. We prove properties 1 and 6.
1

(i) By definition, CPL® = map(sub(bind 4rys)) OP. Toshowthad ¢ CPL® C 2Fax5
we show that/o € OPas3¢d () £ sub(bind .rqs) 0 C F, x A. This proves (i), because
ogr C Opessed Recall that

Opassed — ROBjS(A°)0995 = {0 € A°| o' € 0995 5 € A, 0.5 C o}

Thus,
5.0 € 0Pssed — Jo/ € 09 35 € A. 0.6 Co.

By definition (see Fig. 11),

6. 0&02, and

7. bindargs = Ao € OF9° {(h;,€e) | 1 <i <k, z; € o}.
Thus, for anyo € Oressed,

8. sub(bindgrgs)(0) = flat {bind grgs(a).0 | a € dom(bind grgs),d € A, a.6 C o}

= flat {bind 4rys(0').6 | o' € OF9°,6 € A, 0.0 C o}

which gives (byb, 6) thatd ¢ sub(bind args)(0), and (byb, 7) thatsub(bind 4r4s)(0) C Fy x A.

To prove (ii), we recall (see Fig. 11) that

9. CPL* = map(sub(bindgrgs)) OLP,
10. O C Opassed,
11. bind, = Mo € O {(sub(bindgrgs) 0,€)}, and
. bind grgs(0) 0 € O279%
— args cp args c
12. bindeay = Mo € OF9°UOLP. bind .y (0) oc O
13. Ac = map(sub(bind cqy)) OP¥e.

55

Thus, for anyepl € CPL® and for any € A®,
14. (cpl,d) €0 — 13
15. o' € Orssed : o = sub(bind can) O A (cpl,8) € sub(bind i)’ =
3o’ € Orassed o = sub(bind cqi) o A

(epl, d) € flat {bmdca”(al).él

Jo' € OPassed ;o = sub(bind cqu) o' A
30" € OLP : (epl, 6) = (sub(bind grgs) 0”,0) N 0.6 C o
Jo' € OPassed ;o = sub(bind cqu) o A
18. 30" € O : (epl, 6) = (sub(bind args) 0”,6) A =
VYo" € 0895 :¥§ e A 0" €0 = 0".5.6€
Jo' € Oressed . o' € OCP : (cpl, §) = (sub(bind grgs) 0, 38) A

16.
01 € A, a1.01 C o

ay € dom(bind can), } < Def. of sub

17. — 9,7,11,12

Admissibility of o ¢
Oé)assed — RobjS(Ac)Og'rgs

19. sub(bind grgs) 0.0 C sub(bind grgs) O < 18, 8, Def. of bind arys
20. Vo' ecpl:a’.d€o0 ~— 19
6.
21. [a]yr #0,0€ A%, [a] 4» = sub(bindyet) 0 Assumptions
22. «a € sub(bindet) 0 21, Def. of [].
23. «a € flat {bindret(a).0F | a € dom(bindet), 0§ € A, a.6¢ C o} 22, Def. of sub
24. 3Ja € dom(bindyer): 0¥ € A a.0f CoAa € (bindpet a).0f 23, Def. of flat

25. Ja € dom(bindet): 30 € A: Jag € bindret(a): a.0f CoAa = ay.0¢ 24, Def. of -.-

26. Jla € dom(bind er): 30F € A: Jag € bindret(a): a.0¢ CoAha=ap.6¢ 25, Lem. C.8(4),
ag < «

27. 3Jla € dom(bind et): 310§ € A: Flag € bindrer(a): a.0f CoAa = ap.0f 26, Lem. C.8(5),
o <

28. Leta, ap, 6¢ be the unique values satisfyigg. We continue with

a case analysis of the possible values &f dom (bind)
29. «g € flat (range(bind e)) AV < a: o € flat (range(bind o)) =
o =ay 27-28
30. dom(bind,et) = {{(ret,e)}} Umap(bind orgs) OF9° U map(bind.,) OFP Def. of bind e
31. Assumen = {(ret,e)} (Caseba)

32, bindpec({(ret,e)}) = {{y,€)} Def. of bind et
33. ap = (ret,e) 29, 32
34. {(ret,e)}.02 Co 27, 28, 33
35. Assumen € map(bind orgs) O29° (Casetb)
36. 30’ € 0%, a = bind grgs 0’ 35
37. o € bindet(a) 28
38. 30 € 09, a = bind 4rgs 0, g € Bypass(OP®se?) o 35 — 37, Def. of bind ¢
39. a = bindargs([an] 4c), 0 € Bypass(OPpassed) (o] 4c 38, Def. of bind
and Bypass
40. bind args [00] 407 C 0 28, 39

41. Assumen € map(bind 4rys) 029 (Casebe)
42. proof analogous to cas®
Note that, by Lem. C.8(7);% # 0.

In the following, we sketch the proofs of additional propertie€68%. which are stated

56

in Sec. 4.2.
Sketch of Proof (The. 4.12):

(i) Foraccess paths thatin memory stafepoint to an object which is not i@ ?es5¢?,
the proof is immediate from admissibility of; and the fact
that A\ Opassed C A",

For accesses paths § that in memory state¢ point-to (the same) object in
Orassed put do notpass through any object inO 2554, the proof follows from
Lem. C.9(5¢).

(if) Foraccess paths thatare eqoall in ¢, the proofisimmediate from Lem. C.9(5b).

Sketch of Proof (The. 4.13):
The proof is done by induction on the shape of the derivation tree. The base case is
immediate because in every statement in laothando? :

e the same set of access paths that start with a variable, are added / removed from
the description of every object, and

¢ the side-conditions for executing a statement involve only access paths that start
with a variable.

The induction step for (non-atomic) intraprocedural statements is also immediate be-
cause of the aforementioned nature of side-conditions inCtfié semantics. To see
why the induction step holds for a function call, we observe that in bgtlando? :

¢ the same objects are reachable from the actual parameters, and
¢ at function return, the update of access paths that start with a variable, is done
using the same cutpoints.
C.3 Context-Aware Equivalence

In this section, we state and prove the context-aware equivalence theorem (The. C.15).
The. 4.6 is an immediate corollary of The. C.15.

Definition C.10 (Renaming function) Given an LSL state (CPL, A) of function p,
and a GSB date (L, p, h) of function p, a function f: CPL — L is a renaming
function if it is total and injective. We lift f to f: GAccPath, — GHeapPath, as

follows:
.] () :oTreV
f((r,0)) = { (f(r),8) : otherwise

57

Definition C.11 (Context-Aware Equivalence) Let p be a function. The stateso ;, =
(CPLA) € X7 and o = (L,p,h) € XF, are context-aware equivalent w.r.t.
a renaming function f: CPL — L, denoted by o1 o; og, if for all o, 8,7 €
GAccPath,,

L [a=flilor) <= [f(@) = f(Blc(oc),

2. [y =null]z(or) < [f(7) =null]c(oq).

The states o, and o are context-aware eguivalent if there exists a renaming function
fstor xXf og.

The following lemma is rather technical. It states that any extension of a renamed
access path points to the same location as the renamed extended access path.

LemmaC.12 Let o, € £ and o € X, be context-aware equivalent states w.r.t a
renaming function f. For any o, g € GAccPathy andany§ € A suchthat o = «.9,

[f(@)]ca(o6) = [f(an)8le(oc) = [[f(a)]e(o6), e (0c).

Proof: Immediate from the definition of , the definition of..-, and Lem. C.6(1).

The following lemma shows that context-aware equivalence at the call-site, implies
context aware equivalence at the entry-site. Furthermore, it defines an appropriate
renaming function f.). Property 1 shows that. is indeed a renaming function and
Property 2 proves that the entry states are context aware equivalent with respect to
Properties 3-5 establish certain propertieg of

Lemma C.13 (Context-awar e equivalence of invoked functions)

Let 0§ = (CPL®, A°) € X9 and o, = (L, p°, h*) € LZ, be context-aware equivalent
states wir.t. a renaming function f, i.e, 0§ o« o&. Lety = p(z1,...,x) bea
call to function p whose formal parameters are hy, ..., hy. Let 0§ = (CPL®, A°),
0% = (CPL%, A%), o] = (CPLS, A"), 09, OP®s¢d O°P, bind 4rys, bind ., and
bind.qu be as defined in Fig. 11. Let o = (Le, pe, he), 0& = (La, pz, he), and
o¢ = (Ly, pr, hy) beas defined in Fig. 5. Let L7eech pe as defined in Lem. C.5. Let
fe: CPL® — L° suchthat f.(cpl) = [o]c(of) where oo € ¢pl. Thefollowing holds:

1. f.isarenaming function.
2. 0f xy, 0¢.

3. (a) Forany o € 0%, for any o, € Bypass(OF®sed) o, for any a,, €
bind args 0, [f(ag)la(0g) = [fe(ap)la(0g)-
(b) Foranyo € O2P,for any o, € Bypass(OP*s¢?) o, for any o, € bind ., o,

[[f(aq)]]G(Ué) = [[fe(ap)]]G(Ué)-

4. For any o € GAccPathy, [a] ;. € OP*5¢0 — [f(a)]a(0g) € L7eoch

5. Foranyay, € ({h,..., hi}UCPL) x{e}, [fe(ap)lc(0) = [fe(ap)la(o8).

58

Proof: 1.
The functionf. is a total function fromCPL® to L¢. It is well defined because, by
construction ofCPL®:

e everycpl € CPL® contains at least one generalized access path (see Lem. C.8(1)),
and

o for everya,as € cpl, [on = az]L(0%).

The functionf, is injective because, by construction@PL*®, for everycpl,, cply €
CPL® such thatepl, # cpl, for everya; € eply andas € cply [or # o] n(0%).
2.

1. 0¢ ando§ are observationally equivalent: For any access péthss) and
(hj,0"), wherel < ¢,5 < kandd,d’ € A, [(hi,d) = (h;,d)]L(0f) —
[(2:,0) = (2, 0)]L(0f) = [(@:.8) = (x;,0)]a(0g) = [(h:,0) =
(hj, 8" a(og). The proof for the preservation of equality with11 of access
paths that start at a formal variable is analogous. All other variabted/,, \ F,
are equal towul | at function entry by definition.

2. 0§ ando§, are context-aware equivalent w.f& We prove this by case analysis.

o Assumea = (h;,d) and@ = (h;,¢’). Thena = []r(0f) —
[fe(@) = fe(B)]a(0E), becauser; andog, are observationally equiva-
lent; and, by Def. C.10y = f.() andg = f.(6).

e Assumen = (cpl, d,) andg = (h,) for somecpl € CPL, 64,03 € A
andh € F,

[a = B]L(oF) = Lem CooL _
Va! € epl: o .00 = B]L(0%) = tisi?;'of'[[.(:)'j;ang_

/ Tt e o¢ andog, are obs-
Vo' € epl: [0 00 = Bla(of) At eerationaGIIy equivalent
Yo/ € epl: [[fe(o/ ba) = fo(B) (gg) < Def.C.10
Yo/ € epl: [[fe("0a)]a(og) = fe(p)]]g(ai) < Def. of equality
Vol € epl: [(fe(),d0a)]c(0E) = [fe(B)]a(cl) <= Lem.C.12
[(Fe(epl). 0}l (08) = [e(D]a(o5) T

va' € cpl: [fe((epl,ba)) = fe(B)]a(0F)
e The proof for the preservation of equality witla11 and equality between
two cutpoint-anchored paths is analogous.

3.
Immediate from the definition of .; the substitution of actual parameters by formal
parameters as defined in Fig. 5 and Fig. 11; and the fact thatthe h°.

59

4,
43. Vo € GAccPathg:

o], € Opassed <= Definition of Opassed

[a] 4o DA — (see proof for
F,1<i<k:3eA: o= (z;,0)]r(cf) Lem. C.14(1))

o # nul1]r (o) A Lem. C.7(1)

3,1 <i<k:3Ie€A: Ja=(x;d]L(cF)
44. Vo € GAccPathy:
[f(@)]a(og) € Lreach < By definition of L,7ec"
[f(@)]e(og) € L A
Ji,1<i<kv:35eA: [f(a) = (x;,0)]c(0s) —
[f(0) # nullla(og) A
3,1 <i<k3)e Aff(a) = (xi,N]c(0s)
45. Vo € GAccPathy: Vi, 1 <1< k: V)€ A:
[# null]r(of) A o= (@i, 8)]r(of) = 0L xp0g
[f(a) #null]g(og) A [f(@) = (zi,6)]c(06)
46. Vo € GAccPathy:
[a]ai c Oé)assed — [[f(Oé)]]G(AC) c [, reach 43 — 45

Def. of equality
with nul |

5.
Immediate from the following facts:

1. formal parameters are not assigned,;
2. L¢c C L*;and
3. by definition off-] ¢, for anycpl € CPL¢,

[fe({epl,)] (0&) = fe(epl) = [fe((cpl,)] (08)-

The following lemma shows that context-aware equivalence at the call-site is pre-
served at the corresponding return-site for access paths that do not traverse the local
heap of the invoked function (1-2). Furthermore, it asserts that if the exit-states are
context-aware equivalent w.rft, (as defined in the previous lemma), then the return
states are also context-aware equivalent wik.3). This is the main lemma used in
the proof of The. C.15.

60

Lemma C.14 (Context-awar e equivalence at return sites) Leto§, 0%, f,y = p(z1, ..., 2x),
p,a$, 0¥, o, 0995, 0Pl 0P bind 4rys, bind cp, bind can, 06, 08, L™*", and
fe beasinLem. C.13. Thefollowing holds,
1. Yo € GAccPathy if [a] 4» # DA o] 4 € A%\ O then (i) [o] 4» = [a] 4o
and (il) [/ (@)]¢(08) = [f(@)]c(0g) & L.
2. For any o € OF%ssed, for any a; € Bypass(05¢d) o, [f(a,)]c(0s) =
[f(aq)]a(og).

3. Ifof oy, o thenof oy o

Proof:

1.

47, [a] 4 € A°\ (OP®ssed U {P}) Assumption

48. (o] 4o = [a] 4» Admissibility of 0§

. 47 — 48,

args

49. [a]A“ ¢ ROb]S(Oc) Opassed RobJS(Oargs)
50. Yo € A° Vo' € 0495 V5 e Ao’ d Co = ado 49, def. of RObjs(O279%)
51. Voe A% Vi, 1 <i<k,V)eA,

([wi) ge ZON[25] 40 C0) = a o 50, def. of O 279¢
52. [4 # 0 47 — 48
53. Vi, 1 <i<kV5eA o], # [(@0)] 4 51, 52
%) 53, def. of equality

J)
B Vil <i<kVoe A [a (zs0)w(
55. Vi, 1<i<kVéeA[fla)# (xi,0]alcs) ;AEJLS()JC:U ng 5)

56. VZ, 1 < ? < kaV(S € A’ [[f(()é)]] () 7& [[<£L'“ >]] (O—é) 55) def. Of[[= ']]G
57, [f(@)]a(og) & L™ 56, def. of L 7each
5. [f@)]aos) = [Fe)e(0r) 57, Lem. C.5

2.

Immediate from the definition aBypass, Lem. C.14(1), Lem. C.5(2), and the fact that
a callee cannot modify the value of pending variables.

3
Leta = (ra,04), B = (r3,d3), andy = (r,) be any generalized access paths
of functionp. We show that

L [o=Alu(o}) = [f(@) = /(8)la(ot) and
2. [y =nu11].(0}) = [f(7) =null]a(of).

The proof of the other direction, (i.e., thaf(a) = f(8)]a(0r) = [a = Blw(o})
and[f(v) = null]e(c%) = [y = null].(o?})) is analogous, and it is not shown.

61

The proof is done by case analysis.

1. Proving[a =] .(0%) = [f(a) = f(B)]a (%)
a. Assuminga # null] (o}) and[5 # null]; (o) and
1. [a] 4. € A°\ OP®sed and[B] 4, € A®\ Opassed,
2. [Q}Ar c A€ \ O‘gassed and[ﬂ]Ar g A° \ O‘gassed.
3. [a] 4 & A\ Oressed and[F] ,, € A°\ Opessed,
4. [a}AT g Ac \ Oé)assed and[ﬂ]Ar g y \ Oé)assed.
b. Assuminga = null]. (¢}) and[3 = null] (o}).

2. Proving[y = null].(o}) = [f(y) = null]a (o)

a. ry=uy.

b. ry #yand
L ¥/ < 7, []ar € (A° OBo55e) U {0},
2. 3y <, [y]ar € (A°\ OF*) U{0}.

Case 1(a)l:

59. [a] 4 #0 [# null]y (oF), Lem. C.7(1)
60. [a] 4, € A\ Opassed Assumption
61. [o] 4o = [0] v 59 — 61, Lem. C.14(1)
62. [f(@)]c(og) = [[f(@)]a(o) 59— 61, Lem. C.14(1)
63. [0] =g] Analogous to59 — 61
64. [f(B)]a(cs) = [[f(3)]c(ok) Analogous ta52
65. [a] 4 =[8] [oo = B]L(o}), Lem. C.7(2)
66. [o] 4o = [6] 4 61, 63, 65
67. [a=5 LEUL) 66, Lem. C.7(2)
68. [f() = f(B)c(08) 67, 0§ oz 0,
69. [[J‘A(a)]]g(og) = [[]i(ﬂ)]]g(o‘%) By def. of equality
70. [f(@)]elor) = [/(B)e(or) 62, 64,69
1. [f(a) = f(B)]c(of) 70, def. of equality
Case 1(a)2: This case is impossible.
72. a4, e AC \ Opassed [q] . £ SeeCase 1(a)l.
73. Bl - 8 # null]]L(7Y, Lem. C.7(1)
4. [0 4, E map(sub(bmdret)) A*\ {0} 73, [8) 4r & AC\ Opassed
Lem. 09()
75. (A°\ OP®ssed)y N map(sub(bind) A* C {0} Lem.C.8(2)
76. [a]g = [0y lae = B]r(o}), Lem. C.7(2)
77. Contradiction 72,73, 74 — 76

Case 1(a)3: This case is also impossible (see proof for Case 1(a)2).

62

Case 1(a)4:

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.
90.

91.

92.
93.
94.
95.

96.
97.
98.
99.

100.

101.

102.
103.

] 4r # 0

- € (map(sub(bind e)) A*) \ {0}
(B 4r # 0

. € (map(sub(bind,e;)) A%) \ {0}
[0] 4r = [B]ar

Jlo € A%, [a] 4» = [B] 4r = sub(bind e) 0 # 0

Let o be the unique object id”* which satisfies3.

[a # null]z(o7),
Lem. C.7(1)

78, Assumption
Lem. C.9(2)

[8 # null]. (o),
Lem. C.7(1)

80, Assumption
Lem. C.9(2)
[a=8]L(or),
Lem. C.7(2)

78 — 82,

Def. of map,
Lem. C.9(4)

Let ay, 7"1 , 0% be the unique values determined bym. C.9(6) for o anda.
Let 3o, rl , 55 be the unique values determined bym. C.9(6) for o andg.

Qg # <ya > =
o € Bypass(OPassed) [ozo]a , [ag] 4o € 08U OZP,

[ap] 4o € O = 1¢ = bmdargs (0] gc # 0
0] 4c € OF = 1§ = bindy (o] 4o # 0

. [F (W Nla(es) a0 = (ye)
ealos) ={ iilleer ooz e
. [y, &le(or) a0 = (y,€)

enlelet) ={ [flens) o 09

V(o [(ret, e)]a(08) a0 = (y,€)
Fteolle(oe) = { %fe& letrt) 7l o

a o Je({ret,€))]c ap = (Y, €
Fteolle(oe) = {[[f(Ne(es) a0y apers
Vay, € 1§, [f(a0)]a (o) = [felap)la(oE)
[f(@)]a(os) = [If(a0)]a(0s), 6)]c(ok)
8, € 7, 1 (Bo)la (o) = [f(3p)]a(08)
RG)E <oG>—[[<[[f<ﬁo>]] (08),) c(o%)
r{.o¢ Co, 7“1 5 Co
Va, € 19,Y8, € 12 [0py.0% = B,.05]1(0%)
o3 ocp, o))
Vay, € 19, V8, € 11, [fe(ap8F) = fe(Bp-63)] (o)
Vay, € 1§, VB, € rii [fe(ap-00)]c(08) = [fe(By-09)]c (08

VapAE ¢, VBp € 7“1,
[Ife(ap)la(og), 69)]alog) =
[([f(a0)]clog), 61)]a(oE) =

[(a0l ()., 58) 6 (0%
[/ (e)le(o%) = [/(B)la(o
[f(a) = f :

[£e(Bp)lc(0E), 67) (o)
F(Bo)]e (o)ﬁf)]]c(aé)

=
ks

Lem. C.9(6)
Lem. C.9(6)

Def. of f

85, Ogrgs U Occp - Og)assed,
Lem. C.14(2)

Def. of GSB see Fig. 5
85, Lem. C.13(3)

Def. of f.

88, Lem. C.13(5)
89, g = <y, €>

=r¢ = {(ret,€e)}

a = ap.0%, Lem. C.6(1),
Lem. C.12
Analogous ta85 — 90
Analogous tad1
84, Lem. C.9(6)
94, Lem. C.7(2),
Admissibility of 0§
Assumption
95 — 96
97, Def. of equality

98

90, 92, 99,

85 (rf # 0, r{ #0)

100, h™ = h*, Def. of [']a
91, 93, 101

102, Def. of equality

Case 1b:

104. [oo =null]z(o}) Assumption

105. [0 =null](o}) Assumption

106. [f(a) =null]g(ol) 104, 0 of 0%, Case 2

107. [f(8) =null]e(of) 105, 0 of o0&, Case 2

108. [f(a) = f(®))alor) 106, 107

Case 2a:

109. [{y,d) =null]s(o}) By assumption

110. [(ret,dy) =null]s(c¥) Lem. C.9(5a)

111. o xj, o&

112, [fe((ret,8,)) = null]g(o%) 110, 111

113. [(ret,6,) = null]c(o%) 112, Def. of f,

114. [{y,d) =null]e(cf) h" = he,

Case 2(b)1:

115, ¥ <7, [7]4r € (A°\ OF=>ed) U {0}

116. A" = (A¢\ Oressed) U map(sub(bind,e;)) A®

7. ¥y <7, [y], & OFessed

118. [y =null].(c9)

119. [f(7) = null]e(oF)
We continue with case analysis w.r.t. the value
of [(ry,)]a(0g)

e Assume[(ry, €)]c(of) = null

120. [y =null]p(o})

121, 1y €V, \ {}

122. [(ry,€) =null];(c%)

123. [f({ry,€)) = null]e (o)

124. [(ry,e) =null]g(cs)

125. [(ry,€e) =null]g (o)

126. [y =null]g(oy)

o Assume[(r,, e)]a (o) # null
127. 3s € Fieldld, 3 .s < ~,[f(7') # null]g(0§)A
V" s <47 [f () = mull]g(of)

128. Let f andy’ be the unique values satsfying7

120 [f(+)]c(o%) & Lreaeh

130, [/()a(o}) € Lo\ Lok

131 [f(V)-sle(0f) = [F ()5l (0F)

132. [[f(’y') sla(of) = null

133. [[f(fy') s =null]g(of)

134 [f(7) = null]e(o})

64

0§ xy, 0, the induction assumption

p"(y) = p®(ret)

Assumption

Def. of LSL (see Fig. 11

116, Lem. C.9(3), Lem. C.8(1)
115, 117, v < v, Lem. C.9(5b)
118, 0§ oy o0&

vy <[y #null]r(o})

120, Lem. C.7(6), Assumption(r., # y)
120 — 121, Lem. C.9(5a)

122, 0§ oy o0&

Def. of f

Def. of GSB

125, (ry,€) <, Lem. C.6(2a)

119, Lem. C.6(2a — 2b), Lem. C.12

117, 128, Lem. C.13(4)

129, [f(v/) # null]g(of)

130, Lem. C.5, Lem. C.12

127 — 128, 131, Lem. C.12

132, Def. of equality w.nul |

128, 133, Lem. C.6(2a), Lem. C.12

Case 2(b)2:

135. [7],y =0 Lem. C.7(1)
(Iy = nul1]L(07))
136. 3y <, []4 & (AC\ OPassed) U {0} Assumption

137. .4 <7, ['y’]gE € map(sub(bind ;) A* \ {0},
vy <A = ['y”]az € map(sub(bind.,.t)) A* U {0} 135 — 136, Lem. C.9(2)
138. I .,4 <+, [V'loy € map(sub(bindre;)) A™\ {0}, 137, [y = null](o%),
vy <A = ['y”]a2 € map(sub(bind,e)) A* U {0} Lem. C.7(1)
139. s € FID, 3 ,v'.s <y A ['y’]gz € map(sub(bindret)) A*A
[v # null]L(c}) AVY' 7 s <+ = [y =null]r(c}) 138, Lem.C.7(1,3,4)
140. Js € FID, 3y ,v'.s <~v,30 € A%, ['y’]a2 = sub(bindret) OA
[v # null]L(o}) A [7'.s = null]L(oh) 139, Def. of map
141. Lety/,s, o be the unique values satisfying0
142, let~f, r] ,67 be the unique values determined bym. C.9(6) for o and~y’.

143. Vv, er], [['yp.(5¥ s =null](c%) Lem. C.9(5¢)

144. of oy, aG Assumption

145. Yy, € rl L 1fetn s) = null]g (o) 143 — 144

146. ¥ €17, [f. (367)] (o) = nul 145

147. Y, € 7“1 1L (v 51)ﬂg(af) sla(o%) = null 146, Lem. C.12
148,y € 1], [[LF ()6 (08).6] To(oF)-sla(oF) = nul 147, Lem. C.12

149. Vv, €7 [F(0)]e(0n) = [fo(v)lc(08), r] #0 See proof foCase 1(a)4
150 [[[f(0)]6(0%)-57 Ja(of) sl (oF) = nul 148 — 149

151, [[1f(v0)]c(oh)- 57 Ja(oh)-sla (o) = null 150, h* = h" (See Fig. 11
152. [v".s]a(e}) =nu 151, Lem. C.12

153. [y'.s = null]g () 152, Def. of []

154. [y =null]g(oh) v'.s <=, Lem. C.6(2a)

Theorem C.15 (Context-awar e Equivalence Preservation) Let p be a function. Let
or, € X andog € ¥, be context-aware equivalent statesw.r.t. to a renaming function
f.i.e, o ¢ og. Let st bean arbitrary statement in p. The following holds:

1. For any state o, € X suchthat (st,or) % o, there exists a state o, € 3%
such that:

o (st,oq) 4 o, and

o 0} Xy 0g.

2. For any state o, € XY, such that (st, o) 4 oy, thereexists a state o, € X
such that:

o (st,oL) + o, and

® 0] Xf Og.

65

Proof: Let ¢ be a function. Letr;, = (CPL,A4) € ¥ andog = (L,p,h) € B
context-aware equivalent states w.r.t. to a renaming fungjio®.,o 1, o<y og.

We prove (i) and (ii) simultaneously using an induction on the shape of the deriva-
tion tree. The proof is done by case analysis of the statement in the transition which
labels the root of the derivation tree.

Basecase: The transition which labels the root of the derivation tree contains an atomic
statement, i.e., the derivation tree is a leaf. Thus, we only need to show that the states
that result by executing the same (atomic) statement;irandos are also context-
aware equivalent w.r.t. té. The proof is done by a case analysis.

x=null The axiom for this statement has no side-condition, thus this statement is guar-
anteed to terminate in any state. In particular, it is true that
Jo} € 39, s.t.(x =null,op) & o anddoy; € ¥, s.t.(x =null,oq) ~ 4 lofey
By definition,o}, = (CPL, rem(A,{z})) = (CPL,{(map(ro.0\ {x}A) A\ {0}) =
(CPL,{a\ z.A |a € A} \ {0}) andoy, = (L, p[z — null], h).

Leta = (ra,0a), B = (rg,0g), andy = (r,, 6,) be generalized access paths of

functiong.
[= Bl(o7) =
Va' € {a\ {z}.A|a€e A}\{0},acd < fed <+
Va' € {a\{z}.A|ac A},a€ed <<= fed =
ra Zx,rgFx,Va€ A,a€a < BF€a of
re =x,r3Fx,Vac A, &a or —
ra Zx,r3=2x,Va€ A,a&a or

Ta =2,73 =2
ro # 2,18 # ., Jao = Blrlor) or

ro =x,73 # ¢, [0 =null]L(oy) or

Ta # 2,73 =, o = null]y (o) or

Ta =2, =2

ra # .15 # 2, [f(@) = f(B)]a(oc) or
Ta =X, # T, [[f(ﬁ) =null]g(og) or
Fa # 2,73 =, [f(0) = null]g(og) or
Ta =2,73 =2

[f(@)]c(o6) = [/(Pe(os) —
[f(2) = [P (o5)

— (O'L Xf Ug)

66

[y = 1] (o) =
Va' € {a\{z}.Alac A\ {0},v¢d <+
Va' € {a\{z}.A|ac A},v&d =

ry #x,Va € A,y Ea oOr —

r: #x, [y =null]i(or) or — (o1 s 0G)
{ ry # 2, [f(7) =null]e(og) or —
[F()]a(os) = nul —
[f(7) = null]e(og)

x=y Analogous to [x=null].
x=y.f Analogous to [x=null].
x.f=null Analogous to [x=null].
x.f=y Analogous to [x=null].
x=alloct Analogous to [x=null].

Induction step (intraprocedural): The transition labeling the root of the derivation
tree contains a non-atomic intraprocedural control statement. Thus, the induced deriva-
tion tree is not a leaf. The proof is done by a case analysis.

seq Assume thatt = stq; sty and that(stq; ste, o) £ ol

155. (st1; ste,0L) £ ol Assumption
156. 3o/ (sty,00) 5 o'l A (sty,a”) % o, Def. of [seq] iNLSL
" " L m Lo oL Xfoa
157. HJL'HJG'MI’GUL?,W UL” A <St,2,’ L)~ on A Induction assumption
(str,0G) ~ 0 N of xf 0, for st1, 07, andog
of xyaf,

15, 304.305.(st1,06) < ol A (sta,08) S ot A

; p Induction assumption
oy, O(f 0

for sty, o} ,ando,
159, 3o, (st1; sta, 00) < oy A o) o1 ol Def. of [seq] ingSB

The proof in the other direction is analogous.

if-tt Analogous to [seq].
if-ff Analogous to [seq].

while Analogous to [seq].

67

Induction step (interprocedural):
The transition labeling the root of the derivation tree contains a a function call.
Thus, the induced derivation tree is not a leaf. Without loss of generality, assume that

the invocation isy=p(X1,... ,Xx) . To simplify notations, we assume thaf = o,
and thatv ¢, = og.
Assume thaty = p(z1,... ,2x),0%) % of.
160. (y =p(z1,...,2K),0%) % o Assumption
161. 3o§,0f € 1,07 € X%, s.t. (body of p,o¢) & o%; and Def. of function call iLSL
o$,0% ando] are as defined in Fig. 11
o .
Let o be that state that arise at the entryptahenp Suchog exists bec"?‘use n
162. . . GSB there are no side-
is invoked abr ¢, iy .
conditions for function calls
163 Let f. be that renaming function defined as in Lem. C.14
© forof andog;
164. of g, 0§ 162, 163, Lem. C.13(2)
165. 307 € %%,.(body of p, 0&,) % 0%, A 0% ;. 0% 161, 164, Induction
assumption fov ¢ , o&., and f.
' C G '
166. J0G € Z%(y =p(@1,... ,21),08) ~> 0G st 165
o is as defined in Fig. 5 farg andof,
167. o} o o 164, 165, Lem. C.14(3)

The proof in the other direction is analogous.

68

