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Abstract. Dynamic Communication Systems (DCS) are infinite state
systems where an unbounded number of processes operate in an evolv-
ing communication topology. For automated verification of properties
of DCS, finitary abstractions based on exploiting symmetry can be em-
ployed. However, these abstractions give rise to spurious behaviour that
often inhibits to successfully prove relevant properties.

In this paper, we propose to combine a particular finitary abstraction
with global system invariants obtained by abstract interpretation. These
system invariants establish an over-approximation of possible commu-
nication topologies occurring at runtime, which can be used to identify
and exclude spurious behaviour introduced by the finitary abstraction,
which is thereby refined. Based on a running example of car platoon-
ing, we demonstrate that our approach allows to verify temporal DCS
properties that no technique in isolation is able to prove.

1 Introduction

Formal verification of systems with dynamic process creation is an active re-
search area. In [2], we characterised a certain class of such systems, the so-called
Dynamic Communication Systems (DCS), by providing the formal description
language DCS protocols. DCS protocols are complemented by Mett, a variant
of temporal logic for requirements specification. Here, we elaborate on an auto-
mated procedure for checking whether a DCS protocol satisfies a Mett property.
A manual procedure was sketched in [2]. By bridging the technical gap between
analysis techniques with different strengths and weaknesses, we obtain a fully
automated, integrated implementation, which benefits from synergetical effects.

Running Example. DCS are ubiquitous, most prominent among them mobile
ad-hoc networks, service-oriented computing scenarios, or traffic control systems
based on wireless communication. In order to demonstrate the appropriateness
of our automated DCS verification technique we pick the characteristic real-
world example car platooning, a traffic control system studied by the California
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(d) Summarised process.

Fig. 1. Car Platooning: Two platoons and one free agent, from concrete to abstract

PATH project [9]. In order to optimise traffic throughput on highways and reduce
energy consumption, they propose that cars shall dynamically form platoons (cf.
Fig. 1(a)). Conceptionally, each car has a notion of state, that is, whether it is
currently a follower in a platoon (like c1,1), a leader of a platoon (like c1,2), or
whether it is driving on its own as a free agent (like c3,3). In addition, there are
links between cars, indicated by the arrows in Fig. 1(a). Each follower knows
its leader, e.g. to negotiate leaving the platoon, each leader knows its followers,
e.g. to announce a braking manoeuvre, and each car may know a lane-neighbour.
Interlinked cars communicate by message passing. There is no finite upper bound
on the number of cars, as cars freely enter and leave the system “highway”.

Example Requirement. There are three elementary actions for car platooning:
merge and split, to build up and separate platoons, and change lane. In the
following we’ll focus on the merge action. If a platoon led by car cb merges with
a platoon in front led by car cf , then during the merge cb hands over its followers
to cf . For example, car c3,2 merging with c3,3 in Fig. 1(a) were an instance of this
situation with cb := c3,2 and cf := c3,3. Given a formal DCS protocol model of
merge (cf. Sect. 2), a natural requirement to check would concern this handover.
Namely, for each follower c of cb, whenever cb sends a message ‘newld ’ (new
leader) to c carrying the identity of the new leader cf as a parameter, then c
will finally change its leader link to cf . Until that point in time, cb remains c’s
leader. In the logic Mett (cf. Table 1 on page 41), this property is written as

∀ cb, c, cf . G (snd[newld](cb, c, cf ) → (conn[ldr](c, cb) U conn[ldr](c, cf )))
︸ ︷︷ ︸

=:μ0

. (1)
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⊥ : 〈∗〉 c : 〈fl〉

newld(⊥)
newld(cf )

cb : 〈fl〉 cf : 〈fa〉

req(cf )
flws ldr

flws

ldr

Fig. 2. (Spurious) counter-example: Back leader cb detected free agent cf ahead
and merged. Summary process ⊥ sent a spurious ‘newld(⊥)’ before cb correctly sent
‘newld(cf )’ to follower c. Consumption of the former by c leads to a violation of (1).

Analysis Problem. Faithfully modelling car platooning requires unbounded cre-
ation and destruction of processes as we cannot assume finite bounds on the
number of cars. DCS are consequently infinite-state systems. In order to employ
automated verification techniques for temporal properties, we use a particular
abstraction to finite-state transition systems following the spotlight principle [18].
The principle is to keep a finite number of processes completely precise and ab-
stract from all others, the rest. In the particular case of Data Type Reduction
(DTR, cf. Section 3), the number heuristically depends on the considered prop-
erty and information about the state of the rest is completely dismissed, in
particular links from the rest into the spotlight. Links from the spotlight are
preserved but may point to the rest. Figures 1(c) and 1(d) illustrate the ab-
stract state that represents Fig. 1(b), if the spotlight is on cars c2,1, c2,2, c2,3.
Having only the local information of the precise processes has the positive effect
that the transition relation on abstract states is easily computable from a DCS
description [19]. A negative effect is that the aggressive abstraction gives rise
to a large amount of spurious behaviour, possibly comprising spurious counter-
examples for a given property. As discussed in more detail in Section 3, many
critical spurious runs, i.e. runs leading to a bad state in the abstract system,
which is unreachable in the concrete one, follow a pattern we call spurious inter-
ference. In instances of this pattern, one observes messages from the abstracted
rest to the concrete part, which are not possible in the concrete system.

For example, consider property (1) with three precise processes and the rest
as in Fig. 1(d). If the rest sends a spurious ‘newld ’ message with an identity
different from cb and cf to c, the property is violated (cf. Fig. 2). This situation
can manually be identified as spurious by considering the DCS protocol as there
is at most one car which may send ‘newld ’, namely the back leader. Since this is
cb, there cannot be a car in the rest sending the message. With this insight, it is
desirable to refine the DTR abstraction by explicitly excluding such communica-
tion topologies, i.e. a global state of a DCS comprising connected processes, like
the one shown in Fig. 2. Automating this kind of refinement poses two problems:
(i) to automatically obtain information on the set of possible topologies; and (ii)
to soundly exclude topologies shown impossible by (i).

Approach. We tackle problem (i) by employing a new static analysis of graph
grammars [4], called Topology Analysis (TA) below. Using our new encoding of
DCS in graph grammars as presented in Section 4, we can thus compute abstract
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graphs, topology invariants, describing an over-approximation of all topologies
possibly occurring in runs of a DCS. Regarding problem (ii), Section 5 provides a
logical characterisation of whether an abstract DTR topology like the one shown
in Fig. 1(d) is definitely impossible according to the topology invariants com-
puted by TA. These logical formulae can then be used as negative assumptions
when model-checking the abstract transition system obtained by DTR. Here
the challenge is that both the topologies in the abstract, finite-state transition
system obtained by DTR and the topology invariants computed by TA are el-
ements of different abstract domains. It is neither obvious how these domains
relate formally nor whether an element of one domain represents more concrete
topologies than an element of the other domain, since both typically represent
infinitely many concrete topologies.

On top of first experimental results in Section 5 proving our approach to be
effective, we briefly discuss in Section 6 whether the refinement proposed here
could be further refined by, e.g., counter-example guidance.

Related Work. We specify DCS using DCS protocols (cf. Section 2). They were
originally inspired by Communicating Finite State Machines (CFSM) of [5] but
extend those by dynamic process creation and destruction and flexible commu-
nication topologies. Other than DCS protocols, DCS may be modelled using ex-
isting techniques such as the π-calculus [14] or variants of I/O automata (see [12]
for an overview). The π-calculus is less adequate for our purpose, because cru-
cial high-level features of DCS, like process states, message queues, or explicit
graph-like communication topologies require cumbersome and low-level encod-
ings into elementary π-actions. In that case, higher-level properties of a DCS
are no longer accessible for specially tailored analyses or optimisations. Simi-
lar arguments hold for versions of I/O automata dealing with dynamic process
creation, although they are admittedly much closer to DCS protocols. However,
the better part of research on I/O automata is devoted to features like time or
probability, while DCS protocols emphasise the dynamics of DCS.

DTR (cf. Section 3) is an instance of the spotlight principle [18] and as such re-
lated to different abstractions mapping infinite-state transition systems to finite-
state ones comprising, e.g., [11] and [6]. Technically, Topology Analysis (TA, cf.
Section 4) is an abstract interpretation of graph grammars, which are well suited
to explicitly describe evolving DCS communication topologies. There is only one
other abstract interpretation based approach to graph grammar verification [16].
Other approaches to graph grammar analysis use Petri-net based techniques [1].
However, these approaches are mostly concerned with the verification of pointer
programs, where updates to graphs occur in a more restricted manner. A static
analysis to determine communication topologies for π is given in [17].

The principal idea of Section 5, to refine an abstraction with separately ob-
tained invariants, is not new, e.g. [10], but the combination of TA and DTR is.
Moreover, we integrate, in a technically sound way, two verification techniques
often regarded as orthogonal: model checking and static program analysis. The
synergy effect results in a novel automated verification technique for DCS.
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It is noteworthy that hardly any of the specification and verification issues
addressed in this work are addressed in the original PATH design [9], which deals
with a static number of cars only. In particular, there are neither process cre-
ation, destruction, nor evolving communication topologies. In fact, in preliminary
work [2], we manually discovered (and remedied) severe flaws in the original
specification. With our proposed technique we are able to do so automatically.

2 Dynamic Communication Systems

Dynamic Communication Systems (DCS) can be viewed as a strict generalisa-
tion of classical parameterised systems because every process executes the same,
finite control part, the DCS protocol. But in contrast to classical parameterised
systems, where a fixed number of K processes run in parallel and communicate
via global shared memory, processes are dynamically created and destroyed in
DCS without an upper bound on the number of processes. Furthermore, DCS
processes only have local memory, communicate asynchronously by passing mes-
sages, which may carry process identities, and in general aren’t fully connected,
but every process knows only some other processes via links.

In [2], we have introduced DCS protocols as an adequate modelling language
for DCS, such as the car platooning example.

Syntax. A DCS protocol is a seven-tuple P = (Q, A, Ω, χ, Σ, Emsg, succ) with

– a finite set Q of states a process may assume,
– initial states A ⊆ Q assumed by newly appeared processes and fragile states

Ω ⊆ Q, in which processes may disappear,
– a finite set χ of channels, each providing potential links to other processes,
– a finite set Σ of messages and environment messages Emsg ⊆ Σ, that is,

messages that may non-deterministically be sent by the environment, and
– a successor relation ‘succ’, determining each processes’ behaviour.

The successor relation succ comprises four different kinds of labelled transitions
between two states from Q, namely send, receive, modify, and conditional transi-
tions. The corresponding (possibly empty) four sets partitioning succ are denoted
by Snd, Rec, Mod, and Cnd. The notation for transitions is as follows.

– (q, c, m, c′, q′) ∈ Snd ⊆ Q × χ × Σ × χ ∪̇ {id} × Q: send over channel c the
message m carrying one of the identities stored in channel c′ or the own
identity if c′ = id, and change to state q′;

– (q, m, c, op, q′) ∈ Rec ⊆ Q × Σ × χ × {set, join} × Q: consume a message m,
store the attached identity by operation op to channel c, change to state q′;

– (q, c1, op, c2, q
′) ∈ Mod ⊆ Q × χ × {add, del, pick} × χ × Q: combine channels

c1 and c2 by operation op, store the result in channel c1, change to state q′;
– (q, em, c, q′) ∈ Cnd ⊆ Q × B × χ × Q: change to state q′ if the emptiness

constraint em on channel c is satisfied (see below).

Figure 3 shows a high-level model of the merge procedure which is supposed
to be executed by each car. At any time, each car is either driving on its own as
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Q = {fa, ld, fl}
A = {fa}, Ω = ∅
χ = {flws, ldr}
Σ = {car ahead, req,

newld,newfl}
Emsg = {car ahead}

fa ld

fl

?req(p), set(flws, p);

?car ahead(p),
set(ldr, p); ldr!req(id);

?car ahead(p),
set(ldr, p); ldr!req(id);

flws!newld(p); del(flws, flws);

?req(p), join(flws, p);
?newfl(p),
join(flws, p);

?newld(p), set(ldr, p); ldr!newfl(id);

Fig. 3. High-level implementation of “platoon merge”

a free agent (fa) or participates in a platoon as leader (ld) or follower (fl). Each
follower knows its leader by the channel ldr and each leader knows its followers by
the channel flws. For conciseness, the figure makes use of complex transitions [15]
where one receive and a couple of send actions are being executed atomically.

The environment message ‘car ahead’ models that some sensors of a free agent
discover cars in front and notify the free agent of the identity of such approached
cars. The free agent then requests the merge by sending a message ‘req’ which
carries its identity and becomes a follower by taking the transition to fl. If a free
agent receives a merge request, it stores the requester in channel flws and changes
state to ld. A leader may accept more followers and add them to flws, or merge
with another free agent or platoon in front. In the latter case, it announces the
new leader by a ‘newld’ message to its followers and dismisses them, the followers
then register with the new leader by a ‘newfl’ message.

Semantics. Given a DCS protocol P and a countably infinite set Id of identities,
a (local) configuration of a process is a triple (q, C, M) where q ∈ Q is the local
state, C : χ → 2Id is a function mapping channels to a set of process identities,
and M = (Σ × Id)∗ is the message queue. We use S(P) to denote the set of all
local configurations of protocol P . A local configuration (q, C, M) is called initial
if q ∈ A, C yields the empty set for all channels, and M is the empty word.

A topology (or global configuration) of P is a partial function N : Id ⇀ S(P)
mapping identities to local configurations. In the following we write ι ∈ N to
denote that N is defined for ι. A topology N evolves into N ′, written as N � N ′,
if one of the following conditions is satisfied, where all processes not affected by
the evolution are required to remain the same. Note that the first and the last
two actions are environment actions which are always enabled.
Appearance: A new process is created, starting in an initial state, not con-

nected to anyone else, and with an empty queue, i.e. N ′ = N [ι �→ (q, C, M)]
where dom(N ′) = dom(N ) \ {ι} and configuration (q, C, M) is initial.

SendMessage: A process ι ∈ N takes a send transition (q, c, m, c′, q′) and thus
appends message m carrying an identity as parameter to the message queues
of the processes denoted by its channel c, i.e. if N (ι) = (q, C, M) we have
that N ′(ι) = (q′, C, M) and N ′(ι0) = (q0, C0, M0.(m, ι′)) for all ι0 ∈ C(c)
with N (ι0) = (q0, C0, M0). If c′ = id, the process sends its own identity, i.e.
ι′ = ι, otherwise it sends an element from channel c′, i.e. ι′ ∈ C(c′).
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Table 1. Mett predicates (p, p1, p2 are quantified variables)

p1 = p2 equality
instate[q](p) in state q

conn[c](p1, p2) linked via channel c
� p just created

snd[m](p1, p2, p) message m just sent
pend[m](p1, p2, p) message m pending
rcv[m](p1, p2, p) message m received

⊗ p about to die

ReceiveMessage: A process ι ∈ N takes a receive transition (q, m, c, op, q′)
and thus stores the identity carried by the message to channel c, i.e. if N (ι) =
(q, C, (m, ι0).M) we have N ′(ι) = (q′, C′, M) where C′(c) = {ι0} if op = set,
and C′(c) = C(c) ∪ {ι0} if op = join, and C′(c′) = C(c′) for all c′ �= c.

ModifyChannel: A process ι ∈ N takes a modify transition (q, c1, op, c2, q
′),

i.e. if N (ι) = (q, C, M) we have N ′(ι) = (q′, C′, M) where C′(c1) = C(c1) ∪
C(c2) if op = add, and C′(c1) = C(c1) \ C(c2) if op = del, and C′(c1) = {ι0}
for some ι0 ∈ C(c2) if op = pick, and C′(c) = C(c) for all c �= c1.

Conditional: A process ι ∈ N takes a conditional transition (q, em, c, q′), i.e.
if N (ι) = (q, C, M) such that em ↔ (C(c) = ∅), then N ′(ι) = (q′, C, M).

SendEnvMessage: A process ι ∈ N obtains a message from Emsg with an
arbitrary identity from N attached similarly to the sending case above.

Disappearance: A process ι ∈ N in a fragile state is destroyed, i.e. if N (ι) =
(q, C, M) and q ∈ Ω then N ′ = N |dom(N )\{ι}. Process ι then disappears
from all channels, i.e. for all processes ι′ ∈ N ′ with N (ι′) = (q, C, M) we
have N ′(ι′) = (q, C′, M) with C′(c) = C(c) \ {ι} for all channels c.

The semantics of P is the transition system with the (in general) infinite set
of (unbounded) topologies of P as states, the empty topology as initial state,
and transitions given by the evolution relation � as defined above. That is,
Fig. 3 models that cars freely enter the highway, without an upper bound on the
number of cars. Triggered by the environment message ‘car ahead’, free agents
or platoons then merge into platoons forming topologies of interlinked cars.

Requirements Specification Language. In [2], DCS is complemented by the re-
quirements specification language Mett. A first example of a Mett requirement
has already been given in Section 1 in formula (1). Mett is basically a first-
order extension of LTL providing quantification over anonymous objects and the
predicates given by Table 1, which refer to processes’ local state, topology, and
communication. Given a Mett formula μ and a DCS protocol P , the satisfaction
relation P |= μ is inductively defined on the transition system of P (cf. [2]).

3 Data Type Reduction

By the definitions in Section 2, we have to deal with three dimensions of complex-
ity when verifying Mett properties for DCS: finite control within each process,
unbounded, evolving topologies of processes, and queue based communication.
Here, we focus on the first two layers and restrict message queues to length 1.
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Data Type Reduction (DTR) is an abstraction technique, which has originally
been introduced for the verification of properties of parameterised systems [13].
In [7], it has been demonstrated that this abstraction applies as well to systems
with unbounded dynamic creation and destruction of processes, thus in particu-
lar to DCS. Beyond [7,13], for space reasons, we only recall as much of DTR as
is necessary to understand the intrinsic problem of spurious counter-examples
to be cured with topology invariants (cf. Section 4).

DTR actually applies to quantifier-free properties with free variables, like μ0
of (1) on page 36. The universally quantified case, i.e. the whole formula (1),
follows by symmetry from finitely many cases [13]. DTR employs the spotlight
principle [18], that is, it maps each concrete topology N to an abstract topology
where a fixed number of processes is kept completely precise and information
about the rest is lost (cf. Fig. 1). An abstract topology N �

N maps the limited
set of identities Id�

N = {u1, . . . , uN , ⊥}, where N is the number of individuals
kept precise, to local configurations from S(P). Thereby, the set of identities is
reduced to a finite set and consequently there are only finitely many abstract
topologies. The abstraction of a concrete topology like Fig. 1(d) is obtained from
Fig. 1(b) by replacing all identities, in links and messages, belonging to the rest
by the special identity ⊥. The local configuration of ⊥ is the upper bound of
all possible local configurations, not only of all the ones present in the original
topology; this is graphically illustrated for links by dashed arrows in Fig. 1(d).
Existential abstraction of the original system’s transition relation yields a finite-
state transition system with abstract topologies as states (cf. [18]). Identity ⊥
is special as it compares inconclusive to itself and unequal to others, i.e. when
the leaders of two cars are compared and are ⊥, then both possible outcomes
are explored. With P�

N , θ |= μ0 denoting that the Mett formula μ0 is valid
under assignment θ in the abstract transition system induced by DTR for P and
N ∈ N, which can heuristically be chosen depending on the formula, we have

Lemma 1 (Soundness of DTR [7]). Given a DCS protocol P and a quantifier-
free Mett formula μ0 over variables p1, . . . , pn, DTR is sound for any N ∈ N and
assignment θ : {p1, . . . , pn} → Id�

N \ {⊥}, i.e. P�
N , θ |= μ0 ⇒ P , θ |= μ0. ♦

The abstract transition relation is easily obtained by a syntactical transformation
of the DCS protocol because only information local to the finitely many processes
in the spotlight has to be represented [19]. This property is easily lost when trying
to explicitly add precision to the abstract topologies. However, the abstraction is
rather coarse allowing for many spurious interference initiated from the shadows
as described in Section 1.

4 Topology Analysis

As outlined in Section 1, the idea presented in this paper is to add precision to
the rather coarse abstract transition system obtained by DTR (cf. Section 3) by
forcing it to adhere to certain, independently established, invariants.
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u0 u1

u2 u3
ldr

flws

car ahead

N = {ι0 �→ (fa, [ ], (car ahead, u1)),

ι1 �→ (fa, [ ], ε),

ι2 �→ (fl, [ldr �→ {u3}], ε),
ι3 �→ (ld, [flws �→ {u2}], ε)}

car ahead

fa fa

fl ld
ldr

flws

m m

Fig. 4. DCS topology N and its graph representation

A particular approach to obtain information about legal topologies is Topol-
ogy Analysis (TA) [4]. Its subject are directed node- and edge-labelled graphs
and graph grammars, that is, sets of graph transformation rules. The static
analysis of a graph grammar yields a rather precise finite over-approximation,
called topology invariant, of all graphs possibly generated by the graph gram-
mar. Formally, topology invariants are sets of abstract clusters. An instance of an
abstract cluster is any graph that can be abstracted to it by partner abstraction.
Partner abstraction in turn is quotient graph building with respect to partner
equivalence, which is motivated by preserving information about who is talking
when to whom. Intuitively, two processes are partner equivalent if they are in
the same state and if they have links to the same kind of processes — regard-
less of the number of such communication partners. In the context of dynamic
communication systems, such information is valuable, because it is really this
information that determines possible successor topologies of a given topology.

In the following, we rephrase the technique of [4] and contribute an encoding
of DCS into graph grammars, thereby making TA amenable to DCS verification.

Topology Analysis. A graph is a five-tuple G = (V, E, s, t, 	) featuring a set of
nodes, a set of edges, a source-, a target-, and a labelling function. Source and
target functions map edges to their respective source and target nodes, while
	 maps both, nodes and edges, to labels. A graph grammar G is a finite set of
graph transformation rules. A graph transformation rule consists of two graphs,
a left graph L and a right graph R, and a relation between them indicating which
nodes and edges in L and R correspond to each other. In the rule shown in Fig. 5,
this correspondence is given implicitly by position. A rule can be applied to a
graph G, if L is a subgraph of G. The result of the application is the replacement
of L’s occurrence in G with R. For more details we refer to [4].

Two nodes u1, u2 ∈ V are partner equivalent if 	(u1) = 	(u2) and if for all
edge labels a, oG(a, u1) = oG(a, u2) and iG(a, u1) = iG(a, u2). These sets denote
the labels of the nodes adjacent to u1 and u2, that is oG(a, u1) := {	(v) | ∃e ∈
E : s(e) = u1, t(e) = v, 	(e) = a} and analogously for incoming edges.

Given a graph G, the abstract cluster αTA(G) is an abstraction of G. It is
computed in two steps: First, for each connected component C of G compute the
quotient graph with respect to partner equivalence. Doing so, mark equivalence
classes consisting of more than one node as a summary node. As a second step,
summarise isomorphic quotient graphs, that is, keep only one of them.
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ld

req

faldr

→
fl

req

faldr

mm

Fig. 5. Graph transformation rule: a platoon approaches a free agent, the platoon
leader is in state ld and sends a req message to the free agent in front with its identity
as parameter. Afterwards the former leader is in state fl.

The set of abstract clusters obtained by the abstract interpretation based on
partner abstraction for a graph grammar G and the empty graph as initial graph
is called topology invariant of G and denoted by GG.

Lemma 2 (Soundness of TA [4]). Let G be a graph grammar and graph G
obtained from the empty graph by applying G. Then αTA(G) ⊆ GG. ♦

DCS Topologies as Graphs. Let P = (Q, A, Ω, χ, Σ, Emsg, succ) be a DCS pro-
tocol. A topology N : Id ⇀ S(P) of P is encoded as a directed, node- and
edge-labelled graph T (N ) as follows. For each process in dom(N ) and each mes-
sage in one of the processes’ message queues, there is a node. Nodes representing
processes are labelled with their local state q ∈ Q, nodes representing messages
are labelled with the message name e ∈ Σ. For each process u and each channel
c ∈ χ, there are edges labelled with c to each element of C(c).

For each message, there is an edge labelled m from the destination to the
message node and from the message to its parameter (cf. Fig. 4). Note that
this representation of queues is only feasible for our restriction to finite queue
lengths. Unbounded message queues would have to be properly encoded as lists.

Actions as Graph Transformation Rules. Each element of succ is translated into
a set of graph transformation rules. An example of a graph transformation rule
resulting from the “send identity” action (ld, req, ldr, id, fl) ∈ Snd is shown in
Fig. 5. The left graph shows a process u1 in state ld that is connected to process
u2 via channel ldr. The result of u1 sending its own identity attached to message
req to process u2 is exactly the right graph. Process u1 has changed its state
to fl, u2 has an m-labelled edge to message node um, and message node um is
connected to process u1. Environment interaction like process creation or envi-
ronment messages are translated similarily. Note that this translation of a DCS
protocol into graph transformation rules can be conducted fully automatically.

Topology Invariants. Applying Topology Analysis to the encoding of the platoon
merge DCS yields a topology invariant which comprises in particular the four
abstract clusters shown in Fig. 6. Intuitively, an abstract cluster denotes that
in each topology there may be arbitrary many, that is zero or more, instances
of it. For example, C�

1 denotes the possibility of arbitrary many free agents in
each topology of the platoon merge DCS. In Fig. 6, summary nodes are drawn
with a double-outline. So abstract cluster C�

2 represents an arbitrary number of
platoons of size two, whereas C�

3 represents an arbitrary number of platoons of
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C�
1

fa

C�
2

ld

fl

flwsldr

C�
3

ld

fl

flwsldr

C�
4

fald

fl

flwsldr
ldr

Fig. 6. Abstract clusters. Doubly outlined nodes are summary nodes.

size greater than two. Altogether, a topology invariant denotes any combination
of possible instances of the abstract clusters belonging to it.

In terms of a DCS protocol P = (Q, A, Ω, χ, Σ, Emsg, succ), a topology invari-
ant is a set GP = {C�

1, . . . , C
�
n} of abstract clusters. The labelling 	i of C�

i labels
nodes with pairs (st, sm) where st is either a DCS protocol state from Q or a
message from Σ. The boolean flag sm indicates whether the node is a summary
node or not. Each edge in Ei is labelled by 	i with a channel from χ. Given this
encoding we can apply Lemma 2 and obtain:

Corollary 1. Given DCS protocol P and topology N of P, α(T (N )) ⊆ GP . ♦

It proves to be a difficult task to relate the knowledge about valid clusters with
the abstract topologies obtained by DTR. We explain our approach to this prob-
lem being one of the major contributions of this work in the next section.

5 Putting It Together: Respecting Topology Invariants

Recall from Section 3 that DTR yields a finite-state transition system operating
on abstract topologies N �. They have the form shown in Fig. 1(d), that is, finitely
many concrete processes and a summary node representing the rest.

Materialisation. We have briefly discussed in Sections 1 and 3 that this coarse
abstraction gives rise to spurious behaviour which can in many cases (manually)
be identified as spurious by examining messages that are sent from the sum-
marised rest to concrete processes. For example, consider the abstract topology
shown in Fig. 7(a), which is the same as the one in Fig. 2. If in this abstract
topology N �, the summary process ⊥ sends a message ‘newld(⊥)’ to c, we can
conclude that the concretisation of N � comprises a topology where there is a pro-
cess capable of sending such a message. Inspecting the DCS protocol (cf. Fig. 3),
we see that there must be at least one process ιmat in the rest, which is in state
ld, which necessarily has a follower link to c to know the destination, and which
has a leader link either to ⊥ or to itself to know the sent identity. Concerning
the link from cf to ⊥, we cannot definitely conclude whether it has a link to
only one or both of the grayish nodes, that is, there are three cases. Adding all
this information to Fig. 7(a) yields Fig. 7(b), which shows one of the six pos-
sible materialisations. Figuratively speaking, the view on an abstract topology
changes from one with only a single “dark gray” summary process to one with
an additional “light gray” process that has been materialised from the summary



46 J. Bauer, T. Toben, and B. Westphal

c cb cf

⊥

ldr

flws ldr

flws

(a) Abstract topology.

c cb cf

⊥

ιmat

ldr

flws ldr

flws
flws

ldr

flws

(b) Light gray individual materialised.

Fig. 7. Materialisation. When a message is sent from the summary process (the dark
gray individual), we can conclude on a part of the topology. In the example, we can
conclude that there has to be a process having c as follower and cf as leader.

process. Note that the materialised process is still “gray” in the sense that we
typically don’t know everything about its configuration but only about the parts
involved in the observed action. For example, we cannot conclude whether ιmat

has more followers than c.
More formally, if we’re in abstract state N �, representing topology N , and

action ac = (q, c, m, c′, q′) ∈ Snd is to be executed by the process summary ⊥ we
can conclude that (i) there is a process ιmat summarised by ⊥, which has local
state q, (ii) this process ιmat has ι in channel c, and (iii) it has ι′ in channel c′.

Here, the topology invariants automatically established by Topology Analysis
(cf. Section 4) come into play as follows. For each abstract topology N � in a run
of the abstract transition system and each send action ac ∈ Snd we can derive
a (finite) set mat(N �, ac) of materialisations following the reasoning above. The
run is spurious, if it employs at least one abstract topology and action such that
all materialisations are definitely illegal. We call a materialisation as the one in
Fig. 7(b) definitely illegal if it is contradictory to topology invariant GP . For this,
note that a materialisation N �

mat again represents a set of concrete topologies
which we denote by γDTR(N �

mat). Then materialisation N �
mat is contradictory

to GP iff αTA(T (γDTR(N �
mat))) �⊆ GP . Note that this definition doesn’t directly

yield a decision procedure because γDTR(N �
mat) is in general an infinite set.

Logical Characterisation of Topology Invariants. In the following, we present a
solution which isn’t based on computing the infinite concretisations but employs
a kind of unification between materialised abstract topologies and abstract clus-
ters. This unification is expressed in terms of existentially quantifying predicate
logic formulae to be evaluated over materialisations in the 3-valued Kleene inter-
pretation of logic. Using 3-valued logic we treat the fact that materialised nodes
are still “light gray”, that is, we may not know all of their attributes. References
to other predicates of the car, e.g. whether it is currently accelerating, would
yield 1/2 as the definite value cannot be concluded from the observed commu-
nication behaviour. Indefiniteness propagates naturally over logical connective,
that is, (1∧1/2) yields 1/2, while (0∧1/2) yields 0. A formula evaluating to 1 then
indicates that a materialisation is definitely feasible, in case of 1/2, it is possibly
feasible, and in case of 0 it is definitely impossible.
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After materialisation, we have finite sets of abstract topologies and abstract
clusters GP obtained by Topology Analysis, that is, two kinds of graphs with
summary nodes that may match in numerous ways. We only consider the white
and light gray processes in the materialisations and individually check whether
their situation is possible according to GP . In other words, if the situation of
a white or light gray process in a materialisation N �

mat doesn’t occur in GP ,
then none of the concretisations of N �

mat are feasible in the concrete system (by
Corollary 1). Then if none of the materialisations from mat(N �, ac) are feasible,
all system runs on which ac applied to N � is observed are spurious. We call an
abstract topology materialisation N �

mat possibly legal wrt. GP iff for each white
and light gray process ι ∈ N � there is an abstract cluster C� = (V, E, s, t, 	) ∈ GP
and a matching node v ∈ V such that 	(v) is the state of ι, for each c-edge from
v to v′ there exists a process ι′ in state 	(v′) and the channel c of ι comprises ι′,
and each c′-edge from v′ to v implies that the channel c′ of ι′ comprises ι.

In order to respect the topology invariant GP during model-checking we ex-
press the relation induced by (a)–(c) by a logical formula. A process ι �= ⊥ in a
materialised abstract topology N �

mat has v ∈ V as matching node iff there is a
bijection β : {v′ ∈ V | (v, v′) ∈ E} → dom(N �

mat) such that

φv(N �
mat, ι) := q(ι) = 	(v) ∧

∧

dom(β)

(

q(β(v′)) = 	(v′) ∧

∧

{e∈E|s(e)=v∧t(e)=v′}
	(e)(ι, β(v′)) ∧

∧

{e∈E|s(e)=v′∧t(e)=v}
	(e)(β(v′), ι)

)

(2)

is not 0, i.e. either 1 or 1/2 (see above), where q(ι) denotes the state of process
ι and c(ι, ι′) yields true iff there is a link c from ι to ι′ in N �

mat. Lifting this
characterisation to the level of the whole abstract cluster, the process ι is possibly
legal according to C� if one node of C� matches, i.e. if

φC�(N �
mat, ι) := ∃ v ∈ V : φv(N �

mat, ι) (3)

is not 0. A process ι in N �
mat is possibly legal according to GP if it is possible

legal according to one of the abstract clusters, i.e. if

φGP (N �
mat, ι) := ∃ C� ∈ GP : φC�(N �

mat, ι) (4)

is not 0. Finally, the whole materialised abstract topology N �
mat is possibly legal

according to GP if all processes are possibly legal, i.e. if

φGP (N �
mat) := ∀ ι ∈ dom(N �

mat) \ {⊥} : φGP (N �
mat, ι). (5)

is not 0. Note that the quantifications in (3) - (5) are over finite sets, thus expand
to unquantified predicate logic expressions.

For example, let N �
mat denote the materialised abstract topology from Fig. 7(b).

Than φC�
1
(N �

mat, ιmat) evaluates to 0 for C�
1 from Fig. 6 because ιmat is in state ld

and no node in C�
1 has this label. Also φC�

4
(N �

mat, ιmat) evaluates to 0 although
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there is a node labelled with ld in C�
4, but C�

4 requires that there is a leader link
back to the ld-node from each follower, which is not the case for ιmat. Actually,
none of the abstract clusters in GP matches, thus Fig. 7(b) is definitely illegal.

Assuming Adherence. The indication of spuriousness, namely executing an ac-
tion ac in abstract topology N � whose effect would require the existence of an
illegal topology in the concrete, is a non-temporal property depending only on
N � and ac. As such it can easily be added as a boolean observer to an abstract
transition system P�

N . Then by P�
N , θ, GP |= μ0, we denote that the abstract

transition system obtained by DTR satisfies μ0 on those system runs, where the
observer doesn’t indicate spuriousness and we have the following.

Theorem 1 (Soundness of DTR+TA). Let P be a DCS protocol and μ0 a
Mett formula over variables p1, . . . , pM . Then given N ∈ N and an assignment
θ = {pi �→ ui}, DTR+TA is sound, i.e. P�

N , θ, GP |= μ0 =⇒ P , θ |= μ0. ♦

The proof is based on Corollary 1 by which the restriction to GP only removes
transitions from P�

N which lead to topologies that aren’t possible in the original
transition system. Consequently, no original system behaviour is disregarded.

Note that the example discussed below indicates that we indeed obtain a
proper refinement, i.e. there are properties that cannot be established in result
of DTR but can in combination with topology invariants.

Experimental Results. For a proof-of-concept implementation, we had to streng-
then the platoon-merge protocol in comparison to the one shown in Fig. 3. The
handover of followers to the new leader on a merge, for instance, needs guarding
acknowledge messages. This protocol provides for a topology invariant with 77
abstract clusters automatically computed by an implementation of the Topology
Analysis [4]; a looser merge protocol easily yields 2000 clusters.1

We used the tool-set of [15] to translate the strengthened merge protocol
into the input language of the VIS [8] model-checker. Most recently, we have
implemented the translation of DCS protocols into graph transformation rules
fully automating our tool chain. Without respecting the topology invariants,
the model-checker unveils the counter-example discussed in the introduction in
about 90 minutes. After encoding the topology invariant following the procedure
from the previous section, we were able to prove the property in about 126
minutes. Note that Topology Analysis alone is not able to establish (1) because
it comprises a liveness requirement and TA only addresses safety properties.

6 Conclusion

We promote a combination of an easily obtainable but rather coarse abstract
transition system with external information obtained by static analysis. Our
technique has a number of benefits. It can automatically prove properties that
1 For the strengthened DCS protocol and the actually employed clusters see the full

version [3] of this paper.
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neither technique can prove in isolation demonstrating synergy. It formally in-
tegrates techniques, namely model checking and static program analysis, that
are often considered orthogonal. Moreover, it is able to automatically discover
flaws in sophisticated traffic control applications [9] that could only be found
manually [2] before. Finally, the technique has been brought to full automation
by integrating existing tools.

The technique introduced in Section 5 uses only a small fraction of the infor-
mation carried by abstract clusters. Namely, for conciseness and to bound the
size of the resulting formulae, we only considered positive links to distance-1
nodes, that is, the direct neighbourhood of nodes, as being relevant to exclude
spurious behaviour. Further work comprises the evaluation of two aspects: look-
ing further into the abstract cluster, i.e. to check whether processes up to some
distance larger than 1 are legal according to the topology invariant, and consid-
ering information about the absence of links in abstract clusters.

Additionally, a kind of counter-example guided abstraction refinement could
be established where each action of the summary process in the counter-example
is checked for validity with respect to the topology invariant, and if one action
turns out to be spurious, then in the next run only those abstract clusters are
(soundly) considered that relate to the particular spurious interferences.

Regarding applications, we are currently implementing a number of examples
from application domains such as mobile ad-hoc networks and service-oriented
computing as DCS protocols. This is necessary to gather more experience on us-
ability and scalability of our integrated, automated toolset. In order to facilitate
the implementation of examples of realistic size, we plan to write a front-end au-
tomatically compiling more high level specifications, e.g. written in UML, into
DCS protocols.
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