
Verification and Synthesis of OCL Constraints

via Topology Analysis

A Case Study

Jörg Bauer1, Werner Damm2, Tobe Toben2, and Bernd Westphal2

1 Technical University of Munich, 85748 Garching, Germany,
joerg.bauer@in.tum.de

2 Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany,
{damm,toben,westphal}@informatik.uni-oldenburg.de⋆

Abstract. On the basis of a case-study, we demonstrate the usefulness
of topology invariants for model-driven systems development. Consider-
ing a graph grammar semantics for a relevant fragment of UML, where a
graph represents an object diagram, allows us to apply Topology Analy-
sis, a particular abstract interpretation of graph grammars. The outcome
of this analysis is a finite and concise over-approximation of all possible
reachable object diagrams, the so-called topology invariant. We discuss
how topology invariants can be used to verify that constraints on a given
model are respected by the behaviour and how they can be viewed as
synthesised constraints providing insight into the dynamic behaviour of
the model.

1 Introduction

The Unified Modeling Language (UML) [?,?] is widely employed for model-
driven development of systems. A fundamental strategy of UML is to support
a separation of concerns by different diagram types, in particular to separate
structural from behavioural aspects. By means of classes and associations, class
diagrams determine structural aspects as possible connections (or links) between
system objects. By means of states and transitions, state machine diagrams
determine behavioural aspects of system objects, in particular modifications of
current links.

In this article, we address the following problem. Given an executable UML
model in form of a class and a state machine diagram, compute (an approxima-
tion of) all possible system states (or object diagrams) reachable during system
run-time. Knowledge about these object diagrams is crucial, because class and
state-machine diagrams often allow too many, thus many unintended, object di-
agrams. Even if one is lucky to have a further annotated model, e.g., annotated
by OCL constraints, many unintended object diagrams may arise.

⋆ This work was partly supported by the German Research Council (DFG) as part
of the Transregional Collaborative Research Centre “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS).

Therefore, we propose a new methodology for computing an over-approxi-
mation of all reachable object diagrams. While it combines well-established
techniques like UML graph grammar semantics and static analysis of graph
grammars in a novel manner, it gives the following benefits, on which we shall
elaborate in Section 6.

– a pictorial overview of all possible object diagrams, whose graphical appeal
is one of the major benefits of all graph-based techniques

– the (formal) validation of possibly existing OCL constraints for every possible

run-time behaviour
– the synthesis of OCL constraints, even for non-annotated models (though in

few specialised cases only)
– excellent, automatically derivable documentation

We shall now briefly illustrate the problem of unintended object diagrams and
its non-triviality with an example. The same example will be used throughout the
paper in order to demonstrate the feasibility and usefulness of our methodology.

Car leader
0, 1

followers
∗

(a) Class Diagram.

Free
agent

Leader

Follower

request(id)/add(followers,id)

car ahead(id)/
set(leader,id);
leader .send(request(self))

car ahead(id)/set(leader,id);
followers.send(new leader(leader))

request(id)/
add(followers,id)

new follower(id)/
add(followers,id)

new leader(id)/set(leader,id); leader .send(new follower(self))

(b) State Machine Diagram.

Fig. 1. Structural and Behavioural model of Car Platooning.

The Problem Illustrated. Consider the task to design a class structure that de-
scribes the associations of cars participating in car platooning, i.e. driving in
dynamically established convoys (cf. Section 3 for details). In car platooning, a
car assumes one of three roles.

(a) It may be part of the tail of a convoy, a so-called follower, then having a link
to the platoon leader,

(b) it may be the first car in a convoy, the so-called leader, then having at least
one follower, and

(c) it may drive freely as a so-called free-agent, then having neither followers
nor leaders.

:Car
[Free agent] leader

(a)

:Car :Car
leader

leader

(b)

Fig. 2. Unintended topologies.

A viable solution is the class diagram shown in Figure 1(a), as it supports all of
the just named three cases. As cars execute concurrently, we’ve got to employ
two unidirectional links to faithfully model transitional situations. For example,
during a merge, a follower may have established the link to its leader while the
leader has not yet updated its followers.

What the class diagram doesn’t say is that these three cases should be the
only ones. For example, both object diagrams in Figure 2 are legal according to
the class diagram but unintended, as a car shall not be its own leader, and cars
shall not consider each other to be the leader. Note that from the behavioural
model as given by the tiny state machine shown in Figure 1(b), it is neither
obvious whether the system remains in the three cases (a)–(c) nor whether the
system reaches one of the particular errors shown in Figure 2.

The issue that the class diagram doesn’t precisely say which object diagrams
are wanted can be solved by adding constraints to the class diagram, most nat-
urally in the form of OCL constraints. For example, the constraint

Car

(Free agent)

implies (leader->isEmpty and followers->isEmpty)
(1)

formalises case (c) named above, the remaining cases have similar constraints.
But the core problem remains: to analyse whether the system adheres to

these constraints at run-time. For example, a simple copy-and-paste error during
the construction of the state machine could cause self to be assigned to the
leader link in the transition from state Free agent to state Follower.In this small
example, such kind of errors may be excluded by closely considering the actions,
but violations of requirements are in general not that obvious.

UML model
UML

−−−−−−−→
semantics

Reachable object diagrams

Section 4 ↓ ⊇ Section 6

Graph grammar
Topology Analisis

−−−−−−−−−−−−→
Section 5

Abstract clusters

Fig. 3. Approach. A set of abstract clusters is an abstract description of (a superset
of) all reachable object diagrams of a UML model. It is obtained by Topology Analysis
from a graph grammar representation of the UML model.

The New Methodology. Our proposal is, assuming a graph grammar UML se-
mantics, to employ a technique called Topology Analysis [?] which computes, for

a given graph grammar, a concise, finite, abstract description of all graphs pos-
sibly reachable by applying the rules of the grammar. The result is, due to the
employed abstractions, in general not exact, i.e. it may consider graphs reach-
able which actually aren’t, but it is safe (or sound), i.e. if a graph is reachable
in the concrete, then the result of Topology Analysis covers it (cf. Figure 3). As
OCL is based on first order logic, most decision problems for OCL are undecid-
able. On a finite characterisation of the reachable object diagrams however, a
large fragment of OCL invariants can be evaluated automatically. This does not
contradict with the undecidability of OCL as Topology Analysis in general does
not compute an exact approximation of the runtime behaviour. Note that nei-
ther Topology Analysis nor the specific choice of graph grammar semantics are
novel contributions. Rather, our combination and usage of them is unique and
beneficial, in particular, in the context of UML/OCL verification. We underpin
the usefulness of our methodology by conducting a complex case study.

Structure. Our presentation is structured as follows. Employing the more de-
tailed discussion of the case study in Section 3, we equip a small but relevant
fragment of UML with a graph grammar semantics in Section 4. The system de-
scribed by a UML model is basically a transition system whose states are node
and edge-labelled graphs. Objects are nodes which are labelled with the valua-
tion of their attributes and links are edges which are labelled with the association
name. The remaining step is then to express actions and event communication
in terms of graph grammars. Section 5 recalls the necessary parts of Topology
Analysis, in particular the formal definition of topology invariants.

The main contribution of this work is given in Section 6 where we connect
topology invariants back to UML models by interpreting them as descriptions
of the possible object diagrams. Thereby we gain four things. Firstly, we may
evaluate OCL expressions in topology invariants, that is, given a UML model
comprising OCL constraints, we can verify that they are satisfied at run-time.
Secondly, we can interpret the obtained topology invariant as synthesised con-
straints. A topology invariant may thirdly, in its entirety, provide the developer
with an impression of how the system behaves at run-time by giving a con-
cise pictorial overview of reachable object diagrams. This shall in many cases
be sufficient to point out subtle design errors. Finally, a subset of the topology
invariants may serve for automatically derived documentation. Understanding
the intention of data-structures employed in a system necessarily requires object
diagrams once a certain model complexity is reached. Generating them auto-
matically eliminates the errors possibly introduced in manual creation of such
diagrams. Section 7 concludes and points out further work.

2 Related Work

As far as we are aware, no other abstract interpretation based approach that
aims at solving the problem of computing all possible reachable object diagrams

exists. There are formal verification techniques like [?,?,?] that are able to prove

that a given behavioural UML model always adheres to properties specified
in variants of temporal logic. Due to the complete nature of that approach, it
often becomes infeasible in practice. Moreover, it works on symbolic represen-
tations of the reachable object diagrams and does not provide direct, graphical
access to them; despite the fact that all of these approaches assume finite upper
bounds on the number of objects alive at one point in time, that is, only con-
sider under-approximations of the whole system. Abstract interpretation based
methods using aggressive abstractions might be a way out. Besides our and the
aforementioned methods, there exist tools like UMLAUT [?], VIATRA [?], and
USE [?], which allow the interactive or semi-automatic construction of object
diagrams from models. However, this exploration is typically not exhaustive.

Apart from computing reachable object diagrams, we are interested in the
verification of OCL formulas. USE and VIATRA may be used for evaluating
OCL formulas on class and object diagrams, too. However, they are not able to
consider all possible diagrams for OCL verification. While exhaustive verification
techniques are able to do so, they have the well-known scalability issues.

So far, we have summarised related work aiming at the same goal. Below,
we take a more technique-centered approach. There is numerous work on graph
grammars semantics for UML. The research around the USE tool and graph
grammar based UML semantics by Gogolla and others [?,?] is the one we follow
for obtaining a graph grammars semantics. Other approaches might be equally
well-suited. The technique of Topology Analysis [?] we employ here, has orig-
inally been applied in the context of so-called Dynamic Communication Sys-
tems [?], which are basically the essence of object-oriented systems, covering dy-
namic creation and destruction of objects, dynamically changing topology, and
asynchronous communication. Just like in the case of UML graph grammar se-
mantics, we have chosen one approach to graph grammars applications. Related
to the abstract rule matching in [?], the authors of [?] describe transformation
rules for summary nodes (which however do not stem from graph abstraction).

It may be worthwhile to investigate the applicability of other methods to
the problem of approximating object diagrams, e.g., [?,?,?], or even the three-
valued logic based techniques employed for the analysis of heap manipulating
programs, which originate from [?]. Although we will prove the appropriateness
of Topology Analysis in this work, the named approaches may be candidates to
replace it.

3 Case Study: Car Platooning

We demonstrate our approach on the notably small, but non-trivial and relevant
case study of car platooning (cf. Figure 4). Since the late 80’s of the last century,
people have investigated systematic ways to improve the throughput of highways
and to reduce energy consumption [?]. One particular approach is the so-called
car platooning. It assumes that cars are provided with communication equipment
supporting a kind of ad-hoc network. Cars are notified about other cars driving

in front of them which they may then ask, via the communication network,
to form a platoon. If the car in front agrees, the back car becomes a follower
in the platoon and reduces the safety distance to a minimum. To remain safe,
in particular in case of braking manoeuvres, each platoon has a leader which
is responsible for notifying its followers about upcoming braking manoeuvres.
In the original design [?], communication happens only between a leader and
its followers, but not among followers. We adopt this star-like communication
structure in our work.

On a more abstract level, a car can fulfill one of three roles. It can be a free

agent, a follower, or a leader. Initially, that is, when entering the highway, a car
is a free agent. The roles change along three basic manoeuvres, namely merge

to join cars into a platoon, split to split platoons in half, and change lane. In
the following, for simplicity, we shall concentrate on the merge manoeuvre; the
implementation follows the proposal of [?]. The simplest case of merge involves
two cars in role free agent, one approaching the other from the back. If the back
car is notified about a car driving in front, it requests a merge by sending an
according event with its own identity attached, and accepts the car in front as
leader. Its role then changes to follower. On receiving the request, the front car
assumes the sender as a follower and changes role to leader. In general, both
the front and the back car may actually already be platoons, thereby merging
free agents into existing platoons or two platoons into a larger platoon. In case
there is a whole platoon in the back instead of only a free agent, the protocol
is slightly more complicated as the followers of the back platoon have to change
their leader and the new leader has to become acquainted with all new followers.
To this end, the back leader sends an event announcing the identity of the new
leader to all of its followers. These followers in turn update their leader to the
new one and announce themselves as new followers by sending an event carrying
their identity to the front leader.

We can capture car platooning on this abstract level in form of UML diagrams
as follows. Figure 1(a) shows the rather simple class diagram, comprising only a
single, active class Car with a possible association leader to the leader car and
an unbounded, possibly empty association followers to the follower cars. The
behaviour is given by the state machine shown in Figure 1(b). A newly created
car starts off in state Free agent, with no links. The identification of cars driving
in front is abstracted to reception of an event car ahead carrying the identity
of the identified car as parameter. Reception of this event causes a state change

| {z }

z }| { z }| { z }| {

platoon

follower leader free agent

→

Fig. 4. Car Platooning. A disappearing car and a platoon/free agent merge.

to Follower after the leader link has been assigned the received identity and an
event request with the own identity self has been sent to the leader, thereby
requesting a merge. A request is accepted in state Free agent and Leader. In
both cases, the state changes to Leader and the received identity is added to
the followers. In state Leader, an event new follower announces a new follower
when a whole platoon approached from the back and requested a merge. The
parameter carried by these events is added to the set of followers. If a platoon
approaches a car or platoon in front, this is also announced by the environment
with a car ahead message. The back leader changes state to Follower after it
has set its leader link and notified all of its followers of the new leader. Here we
assume that the send method sends a message to all objects linked as followers.
Being a follower, the only expected event is new leader which announces a new
leader. The state remains Follower after the leader link has been changed to
the received identity and the new leader has been sent a new follower event
announcing the own identity as a new follower.

Note that in the following, we assume an environment which non-determi-
nistically chooses to create instances of class Car or to destroy them unless
they are in state Leader. This models that cars may freely enter and leave the
highway. In addition, the environment may send car ahead events to the present
instances announcing one of the other present instances as having appeared in
front of another car. This can explicitly be added to the model in form of an
additional class.

4 Ad-Hoc Graph Grammar Semantics of UML

Our approach as sketched in the introduction is based on abstract interpretation
of graph grammars, thus we need a graph grammar semantics for a fragment of
UML sufficient to cover our case-study.

Using graphs and graph grammars as a semantical domain for UML as such
is not new and rather well-studied, cf. for instance the work summarised in [?]
and also [?], which is more focused on agents than on UML.

In fact, we employ a simplistic variant of the approach proposed in [?]. It
demonstrates that the particular choice of semantics is not the limiting factor of
our approach as we discuss the most relevant features of UML. The semantics
is ad-hoc in the sense that it is a minimal setting which is suited to present our
approach and we don’t intend to provide a formal semantics for each and every
syntactical feature of the UML 2.0 standard.

UML Model. Principally following [?], for the scope of this paper a UML model
is a quadruple U = (E, C, L, M) comprising a finite set E of events, a finite set C

of classes, all active, and functions L and M providing classes with associations
and state-machines. For each event from E we assume that we’re given the
information whether it may be sent by the environment or whether it is only
used internally in the system, and whether it carries a parameter or not. Given a
class c ∈ C, its set of associations L(c) = {l1, . . . , ln}, n ∈ N0, is finite and may

be empty. Its state machine M(c) is a quintuple (S, S0, SΩ, R, A) comprising a
finite set of states S, sets of initial and fragile states S0, SΩ ⊆ S, a transition
relation R ⊆ S × S, and a transition labelling A assigning each transition r ∈ R

a trigger, a trigger/action pair, or only an action. For the scope of this article,
we assume that a trigger is simply an event from E not carrying a parameter,
that a trigger/action pair is an event carrying a parameter and an action which
manipulates associations and may refer to the parameter, and that plain actions
at least comprise association manipulation and event sending. Note that the
notion of fragile states is not standard UML, but encodes that cars may non-
deterministically be destroyed by the environment we assume (cf. Section 3).
For convenience, we assume that states of state machines are disjoint, that is,
S(M(c1)) ∩ S(M(c2)) = ∅ for classes c1 6= c2, which is easily established for any
UML model via renaming.

For example, consider the formal representation of the UML model shown in
Figure 1. The set of events is E = {car ahead, request,new follower,new leader},
all carrying parameters and all but car ahead are only used internally. The
set of classes is C = {Car}. The associations of the only class are L(Car) =
{leader, followers}. Its state machine M(Car) is (S, S0, SΩ, R, A) with states

S ⊇ {Free agent,Leader,Follower}, (2)

initial state S0 = {Free agent}, and fragile states SΩ = {Free agent,Follower}.
The semantics of a UML model U is an infinite-state transition system where

each state is an object diagram, that is, a set of object instances connected via
links. In addition, each object has a sequence of events as event queue. Two
such states are in transition relation if and only if the destination state is the
outcome of applying an action of an according transition in a state machine of
U to a single object in the source state. That is, for convenience we consider a
strict interleaving semantics as all classes are active (see above).

As discussed in more detail in [?], this simplistic notion of UML models is
not a severe restriction of generality of our proposal as it already captures many
essential features by appropriate encodings.

In order to fit into our restricted set of actions, the actual set of states is larger
than the ones occurring in Figure 1(b) because the sequential compositions of
actions has to be split into atomic actions. For example, the transition from
Free agent to Follower would be split into two transitions by adding an auxiliary
state to S (cf. Figure 5). The transition to the auxiliary state is annotated by
a trigger/action pair, the action assigns the received identity to the leader asso-
ciation. The transition from the auxiliary state is annotated by a plain action,
which sends an event to the object denoted by the leader association. Note that
such operations are semantics preserving in the sense that they neither affect the

Free
agent

Aux Follower
car ahead(id)/set(leader,id) /leader .send(request(self))

Fig. 5. Splitting transitions with auxiliary states.

reachability of non-auxiliary states nor liveness, that is, whether non-auxiliary
states are finally reached. The operations only increase the number of transitions
taken during a run-to-completion step.

Furthermore, hierarchical state machines unfold into the flat ones consid-
ered here following the well-known procedures (for an example, consider [?]).
Attributes of finite domains can directly be encoded in an enlarged state set.
Similarly, events carrying data of finite domains can be encoded by enlarging
the set of events. Methods, unless recursive, can be encoded by “inlining” them
into transition annotations. Finally, inheritance can be translated into one class
per feature added in a specialisation and a new one-to-one association pointing
to the superclass (cf. [?]).

Graphs and Graph Grammars. A graph is a quintuple (V, E, s, t, l) featuring sets
V and E of nodes and edges, source and target functions s and t, and a labelling

function l. Source and target functions map edges to their respective source and
target nodes, the labelling function l maps both, nodes and edges, to a label
from a finite set of labels.

A graph grammar G is a finite set of graph transformation rules. A graph
transformation rule consists of two graphs, a left graph L, a right graph R,
and a relation between them indicating which nodes and edges in L and R

correspond to each other. In the rule shown in Figure 6, this correspondence
is given implicitly by graphical position. A rule can be applied to a graph G

if L is a subgraph of G. The result of an application is the replacement of L’s
occurrence in G with R. For more details, we refer to the textbook [?].

Graph Grammar-based UML Semantics. According to the paragraph above, a
state of the UML model is an object diagram, where each object is addition-
ally equipped with an event queue. That is, states are graphs where each node
represents either an object or an event and each edge a link or possession of
an event. Object nodes are labelled with the object’s state, event nodes with
the event name. Recall from above, that we consider attribute valuations to be
encoded into state machine states. Edges to object nodes are labelled by associa-
tion names, edges to event nodes by the special label µ. Note that, on the level of
graphs and within the graph transformation rules, there is no explicit distinction
between objects and events, they’re both nodes. That is, if we were after an even
smaller formal representation of UML models than the one presented above, we
could even encode events by having a class for each category of events; sending
and receiving events would then correspond to creating and destroying instances
of these artificial classes.

Aux

request

Fa
leader

→
Flw

request

Fa
leader

µid

Fig. 6. Graph transformation rule.

The graph grammar of U is then the set of graph transformation rules ob-
tained for the state machine transitions in U . For example, the rule shown in
Figure 6 is actually the rule corresponding to the second half of the transition
from state Free agent to Follower. If there are objects in state Aux and Free

agent and if the former knows the latter by link leader, then an event node re-

quest carrying the identity of the former object as a parameter may be sent to
the latter. Note that the latter link is labelled with µ as it points to an event,
that is, it can be read as pointing to the head of the message queue.

5 Topology Analysis

The technique we employ to compute the possible object diagrams for a given
UML model is called Topology Analysis (TA) [?]. The subject of TA are graph
grammars for directed node- and edge-labelled graphs, that is, finite sets of
graph transformation rules. For a given graph grammar, TA yields a finite over-
approximation, called topology invariant, which (abstractly) describes all graphs
possibly generated by the graph grammar when applied to a finite set of initial
graphs. Technically, topology invariants are obtained by an abstract interpre-
tation [?] of graph grammars in the abstract domain of abstract clusters. An
instance of an abstract cluster is any graph that can be abstracted to it by part-

ner abstraction. Partner abstraction of a graph in turn is the quotient graph
with respect to partner equivalence. Intuitively, two nodes of a graph are partner
equivalent if and only if they are similar and if they have similar edges to (sets
of) similar nodes, where being similar means having the same label.

More formally, let G = (V, E, s, t, l) be a graph. Two nodes v1, v2 ∈ V are
partner equivalent if and only if they have the same label, i.e. l(v1) = l(v2), and
if for all edge labels a, the nodes reachable from v1 and v2 via an edge labelled
with a and the nodes reaching v1 and v2 via an edge labelled with a have the
same label, i.e.

outG(a, v1) = outG(a, v2) and inG(a, v1) = inG(a, v2) (3)

where

outG(a, v) = {l(v′) | ∃ e ∈ E : (s(e), t(e)) = (v, v′) ∧ l(e) = a} (4)

and analogously for incoming edges.
Based on partner equivalence, the partner abstraction α(G) of G is obtained

in two steps. Firstly, for each connected component C of G, compute the quotient
graph with respect to partner equivalence. Doing so, mark equivalence classes
containing more than one node as summary nodes. Secondly, summarise isomor-
phic quotient graphs, that is, keep only one of them. The quotient graphs are
called abstract clusters.

As mentioned above, Topology Analysis is an abstract interpretation of a
given graph grammar G in the domain of abstract clusters. Beginning from the
empty abstract cluster, G is applied iteratively until a fix-point is reached, which

C
♯
1

Fa

C
♯
2

Ldr

Flw

followersleader

C
♯
3

Ldr

Flw

followersleader

C
♯
4

FaLdr

Flw

followersleader

leader

Fig. 7. Abstract clusters. Doubly outlined nodes are summary nodes.

is guaranteed to exist as the abstract domain is finite (cf. [?]). The fix-point is
called topology invariant of G and denoted by GG.

Lemma 1 (Soundness of TA [?]). Let G be a graph grammar. If graph G is

obtained from the empty graph by applying G, then α(G) ⊆ GG.

Figure 7 shows four abstract clusters of a topology invariant for a graph
grammar G. By Lemma 1, they indicate that the graphs obtainable from the
empty graph by applying G iteratively may comprise any number of instantia-
tions of abstract clusters and any combination thereof. An instantiation of an
abstract cluster is a concretisation in the sense of abstract interpretation, that is,
any graph abstracted to the respective abstract cluster. For example, Figure 7
indicates that there may be any number of nodes labelled “Fa” (by abstract

cluster C
♯
1
), and any number of connected components with two nodes, one la-

belled “Ldr” and the other one “Flw” (by abstract cluster C
♯
2
), and any number

of connected components with one node labelled “Ldr” and at least two nodes
labelled “Flw” and connected as indicated by abstract cluster C

♯
3
, etc. That is,

a topology invariant is an over-approximation. It is an abstract description of
the set of all possible graphs obtainable from G, which doesn’t miss an obtain-
able graph but possibly covers more. This kind of approximation is an inherent
feature of abstract interpretation based methods and is the price to pay for ef-
ficiency. Due to the high complexity of the original problem, we must lose some
information somewhere.

6 Reachable Object Diagrams

The abstract clusters shown in Figure 7 are actually a fragment of the topol-
ogy invariant of the graph grammar representation of the UML model shown
in Figure 1. While the graph grammar has been obtained (and improved) man-
ually for this case study, the computation of topology invariants is completely
automatic [?]. To keep the number of abstract clusters well manageable, we’ve
assumed a maximal event queue length of 1 during the analysis, which is not a
principal restriction of the approach (cf. [?]).

Recall from Section 4 that graphs are used to represent object diagrams, and
a topology invariant is an over-approximation of the reachable object diagrams
of the UML model we started from. The information represented by a topology
invariant can be exploited in many ways, most prominently the following.

6.1 Constraints Verification

The most sophisticated use is to give OCL expressions a semantics on abstract
clusters. As abstract clusters are basically graphs, the starting point for such a
semantics will be an OCL semantics on graphs as provided by [?]. The problem
with abstract clusters is that they abstract from certain information in order to
remain finite, first of all the number of instances. For example, abstract cluster
C

♯
3

doesn’t indicate the number of followers a leader may have. That is, one has
to be careful when evaluating collection comprehension expressions of OCL, for
example self.followers which yields a set. The size of this set has to evaluate
to the indefinite value oclUndefined to remain sound, while notEmpty evalu-
ates definite on the same set, i.e. a constraint requiring that an object in state
leader has at least one follower holds in all abstract clusters shown in Figure 7.
That is, the information lost by the abstraction has the effect that some expres-
sions evaluate to oclUndefined, while some remain definite values. As OCL is
a three-valued Kleene logic, the indefinite value is correctly treated through all
arithmetical and logical expressions. Table 1 sketches the treatment of OCL con-
cepts; the only untreatable feature are time expressions (see discussion below).

A system-wide OCL expression like (1) from the introduction is then evalu-
ated for all abstract clusters in the topology invariant. For the considered model,
we’ve established constraint (1) by (manual) evaluation in all abstract clusters.
In contrast, the following constraint, which explicitly excludes the unintended
topology from Figure 2(b), cannot be excluded by topology invariants.

Car

(Leader) implies (leader->leader <> self)
(5)

Close inspection of the model unveils that the state machine is too simple to
ensure this property. The reason is that two cars may subsequently be announced
to each other as driving in front. As there is no further negotiation, they both
continue to set their leader link to each other, ending up in the object diagram
shown in Figure 2(b). The error can be eliminated by adding further negotiation
employing additional acknowledge events. For the corrected version, the topology
invariant, and thus the corrected model, satisfies constraint (5).

Given such an interpretation of OCL in abstract clusters, the constraint
verification can be conducted automatically for the constraints found in the
model as well as for interactive query of constraints.

attribute access (‘.’) node label

association
navigation (‘.’)

possibly
undefined

collection compre-
hension (‘collect’)

possibly
undefined

collection operations
(‘->count’)

possibly
undefined

arithmetic expressions
(‘+’, ‘-’)

possibly undefined
(indirect)

logical expressions
(‘<>’, ‘and’)

possibly undefined
(indirect)

typing, meta-level
(‘oclType’)

only implicitly

time expressions (‘@pre’) not considered

Table 1. Abstract semantics of OCL constructs.

However, we cannot prove arbitrary properties to hold for any model. This is
related to the property preservation properties of Topology Analysis. A property
is preserved by an analysis, if the fact, that it evaluates to true on every con-
crete model, implies that it holds true of any abstract model as well. Property
preservation is often used to exclude undesired behaviour by applying it in its
counterpositive form. Whenever something does not hold for a topology invari-
ant, it will not hold for any object diagram of the model. Topology Analysis, for
instance, “preserves graphs”. If the abstraction of a certain graph does not occur
in the topology invariant, then it will not occur in any object diagram. Topology
Analysis doesn’t preserve all properties. This is the case for all temporal proper-
ties, that is, it won’t be possible to support the OCL time expression @pre, but
also for others. A detailed account of property preservation can be found in [?].

6.2 Constraints Synthesis

In addition to evaluating given OCL expressions in abstract clusters, we can in
some cases translate abstract clusters back to OCL. This is tightly related to
the property reflection properties of the underlying Topology Analysis. Often,
property reflection is much harder than property preservation. A property is
reflected, if the fact that it holds on a topology invariant implies that it holds
on every object diagram represented by it.

Topology analysis reflects only few properties. Again, we refer to [?] for a
detailed account. Among the reflected properties are, for instance, edges that
do not exclusively involve summary nodes. For example, the abstract clusters in
Figure 7 indicate that

Car

(Follower) implies (leader->followers->includes(self))
(6)

might be a valid constraint of the considered model.
If some additional and automatically checkable technical requirements are

fulfilled as well, then such a constraint can be synthesised (automatically). Con-
straints obtained by this approach may yield valuable, highly condensed insights
into the behaviour of the model, comprehensible for every developer trained
in OCL. And even hardly comprehensible constraints, for example due to size
or nesting, may serve as indicators for regression if they become violated after
changes to the model.

Again, we must stress, that only few properties are reflected and, often, it will
not be possible to synthesise constraints. However, the fact that is is possible—
sometimes even automatically—seems like an important contribution.

6.3 Graphical Appeal for Debugging and Documentation

One of the major benefits of a graph-based approach like Topology Analysis, is
its graphical appeal. Our method lends itself for two major purposes: early error
detection (debugging) and documentation.

Given the developer’s intuition of how the expected object diagrams look, it
should in many cases be possible to identify unwanted object diagrams. Experi-
ence with implementing our case study shows, that running Topology Analysis
already at early design stages, often reveals subtle mistakes. This is mainly owed
to the graphical nature of the outcome.

Finally, abstract clusters could give hints for good object diagrams to be used
in a system’s documentation. As obvious with the minimal UML model exam-
ple, the class diagram alone is typically not sufficient to understand a model’s
behaviour at run-time. To this end, good documentation typically comprises
characteristic object diagrams. Given a set of good candidates, the only remain-
ing task is to show that they’re not spurious, as Topology Analysis is in general
not exact (cf. Section 5). We’re confident that this task can efficiently be au-
tomated employing formal verification techniques. The observation with formal
verification tools, in particular the ones employing search-based techniques simi-
lar to the SPIN model-checker [?], is that they’re in average orders of magnitude
faster for so called “drive to configuration” tasks than for verification tasks.
Tasks of the former kind confirm the reachability of certain “good”, or desired
system states, while verification establishes satisfaction of temporal properties
or the absence of “bad” states for the whole state space. Applying SPIN to UML
has been demonstrated, for instance, by Schaefer and others in [?].

7 Conclusion

We have proposed a new methodology for approximating all possible object di-
agrams given a structural and behavioural UML model. Our methodology relies
on well-established techniques from the areas of UML graph grammar semantics
and graph graph grammar verification. It combines these approaches in a novel
fashion. On top of a graphical overview of all possible object diagrams, we expect
benefits like OCL constraint verification and synthesis, early error detection, de-
bugging and automated documentation. In fact, the case study presented in this
work shows the general feasibility and relevance of the application of Topology
Analysis to UML models and fully meets our expectations. Moreover, most of
the results were obtained automatically.

As the results presented here are only a case-study, further work clearly
consists of fully elaborating this approach. This involves further case studies,
thus more experimental results, more automation, and, perhaps, the exploration
of other available graph grammar UML semantics and other graph grammar
verification methods. In more detail, the formal connection between the specific
UML semantics chosen and the specific graph grammars serving as input for
Topology Analysis must be established more formally. This may give rise to more
automation, too. Furthermore, the abstract interpretation of OCL expressions
on abstract clusters has to be fully elaborated. Our first approach as reported
in Section 6 clearly indicates the feasibility, but also shows that there is work to
be done in order to pass all information from the abstract clusters through to
the level of OCL, that is, to obtain a best abstract interpretation.

While we did not experience any scalability problems during our case study,
Topology Analysis might be rather costly or imprecise in general, which is not
surprising given the complexity of the task. It may thus be beneficial to abstract
as early as possible, that is, on an as high language level as possible, for instance,
on model level directly rather than on graph grammar level as we propose in our
methodology. That is, one should investigate whether there are possibilities to
abstract from behaviour of the UML model, for example, certain arithmetics on
attributes that don’t affect the topology. This will improve the overall scalability
of the methodology considerably.

Finally, a promising idea to improve precision was outlined in Section 6: em-
ploy formal verification technology but only for the limited (and typically orders
of magnitude less expensive) use-case of falsification to confirm the validity of
each abstract cluster. This could be conducted after termination of Topology
Analysis, on the final topology invariant, or possibly even during the iterative
computation constituting the analysis itself. Complementary, the existing crite-
ria for exactness given in [?] can possibly be lifted to the level of UML models.

