
Specification and Verification of Dynamic Communication Systems∗

Jörg Bauer (joba@cs.uni-sb.de)
Universität des Saarlandes, 66041 Saarbrücken, Germany, Phone/Fax: +49-681-302-5583/3065

Ina Schaefer (inschaef@mpi-sb.mpg.de)
Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany

Tobe Toben, Bernd Westphal ({toben,westphal}@informatik.uni-oldenburg.de)
Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany

Abstract

Dynamic communication systems (DCS) are complex be-
cause of their unboundedness in several dimensions. They
have an unbounded and changing number of objects, a
dynamically changing communication topology and un-
bounded message queues for asynchronous communication.
We present a specification language for DCS that captures
these features but is still amenable for formal verification.
The verification of relevant properties of DCS is demon-
strated using a combination of model-checking and abstract
interpretation. Our approach is illustrated using the appli-
cation domain of car platoons.

1. Introduction

Formal verification of dynamic communication systems
(DCS) is difficult because they exhibit unboundedness and
dynamics in three dimensions: (i) a dynamically chang-
ing and potentially unbounded number of objects, (ii) a dy-
namically changing communication topology, and (iii) un-
bounded message queues for asynchronous communication.
Prominent examples of DCS are wireless ad-hoc networks,
traffic configuration systems such as car platoons [11], our
running example, or radio-based train control as well as re-
cent concepts like mobile or ubiquitous computing.

In this paper, we address formal verification of DCS
properties by first providing an elaborate modelling lan-
guage, expressive enough to specify the three characteris-
tic features of DCS. The modelling language we propose
in Section 2 explicitly speaks aboutlocal statesof indi-
vidual processes, e.g. to represent the current role in a
protocol situation, thecommunication topology, in which

∗This work was partly supported by the German Research Council
(DFG) as part of the Transregional Collaborative Research Centre “Au-
tomatic Verification and Analysis of Complex Systems” (SFB/TR 14
AVACS).

processes communicate, and themessage queuesbuffering
asynchronous communication. Crucial for the communica-
tion is the ability of processes tosend process identities. A
process can send its own identity or the identity of a pro-
cess it knows to others as a means to change the communi-
cation topology. Physical behaviour, for example distance
sensors announcing cars appearing in front, is not explicitly
modelled but abstracted to anon-deterministicenvironment
that triggers creation and deletion of processes (correspond-
ing to cars appearing and disappearing from sight) and may
send messages to processes (corresponding to announce-
ments by the distance sensor). Although it would be pos-
sible to model DCS in low level process calculi we prefer
a high level language in which all of the special features
of DCS can be observed and reasoned about directly. If the
three aspects named above are encoded into another formal-
ism, high level, aspect specific properties are typically lost
and cannot be exploited for tailored analyses.

In Section 3, the core of this work, we verify relevant
properties of DCS using a combination of model-checking
and abstract interpretation. Our technique can handle both
the dynamically changing and unbounded number of ob-
jects and the dynamically changing communication topol-
ogy. For this paper we do not handle unbounded message
queues and impose a boundn on the length of all queues.
First, we apply Query- and Data-Type-Reduction to a DCS
specification to compute a bounded abstract model. This
abstraction is often too coarse to establish desired proper-
ties by model-checking. Spurious counter-examples intro-
duced by the abstraction can be eliminated and the abstrac-
tion refined using a novel topology analysis based on ab-
stract interpretation. It computes an over-approximationof
the topologies occurring for given DCS specifications.

Section 4 demonstrates the practical adequacy of DCS
verification by translating a significant subset of UML into
our modelling language, making it amenable to subsequent
verification using our new techniques. Section 5 discusses

car1 : fl car2 : req car3 : fa
request(car2)

ldr ldr

flws

Figure 1. Snapshot of the merge protocol.

related work and Section 6 gives directions of future work.

Example: Car Platooning. Our running example fol-
lows the “car platooning” system as studied by the PATH
project [11]. The idea is to maximise traffic density on high-
ways by merging autonomous cars into platoons. A car in
this setting can either play the role of afree agent(not in-
volved in a platoon),leader (the first car in the platoon),
or follower (in a platoon in a follow-up position). Within a
platoon each follower has a communication channel to its
current leader and the leader maintains a channel to each of
its current followers.

The key to platoon verification is the verification of the
merge manoeuvre. It specifies how two platoons (or free
agents) can merge building a larger platoon. A merge of
two platoons is initiated if a sensor announces to the leader
of a platoon that another platoon (or free-agent) is driving
in front. Then the back platoon leader sends a request mes-
sage to the leader of the front platoon asking for a merge.
After that, the back leader sends a message to its follow-
ers introducing the front leader to be their new leader. The
followers of the back platoon then announce themselves to
their new leader, the front leader. Finally, the former back
leader becomes itself a follower of the front leader.

Figure 1 depicts a snapshot of a merge manoeuvre. There
are three cars wherecar1 andcar2 form a platoon withcar2
as the leader. Thereforecar2 has a ‘flws’ communication
channel tocar1, whilecar1 is a follower and has aldr chan-
nel tocar2. car3 is a free agent connected tocar1 via a ‘ldr’
channel. In the message queue ofcar3 we see a message
from car2 requesting a merge. In the course of the merge
operation,car2 will hand overcar1 to the new leadercar3
and will itself become a follower ofcar3.

Our framework allows to reason that the merge manoeu-
vre protocol is correct w.r.t. a certain specification, for in-
stance, that no two cars believe to be each others’ leader at
any point in time. We will show in this paper how we can
establish the validity of such properties.

2. DCS Protocols

The behaviour of a DCS is formally defined by aDCS
protocolP specifying two aspects: the behaviour of pro-
cesses and the behaviour of the environment. A protocol
specifies the behaviour of all processes, i.e., each process
is an instance of the protocol: one definition of process be-

haviour, but many processes may show this behaviour. Note
that this assumption of homogeneity is only made to keep
the presentation simple. The extension to a finite number of
different protocols is straightforward.

Creation and destruction of processes, each equipped
with a unique process identity, is modelled by an envi-
ronment that abstracts from concrete physical behaviour.
Freshly created processes will always be in one of theinitial
statesA. A process may only be destroyed, if it is in one
of thefragile statesΩ. Furthermore, the environment sends
messages non-deterministically to arbitrary processes. The
set Emsg denotes the messages that the environment can
send. They are a subset of the setΣ of all messages. Three
components of a DCS protocol have not been mentioned,
the setQ of all (local) statesthat a process can assume, a
setχ of channel typesand asuccessor relation‘succ’.

DCS Protocols. Formally, a DCS protocol is a seven-
tupleP = (Q, A, Ω, χ, Σ, Emsg, succ) with the following
components:

1. a finite set ofstates, Q: The states a process can be in.

2. initial statesA ⊆ Q: If a new process is created, it is
in one of the states ofA.

3. fragile statesΩ ⊆ Q: A processes in one of these
states can be destroyed.

4. a finite set ofchannel types, χ: Each channel type de-
notes a set of processes that a process may be con-
nected to, i.e. each channel type stands for a poten-
tially unbounded number of communication links be-
tween processes.

5. a finite set ofmessages, Σ: The identifiers of the mes-
sages that can be sent to processes.

6. environment messagesEmsg⊆ Σ

7. successor relation‘succ’: See below.

The Successor Relation. Let P = (Q, A, Ω, χ, Σ, Emsg,
succ) be a DCS protocol and letOp be a set of operations
working on sets, such as union or intersection. The succes-
sor relationsuccreflects five differentactionsthat processes
can perform at run-time: sending and receiving of messages
(with and without process identities) and local actions. To
sum up,succ = Send∪SendId∪Rec∪RecId∪Local, where

• (q, m, c, q′) ∈ Send⊆ Q × Σ × χ × Q: A process in
stateq sends a messagem via channelc changing its
state toq′.

• (q, m, c1, c2, q
′) ∈ SendId⊆ Q×Σ×χ×(χ∪̇{id})×

Q: Same as above. Additionally, the sender’s identity
or an arbitrary process identity from another channel
c2 is attached to the message.

• (q, m, q′) ∈ Rec⊆ Q× Σ× Q: A process changes its
state fromq to q′ by receiving a messagem.

2

• (q, m, c, op, q′) ∈ RecId⊆ Q × Σ × χ × Op× Q: A
process in stateq receives messagem with an attached
identity. This identity is then processed by combining
it with channelc usingop.

• (q, c1, op, c2, q
′) ∈ Local ⊆ Q × χ × Op× χ × Q:

A process locally changes its state fromq to q′. Addi-
tionally, it combines channelsc1 andc2 usingop.

Configurations and Topologies. In order to distinguish
different processes, they are equipped with uniqueprocess
identitiesfrom a countably infinite setId of identities. Pro-
cesses can be in differentconfigurations. A configuration
σ is a triple (q, C, M), whereq ∈ Q is the local state.
C : χ → 2Id, a total function mapping channels to sets of
process identifiers, describes to which other processes the
process is connected by its channels.M : Id ∪̇ {env} ⇀

(Σ × (Id ∪̇ {⊖}))∗, a partial mapping from process iden-
tities to message queues, gives the contents of the message
queues for messages sent by the environment or any other
processes. Note, that each process has a message queue for
each identityandone for the environment. Message queues
are sequences of pairs of messages and parameter identities.
Among the parameters there is a special parameter⊖ denot-
ing that no identity was attached to the message. A config-
uration(q, C, M) is calledinitial , if q ∈ A, C = λx.∅, and
M is the empty mapping. The set of all configurations w.r.t.
a given DCS protocolP is writtenS(P).

A topologydescribes the global state of a DCS, i.e. all
existing processes in their respective configurations. For-
mally, a topologyN is a partial mappingId ⇀ S(P). It is
calledinitial , if all configurations in its range are initial.

Topology Transitions. This paragraph defines how
topologies evolve. We writeN → N ′, if topology N
evolves in one step intoN ′. The relation→ is defined for
a DCS protocolP = (Q, A, Ω, χ, Σ, Emsg, succ). Assume
a process with identityι ∈ dom(N), such thatN (ι) =
(q, C, M). TopologyN evolves intoN ′ if one of the fol-
lowing conditions is satisfied.

send messageThere is an action(q, m, c, q′) ∈ succ, pro-
cessι changes its local state toq′, and the rest of its
configuration remains the same, i.e.N ′(ι) = (q′, C,

M). Furthermore, messagem (without parameter
identity) is attached to the queues of those processes
that ι is connected to via channelc, i.e. N ′(ιi) =
(qi, Ci, Mi.(m, ⊖)) for each processιi ∈ dom(N)
with ιi ∈ C(c) andN (ιi) = (qi, Ci, Mi). As no pro-
cesses are created or disappeardom(N ′) = dom(N)
and processes other thanι and theιi remain unaffected.

send identity Analogous to the previous case for some
(q, m, c1, c2, q

′) ∈ succ. The only difference is that a
pair(m, ι′) is added to the message queues of the con-
nected processes,ι′ non-deterministically chosen from
C(c2). If c2 = id, then the pair(m, ι) is added to these

queues. This is our mechanism to make processes get
to know each other: by sending identities.

receive identity There is an action(q, m, c, op, q′) ∈ succ
and a message(m, ι′) in front of a queue of processι,
i.e. there is aι0 ∈ Id with M(ι0) = (m, ι′).M ′. The
received identityι′ is then combined with the identities
from ι’s channelc using the set operationop. Process
ι changes its local state toq′. Formally,N ′ = N [ι 7→
(q′, C′, M ′)], whereC′ = C[c 7→ op(C(c), {ι′})].

receive messageAnalogous to the previous case.

modify channel There is an action(q, c1, op, c2, q
′) ∈

succ. Just like when receiving messages, only pro-
cessι is affected changing its local state toq′ and
combining the sets of identities in channelsc1 and
c2 using op. Formally,N ′ = N [ι 7→ (q′, C[c1 7→
op(C(c1), C(c2))], M)].

environment messageThe update in this case is like in the
sending cases, except that the sent message is inEmsg
and entered into the receiver’s ‘env’ queue. This case
is always enabled.

appearance A new process can always be created starting
in one of its initial states and not being connected to
anyone else, i.e.N ′ = N [ι′ 7→ σ] wheredom(N ′) \
dom(N) = {ι′} andσ is initial.

disappearanceProcessι is in a fragile state, i.e.q ∈ Ω,
and destroyed. Formally,N ′ = N |dom(N)\{ι}.

The above conditions are not disjoint, i.e.→ is not deter-
ministic. The first five actions correspond to the transitions
specified bysuccand happen without environment interfer-
ence. The remaining actions are always enabled and reflect
the more non-deterministic behaviour of a DCS – modelled
by the environment.

Runs and Semantics. A run of a DCS protocolP is a
sequenceN0N1 . . . of topologies such that for alli ≥ 0
Ni → Ni+1. The set of all runs ofP starting in an initial
topology is called thesemanticsof P , written [[P]].

2.1. Example: Merge Protocol

To illustrate the formal definitions on a practical ex-
ample, we define the merge manoeuvre as introduced
in Section 1 in terms of the DCS protocolPM =
(Q, A, Ω, χ, Σ, Emsg, succ) with

• statesQ = {fa, ld, req, hnd, clr, fl, ann},

• initial stateA = {fa},

• fragile statesΩ = {fa, fl},

• channelsχ = {ldr, flws},

• messagesΣ = {car ahead, request, newldr, newflw},

• and environment messageEmsg= {car ahead}.

3

fa ann fl

clr

hnd

ld req

?(request, flws,∪)

?(car ahead, ldr, =)

?(car ahead, ldr, =)

!(request, ldr, id)

!(newldr, flws, ldr)

(flws, \, flws)

?(new ldr, ldr, =)

!(new flw, ldr, id)

?(request, flws,∪)

?(new flw, flws,∪)

Figure 2. DCS Protocol for merge.

The successor relationsuccis graphically represented in
Figure 2. For each elements = (q, . . . , q′) ∈ succwith
source stateq and target stateq′, a transition betweenq and
q′ is drawn and annotated with the remaining components
of s. For the sake of readability, elements of the action sets
SendandSendIdare prefixed with ‘!’, and elements ofRec
andRecIdare prefixed with ‘?’.

The protocol works as follows. The car’s sensor that de-
tects other cars driving in front is modelled as a ‘car ahead’
message sent by the environment. This message carries the
identity of the newly detected car. The protocol reacts to
this message if the car is either a free-agent, i.e. in state
‘ fa’, or if it is the leader of a platoon, i.e. in state ‘ld’. In
both cases, the ‘ldr’ channel is modified by the assignment
operator=∈ Op to comprise the received identity. The car
moves to state ‘req’ from which it will send a ‘request’ mes-
sage carrying its own identity ‘id’ to its new leader.

The transition starting at state ‘hnd’ now hands over the
set of follower cars to the new leader in which a ‘newldr’
message containing the identity stored in the ‘ldr’ channel
is sent to all identities that are stored in the ‘flws’ channel.
A car that is in state ‘fl’ reacts to this ‘newldr’ message by
storing the received identity in the ‘ldr’ channel and enter-
ing state ‘ann’. On the transition back to the ‘fl’ state, the
follower car announces itself to its new leader by sending
a ‘newflw’ message carrying its own identity as parameter.
The former leader in state ‘clr’ now clears its ‘flws’ channel
and becomes itself a follower car by entering state ‘fl’.

It remains to explain how a car reacts to ‘request’ and
‘newflw’ messages. These messages are handled by the
self-loops of the ‘ld’ state in which the identity that comes
with the corresponding message is added to the ‘flws’ chan-
nel. The same applies to the transition from state ‘fa’ to ‘ ld’
triggered by a ‘request’ message.

To see how different instances of the DCS protocolPM

interact, we exemplarily sketch a topology evolution lead-
ing to a platoon of size three. The messages that are ex-
changed during the manoeuvre are shown in the sequence
diagram in Figure 3. In the following run, the channel con-
tents are given as tuple〈C(ldr), C(flws)〉 and configurations

ENV ι1 ι2 ι3

car ahead(ι2)

request(ι1)
car ahead(ι3)

new ldr(ι3)
request(ι2)

new flw(ι1)

Figure 3. Sequence Diagram.

are only shown if one of its components has changed.
Starting from the empty topology, two processesι1, ι2

are successively created by the environment:

[] → [ι1 7→ (fa, 〈∅, ∅〉, [])] → [ι1, ι2 7→ (fa, 〈∅, ∅〉, [])]

We assume the car with identityι2 is driving in front and
car ι1 is notified about carι2 via a ‘car ahead’ message.
This triggers a sequence of transitions in carι1 leading to
state ‘fl’:

→ [ι1 7→ (fa, 〈∅, ∅〉, [env 7→ (car ahead, ι2)]), ι2]

→ [ι1 7→ (req, 〈{ι2}, ∅〉, []), ι2]

→ [ι1 7→ (hnd, 〈{ι2}, ∅〉, []),

ι2 7→ (fa, 〈∅, ∅〉, [ι1 7→ (request, ι1)])]

→ [ι1 7→ (clr, 〈{ι2}, ∅〉, []), ι2]

→ [ι1 7→ (fl, 〈{ι2}, ∅〉, []), ι2]

The ‘request’ message that has been sent by carι1 is now
received by carι2, leading to state ‘ld’:

→ [ι1 7→ (fl, 〈{ι2}, ∅〉, []), ι2 7→ (ld, 〈∅, {ι1}〉, [])]

If now a third carι3 enters the scene in front of this pla-
toon, carι2 will initiate a merge after the reception of the
corresponding ‘car ahead’ message. This corresponds to
Figure 1 (withcari = ιi) where carι3 is just about to re-
ceive the merge request of carι2. During this manoeuvre,
car ι2 hands over his followerι1 to the new leader of the
platoon, carι3 (cf. Figure 3). After this second merge ma-
noeuvre, the resulting topology is the following:

[ι1 7→ (fl, 〈{ι3}, ∅〉, []), ι2 7→ (fl, 〈{ι3}, ∅〉, []),

ι3 7→ (ld, 〈∅, {ι1, ι2}〉, [])]

3. Protocol Verification

Besides formally capturing the behaviour of a DCS like
car platooning in form of a DCS protocol, our overall aim
is to provide automated analyses of DCS properties. To
this end, Section 3.1 introduces METT, a variant of tem-
poral logic that provides means to refer to all aspects of a

4

DCS, i.e. process identities, creation and destruction, pro-
cess states, queue-based communication, and topologies.

Our approach to verification combines two techniques.
Assuming finite bounds on the length of queues, we can di-
rectly apply state-of-the-art techniques for the abstraction of
infinite-state systems into finite-state model-checking prob-
lems, if infiniteness stems from unbounded creation and de-
struction of processes [9]. Section 3.2 uses the car platoon-
ing running example to describe the verification strategy.

This abstraction may produce spurious counter-exam-
ples. To rule them out, the abstraction has to be refined,
e.g. by adding so called non-interference lemmata that state
that certain spurious behaviour doesn’t happen in the con-
crete model, or by representing more objects exactly (cf.
Section 3.2).

In Section 3.3, additional invariants about DCS protocols
are obtained by an abstract interpretation [5] based topology
analysis [1], yielding a fairly precise over-approximation of
all topologies that may occur during the run of a DCS pro-
tocol. The invariants can be used in the model-checking
process or in proving non-interference lemmata furthering
the automation of DCS verification.

3.1. A Logic for Reasoning about DCS

Our property specification language METT is an exten-
sion of the well-known temporal logic LTL with first-order
quantification of so calledanonymous objectssince there
are no global names in a topology. In addition, there are
constructs to refer to communication between processes and
to the topology. As explained in Section 5, METT resembles
ETL [25].

The syntax of METT is given by the following grammar
wherec denotes a channel andm a message.

φ ::= p1 = p2 | instate[q](p) | conn[c](p1, p2)

| pend[m](p1, p2, p) | snd[m](p1, p2, p) | rcv[m](p1, p2, p)

| ⊙ p | ⊗ p | ¬φ | φ1 ∨ φ2 | ∀ p.φ | X φ | φ1 U φ2

Semantically, the logical variablesp denote process iden-
tities, i.e. the formulap1 = p2 compares process identi-
ties. Subformulas referring to processes’ local states, the
topology, and pending messages are evaluated over a single
topologyN . The local state formulainstate[q](p) is satis-
fied iff the process with identity denoted byp is in N and
its local state isq. The topology formulaconn[c](p1, p2) is
satisfied iff the processesp1 andp2 are inN , p1 is in con-
figuration(q, C, M), andp2 ∈ C(c). The pending message
formulapend[m](p1, p2, p) is satisfied iff the event(m, p)
occurs inM(p2).

Communication, i.e. sending and receiving mes-
sages, and creation and destruction of processes involve
two successive topologiesN and N ′. The formula

snd[m](p1, p2, p) is satisfied inN iff p1 is in both topolo-
gies and an(m, p) message appears at the end of the queue
M(p2) in N ′. Analogously, reception of a message is ob-
served iff a message disappears from the front ofM(p2) in
N ′. The notion of appearance and disappearance of mes-
sages in a queue is well-defined since our semantics is a
strict interleaving semantics.

We consider a processp to be created inN , denoted by
⊙ p, iff p appears freshly inN ′. A processp is destroyed
⊗ p in N iff it is present inN and disappears inN ′.

The semantics of all other constructs of METT is stan-
dard and we shall use the abbreviations ‘∧’, ‘ →’, ‘ ∃’, ‘ G’,
and ‘F’. The satisfaction relation between METT formulae
and DCS runs is then obtained by structural induction.

Examples. The property ”A process is a follower, when-
ever its leader channel is non-empty” is formalised in METT

as follows:

G ∀p1, p2.conn[ldr](p1, p2) → instate[fl](p1) (1)

”A follower’s request is pending until a sane leadership is
established” is an example of a temporal METT property:

G ∀p1, p2.instate[fl](p1) ∧ conn[ldr](p1, p2)

→ (pend[req](p1, p2, p1)

U (instate[ld](p2) ∧ conn[flws](p2, p1)))

(2)

Finally, the following is a slightly more elaborate topologi-
cal example. It requires that a pathological case doesn’t oc-
cur, namely that two followers mutually consider each other
to be the leader:

G ∀p1, p2.instate[fl](p1) ∧ instate[fl](p2)∧

p1 6= p2 → ¬(conn[ldr](p1, p2) ∧ conn[ldr](p2, p1))
(3)

3.2. DCS Model-Checking

There are three reasons for DCS being infinite-state sys-
tems. Firstly, there is no finite bound on the number of
processes that exist in a topology, thus, secondly, also not
on the number of channels. Thirdly, there is no finite up-
per bound on the length of message queues. For this pa-
per we sidestep the last issue by assuming a finite bound
n on the length of all queues and focus on the first issues.
They can be treated with a combination of Query- and Data-
Type Reduction [9] because DCS lie in the class of systems
where the processes are instances of finitely many templates
or classes.

Query Reduction. First of all, we can establish that DCS
are symmetric in the process identities by applying syntacti-
cal rules [12]. Intuitively, the reason is that the literal value
of process identities is never referred to in the actions of
a DCS protocolP . Thus if there is a run in[[P]] where a
number of processes with identitiesι1, ..., ιk interact, then

5

fa faf

fl

ld ldf

?(request, flws, ∪)
!(flws, ack)

?(ack, ldr, =)

?(ack, ldr, =)
!(flws, new ldr, ldr)
(flws, \, flws)

?(nack)

?(car ahead, tmp, =)
!(tmp, request, id)

?(car ahead, tmp, =)
!(tmp, request, id)

?(nack)

?(request, tmp, =)
(flws,∪, tmp)
!(tmp, ack)

?(request, tmp, =)
!(tmp, nack)

?(request, tmp, =)
!(tmp, nack)

?(new ldr, ldr, =)
!(ldr, new flw, id)

?(newflw, flws,∪)

Figure 4. Fixed DCS protocol for merge.

by symmetry there is a run where processes with identities
ι′1, ..., ι

′
k go through the same scenario.

For example, property (3) excluding some invalid
topologies, can be verified by considering only two repre-
sentative cases (instead of checking all possible combina-
tions), one wherep1 = ι = p2 and one wherep1 = ι1 6=
ι2 = p2, ι, ι1, ι2 ∈ Id. In this particular example the sec-
ond case is already sufficient, since (3) explicitly considers
different cars only. Note that Query Reduction allows to fo-
cus on finitely many representative cases, but provides no
reduction of the model.

Under-approximation as Falsification checks whether a
property holds in those runs of[[P]] where at mostm pro-
cesses exist simultaneously and where the length of the
queues doesn’t exceedn. Model-checking property (3) for
the DCS protocol from Sect. 2.1 withm = 3 andn = 2
already unveils a serious flaw in the DCS protocol as it
doesn’t negotiate the merge. If two cars happen to see
each other in front, for instance since they drive on par-
allel lanes, they simultaneously execute the protocol, and
both end up as followers considering each other as their
leader. The DCS protocol shown in Figure 4 introduces
positive and negative acknowledgements to fix this prob-
lem. To avoid the representation of dispensable intermedi-
ate states in Figure 4, we merged successive states with one
outgoing transition intoone transition labelled by the cor-
respondingsequenceof actions. Checking the accordingly
changed model confirms satisfaction of property (3).

A similar approach to formal verification of the car pla-
tooning case study has been taken by the PATH project [16].
They modelled an instance of the merge protocol compris-
ing two cars. Model-checking confirmed that the two cars
merge model complies to an observer automaton requiring
that the merge operation completes.

But from such results about an under-approximation, i.e.
the results of the PATH project and ours as reported so far,
we can only conclude (by Query Reduction) that all sym-
metric cases obey the property. However, we cannot con-
clude the correctness of the protocol in general because
most runs of the system, in particular those with possible

interferences among multiple cars requesting a merge si-
multaneously, are excluded.

Under-approximation is an adequate approach for falsifi-
cation since in this case model-checking is efficient. It does
not suffice, however, to establish correctness in general.

Over-approximation: Data-Type Reduction. Consider-
ing the actions a DCS protocol can take, we observe that the
operations on process identities can be seen as accesses to
an unbounded array-like data-structure with process identi-
ties as indices. For example, the local state of each process
ι can be stored asq(ι) with q : Id → Q. The growing
and shrinking extension of topologies within a run can be
represented by explicitly keeping track of whether a pro-
cess identity is active or not. Thus DCS protocol runs are
represented as sequences of valuations of finitely many un-
bounded data-structures.

In this setting we apply a particular abstract interpreta-
tion called Data-Type Reduction [14] (DTR) to the DCS
protocol yielding a finite over-approximation of the original
DCS protocol (following [9]). Given a finite set of process
identities whose configurations shall be represented exactly,
DTR maps all other identities to a special identity⊥. The
resulting set of identities is finite. If the content of chan-
nels is not counted, like in the running example, the size of
channels also becomes bounded.

The special identity⊥ still occurs in messages and chan-
nels, e.g., if we represent two cars exactly then the first car
may receive a ‘car ahead’ environment message with⊥ as
parameter and subsequently send a request to⊥.

The process with identity⊥ is also regularly scheduled.
In this case determining the current state means accessing
q(⊥) which is where the abstract interpretation comes into
play. The expressionq(⊥) yields an upper bound of all pos-
sible states a DCS process can be in, or equivalently, non-
deterministically any of the possible states. The protocol
description then yields a transition and a successor state for
the obtained state, resulting for example, in sending a new-
leader message to one of the current followers. Determin-
ing the current followers means accessingflws(⊥) which in
turn non-deterministically yields any possible set of process
identities that may comprise the exactly represented ones as
well as⊥. For more details we refer to [9].

A DTR of the manually obtained model can auto-
matically be computed [23]. Model-checking the over-
approximation yields a counter-example which is, by close
examination, spurious. It was caused by scheduling⊥ in
a topology where (exact) carι1 is a follower of (exact) car
ι2. The configuration of⊥ was chosen such that it consid-
ers carι2 to be its follower and announcesι1 to be the new
leader using a ‘newldr’ message. A topology whereι1 and
ι2 form a platoon and a third (different) car hasι2 among its
followers is not possible in the exact model. We effectively
refine the abstraction by explicitly excluding the spurious

6

behaviour using the assumption:

G ∀p1, p2, p3.

snd[new ldr](p1, p2, p3) → conn[flws](p3, p1)
(4)

Now model-checking the implication ‘(4) → (3)’ succeeds.
Assumptions like (4) are callednon-interference lemma,

as they state that certain kinds of interference between pro-
cesses do not take place. These lemmas have to be es-
tablished for each system separately. The non-interference
lemma (4) can in fact be automatically proven using the
analysis presented in Section 3.3.

Open Ends. The previous paragraphs presented how far
state-of-the-art techniques help in the analysis of DCS.
Leaving aside the unboundedness of queues, we are fac-
ing two issues that currently require manual intervention:
First, identifying counter-examples as spurious is in general
not decidable because on the one hand guessing the cur-
rent state of the special process⊥ makes⊥ react in one
step where an exact process had to take a number of steps.
On the other hand⊥ stands for arbitrarily many processes.
Each occurrence of⊥ in a spurious counter-example could
be backed up by a different instance of the DCS protocol.

Second, deriving non-interference lemmata from
counter-examples is a creative act that involves deep under-
standing of the system. Also, once found, non-interference
lemmata must be proven.

Topology analysis as introduced in Section 3.3 can help
to automate these two issues. As it computes a superset of
all possible topologies, it may be possible to automatically
deduce from this set a number of non-interference lemmata.
Counter-examples can be rejected, if they rely on a topology
that does not occur in this superset. Certainly, this approach
is not complete, so we may fall back to manual intervention.

3.3. Topology Analysis

Knowing the topologies that can occur during the runs
of a DCS protocol is a crucial step in DCS verification. An
abstract interpretation based solution of this problem is pre-
sented in [1]. There, DCS topologies are represented by
directed, node-labelled graphs. Evolution of topologies is
specified in terms of graph transformation systems inducing
an infinite-state transition system of possibly unbounded
graphs. This transition system is over-approximated to a
finite-state transition system ofabstract graphs, where each
abstract graph denotes a (possibly infinite) set of concrete
graphs. The abstract system is computed automatically
from a set of graph transformation rules. Consider [1] for
more details about the abstract interpretation of graph trans-
formation systems and [17] for an overview of graph trans-
formation in general.

This algorithm is now utilised to compute a superset of
all topologies occurring during the run of a DCS protocol.

We show how a set of graph transformation rules serving as
input to this algorithm can be derived automatically from a
DCS protocol. The result of the algorithm is then used to
prove the spuriousness of certain error traces discovered in
the previous section.

DCS as Graphs. It remains to show, how DCS protocols
are encoded as graph transformation system. First, we show
how a single topology is encoded, later we shall see, how a
DCS protocol yields a set of transformation rules. Bounded
message queues and local states of objects are encoded in
a finite set of node labels. Communication channels are di-
rected, labelled edges.

Formally, letP = (Q, A, Ω, χ, Σ, Emsg, succ) be a DCS
protocol. A topology ofP is coded as a directed, edge-
and node-labelled graph as depicted in Figure 1. The only
difference is that node-labels additionally encode bounded
length message queues meaning, that the set of node labels
will be Q×Σn. A boundn on the length of message queues
is needed in order to guarantee a finite set of node labels as
required in [1]. Edge-labels are from the setχ ∪ Σ, where
edges with a label from the setΣ of message names are
used to connect a message parameter to a process that has
received such a message (see below).

Actions as Graph Transformation Rules. A graph
transformation rule consists of two graphs, aleft graphL

and aright graphR, and a relation between them, i.e. which
nodes and edges inL andR correspond to each other. In
Figure 5 this correspondence is given implicitly by the po-
sition of the nodes and edges. A rule can beapplied to a
graphG, if L is a subgraph ofG (formally, if there is an
injective graph morphism fromL to G). The result of the
application is the replacement ofL with R in G. Replace-
ment is formalised in categorical terms. Again, cf. [17] for
formal details.

Each element ofsucc is translated into a set of graph
transformation rules. An example of a graph trans-
formation rule resulting from the send identity element
(q, m, c1, c2, q

′) ∈ SendId is shown in Figure 5. The left
graph shows a situation where a processι1 in stateq is con-
nected to processesι2 andι3 via channelsc1 andc2. The
result of sending the identity of processι3 present in chan-
nel c2 attached to messagem to processι2 is exactly the
right graph. Processι1 has changed its state toq′, m is at-
tached to the message queue of processι2, and processι2
is connected to processι3 by anm-labelled edge. This de-
notes, that identityι3 was sent toι2 attached to messagem.
Similar translations are applied to the remaining elements
of succ.

So far, the resulting graph transformation system does
not take care of environment messages, creation, and de-
struction of processes. Environment messages are coded in
the obvious way. For creation of a process, there is a graph

7

p,
msι2: ι3:

qι1:

c1 c2

p,
ms.mι2: :ι3

q′
ι1:

c1 c2

m

Figure 5. Transform. rule: send message.

transformation rule for eachq ∈ A with an empty left graph
and a single node labelled(q, ǫ) being the right graph. Note,
that these creation rules are always enabled because of the
empty left graph. With respect to destruction of a process
for eachq ∈ Ω there is a similar rule with left and right
graph interchanged.

Note that this translation of a DCS protocol into graph
transformation rules can be conducted fully automatically,
because it works on syntax only. As before, a bound on
the length of message queues is required. The result of
the topology analysis applied to these graph transformation
rules presents valuable assumptions helping to prove the
non-interference lemmata from the previous section. We
are currently working on integrating these two techniques
into an automatic tool chain.

For our case study, property (4) can be coded easily into
a graph that resembles the right graph of Figure 5 with
pi 7→ ιi, m replaced withnewldr, and arbitraryp, q, q′,
and ms. All such graphs are then also required to have
a flws edge fromι3 to ι1. Running the topology analysis
on the platoon DCS protocol reveals that all graphs occur-
ring for the protocol meet this requirement, thus proving the
non-interference lemma stated as property (4).

4. UML and DCS

A domain where DCS naturally appear is the large body
of UML [15] models. The following three fundamental
principles of UML relate to characteristic features of DCS.

Firstly, following the object-oriented approach under-
lying the definition of the Unified Modelling Language,
systems are defined in terms of classes of which objects
are instantiated at runtime. In general there are no finite
bounds given on the number of objects alive during system
runs, similar to DCS protocols. Secondly, UML explicitly
provides asynchronous, message-queue-based communica-
tion by events as primitive without a priori imposing finite
bounds on queue lengths. And thirdly, UML has the con-
cept of associations (in different flavours) that are instan-
tiated to links, basically directed connections between ob-
jects, which dynamically change during a system run, that
is, UML models have a dynamic topology.

Formal analysis of UML models is a topic of growing
interest. It is one advantage of a model-based develop-
ment process that in early development phases a model of

a system under design can be tested for whether it satisfies
its requirements, at best fully automatically. But even the
most elaborate approaches to UML verification available to-
day [24, 20] exclude, for example, the aspect of unbounded
creation and destruction of objects in general and expect the
user to provide finite bounds.

The DCS language is designed to study the three aspects
of unboundedness in a clean, focused formalisation. In the
following we sketch an embedding of an executable UML
core into DCS, which enables us to finally transfer analysis
procedures obtained for DCS to the domain of UML.

Embedding Core UML into DCS. We focus on an exe-
cutable UML subset, e.g. following [8] and [24], i.e. we
consider UML models where the intra-object behaviour is
explicitly defined by classes and state-machines. In par-
ticular, we leave out semantically unclear sub-languages of
UML like Use-case diagrams or Deployment diagrams.

A UML model in this sense basically comprises a set of
basic, finite domain, non-object types, a finite set of sig-
nals (or events), and a finite set of classes with an inheri-
tance relation on them and each of them comprising object-
reference typed associations and a state-machine. The ac-
tion language of state-machines is restricted to (local) at-
tribute manipulation and event sending, guards are sensitive
to event reception. Some of the classes may be designated
to be actors, i.e. to represent the environment.

The representation of classes with basic type attributes
and state-machine as a DCS is obvious: State-machines are
unfolded into non-hierarchical state-machines accordingto
their semantics and the current configuration of attributes
becomes part of the DCS protocol states, i.e. for each com-
bination of attributes and state-machine states there is a
state in the DCS protocol for the class. The extension of
DCS protocols from a single kind to finitely many ones is
straightforward. The associations directly become channels
and events are represented as messages in the DCS protocol.

Class inheritance can be established by splitting an ob-
ject of a subclass into one object of the superclass and one
object that provides the attributes added by the subclass,
both linked by an additional, designateduplink channel in
the subclass [20].

A fundamental concept of UML state-machines is the
run-to-completion step, i.e. once triggered, an object takes
transitions in its state-machine as long as it is possible
to take a transition without dispatching an event. As the
UML standard doesn’t require a run-to-completion step to
be atomic, it is faithfully represented by the full interleaving
of DCS protocols.

The UML standard [15] doesn’t enforce a particular
queue model, but considers event transport and manage-
ment to be an implementation detail. However, some UML
semantics, e.g. [8], use a single event queue per object, i.e.
keep the order of events sent by different other objects. This

8

is only representable in DCS with a modified DCS seman-
tics as it currently uses an event queueper senderin each
object following the approach of [3] (cf. Section 5).

5. Related Work

Modelling DCS. There are many models useful for de-
scribing dynamic topologies, for instance process calculi
like π-calculus [19], ambient calculus [4] or graph rewrit-
ing [17]. Why should one choose DCS protocols?

Certainly, it is possible to encode DCS protocols in much
lower level process calculi. However, we chose a more prac-
tical approach, where we want to see high-level features like
roles in protocols (represented by process states) or asyn-
chronous communication via queues in theirexplicit natural
instead of theircodedform as necessary for all lower level
specification mechanisms. In practice, communication is
asynchronous and needs some sort of message queues. We
stress the practical relevance of DCS protocols by encoding
UML [10] into DCS protocols in Section 4.

Originally, our work was inspired by Communicating Fi-
nite State Machines as introduced by Brand and Zafiropulo
in [3]. However, they deal with a completely static scenario
with a fixed number of processes and a fixed communica-
tion topology. We extended Communicating Finite State
Machines conservatively to incorporate the features neces-
sary for modelling interesting systems.

Additionally, we provide a strong verification frame-
work for DCS protocols: the specification language METT

and the techniques in Section 3 combining techniques from
model-checking (Section 3.2) and abstract interpretation[5]
(Section 3.3). Also for these verification purposes, it is con-
venient to reason about high level features in their natural
instead of their coded form.

Specification Languages. Section 3.1 presented METT

as a specification language tailored for DCS protocols.
There are many other specification languages for evolving
graph structures to be found in the literature. Most promi-
nent among them is ETL [25]. The main difference to ETL
is the lack of communication primitives in ETL because it is
tailored to verifying multi-threaded Java programs. METT,
on the other hand, lacks general transitive closure. Live
Sequence Charts [6] with dynamic binding [13] are ideally
suited for specifying communication behaviour, but lack the
ability to naturally reason about graph structures. Further-
more they are restricted in expressiveness to a proper sub-
language of CTL∗ [21]. Universal LSCs have an equivalent
representation in first-order LTL [21], thus are actually a
sublanguage of METT.

DCS Verification. There is numerous work on analysis
and verification of certain single aspects of DCS. In [22]
topologies are defined forπ-calculus expressions, and an
abstract interpretation is employed to compute a superset

METT

QR

↓METT

DCS

DTR

DCS#

MC non.int,
inv., ext. TA

yes no

Figure 6. Tool Architecture.1

of the occurring topologies. This is somewhat similar to
the topology analysis [1] as employed here, except that the
latter uses more explicit graph transformation systems to
model evolving topologies. [25] comes with a verification
method based on Shape Analysis [18], but, as mentioned
earlier, aims at a different application domain, where com-
munication is not crucial. Closest to our work is the work
in [9]. There, verification of properties specified as Live
Sequence Charts is performed directly on UML models.
Moreover, the verification algorithms themselves resem-
ble those of Section 3.2 without the enhancement gained
through the analysis of Section 3.3. Finally, DCS protocols
provide a more concise formalisation compared to UML se-
mantics, while at the same time being equally expressive
(see Section 4).

The PATH Project. Our running example is motivated by
the work of [11]. The authors try to deal with formal veri-
fication of their models using model-checking while suffer-
ing from severe drawbacks. The number of modelled ob-
jects is static and has to be predefined, hence there is no dy-
namic creation and deletion of objects. Moreover, as com-
munication in the system is modelled via shared memory
in contrast to message passing, there is no communication
topology, not to mention a dynamically changing one. Dur-
ing their model-checking process only static scenarios with
two interacting, statically selected objects are considered.
All checked properties are very close to the implementation,
for instance whether a certain flag is set at those points in
time it is supposed to be set, whereas the considered proper-
ties should be motivated by the application scenario rather
than its implementation.

6 Conclusion and Outlook

Dynamic communication systems are widely used but
also highly complex and difficult for formal verification
due to their inherent features such as a dynamically chang-
ing unbounded number of objects, a dynamically changing
communication topology and unbounded message queues

1Ovals represent models information, boxes denote tools or procedures,
solid lines denote automatic data-flow, dashed lines manualintervention.

9

for asynchronous communication. In this paper, we have
presented a high-level specification language for DCS es-
pecially aiming at directly modelling these three aspects of
DCS. Furthermore, we have shown how to specify proper-
ties over these models and how to verify them using model-
checking and abstract interpretation based techniques. In
order to demonstrate practical applicability, we have shown
how to translate certain UML models into DCS.

For future work, we aim at an integration of existing
techniques to handle unbounded queues [7, 2]. Further-
more, we want to automatise the verification of DCS within
a unified tool chain as depicted in Figure 6, where the sin-
gle tools already exist. Here, the topology analysis (TA)
establishes non-interference lemmata (non.int) as well as
general topology invariants (inv.) and gives hints about the
extension (ext.) of the DCS model. These facts are used
for a refined model-checking (MC) of the abstracted model
(DCS#) w.r.t. the query-reduced (QR) requirement specifi-
cations (↓METT).

Acknowledgements. The authors want to express their
gratitude to the researchers of AVACS subproject S2, in par-
ticular A. Podelski, R. Wilhelm, and W. Damm, for fruitful
discussions at an early stage of this work.

References

[1] J. Bauer and R. Wilhelm. Analysis of Dynamic Communi-
cating Systems by Hierarchical Abstraction. Dagstuhl Sem-
inar Proceedings 06081, 2006.

[2] B. Boigelot, P. Godefroid, B. Willems, and P. Wolper. The
power of QDDs (extended abstract). InProc. SAS, pages
172–186. Springer, 1997.

[3] D. Brand and P. Zafiropulo. On communicating finite-state
machines.JACM, 30(2):323–342, Apr. 1983.

[4] L. Cardelli and A. D. Gordon. Mobile ambients. In M. Nivat,
editor, Proc. FoSSaCS, volume 1378 ofLNCS, pages 140–
155. Springer, 1998.

[5] P. Cousot and R. Cousot. Abstract interpretation. InProc.
PoPL, pages 238–252, New York, NY, 1977. ACM Press.

[6] W. Damm and D. Harel. LSCs: Breathing life into MSCs.
In FMSD, volume 19(1), pages 45–80, 2001.

[7] W. Damm and B. Jonsson. Eliminating queues from RT
UML model representations. InProc. FTRTFT, pages 375–
394. Springer, 2002.

[8] W. Damm, B. Josko, A. Pnueli, and A. Votintseva. A
discrete-time UML semantics for concurrency and commu-
nication in safety-critical applications.SCP, 55(1–3):81–
115, Mar. 2005.

[9] W. Damm and B. Westphal. Live and let die: LSC-based
verif. of UML-models.SCP, 55(1–3):117–159, Mar. 2005.

[10] H. Gomaa. Designing Concurrent, Distributed, and Real-
Time Application with UML. Addison-Wesley, 2000.

[11] A. Hsu, F. Eskafi, S. Sachs, and P. Varaiya. The Design
of Platoon Maneuver Protocols for IVHS. Technical report,
UCB-ITS-PRR-91-06, 1991.

[12] C. N. Ip and D. L. Dill. Better verification through symme-
try. FMSD, 9((1/2)):41–75, 1996.

[13] J. Klose and B. Westphal. Relating LSC specifications to
UML models. In H. Ehrig and M. Grosse-Rhode, editors,
Proc. INT, pages 130–137, Apr. 2002.

[14] K. L. McMillan. A methodology for hardware verif. using
compositional model checking.SCP, 37:279–309, 2000.

[15] OMG. OMG unified modeling language specification (1.4-
UML-01-09-67), Sept. 2001.

[16] PATH. California partners for advanced transport and high-
way, 1986-2003.

[17] G. Rozenberg, editor.Handbook of Graph Grammars and
Computing by Graph Transformations, Volume 1: Founda-
tions. World Scientific, 1997.

[18] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape anal-
ysis via 3-valued logic. ACM Tr. Prog. Lang. and Sys.,
24(3):217–298, 2002.

[19] D. Sangiorgi and D. Walker.The Pi-Calculus: A Theory of
Mobile Processes. Cambridge U. Press, 2001.

[20] I. Schinz, T. Toben, C. Mrugalla, and B. Westphal. The
Rhapsody UML Verification Environment. In J. R. Cuel-
lar and Z. Liu, editors,Proc. SEFM, pages 174–183. IEEE,
Sept. 2004.

[21] T. Toben and B. Westphal. On the expressive power of LSCs.
In Proc. SofSem, volume 2. Matfyz Press, 2006.

[22] A. Venet. Automatic determination of communication
topologies in mobile systems. In G. Levi, editor,Proc. SAS,
volume 1503 ofLNCS, pages 152–167. Springer, 1998.

[23] B. Westphal. LSC verification for UML models with un-
bounded creation and destruction. In B. Cook et al., editors,
Proc. SoftMC, ENTCS. Elsevier, July 2005.

[24] F. Xie. Integration of Model Checking into Software Devel-
opment Processes. PhD thesis, U. Texas, Austin, Aug. 2004.

[25] E. Yahav, T. Reps, S. Sagiv, and R. Wilhelm. Verifying
temporal heap properties specified via evolution logic. In
P. Degano, editor,Proc. ESOP, number 2618 in LNCS,
pages 204–222. Springer, 2003.

10

