Specification and Verification of Dynamic Communication Sygems’

Jorg Bauerj(oba@s. uni - sb. de)
Universitat des Saarlandes, 66041 Saarbriicken, Geriaope/Fax: +49-681-302-5583/3065

Ina Schaeferischaef @i - sb. npg. de)
Max-Planck-Institut fur Informatik, 66123 Saarbriick&ermany

Tobe Toben, Bernd Westphat gben, west phal 1@ nf or mat i k. uni - ol denbur g. de)
Carl von Ossietzky Universitat Oldenburg, 26111 Oldegb@ermany

Abstract processes communicate, and thessage queudsiffering
asynchronous communication. Crucial for the communica-
Dynamic communication systems (DCS) are complex be-tion is the ability of processes &end process identitieg\

cause of their unboundedness in several dimensions. Theyrocess can send its own identity or the identity of a pro-
have an unbounded and changing number of objects, acess it knows to others as a means to change the communi-
dynamically changing communication topology and un- cation topology. Physical behaviour, for example distance
bounded message queues for asynchronous communicatioisensors announcing cars appearing in front, is not explicit
We present a specification language for DCS that capturesmodelled but abstracted tavn-deterministienvironment
these features but is still amenable for formal verification that triggers creation and deletion of processes (correspo
The verification of relevant properties of DCS is demon- ing to cars appearing and disappearing from sight) and may
strated using a combination of model-checking and abstractsend messages to processes (corresponding to announce-
interpretation. Our approach is illustrated using the appl ments by the distance sensor). Although it would be pos-
cation domain of car platoons. sible to model DCS in low level process calculi we prefer
a high level language in which all of the special features
of DCS can be observed and reasoned about directly. If the
three aspects named above are encoded into another formal-

Formal verification of dynamic communication systems iSM, high level, aspect specific properties are typicalf lo
(DCS) is difficult because they exhibit unboundedness and@nd cannot be exploited for tailored analyses.
dynamics in three dimensions: (i) a dynamically chang- In Section 3, the core of this work, we verify relevant
ing and potentially unbounded number of objects, (i) a dy- Properties of DCS using a combination of model-checking
namically changing communication topology, and (i) un- and abstract interpretation. Our technique can handle both
bounded message queues for asynchronous communicatiofite dynamically changing and unbounded number of ob-
Prominent examples of DCS are wireless ad-hoc networks jects and the dynamically changing communication topol-
traffic configuration systems such as car platoons [11], our0dy. For this paper we do not handle unbounded message
running example, or radio-based train control as well as re-queues and impose a bouncn the length of all queues.
cent concepts like mobile or ubiquitous computing. First, we apply Query- and Data-Type-Reduction to a DCS

In this paper, we address formal verification of DCS specification to compute a bounded abstract model. This
properties by first providing an elaborate modelling lan- abstraction is often too coarse to establish desired proper
guage, expressive enough to specify the three characteristi€s by model-checking. Spurious counter-examples intro-
tic features of DCS. The modelling language we propose duced by the abstraction can be eliminated and the abstrac-
in Section 2 explicitly speaks aboldcal statesof indi- tion refined using a novel topology analysis based on ab-
vidual processes, e.g. to represent the current role in asStract interpretation. It computes an over-approximaibn
protocol situation, theommunication topologyin which the topologies occurring for given DCS specifications.

*This work was partly supported by the German Research Clounci Section 4 demonstrates the practical adequacy of DCS
(DFG) as part of th: Traynsrepg]?onal Co)lllaborative Researehtr@ “Au- verification by translating a significant subset of UML into

tomatic Verification and Analysis of Complex Systems” (SHB/14 our.r_‘nod.elling-language, making_ it amenabl? to supsequent
AVACS). verification using our new techniques. Section 5 discusses

1. Introduction

haviour, but many processes may show this behaviour. Note
that this assumption of homogeneity is only made to keep
L= the presentation simple. The extension to a finite number of
cars : fa different protocols is straightforward.

request(car,) Creation and destruction of processes, each equipped
_ with a unique process identity, is modelled by an envi-
Figure 1. Snapshot of the merge protocol. ronment that abstracts from concrete physical behaviour.

Freshly created processes will always be in one ofttitial
related work and Section 6 gives directions of future work. statesA. A process may only be destroyed, if it is in one
of thefragile stateq2. Furthermore, the environment sends
messages non-deterministically to arbitrary processks. T
setEmsg denotes the messages that the environment can
send. They are a subset of the Setf all messagesThree
components of a DCS protocol have not been mentioned,
the set@ of all (local) statesthat a process can assume, a
sety of channel typeand asuccessor relatiohsucc.

Example: Car Platooning. Our running example fol-
lows the “car platooning” system as studied by the PATH
project[11]. The idea is to maximise traffic density on high-
ways by merging autonomous cars into platoons. A car in
this setting can either play the role ofrae agent(not in-
volved in a platoon)jeader (the first car in the platoon),
or follower (in a platoon in a follow-up position). Within a
platoon each follower has a communication channel to its DCS Protocols. Formally, a DCS protocol is a seven-
current leader and the leader maintains a channel to each ofyple P = (Q,A,9Q,x, %, Emsg sucg with the following

its current followers. components:

The key to platoon verification is the verification of the
merge manoeuvrelt specifies how two platoons (or free 1. afinite set obtates): The states a process can be in.
agents) can merge building a larger platoon. A merge of 2. initial statesA C Q: If a new process is created, it is
two platoons is initiated if a sensor announces to the leader in one of the states of.
pf a platoon that another platoon (or free-agent) is driving 3 fragile states) C Q: A processes in one of these
in front. Then the back platoon leader sends a request mes- giates can be destroyed.
sage to the leader of the front platoon asking for a merge.
After that, the back leader sends a message to its follow-
ers introducing the front leader to be their new leader. The
followers of the back platoon then announce themselves to
their new leader, the front leader. Finally, the former back
leader becomes itself a follower of the front leader.

Figure 1 depicts a snapshot of a merge manoeuvre. There
are three cars whermar; andcar, form a platoon withcars .
as the leader. Thereforar, has a flws communication 6. environment messag€msg C X
channel tacar;, while car; is a follower and has lr chan- 7. successor relatiohsucc: See below.
neltocars. cars is a free agent connecteddar; via a ‘ldr’
channel. In the message queuecaf; we see a message 1he Successor Relation. Let P = (Q, A, €, x, &, Emsg,
from car, requesting a merge. In the course of the merge SUC9 be a DCS protocol and l€p be a set of operations
operationgcar, will hand overcar; to the new leadecars working on sets, such as union or intersection. The succes-
and will itself become a follower dfar;. sor relatiorsuccreflects five differenactionsthat processes

Our framework allows to reason that the merge manoeu-can perform atrun-time: sending and receiving of messages
vre protocol is correct w.r.t. a certain specification, for i (with and without process identities) and local actions. To
stance, that no two cars believe to be each others’ leader agUm upsucc = SenduSendldJReaJRecldJLocal, where
any point in time. We will show in this paper how we can
establish the validity of such properties.

4. afinite set othannel typesy: Each channel type de-
notes a set of processes that a process may be con-
nected to, i.e. each channel type stands for a poten-
tially unbounded number of communication links be-
tween processes.

5. afinite set omessages:: The identifiers of the mes-
sages that can be sent to processes.

e (¢g,m,c,q') € SendC Q x ¥ x x x Q: A process in
stateq sends a message via channek changing its

state tag’.
2. DCS Protocols e (g,m,c1,co,q") € SendldC @ x X x x x (xU{id}) x
The behaviour of a DCS is formally defined byD&€CS Q: Same as above. Additionally, the sender’s identity
protocol P specifying two aspects: the behaviour of pro- or an arbitrary process identity from another channel
cesses and the behaviour of the environment. A protocol co is attached to the message.
specifies the behaviour of all processes, i.e., each process e (¢,m,q’) € RecC Q x ¥ x Q: A process changes its
is an instance of the protocol: one definition of process be- state fromy to ¢’ by receiving a message.

e (¢,m,c,op,q¢') € RecldC Q x X x x x Opx @: A
process in state receives message with an attached
identity. This identity is then processed by combining
it with channelec usingop.

e (q,c1,0p,c0,¢") € Local C Q x x x Opx x X Q:

A process locally changes its state frgrto ¢’. Addi-
tionally, it combines channels andc, usingop.

Configurations and Topologies. In order to distinguish
different processes, they are equipped with unioroeess
identitiesfrom a countably infinite sdtl of identities. Pro-
cesses can be in differenbnfigurations A configuration
o is a triple (¢,C, M), whereq € @ is the local state.
C : x — 2" a total function mapping channels to sets of

process identifiers, describes to which other processes the

process is connected by its channelg. : Id U {en} —
(X x (Id U {©}))*, a partial mapping from process iden-

gueues. This is our mechanism to make processes get
to know each other: by sending identities.

receive identity There is an actioflg, m, ¢, op, ¢’) € succ
and a messagen, /) in front of a queue of process
i.e. thereis ag € Id with M (19) = (m,¢).M’. The
received identity’ is then combined with the identities
from /'s channek using the set operatiatp. Process
¢ changes its local state 8. Formally, N7 = N[¢ —
(¢, C", M")], whereC’ = C[c — op(C(c),{V'})]

receive messageinalogous to the previous case.

modify channel There is an action(q,c1,0p,c2,q') €
succ Just like when receiving messages, only pro-
cess. is affected changing its local state ¢ and
combining the sets of identities in channels and

co usingop. Formally, N/ = N — (¢',Cle1 —
op(C(er), Clez))], M.

tities to message queues, gives the contents of the messagéyironment messageThe update in this case is like in the

gueues for messages sent by the environment or any other

processes. Note, that each process has a message queue
each identityandone for the environment. Message queues

are sequences of pairs of messages and parameter identities

Among the parameters there is a special paramgetinot-

ing that no identity was attached to the message. A config-

uration(q, C, M) is calledinitial, if ¢ € A, C = Az.0, and
M is the empty mapping. The set of all configurations w.r.t.
a given DCS protocdP is writtenS(P).

A topologydescribes the global state of a DCS, i.e. all
existing processes in their respective configurations.- For
mally, a topologyV\ is a partial mappingd — S(P). Itis
calledinitial, if all configurations in its range are initial.

Topology Transitions. This paragraph defines how
topologies evolve. We writdy" — N, if topology N
evolves in one step intd/’. The relation— is defined for
a DCS protocolP = (Q, A, 9, x, X, Emsg sucg. Assume
a process with identity € dom\), such that\V'(:) =
(¢,C, M). Topology\ evolves into\” if one of the fol-
lowing conditions is satisfied.

send messageThere is an actiofig, m, ¢, q’') € sucg pro-
cess. changes its local state tg, and the rest of its
configuration remains the same, i&7(:) = (¢, C,
M). Furthermore, message (without parameter

sending cases, except that the sent message€ifdn
for and entered into the receivererv queue. This case
is always enabled.

ppearance A new process can always be created starting
in one of its initial states and not being connected to
anyone else, i.eN’ = N[/ — o] wheredom\”) \
domN) = {/} ando is initial.

disappearanceProcess is in a fragile state, i.eq € Q,

and destroyed. Formallyy” = N |gomar\ {3 -

a|

The above conditions are not disjoint, i.e: is not deter-
ministic. The first five actions correspond to the transgion
specified bysuccand happen without environment interfer-
ence. The remaining actions are always enabled and reflect
the more non-deterministic behaviour of a DCS — modelled
by the environment.

Runs and Semantics. A run of a DCS protocolP is a
sequenceéVyV; ... of topologies such that for afl > 0
N; — N;i1. The set of all runs of starting in an initial
topology is called theemanticof P, written [P].

2.1. Example: Merge Protocol

To illustrate the formal definitions on a practical ex-

identity) is attached to the queues of those processesample, we define the merge manoeuvre as introduced

that . is connected to via channe) i.e. N'(y;) =

(gi, Ci, M;.(m, ©)) for each process; € dom\)
with ¢; € C(c) andN (¢;) = (¢, Ci, M;). As no pro-
cesses are created or disappgam(N”) = dom(N)

and processes other thaand the; remain unaffected.

send identity Analogous to the previous case for some

(g,m,c1,¢2,q") € succ The only difference is that a
pair (m, ') is added to the message queues of the con-
nected processes,non-deterministically chosen from
C(c2). If c2 = id, then the paifm,) is added to these

in Section 1 in terms of the DCS protocd?;,
(Q,A,Q,x, %, Emsg sucg with

e states) = {fa,Id, req, hnd clr, fl, ann},

initial stateA = {fa},

o fragile state€) = {fa, fl},

e channels¢ = {ldr, flws},

messagel = {car.aheadrequestnewldr, newflw},

and environment messaggsg= {car.ahead.

-~ ENV ‘" b2 '3
?(newldr, Idr, =) 7, cCarah
(flws, \, flws) ’/W
?(car.ahead Idr, =) @ / "®ques, ,)

/we
/ aqes)
/

!(newldr, flws, Idr)

?(request flws, U) 2 cewldr(3) %\
/ I
?(requestflws, U) 1(requestldr, id) ; W(eq)
?(car_ahead Idr, =) /

Id

2(newcfiw, flws, U) Figure 3. Sequence Diagram.

Figure 2. DCS Protocol for merge. . ,
are only shown if one of its components has changed.

Starting from the empty topology, two processes.,

The successor relatiauccis graphically represented in . 4
are successively created by the environment:

Figure 2. For each elemest= (q,...,q) € succwith

source statg and target state/, a transition betweegand

¢’ is drawn and annotated with the remaining components] = [= (1,000, [D] = [, 2 = (fa, {0,0), [])]

of s. For the sake of readability, elements of the action sets \We assume the car with identity is driving in front and

SendandSendldare prefixed with’, and elements oRec car, is notified about car, via a ‘car.ahead message.

andRecldare prefixed with?". This triggers a sequence of transitions in cateading to
The protocol works as follows. The car’s sensor that de- state fl’:

tects other cars driving in frontis modelled azar-ahead

message sent by the environment. This message carriesthe (11— (fa, (0, 0), [envi— (car.ahead.z)]), 2]

identity of the newly detected car. The protocol reacts to — 11 = (req, ({e2},0),[]), t2]

this message if the car is either a free-agent, i.e. in state [, (hnd ({12}, 0),[]),

‘fa’, or if it is the leader of a platoon, i.e. in stati”. In

both cases, thddr’ channel is modified by the assignment 2= (18, (0,0), [11 +— (requestu)])

operator= € Opto comprise the received identity. The car = [t = (elr, ({e2},0), [1), e2]

moves to statereq from which it will send a requestmes- = [e1 = (7, ({22}, 0),[]), ¢2]

sage carrying its own identityd’ to its new leader.

The transition starting at staterid now hands over the
set of follower cars to the new leader in whichreewIdr’

The ‘requestmessage that has been sent bywgas now
received by car,, leading to stateld’:

message containing the identity stored in thie’‘channel Ty (FL (L) 0 1o (Id. (0.4,
is sent to all identities that are stored in tlflevS channel. = (@ ez 01, (D), ez = (1, 0. {2). (D)
A car that is in statefl' reacts to this hewldr’ message by If now a third car.; enters the scene in front of this pla-

storing the received identity in thédr’ channel and enter- toon, car, will initiate a merge after the reception of the
Ing state ann. On the transition back to thdl* state, the Corresponding(jar_ahead message. This Corresponds to
follower car announces itself to its new leader by sending Figure 1 (withcar; = ;) where cans is just about to re-

a ‘newflw’ message carrying its own identity as parameter. ceive the merge request of car During this manoeuvre,

The former leader in statelr’ now clears its flws channel car 1, hands over his follower; to the new leader of the

and becomes itself a follower car by entering stélte p|at00n, cans (Cf Figure 3) After this second merge ma-
It remains to explain how a car reacts tequestand noeuvre, the resulting topology is the following:

‘newflw’ messages. These messages are handled by the

self-loops of theld’ state in which the identity that comes [t = (B, ({ea}, 0), [1)s v2 = (R, ({es},0), [1),

with the corresponding message is added tofllaes‘chan- 3 — (1d, (D, {t1,e2}), [])]

nel. The same applies to the transition from stédeto * Id’
triggered by arequestmessage.

To see how different instances of the DCS protdegi
interact, we exemplarily sketch a topology evolution lead- Besides formally capturing the behaviour of a DCS like
ing to a platoon of size three. The messages that are exear platooning in form of a DCS protocol, our overall aim
changed during the manoeuvre are shown in the sequences to provide automated analyses of DCS properties. To
diagram in Figure 3. In the following run, the channel con- this end, Section 3.1 introduceseVT, a variant of tem-
tents are given as tup{€’(ldr), C(flws)) and configurations poral logic that provides means to refer to all aspects of a

3. Protocol Verification

DCS, i.e. process identities, creation and destructiaoy, pr sndm|(p1, p2, p) is satisfied in\ iff p; is in both topolo-

cess states, queue-based communication, and topologies. gies and arfm, p) message appears at the end of the queue
Our approach to verification combines two techniques. M (p2) in A”’. Analogously, reception of a message is ob-

Assuming finite bounds on the length of queues, we can di-served iff a message disappears from the frontdp-) in

rectly apply state-of-the-art techniques for the absimacif N’. The notion of appearance and disappearance of mes-

infinite-state systems into finite-state model-checkimappr ~ sages in a queue is well-defined since our semantics is a

lems, if infiniteness stems from unbounded creation and de-strict interleaving semantics.

struction of processes [9]. Section 3.2 uses the car platoon ~We consider a procegsto be created inV, denoted by

ing running example to describe the verification strategy. © p, iff p appears freshly ifv”. A process is destroyed
This abstraction may produce spurious counter-exam-® p in N iff it is present in\" and disappears iv”.

ples. To rule them out, the abstraction has to be refined, The semantics of all other constructs ofNr is stan-

e.g. by adding so called non-interference lemmata tha stat dard and we shall use the abbreviation * —', * 3, ' G,

that certain spurious behaviour doesn’t happen in the con-and F'. The satisfaction relation betweenavit formulae

crete model, or by representing more objects exactly (cf. and DCS runs is then obtained by structural induction.

Section 3.2). S Examples. The property "A process is a follower, when-
In Section 3.3, additional invariants about DCS protocols gyerits leader channel is non-empty”is formalised ia M
are obtained by an abstract interpretation [5] based t@yolo 55 follows:

analysis [1], yielding a fairly precise over-approximaitiaf

all topologies that may occur during the run of a DCS pro- G Vp1, pa2.conrldr|(p1, p2) — instatéfl](p1) (1)
tocol. The invariants can be used in the model-checking . . . o
process or in proving non-interference lemmata furthering "A follower’s request is pending until a sane leadership is

the automation of DCS verification. established” is an example of a tempora property:
3.1. A Logic for Reasoning about DCS G ¥p1, pa.instatéfl] (p1) A conrldr](pi, p2)
— (pendreq](p1, p2, p1) 2)

Our property specification languageeVr is an exten- :
sion of the well-known temporal logic LTL with first-order U (instateld](pz) A conrifiws(p2, p1)))

quantification of so calle&nonymous objectsince there Finally, the following is a slightly more elaborate topolog
are no global names in a topology. In addition, there are cal example. It requires that a pathological case doesn't oc

constructs to refer to communication between processes angyr, namely that two followers mutually consider each other
to the topology. As explained in Section 5T resembles to be the leader:

ETL [25]. _ _
The syntax of METT is given by the following grammar G VP1, pa-instatéfl](p1) A instatefl] (p2) A 3)
wherec denotes a channel amd a message. p1 # p2 — —(conrldr](py, p2) A conrildr](pa, p1))

¢ = p1 = po | instatéq](p) | conrid] (p1, p2) 3.2. DCS Model-Checking

| pendm](p1, pa, p) | sndm](py, p2,p) | revim](p1, p2, p) There are three reasons for DCS being infinite-state sys-
tems. Firstly, there is no finite bound on the number of
= v Vp.o|X U ’ o

[opl®p[=¢lerVex[Vpo|Xo]drU o processes that exist in a topology, thus, secondly, also not

on the number of channels. Thirdly, there is no finite up-
per bound on the length of message queues. For this pa-
ties. Subformulas referring to processes’ local states, th per we sidestep the last issue by assuming a finite_ bound
topology, and pending messages are evaluated over a singl%lOn the Igngth of 3” gﬁeues atr;_d chus]fm the fwst(;ssues.
topology . The local state formulanstatdq|(p) is satis- ey can be treated with a combination of Query-and Data-
fied iff the process with identity denoted Ipyis in A" and Type Reduction [9] becaqse DCS lie n the class of systems
its local state ig. The topology formulaonrc(p1, ps) is where the processes are instances of finitely many templates

satisfied iff the processes andp, are in, p; is in con- or classes.

figuration(g, C, M), andps € C(c). The pending message Query Reduction. First of all, we can establish that DCS

formulapendm](p1, p2, p) is satisfied iff the eventm, p) are symmetric in the process identities by applying syitact

occurs inM (ps). cal rules [12]. Intuitively, the reason is that the literalue
Communication, i.e. sending and receiving mes- of process identities is never referred to in the actions of

sages, and creation and destruction of processes involvea DCS protocolP. Thus if there is a run iffP] where a

two successive topologied/ and N’. The formula number of processes with identities ..., ¢ interact, then

Semantically, the logical variableslenote process iden-
tities, i.e. the formulgp; = p, compares process identi-

O ?(requesttmp =) interferences among multiple cars requesting a merge si-
@ 1(tmp, nack) multaneously, are excluded.

Under-approximation is an adequate approach for falsifi-

cation since in this case model-checking is efficient. Itdoe

? ¢ 8 i !
oot L) Fnewudr, ldr, =) ot suffice, however, to establish correctness in general.
?(requesttmp, =) 1(Idr, newflw, id)

(flws, U, tmp)
!(tmp, ack)

?(car.ahead tmp, =)

1(tmp, requestid) ?(ack Idr, =)

Over-approximation: Data-Type Reduction. Consider-
2 (ack Idr, =) ing the actions a DCS protocol can take, we observe that the

?(car.ahead tmp, =)

I(tmp, requestid) !glﬂws ni;ﬂddr,ldr) operations on process identities can be seen as accesses to
(W5, fws) an unbounded array-like data-structure with processiident
7(nack ?(requesttmp, =) ties as indices. For example, the local state of each process
?(newflw, flws, U) !(tmp, nack)

¢ can be stored ag(:) with ¢ : 1d — @. The growing

and shrinking extension of topologies within a run can be

. o .. represented by explicitly keeping track of whether a pro-

b/y syrr)metry there is a run where processes with identities g jgentity is active or not. Thus DCS protocol runs are

1, ---; 4, 9O through the same scenario. represented as sequences of valuations of finitely many un-
For example, property (3) excluding some invalid 5 4ad data-structures.

topologies, can be verified by considering only two repre- |, g setting we apply a particular abstract interpreta-

sentative cases (instead of checking all possible combina—tiOn called Data-Type Reduction [14] (DTR) to the DCS

tions), one where; = ¢ = p; and one wherg; = ¢; # protocol yielding a finite over-approximation of the origin
t2 = p2, ¢, 01,02 € Id. In this particular example the sec- pg hrotocol (following [9]). Given a finite set of process

ond case is already sufficient, since (3) explicitly conssde o ntities whose configurations shall be represented lgxact
different cars only. Note that Query Reduction allows to fo- yrp maps all other identities to a special identity The

cus on finitely many representative cases, but provides noresulting set of identities is finite. If the content of chan-
reduction of the model.

nels is not counted, like in the running example, the size of
Under-approximation as Falsification checkswhethera channels also becomes bounded.
property holds in those runs §P] where at mostn pro- The special identityt still occurs in messages and chan-
cesses exist simultaneously and where the length of thenels, e.g., if we represent two cars exactly then the first car
gueues doesn’'t exceed Model-checking property (3) for may receive acar.ahead environment message with as
the DCS protocol from Sect. 2.1 withh = 3 andn = 2 parameter and subsequently send a request to
already unveils a serious flaw in the DCS protocol as it The process with identity_ is also regularly scheduled.
doesn’t negotiate the merge. If two cars happen to seeln this case determining the current state means accessing
each other in front, for instance since they drive on par- ¢(_L) which is where the abstract interpretation comes into
allel lanes, they simultaneously execute the protocol, andplay. The expressiog(L) yields an upper bound of all pos-
both end up as followers considering each other as theirsible states a DCS process can be in, or equivalently, non-
leader. The DCS protocol shown in Figure 4 introduces deterministically any of the possible states. The protocol
positive and negative acknowledgements to fix this prob- description then yields a transition and a successor siate f
lem. To avoid the representation of dispensable intermedi-the obtained state, resulting for example, in sending a new-
ate states in Figure 4, we merged successive states with onkeader message to one of the current followers. Determin-
outgoing transition intmnetransition labelled by the cor- ing the current followers means accesdimgy_L) which in
respondingsequencef actions. Checking the accordingly turn non-deterministically yields any possible set of pex
changed model confirms satisfaction of property (3). identities that may comprise the exactly represented aes a
A similar approach to formal verification of the car pla- well as L. For more details we refer to [9].
tooning case study has been taken by the PATH project[16]. A DTR of the manually obtained model can auto-
They modelled an instance of the merge protocol compris-matically be computed [23]. Model-checking the over-
ing two cars. Model-checking confirmed that the two cars approximation yields a counter-example which is, by close
merge model complies to an observer automaton requiringexamination, spurious. It was caused by schedulinim
that the merge operation completes. a topology where (exact) car is a follower of (exact) car
But from such results about an under-approximation, i.e. .s. The configuration of. was chosen such that it consid-
the results of the PATH project and ours as reported so far,ers car. to be its follower and announcesto be the new
we can only conclude (by Query Reduction) that all sym- leader using arlewldr’ message. A topology whete and
metric cases obey the property. However, we cannot con-.; form a platoon and a third (different) car hasamong its
clude the correctness of the protocol in general becauseollowers is not possible in the exact model. We effectively
most runs of the system, in particular those with possible refine the abstraction by explicitly excluding the spurious

Figure 4. Fixed DCS protocol for merge.

behaviour using the assumption: We show how a set of graph transformation rules serving as
input to this algorithm can be derived automatically from a
G Vp1,p2, ps.) DCS protocol. The result of the algorithm is then used to
sndnewldr](p1, p2, p3s) — conrlflwg (ps, p1) prove the spuriousness of certain error traces discovared i

the previous section.
Now model-checking the implicatioti4) — (3)’ succeeds.

Assumptions like (4) are calletbn-interference lemma DCS as Graphs. It remains to show, how DCS protocols
as they state that certain kinds of interference between pro are encoded as graph transformation system. First, we show
cesses do not take place. These lemmas have to be ediow a single topology is encoded, later we shall see, how a
tablished for each system separately. The non-interferenc DCS protocol yields a set of transformation rules. Bounded
lemma (4) can in fact be automatically proven using the message queues and local states of objects are encoded in
analysis presented in Section 3.3. a finite set of node labels. Communication channels are di-

. rected, labelled edges.
Open Ends. The previous paragraphs presented how far Formally, letP = (Q, 4, x, £, Emsg Sucq be a DCS

state-of-the-art techniques help in the analysis of DCS. rotocol. A tonoloay ofP is coded as a directed. edge-
Leaving aside the unboundedness of queues, we are fac? : hology : R, » €09
. ““and node-labelled graph as depicted in Figure 1. The only
ing two issues that currently require manual intervention:

2 o . o difference is that node-labels additionally encode bodnde
First, identifying counter-examples as spurious is in gahe

. : length message queues meaning, that the set of node labels
not decidable because on the one hand guessing the Ui be O x 5. A boundn on the length of message queues
rent state of the special processmakes | react in one) g geq

is needed in order to guarantee a finite set of node labels as
step where an exact process had to take a number of steps g

A required in [1]. Edge-labels are from the set) 32, where
On the other hand. stands for arbitrarily many processes. q . [g
. . edges with a label from the s&t of message names are
Each occurrence af in a spurious counter-example could
. : used to connect a message parameter to a process that has
be backed up by a different instance of the DCS protocol. .
O . received such a message (see below).
Second, deriving non-interference lemmata from
counter-examples is a creative act that involves deep underactions as Graph Transformation Rules. A graph

standing of the system. Also, once found, non-interferencetransformation rule consists of two graphdett graph L
lemmata must be proven. and aright graph R, and a relation between them, i.e. which
Topology analysis as introduced in Section 3.3 can help nodes and edges ih and R correspond to each other. In
to automate these two iSSUeS. As |t Computes a Superset oﬁ:igure 5 this Correspondence is given |mp||c|t|y by the po_
all possible topologies, it may be possible to automatjcall sjtion of the nodes and edges. A rule canappliedto a
deduce from this set a number of non-interference lemmatagraph, if L is a subgraph of? (formally, if there is an
Counter-examples can be rejected, if they rely on a topologyinjective graph morphism fronk to G). The result of the
that does not occur in this superset. Certainly, this apgroa application is the replacement éfwith R in G. Replace-
is not complete, so we may fall back to manualintervention. ment is formalised in categorical terms. Again, cf. [17] for
formal details.
Each element ofuccis translated into a set of graph
Knowing the topologies that can occur during the runs transformation rules. An example of a graph trans-
of a DCS protocol is a crucial step in DCS verification. An formation rule resulting from the send identity element
abstract interpretation based solution of this problentégs p (¢, m, ¢1,c2,¢’) € SendId is shown in Figure 5. The left
sented in [1]. There, DCS topologies are represented bygraph shows a situation where a procgsis stateg is con-
directed, node-labelled graphs. Evolution of topologges i nected to processes and:s via channels:;; andc,. The
specified in terms of graph transformation systems inducingresult of sending the identity of processpresent in chan-
an infinite-state transition system of possibly unbounded nel c; attached to message to process, is exactly the
graphs. This transition system is over-approximated to aright graph. Process has changed its state 6 m is at-
finite-state transition system abstract graphswhere each ~ tached to the message queue of proegsand process,
abstract graph denotes a (possibly infinite) set of concreteis connected to procesg by anm-labelled edge. This de-
graphs. The abstract system is computed automaticallynotes, that identity; was sent ta, attached to message.
from a set of graph transformation rules. Consider [1] for Similar translations are applied to the remaining elements
more details about the abstract interpretation of graptstra of succ
formation systems and [17] for an overview of graph trans- So far, the resulting graph transformation system does
formation in general. not take care of environment messages, creation, and de-
This algorithm is now utilised to compute a superset of struction of processes. Environment messages are coded in
all topologies occurring during the run of a DCS protocol. the obvious way. For creation of a process, there is a graph

3.3. Topology Analysis

o o @ o . m @ s a system under design can be tested f_or whether it satisfies
its requirements, at best fully automatically. But even the

most elaborate approachesto UML verification available to-

a c2 [> 1 c2 day [24, 20] exclude, for example, the aspect of unbounded
creation and destruction of objects in general and expect th
L1 ! e user to provide finite bounds.
The DCS language is designed to study the three aspects
Figure 5. Transform. rule: send message. of unboundedness in a clean, focused formalisation. In the

following we sketch an embedding of an executable UML
transformation rule for eache A with an empty leftgraph core into DCS, which enables us to finally transfer analysis
and a single node labell€d, ¢) being the right graph. Note, procedures obtained for DCS to the domain of UML.

that these creation rules are always enabled because of thE . .
: . mbedding Core UML into DCS. We focus on an exe-
empty left graph. With respect to destruction of a process cutable UML subset, e.g. following [8] and [24], i.e. we

for each Q there is a similar rule with left and right X X) o
graph intqerihanged 9 consider UML models where the intra-object behaviour is
Note that this translation of a DCS protocol into graph PTXp“C'tly defined by classeg and state-machines. In par-
. g ticular, we leave out semantically unclear sub-languafies o
transformation rules can be conducted fully automatically UML like Use-case diaarams or Deolovment diagrams
because it works on syntax only. As before, a bound on A UML model in thi 9 b =P ”y 'ag .t ¢
the length of message queues is required. The result of "= =" - Modetin this sense basically Comprises a Set o
basic, finite domain, non-object types, a finite set of sig-

the topology analysis applied to these graph transformatio - . . .
rules presents valuable assumptions helping to prove thetnals (or Ie\t/_ents), tind a f":j'te Sﬁt (;ftﬁlasses W|t_h_an w;)her![-
non-interference lemmata from the previous section. We ance refation on them and each ot them comprising object-

are currently working on integrating these two techniques :gferlence typedfaisi)0|at|onh§ and.a sta:g-r:]?jctr\|n(|a. Tre ?C'
into an automatic tool chain. ion language of state-machines is restricted to (local) a

For our case study, property (4) can be coded easily intot”bute Tampul;:\tlon ;md evefrlthsenldmg, guardsbarg Se.ﬂs't't d
a graph that resembles the right graph of Figure 5 with 0 event reception. >ome of the classes may be designate

pi — u;, m replaced withnewldr, and arbitraryp, q, ¢/, o t_Jrehactors, I-€. ttot_reprefselnt the en_\:lhrot;wm_en;[. tribut
andms. All such graphs are then also required to have € representation of classes with basic type atlributes

a flws edge fromus to ¢;. Running the topology analysis and state-machine as a DCS is obvious: State-machines are

on the platoon DCS protocol reveals that all graphs occur- Unfolded into non-hierarchical state-machines accortbng

ring for the protocol meet this requirement, thus provirg th tbhe|r semantltcsf?rr:d E)hgscurr?nt clor:ﬁtgurqtlonf of attr;]butes
non-interference lemma stated as property (4). ecomes part ot the protocol states, 1.€. for each com-

bination of attributes and state-machine states there is a
4. UML and DCS state in the DCS protocol for the class. The extension of
DCS protocols from a single kind to finitely many ones is
A domain where DCS naturally appear is the large body straightforward. The associations directly become chignne
of UML [15] models. The following three fundamental and events are represented as messages in the DCS protocol.
principles of UML relate to characteristic features of DCS. Class inheritance can be established by splitting an ob-
Firstly, following the object-oriented approach under- ject of a subclass into one object of the superclass and one
lying the definition of the Unified Modelling Language, object that provides the attributes added by the subclass,
systems are defined in terms of classes of which objectsboth linked by an additional, designateglink channel in
are instantiated at runtime. In general there are no finitethe subclass [20].
bounds given on the number of objects alive during system A fundamental concept of UML state-machines is the
runs, similar to DCS protocols. Secondly, UML explicitly run-to-completion step, i.e. once triggered, an objeatsak
provides asynchronous, message-queue-based communicéansitions in its state-machine as long as it is possible
tion by events as primitive without a priori imposing finite to take a transition without dispatching an event. As the
bounds on queue lengths. And thirdly, UML has the con- UML standard doesn’t require a run-to-completion step to
cept of associations (in different flavours) that are instan be atomic, it is faithfully represented by the full intené@zg
tiated to links, basically directed connections between ob of DCS protocols.
jects, which dynamically change during a system run, that The UML standard [15] doesn’t enforce a particular
is, UML models have a dynamic topology. gueue model, but considers event transport and manage-
Formal analysis of UML models is a topic of growing mentto be an implementation detail. However, some UML
interest. It is one advantage of a model-based develop-semantics, e.g. [8], use a single event queue per object, i.e
ment process that in early development phases a model okeep the order of events sent by different other objectss Thi

is only representable in DCS with a modified DCS seman- DCS
tics as it currently uses an event qugaex sendeilin each
object following the approach of [3] (cf. Section 5). m DTR

5. Related Work @ @

Modelling DCS. There are many models useful for de-
scribing dynamic topologies, for instance process calculi

like w-calculus [19], ambient calculus [4] or graph rewrit- 5
ing [17]. Why should one choose DCS protocols? yes no-————- -
Certainly, it is possible to encode DCS protocols in much Figure 6. Tool Architecture.!

lower level process calculi. However, we chose a more prac-

tical approach, where we want to see high-level features lik of the occurring topologies. This is somewhat similar to
roles in protocols (represented by process states) or asynthe topology analysis [1] as employed here, except that the
chronous communication via queues in theiplicit natural |atter uses more explicit graph transformation systems to
instead of theicodedform as necessary for all lower level model evolving topologies. [25] comes with a verification
specification mechanisms. In practice, communication is method based on Shape Analysis [18], but, as mentioned
asynchronous and needs some sort of message queues. \W&lier, aims at a different application domain, where com-
stress the practical relevance of DCS protocols by encodingmunication is not crucial. Closest to our work is the work
UML [10] into DCS protocols in Section 4. in [9]. There, verification of properties specified as Live
Originally, our work was inspired by Communicating Fi- - Sequence Charts is performed directly on UML models.
nite State Machines as introduced by Brand and Zafiropuloporeover, the verification algorithms themselves resem-
in [3]. However, they deal with a completely static scenario ple those of Section 3.2 without the enhancement gained
with a fixed number of processes and a fixed communica-through the analysis of Section 3.3. Finally, DCS protocols
tion topology. We extended Communicating Finite State provide a more concise formalisation compared to UML se-

Machines conservatively to incorporate the features Reces mantics, while at the same time being equally expressive
sary for modelling interesting systems. (see Section 4).

Additionally, we provide a strong verification frame- .)))
work for DCS protocols: the specification language® The PATH Project. - Our running example is motivated by
and the techniques in Section 3 combining techniques fromthe work of [11]. The authors try to deal with formal veri-
model-checking (Section 3.2) and abstract interpretdfipn fication of their models using model-checking while suffer-
(Section 3.3). Also for these verification purposes, itis-co ing from severe drawbacks. The number of modelled ob-
venient to reason about high level features in their naturali€cts is static and has to be predefined, hence there is no dy-

instead of their coded form. namic creation and deletion of objects. Moreover, as com-
o] munication in the system is modelled via shared memory
Specification Languages. Section 3.1 presented &4T in contrast to message passing, there is no communication

as a specification language tailored for DCS protocols. topology, not to mention a dynamically changing one. Dur-
There are many other specification languages for evolvinging their model-checking process only static scenariob wit
graph structures to be found in the literature. Most promi- v interacting, statically selected objects are consider
nentamong them is ETL [25]. The main difference t0 ETL a| checked properties are very close to the implementation
is the lack of communication primitives in ETL becauseitis for instance whether a certain flag is set at those points in
tailored to verifying multi-threaded Java programse M, time it is supposed to be set, whereas the considered proper-

on the other hand, lacks general transitive closure. LiVe ties should be motivated by the application scenario rather
Sequence Charts [6] with dynamic binding [13] are ideally han its implementation.

suited for specifying communication behaviour, but laak th

ability to naturally reason about graph structures. Furthe 6 Conclusion and Outlook

more they are restricted in expressiveness to a proper sub-

language of CTE [21]. Universal LSCs have an equivalent Dynamic communication systems are widely used but
representation in first-order LTL [21], thus are actually a also highly complex and difficult for formal verification
sublanguage of MTT. due to their inherent features such as a dynamically chang-
ing unbounded number of objects, a dynamically changing

DCS Verification. There is numerous work on analysis o
communication topology and unbounded message queues

and verification of certain single aspects of DCS. In [22]
tOpOlOgIQS are def'r‘ed_f()f'calcums expressions, and an 10vals represent models information, boxes denote toolsomeplures,
abstract interpretation is employed to compute a supersesolid lines denote automatic data-flow, dashed lines manteavention.

for asynchronous communication. In this paper, we have [13] J. Klose and B. Westphal. Relating LSC specifications to

presented a high-level specification language for DCS es-

pecially aiming at directly modelling these three aspetts o

DCS. Furthermore, we have shown how to specify proper- [
ties over these models and how to verify them using model-
checking and abstract interpretation based techniques. In
order to demonstrate practical applicability, we have show [16]

how to translate certain UML models into DCS.
For future work, we aim at an integration of existing

techniques to handle unbounded queues [7, 2].

more, we want to automatise the verification of DCS within _ _ _
a unified tool chain as depicted in Figure 6, where the sin- [18] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape-anal
gle tools already exist. Here, the topology analysis (TA)

establishes non-interference lemmata (non.int) as well as

general topology invariants (inv.) and gives hints aboat th

extension (ext.) of the DCS model. These facts are used 20]
for a refined model-checking (MC) of the abstracted model

(DCS#) w.r.t. the query-reduced (QR) requirement specifi-
cations (METT).

Acknowledgements. The authors want to express their

gratitude to the researchers of AVACS subproject S2, in par- 22]

ticular A. Podelski, R. Wilhelm, and W. Damm, for fruitful
discussions at an early stage of this work.

References

(1]

(2]

(3]
(4]

(5]
(6]
(7]

(8]

J. Bauer and R. Wilhelm. Analysis of Dynamic Communi-
cating Systems by Hierarchical Abstraction. Dagstuhl Sem-
inar Proceedings 06081, 2006.

B. Boigelot, P. Godefroid, B. Willems, and P. Wolper. The
power of QDDs (extended abstract). Broc. SAS pages
172-186. Springer, 1997.

D. Brand and P. Zafiropulo. On communicating finite-state
machinesJACM 30(2):323-342, Apr. 1983.

L. Cardelliand A. D. Gordon. Mobile ambients. In M. Nivat
editor, Proc. FoSSaCSvolume 1378 ofLNCS pages 140—
155. Springer, 1998.

P. Cousot and R. Cousot. Abstract interpretationPtac.
PoPL, pages 238-252, New York, NY, 1977. ACM Press.
W. Damm and D. Harel. LSCs: Breathing life into MSCs.
In FMSD, volume 19(1), pages 45-80, 2001.

W. Damm and B. Jonsson. Eliminating queues from RT
UML model representations. IRroc. FTRTFT pages 375—
394. Springer, 2002.

W. Damm, B. Josko, A. Pnueli, and A. \otintseva. A
discrete-time UML semantics for concurrency and commu-
nication in safety-critical applicationsSCPR, 55(1-3):81—
115, Mar. 2005.

[9] W. Damm and B. Westphal. Live and let die: LSC-based

(10]

(11]

(12]

verif. of UML-models.SCR 55(1-3):117-159, Mar. 2005.

H. Gomaa. Designing Concurrent, Distributed, and Real-
Time Application with UML Addison-Wesley, 2000.

A. Hsu, F. Eskafi, S. Sachs, and P. Varaiya. The Design
of Platoon Maneuver Protocols for IVHS. Technical report,
UCB-ITS-PRR-91-06, 1991.

C. N. Ip and D. L. Dill. Better verification through symme
try. FMSD, 9((1/2)):41-75, 1996.

10

Further-

UML models. In H. Ehrig and M. Grosse-Rhode, editors,
Proc. INT, pages 130-137, Apr. 2002.

14] K. L. McMillan. A methodology for hardware verif. using

compositional model checkingsCP, 37:279-309, 2000.
OMG. OMG unified modeling language specification (1.4-
UML-01-09-67), Sept. 2001.

PATH. California partners for advanced transport aighh
way, 1986-2003.

G. Rozenberg, editorHandbook of Graph Grammars and
Computing by Graph Transformations, Volume 1: Founda-
tions World Scientific, 1997.

ysis via 3-valued logic. ACM Tr. Prog. Lang. and Sys.
24(3):217-298, 2002.

D. Sangiorgi and D. WalkefThe Pi-Calculus: A Theory of
Mobile ProcessesCambridge U. Press, 2001.

I. Schinz, T. Toben, C. Mrugalla, and B. Westphal. The
Rhapsody UML Verification Environment. In J. R. Cuel-
lar and Z. Liu, editorsProc. SEFM pages 174-183. IEEE,
Sept. 2004.

T. Toben and B. Westphal. On the expressive power of LSCs
In Proc. SofSepvolume 2. Matfyz Press, 2006.

A. Venet. Automatic determination of communication
topologies in mobile systems. In G. Levi, editBroc. SAS
volume 1503 oLNCS pages 152-167. Springer, 1998.

B. Westphal. LSC verification for UML models with un-
bounded creation and destruction. In B. Cook et al., editors
Proc. SotMGENTCS. Elsevier, July 2005.

F. Xie. Integration of Model Checking into Software Devel-
opment ProcesseRPhD thesis, U. Texas, Austin, Aug. 2004.
E. Yahav, T. Reps, S. Sagiv, and R. Wilhelm. Verifying
temporal heap properties specified via evolution logic. In
P. Degano, editorProc. ESOR number 2618 in LNCS,
pages 204-222. Springer, 2003.

