
Computing Least Fixed Points of

Probabilistic Systems of Polynomials

Javier Esparza, Andreas Gaiser and Stefan Kiefer

{ esparza, gaiser, kiefer } @in.tum.de

Institut für Informatik

Technische Universität München, Germany

December 21, 2009

Abstract

We study systems of equations of the form X1 =
f1(X1, . . . , Xn), . . . , Xn = fn(X1, . . . , Xn) where each fi is a poly-
nomial with nonnegative coefficients that add up to 1. The least
nonnegative solution, say µ, of such equation systems is central to
problems from various areas, like physics, biology, computational lin-
guistics and probabilistic program verification. We give a simple and
strongly polynomial algorithm to decide whether µ = (1, . . . , 1) holds.
Furthermore, we present an algorithm that computes reliable sequences
of lower and upper bounds on µ, converging linearly to µ. Our algorithm
has these features despite using inexact arithmetic for efficiency. We
report on experiments that show the performance of our algorithms.

1 Introduction

We study how to efficiently compute the least nonnegative solution of an equa-
tion system of the form

X1 = f1(X1, . . . , Xn) . . . Xn = fn(X1, . . . , Xn) ,

where, for every i ∈ {1, . . . , n}, fi is a polynomial over X1, . . . , Xn with positive
rational coefficients that add up to 1.1 The solutions are the fixed points of the
function f : Rn → Rn with f = (f1, . . . , fn). We call f a probabilistic system of
polynomials (short: PSP). For example, the PSP

f(X1, X2) =

(

1

2
X1X2 +

1

2
,

1

4
X2X2 +

1

4
X1 +

1

2

)

induces the equation system

X1 = 1
2X1X2 + 1

2 X2 = 1
4X2X2 + 1

4X1 + 1
2 .

Obviously, 1 = (1, . . . , 1) is a fixed point of every PSP. By Kleene’s theorem,
every PSP has a least nonnegative fixed point (called just least fixed point in
what follows), given by the limit of the sequence 0, f(0), f(f(0)), . . .

1Later, we allow that the coefficients add up to at most 1.

1

2

PSPs are important in different areas of the theory of stochastic processes
and computational models. A fundamental result of the theory of branching
processes, with numerous applications in physics, chemistry and biology (see
e.g. [8, 2]), states that extinction probabilities of species are equal to the least
fixed point of a PSP. The same result has been recently shown for the probability
of termination of certain probabilistic recursive programs [6, 5]. The consistency
of stochastic context-free grammars, a problem of interest in statistical natural
language processing, also reduces to checking whether the least fixed point of a
PSP equals 1 (see e.g. [10]).

Given a PSP f with least fixed point µf , we study how to efficiently solve
the following two problems: (1) decide whether µf = 1, and (2) given a rational
number ǫ > 0, compute lb,ub ∈ Qn such that lb ≤ µf ≤ ub and ub −
lb ≤ ǫ (where u ≤ v for vectors u,v means ≤ in all components). While
the motivation for Problem (2) is clear (compute the probability of extinction
with a given accuracy), the motivation for Problem (1) requires perhaps some
explanation. In the case study of Section 4.3 we consider a family of PSPs,
taken from [8], modelling the neutron branching process in a ball of radioactive
material of radius D (the family is parameterized by D). The least fixed point
is the probability that a neutron produced through spontaneous fission does
not generate an infinite “progeny” through successive collisions with atoms of
the ball; loosely speaking, this is the probability that the neutron does not
generate a chain reaction and the ball does not explode. Since the number of
atoms in the ball is very large, spontaneous fission produces many neutrons per
second, and so even if the probability that a given neutron produces a chain
reaction is very small, the ball will explode with large probability in a very
short time. It is therefore important to determine the largest radius D at which
the probability of no chain reaction is still 1 (usually called the critical radius).
An algorithm for Problem (1) allows to compute the critical radius using binary
search. A similar situation appears in the analysis of parameterized probabilistic
programs. In [6, 5] it is shown that the question whether a probabilistic program
almost surely terminates can be reduced to Problem (1). Using binary search
one can find the “critical” value of the parameter for which the program may
not terminate any more.

Etessami and Yannakakis show in [6] that Problem (1) can be solved in
polynomial time by a reduction to (exact) Linear Programming (LP), which is
not known to be strongly polynomial. Our first result reduces Problem (1) to
solving a system of linear equations, resulting in a strongly polynomial algorithm
for Problem (1). The Maple library offers exact arithmetic solvers for LP and
systems of linear equations, which we use to test the performance of our new
algorithm. In the neutron branching process discussed above we obtain speed-
ups of about one order of magnitude with respect to LP.

The second result of the paper is, to the best of our knowledge, the first
practical algorithm for Problem (2). Lower bounds for µf can be computed us-
ing Newton’s method for approximating a root of the function f(X)−X. This
has recently been investigated in detail [6, 9, 4]. However, Newton’s method
faces considerable numerical problems. Experiments show that naive use of
exact arithmetic is inefficient, while floating-point computation leads to false
results even for very small systems. For instance, the PReMo tool [11], which
implements Newton’s method with floating-point arithmetic for efficiency, re-
ports µf ≥ 1 for a PSP with only 7 variables and small coefficients, although

3

µf < 1 is the case (see Section 3.1).
Our algorithm produces a sequence of guaranteed lower and upper bounds,

both of which converge linearly to µf . Linear convergence means that, loosely
speaking, the number of accurate bits of the bound is a linear function of the
position of the bound in the sequence. The algorithm is based on the following
idea. Newton’s method is an iterative procedure that, given a current lower
bound lb on µf , applies a certain operator N to it, yielding a new, more precise
lower bound N (lb). Instead of computing N (lb) using exact arithmetic, our
algorithm computes two consecutive Newton steps, i.e., N (N (lb)), using inexact
arithmetic. Then it checks if the result satisfies a carefully chosen condition.
If so, the result is taken as the next lower bound. If not, then the precision is
increased, and the computation redone. The condition is eventually satisfied,
assuming the results of computing with increased precision converge to the exact
result. Usually, the repeated inexact computation is much faster than the exact
one. At the same time, a careful (and rather delicate) analysis shows that the
sequence of lower bounds converges linearly to µf .

Computing upper bounds is harder, and seemingly has not been considered
in the literature before. Similarly to the case of lower bounds, we apply f twice
to ub, i.e., we compute f(f(ub)) with increasing precision until a condition
holds. The sequence so obtained may not even converge to µf . So we need to
introduce a further operation, after which we can then prove linear convergence.

We test our algorithm on the neutron branching process. The time needed
to obtain lower and upper bounds on the probability of no explosion with
ǫ = 0.0001 lies below the time needed to check, using exact LP, whether this
probability is 1 or smaller than one. That is, in this case study our algorithm
is faster, and provides more information.

The rest of the paper is structured as follows. We give preliminary definitions
and facts in Section 2. Sections 3 and 4 present our algorithms for solving
Problems (1) and (2), and report on their performance on some case studies.
Section 5 contains our conclusions. A shorter version of this paper will appear
in 27th International Symposium on Theoretical Aspects of Computer Science
(STACS 2010).

2 Preliminaries

Vectors and matrices. We use bold letters for designating (column) vectors,
e.g. v ∈ Rn. We write s with s ∈ R for the vector (s, . . . , s)⊤ ∈ Rn (where ⊤

indicates transpose), if the dimension n is clear from the context. The i-th
component of v ∈ Rn will be denoted by vi. We write x = y (resp. x ≤ y resp.
x ≺ y) if xi = yi (resp. xi ≤ yi resp. xi < yi) holds for all i ∈ {1, . . . , n}. By
x < y we mean x ≤ y and x 6= y.

By Rm×n we denote the set of real matrices with m rows and n columns. We
write Id for the identity matrix. For a square matrix A, we denote by ρ(A) the
spectral radius of A, i.e., the maximum of the absolute values of the eigenvalues.
A matrix is nonnegative if all its entries are nonnegative. A nonnegative matrix
A ∈ Rn×n is irreducible if for every k, l ∈ {1, . . . , n} there exists an i ∈ N so
that (Ai)kl 6= 0.

4

Probabilistic Systems of Polynomials. We investigate equation systems
of the form

X1 = f1(X1, . . . , Xn) . . . Xn = fn(X1, . . . , Xn),

where the fi are polynomials in the variables X1, . . . , Xn with positive real co-
efficients, and for every polynomial fi the sum of its coefficients is at most 1.
The vector f := (f1, . . . , fn)⊤ is called a probabilistic system of polynomials
(PSP for short) and is identified with its induced function f : Rn → Rn. If
X1, . . . , Xn are the formal variables of f , we define X := (X1, . . . , Xn)⊤ and
Var(f) := {X1, . . . , Xn}. We assume that f is represented as a list of polyno-
mials, and each polynomial is a list of its monomials. If S ⊆ {X1, . . . , Xn},
then fS denotes the result of removing the polynomial fi(X1, . . . , Xn) from f
for every xi /∈ S; further, given x ∈ Rn and B ∈ Rn×n, we denote by xS and
BSS the vector and the matrix obtained from x and B by removing the entries
with indices i such that Xi 6∈ S. The coefficients are represented as fractions
of positive integers. The size of f is the size of that representation. The degree
of f is the maximum of the degrees of f1, . . . , fn. PSPs of degree 0 (resp. 1
resp. >1) are called constant (resp. linear resp. superlinear). PSPs f where the
degree of each fi is at least 2 are called purely superlinear. We write f ′ for the
Jacobian of f , i.e., the matrix of first partial derivatives of f .

Given a PSP f , a variable Xi depends directly on a variable Xj if Xj “occurs”

in fi, more formally if ∂fi

∂Xj
is not the constant 0. A variable Xi depends on Xj

if Xi depends directly on Xj or there is a variable Xk such that Xi depends
directly on Xk and Xk depends on Xj. We often consider the strongly connected
components (or SCCs for short) of the dependence relation. The SCCs of a PSP
can be computed in linear time using e.g. Tarjan’s algorithm. An SCC S of a
PSP f is constant resp. linear resp. superlinear resp. purely superlinear if the
PSP f̃ has the respective property, where f̃ is obtained by restricting f to the
S-components and replacing all variables not in S by the constant 1. A PSP
is an scPSP if it is not constant and consists of only one SCC. Notice that a
PSP f is an scPSP if and only if f ′(1) is irreducible.

A fixed point of a PSP f is a vector x ≥ 0 with f(x) = x. By Kleene’s
theorem, there exists a least fixed point µf of f , i.e., µf ≤ x holds for every fixed
point x. Moreover, the sequence 0, f(0), f(f(0)), . . . converges to µf . Vectors x

with x ≤ f(x) (resp. x ≥ f(x)) are called pre-fixed (resp. post-fixed) points.
Notice that the vector 1 is always a post-fixed point of a PSP f , due to our
assumption on the coefficients of a PSP. By Knaster-Tarski’s theorem, µf is the
least post-fixed point, so we always have 0 ≤ µf ≤ 1. It is easy to detect and
remove all components i with (µf)i = 0 by a simple round-robin method (see
e.g. [4]), which needs linear time in the size of f . We therefore assume in the
following that µf ≻ 0.

3 An algorithm for consistency of PSPs

Recall that for applications like the neutron branching process it is crucial to
know exactly whether µf = 1 holds. We say a PSP f is consistent if µf =
1; otherwise it is inconsistent. Similarly, we call a component i consistent if
(µf)i = 1. We present a new algorithm for the consistency problem, i.e., the
problem to check a PSP for consistency.

5

It was proved in [6] that consistency is checkable in polynomial time by
reduction to Linear Programming (LP). We first observe that consistency of
general PSPs can be reduced to consistency of scPSPs by computing the DAG
of SCCs, and checking consistency SCC-wise [6]: Take any bottom SCC S, and
check the consistency of fS . (Notice that fS is either constant or an scPSP; if
constant, fS is consistent iff fS = 1, if an scPSP, we can check its consistency
by assumption.) If fS is inconsistent, then so is f , and we are done. If fS is
consistent, then we remove every fi from f such that xi ∈ S, replace all variables
of S in the remaining polynomials by the constant 1, and iterate (choose a new
bottom SCC, etc.). Note that this algorithm processes each polynomial at most
once, as every variable belongs to exactly one SCC.

It remains to reduce the consistency problem for scPSPs to LP. The first
step is:

Proposition 3.1. [8, 6] An scPSP f is consistent iff ρ(f ′(1)) ≤ 1 (i.e., iff
the spectral radius of the Jacobi matrix f ′ evaluated at the vector 1 is at most
1).

The second step consists of observing that the matrix f ′(1) of an scPSP f is
irreducible and nonnegative. It is shown in [6] that ρ(A) ≤ 1 holds for an
irreducible and nonnegative matrix A iff the system of inequalities

Ax ≥ x + 1 , x ≥ 0 (3.1)

is infeasible. However, no strongly polynomial algorithm for LP is known, and
we are not aware that (3.1) falls within any subclass solvable in strongly poly-
nomial time [7].

We provide a very simple, strongly polynomial time algorithm to check
whether ρ(f ′(1)) ≤ 1 holds. We need some results from Perron-Frobenius theory
(see e.g. [3]).

Lemma 3.2. Let A ∈ Rn×n be nonnegative and irreducible.

(1) ρ(A) is a simple eigenvalue of A.

(2) There exists an eigenvector v ≻ 0 with ρ(A) as eigenvalue.

(3) Every eigenvector v ≻ 0 has ρ(A) as eigenvalue.

(4) For all α, β ∈ R \ {0} and v > 0: if αv < Av < βv, then α < ρ(A) < β.

The following lemma is the key to the algorithm:

Lemma 3.3. Let A ∈ Rn×n be nonnegative and irreducible.

(a) Assume there is v ∈ Rn \ {0} such that (Id −A)v = 0. Then ρ(A) ≤ 1 iff
v ≻ 0 or v ≺ 0.

(b) Assume v = 0 is the only solution of (Id − A)v = 0. Then there exists
a unique x ∈ Rn such that (Id − A)x = 1, and ρ(A) ≤ 1 iff x ≥ 1 and
Ax < x.

Proof.

6

(a) From (Id − A)v = 0 it follows Av = v. We see that v is an eigenvector
of A with eigenvalue 1. So ρ(A) ≥ 1.

(⇐): As both v and −v are eigenvectors of A with eigenvalue 1, we can
assume w.l.o.g. that v ≻ 0. By Lemma 3.2(3), ρ(A) is the eigenvalue of
v, and so ρ(A) = 1.

(⇒): Since ρ(A) ≤ 1 and ρ(A) ≥ 1, it follows that ρ(A) = 1.
By Lemma 3.2(1) and (2), the eigenspace of the eigenvalue 1 is one-
dimensional and contains a vector x ≻ 0. So v = α · x for some
α ∈ R, α 6= 0. If α > 0, we have v ≻ 0, otherwise v ≺ 0.

(b) With the assumption and basic facts from linear algebra it follows that
(Id−A) has full rank and therefore (Id −A)x = 1 has a unique solution
x. We still have to prove the second part of the conjunction:

(⇐): Follows directly from Lemma 3.2(4).

(⇒): Let ρ(A) ≤ 1. Assume for a contradiction that ρ(A) = 1. Then,
by Lemma 3.2(1), the matrix A would have an eigenvector v 6= 0 with
eigenvalue 1, so (Id −A)v = 0, contradicting the assumption. So we have,
in fact, ρ(A) < 1. By standard matrix facts (see e.g. [3]), this implies that
(Id − A)−1 = A∗ =

∑∞
i=0 Ai exists, and so we have x = (Id − A)−11 =

A∗1 ≥ 1. Furthermore, Ax =
∑∞

i=1 Ai1 <
∑∞

i=0 Ai1 = x.

In order to check whether ρ(A) ≤ 1, we first solve the system (Id −A)v = 0
using Gaussian elimination. If we find a vector v 6= 0 such that (Id−A)v = 0,
we apply Lemma 3.3(a). If v = 0 is the only solution of (Id−A)v = 0, we solve
(Id−A)v = 1 using Gaussian elimination again, and apply Lemma 3.3(b). Since
Gaussian elimination of a rational n-dimensional linear equation system can be
carried out in strongly polynomial time using O(n3) arithmetic operations (see
e.g. [7]), we obtain:

Proposition 3.4. Given a nonnegative irreducible matrix A ∈ Rn×n, one can
decide in strongly polynomial time, using O(n3) arithmetic operations, whether
ρ(A) ≤ 1.

Combining Propositions 3.1 and 3.4 directly yields an algorithm for checking
the consistency of scPSPs. Extending it to multiple SCCs as above, we get:

Theorem 3.5. Let f(X1, . . . , Xn) be a PSP. There is a strongly polynomial time
algorithm that uses O(n3) arithmetic operations and determines the consistency
of f .

3.1 Case study: A family of “almost consistent” PSPs

In this section, we illustrate some issues faced by algorithms that solve the
consistency problem. Consider the following family h(n) of scPSPs, n ≥ 2:

h(n) =
(

0.5X2
1 + 0.1X2

n + 0.4 , 0.01X2
1 + 0.5X2 + 0.49 , . . . , 0.01X2

n−1 + 0.5Xn + 0.49
)⊤

.

It is not hard to show that h(n)(p) ≺ p holds for p = (1 − 0.02n, . . . , 1 −
0.022n−1)⊤, so we have µh(n) ≺ 1 by Proposition 4.4, i.e., the h(n) are inconsis-
tent.

7

n = 25 n = 100 n = 200 n = 400 n = 600 n = 1000
Exact LP < 1 sec 2 sec 8 sec 67 sec 208 sec > 2h
Our algorithm < 1 sec < 1 sec 1 sec 4 sec 10 sec 29 sec

Table 1: Consistency checks for h(n)-systems: Runtimes of different approaches.

The tool PReMo [11] relies on Java’s floating-point arithmetic to compute
approximations of the least fixed point of a PSP. We invoked PReMo for com-
puting approximants of µh(n) for different values of n between 5 and 100. Due to
its fixed precision, PReMo’s approximations for µh(n) are greater than or equal
to 1 in all components if n ≥ 7. This might lead to the wrong conclusion that
h(n) is consistent.

Recall that the consistency problem can be solved by checking the feasibility
of the system (3.1) with A = f ′(1). We checked it with lp solve, a well-known LP
tool using hardware floating-point arithmetic. The tool wrongly states that (3.1)
has no solution for h(n)-systems with n > 10. This is due to the fact that the
solutions cannot be represented adequately using machine number precision.2

Finally, we also checked feasibility with Maple’s Simplex package, which uses
exact arithmetic, and compared its performance with the implementation, also
in Maple, of our consistency algorithm. Table 1 shows the results. Our algorithm
clearly outperforms the LP approach. For more experiments see Section 4.3.

4 Approximating µf with inexact arithmetic

It is shown in [6] that µf may not be representable by roots, so one can
only approximate µf . In this section we present an algorithm that com-

putes two sequences, (lb(i))i and (ub(i))i, such that lb(i) ≤ µf ≤ ub(i) and

limi→∞ ub(i)− lb(i) = 0. In words: lb(i) and ub(i) are lower and upper bounds
on µf , respectively, and the sequences converge to µf . Moreover, they con-

verge linearly, meaning that the number of accurate bits of lb(i) and ub(i)

are linear functions of i. (The number of accurate bits of a vector x is de-
fined as the greatest number k such that |(µf − x)j |/|(µf)j | ≤ 2−k holds for
all j ∈ {1, . . . , n}.) These properties are guaranteed even though our algo-
rithm uses inexact arithmetic: Our algorithm detects numerical problems due
to rounding errors, recovers from them, and increases the precision of the arith-
metic as needed. Increasing the precision dynamically is, e.g., supported by the
GMP library [1].

Let us make precise what we mean by increasing the precision. Consider an
elementary operation g, like multiplication, subtraction, etc., that operates on
two input numbers x and y. We can compute g(x, y) with increasing precision if
there is a procedure that on input x, y outputs a sequence g(1)(x, y), g(2)(x, y), . . .
that converges to g(x, y). Note that there are no requirements on the conver-
gence speed of this procedure — in particular, we do not require that there is
an i with g(i)(x, y) = g(x, y). This procedure, which we assume exists, allows

2The mentioned problems of PReMo and lp solve are not due to the fact that the coefficients

of h(n) cannot be properly represented using basis 2: The problems persist if one replaces the

coefficients of h(n) by similar numbers exactly representable by machine numbers.

8

to implement floating assignments of the form

z

g(x, y) such that φ(z)

with the following semantics: z is assigned the value g(i)(x, y), where i ≥ 1 is
the smallest index such that φ(g(i)(x, y)) holds. We say that the assignment is
valid if φ(g(x, y)) holds and φ involves only continuous functions and strict in-
equalities. Our assumption on the arithmetic guarantees that (the computation
underlying) a valid floating assignment terminates. As “syntactic sugar”, more
complex operations (e.g., linear equation solving) are also allowed in floating
assignments, because they can be decomposed into elementary operations.

We feel that any implementation of arbitrary precision arithmetic should
satisfy our requirement that the computed values converge to the exact result.
For instance, the documentation of the GMP library [1] states: “Each function
is defined to calculate with ‘infinite precision’ followed by a truncation to the
destination precision, but of course the work done is only what’s needed to
determine a result under that definition.”

To approximate the least fixed point of a PSP, we first transform it into a
certain normal form. A purely superlinear PSP f is called perfectly superlinear
if every variable depends directly on itself and every superlinear SCC is purely
superlinear. The following proposition states that any PSP f can be made
perfectly superlinear.

Proposition 4.1. Let f be a PSP of size s. We can compute in time O(n · s)
a perfectly superlinear PSP f̃ with Var(f̃) = Var(f)∪ {X̃} of size O(n · s) such
that µf = (µf̃)Var(f).

4.1 The algorithm

The algorithm receives as input a perfectly superlinear PSP f and an error
bound ǫ > 0, and returns vectors lb,ub such that lb ≤ µf ≤ ub and ub−lb ≤ ǫ.
A first initialization step requires to compute a vector x with 0 ≺ x ≺ f(x), i.e.,
a “strict” pre-fixed point. This is done in Section 4.1.1. The algorithm itself is
described in Section 4.1.2.

4.1.1 Computing a strict pre-fixed point

Algorithm 1 computes a strict pre-fixed point:

Algorithm 1: Procedure computeStrictPrefix

Input: perfectly superlinear PSP f
Output: x with 0 ≺ x ≺ f(x) ≺ 1
x← 0;
while 0 6≺ x do

Z ← {i | 1 ≤ i ≤ n, fi(x) = 0};
P ← {i | 1 ≤ i ≤ n, fi(x) > 0};
yZ ← 0;
yP

fP (x) such that 0 ≺ yP ≺ fP (y) ≺ 1;
x← y;

9

Proposition 4.2. Algorithm 1 is correct and terminates after at most n itera-
tions.

The reader may wonder why Algorithm 1 uses a floating assignment
yP

fP (x), given that it must also perform exact comparisons to obtain the
sets Z and P and to decide exactly whether yP ≺ fP (y) holds in the such that

clause of the floating assignment. The reason is that, while we perform such
operations exactly, we do not want to use the result of exact computations as
input for other computations, as this easily leads to an explosion in the required
precision. For instance, the size of the exact result of fP (y) may be larger than
the size of y, while an approximation of smaller size may already satisfy the
such that clause. In order to emphasize this, we never store the result of an
exact numerical computation in a variable.

4.1.2 Computing lower and upper bounds

Algorithm 1 uses Kleene iteration 0, f(0), f(f(0)), . . . to compute a strict pre-
fixed point. One could, in principle, use the same scheme to compute lower
bounds of µf , as this sequence converges to µf from below by Kleene’s theorem.
However, convergence of Kleene iteration is generally slow. It is shown in [6]
that for the 1-dimensional PSP f with f(X) = 0.5X2 + 0.5 we have µf = 1,
and the i-th Kleene approximant κ

(i) satisfies κ
(i) ≤ 1 − 1

i . Hence, Kleene
iteration may converge only logarithmically, i.e., the number of accurate bits is
a logarithmic function of the number of iterations.

In [6] it was suggested to use Newton’s method for faster convergence. In
order to see how Newton’s method can be used, observe that instead of comput-
ing µf , one can equivalently compute the least nonnegative zero of f(X)−X.
Given an approximant x of µf , Newton’s method first computes g(x)(X), the
first-order linearization of f at the point x:

g(x)(X) = f(x) + f ′(x)(X − x)

The next Newton approximant y is obtained by solving X = g(x)(X), i.e.,

y = x + (Id − f ′(x))−1(f(x)− x) .

We write Nf (x) := x+(Id−f ′(x))−1(f(x)−x), and usually drop the subscript
of Nf . If ν

(0) ≤ µf is any pre-fixed point of f , for instance ν
(0) = 0, we can

define a Newton sequence (ν(i))i by setting ν
(i+1) = N (ν(i)) for i ≥ 0. It has

been shown in [6, 9, 4] that Newton sequences converge at least linearly to µf .
Moreover, we have 0 ≤ ν

(i) ≤ f(ν(i)) ≤ µf for all i.
These facts were shown only for Newton sequences that are computed ex-

actly, i.e., without rounding errors. Unfortunately, Newton approximants are
hard to compute exactly: Since each iteration requires to solve a linear equation
system whose coefficients depend on the results of the previous iteration, the
size of the Newton approximants easily explodes. Therefore, we wish to use
inexact arithmetic, but without losing the good properties of Newton’s method
(reliable lower bounds, linear convergence).

Algorithm 2 accomplishes these goals, and additionally computes post-fixed
points ub of f , which are upper bounds on µf . Let us describe the algorithm
in some detail. The lower bounds are stored in the variable lb. The first

10

Algorithm 2: Procedure calcBounds

Input: perfectly superlinear PSP f , error bound ǫ > 0
Output: vectors lb,ub such that lb ≤ µf ≤ ub and ub− lb ≤ ǫ
lb← computeStrictPrefix(f);1

ub← 1;2

while ub− lb 6≤ ǫ do3

x

N (N (lb)) such that f(lb) + f ′(lb)(x− lb) ≺ x ≺ f(x) ≺ 1;4

lb← x;5

Z ← {i | 1 ≤ i ≤ n, fi(ub) = 1};6

P ← {i | 1 ≤ i ≤ n, fi(ub) < 1};7

yZ ← 1;8

yP

fP (f(ub)) such that fP (y) ≺ yP ≺ fP (ub);9

forall superlinear SCCs S of f with yS = 1 do10

t← 1− lbS ;11

if f ′
SS(1)t ≻ t then12

yS

1−min

{

1,
mini∈S(f ′

SS(1)t− t)i

2 ·maxi∈S(fS(2))i

}

· t such that
13

fS(y) ≺ yS ≺ 1;

ub← y;14

value of lb is not simply 0, but is computed by computeStrictPrefix(f), in
order to guarantee the validity of the following floating assignments. We use
Newton’s method for improving the lower bounds because it converges fast (at
least linearly) when performed exactly. In each iteration of the algorithm, two
Newton steps are performed using inexact arithmetic. The intention is that
two inexact Newton steps should improve the lower bound at least as much
as one exact Newton step. While this may sound like a vague hope for small
rounding errors, it can be rigorously proved thanks to the such that clause
of the floating assignment in line 4. The proof involves two steps. The first
step is to prove that N (N (lb)) is a (strict) post-fixed point of the function
g(X) = f(lb) + f ′(lb)(X − lb), i.e., N (N (lb)) satisfies the first inequality in
the such that clause. For the second step, recall that N (lb) is the least fixed
point of g. By Knaster-Tarski’s theorem, N (lb) is actually the least post-fixed
point of g. So, our value x, the inexact version ofN (N (lb)), satisfies x ≥ N (lb),
and hence two inexact Newton steps are in fact at least as “fast” as one exact
Newton step. Thus, the lb converge linearly to µf .

The upper bounds ub are post-fixed points, i.e., f(ub) ≤ ub is an invariant
of the algorithm. The algorithm computes the sets Z and P so that inexact
arithmetic is only applied to the components i with fi(ub) < 1. In the P -
components, the function f is applied to ub in order to improve the upper
bound. In fact, f is applied twice in line 9, analogously to applying N twice in
line 4. Here, the such that clause makes sure that the progress towards µf is
at least as fast as the progress of one exact application of f would be. One can
show that this leads to linear convergence to µf .

The rest of the algorithm (lines 10-13) deals with the problem that, given a
post-fixed ub, the sequence ub, f(ub), f(f(ub)), . . . does not necessarily con-

11

verge to µf . For instance, if f(X) = 0.75X2 + 0.25, then µf = 1/3, but
1 = f(1) = f(f(1)) = · · · . Therefore, the if-statement of Algorithm 2 allows
to improve the upper bound from 1 to a post-fixed point less than 1, by ex-
ploiting the lower bounds lb. This is illustrated in Figure 1 for a 2-dimensional
scPSP f . The dotted lines indicate the curve of the points (X1, X2) satis-

(a) (b)

Figure 1: Computation of a post-fixed point less than 1

fying X1 = 0.8X1X2 + 0.2 and X2 = 0.4X2
1 + 0.1X2 + 0.5. Notice that

µf ≺ 1 = f(1). In Figure 1 (a) the shaded area consists of those points lb

where f ′(1)(1− lb) ≻ 1− lb holds, i.e., the condition of line 12. One can show
that µf must lie in the shaded area, so by continuity, any sequence converg-
ing to µf , in particular the sequence of lower bounds lb, finally reaches the
shaded area. In Figure 1 (a) this is indicated by the points with the square
shape. Figure 1 (b) shows how to exploit such a point lb to compute a post-
fixed point ub ≺ 1 (post-fixed points are shaded in Figure 1 (b)): The post-
fixed point ub (diamond shape) is obtained by starting at 1 and moving a
little bit along the straight line between 1 and lb, cf. line 13. The sequence
ub, f(ub), f(f(ub)), . . . now converges linearly to µf .

Theorem 4.3. Algorithm 2 terminates and computes vectors lb,ub such that
lb ≤ µf ≤ ub and ub − lb ≤ ǫ. Moreover, the sequences of lower and upper
bounds computed by the algorithm both converge linearly to µf .

Notice that Theorem 4.3 is about the convergence speed of the approximants,
not about the time needed to compute them. To analyse the computation
time, one would need stronger requirements on how floating assignments are
performed.

The lower and upper bounds computed by Algorithm 2 have a special feature:
they satisfy lb ≺ f(lb) and ub ≥ f(ub). The following proposition guarantees
that such points are in fact lower and upper bounds.

Proposition 4.4. Let f be a perfectly superlinear PSP. Let 0 ≤ x ≤ 1. If
x ≺ f(x), then x ≺ µf . If x ≥ f(x), then x ≥ µf .

12

So a user of Algorithm 2 can immediately verify that the computed bounds
are correct. To summarize, Algorithm 2 computes provably and even verifiably
correct lower and upper bounds, although exact computation is restricted to
detecting numerical problems. See Section 4.3 for experiments.

4.2 Proving consistency using the inexact algorithm

In Section 3 we presented a simple and efficient algorithm to check the consis-
tency of a PSP. Algorithm 2 is aimed at approximating µf , but note that it
can also prove the inconsistency of a PSP: when the algorithm sets ubi < 1, we
know (µf)i < 1. This raises the question whether Algorithm 2 can also be used
for proving consistency. The answer is yes, and the procedure is based on the
following proposition.

Proposition 4.5. Let f be an scPSP. Let t ≻ 0 be a vector with f ′(1)t ≤ t.
Then f is consistent.

Proposition 4.5 can be used to identify consistent components.
Use Algorithm 2 with some (small) ǫ to compute ub and lb. Take any

bottom SCC S.

– If f ′(1)(1 − lbS) ≤ 1 − lbS , mark all variables in S as consistent and
remove the S-components from f . In the remaining components, replace
all variables in S with 1.

– Otherwise, remove S and all other variables that depend on S from f .

Repeat with the new bottom SCC until all SCCs are processed.
There is no guarantee that this method detects all i with (µf)i = 1.

4.3 Case study: A neutron branching process

One of the main applications of the theory of branching processes is the mod-
elling of cascade creation of particles in physics. We study a problem described
by Harris in [8]. Consider a ball of fissionable radioactive material of radius D.
Spontaneous fission of an atom can liberate a neutron, whose collision with an-
other atom can produce further neutrons etc. If D is very small, most neutrons
leave the ball without colliding. If D is very large, then nearly all neutrons
eventually collide, and the probability that the neutron’s progeny never dies
is large. A well-known result shows that, loosely speaking, the population of
a process that does not go extinct grows exponentially over time with large
probability. Therefore, the neutron’s progeny never dying out actually means
that after a (very) short time all the material is fissioned, which amounts to a
nuclear explosion. The task is to compute the largest value of D for which the
probability of extinction of a neutron born at the centre of the ball is still 1
(if the probability is 1 at the centre, then it is 1 everywhere). This is often
called the critical radius. Notice that, since the number of atoms that undergo
spontaneous fission is large (some hundreds per second for the critical radius of
plutonium), if the probability of extinction lies only slightly below 1, there is
already a large probability of a chain reaction. Assume that a neutron born at
distance ξ from the centre leaves the ball without colliding with probability l(ξ),
and collides with an atom at distance η from the centre with probability density

13

D 2 3 6 10
n 20 50 100 20 50 100 20 50 100 20 50 100

inconsistent (yes/no) n n n y y y y y y y y y
Cons. check (Alg. Sec. 3) < 1 < 1 2 < 1 < 1 2 < 1 < 1 2 < 1 < 1 2
Cons. check (exact LP) < 1 20 258 < 1 22 124 < 1 16 168 < 1 37 222
Approx. QD (ǫ = 10−3) < 1 < 1 4 2 8 32 1 5 21 1 4 17
Approx. QD (ǫ = 10−4) < 1 < 1 4 2 8 34 2 7 28 1 6 23

Table 2: Runtime in seconds of various algorithms on different values of D
and n.

R(ξ, η). Let further f(x) =
∑

i≥0 pix
i, where pi is the probability that a colli-

sion generates i neutrons. For a neutron’s progeny to go extinct, the neutron
must either leave the ball without colliding, or collide at some distance η from
the centre, but in such a way that the progeny of all generated neutrons goes
extinct. So the extinction probability QD(ξ) of a neutron born at distance ξ
from the centre is given by [8], p. 86:

QD(ξ) = l(ξ) +

∫ D

0

R(ξ, η)f(QD(η)) dη

Harris takes f(x) = 0.025 + 0.830x + 0.07x2 + 0.05x3 + 0.025x4, and gives
expressions for both l(ξ) and R(ξ, η). By discretizing the interval [0, D] into n
segments and replacing the integral by a finite sum we obtain a PSP of dimension
n + 1 over the variables {QD(jD/n) | 0 ≤ j ≤ n}. Notice that QD(0) is the
probability that a neutron born in the centre does not cause an explosion.

Results For our experiments we used three different discretizations n =
20, 50, 100. We applied our consistency algorithm from Section 3 and Maple’s
Simplex to check inconsistency, i.e., to check whether an explosion occurs. The
results are given in the first 3 rows of Table 2: Again our algorithm domi-
nates the LP approach, although the polynomials are much denser than in the
h(n)-systems.

We also implemented Algorithm 2 using Maple for computing lower and
upper bounds on QD(0) with two different values of the error bound ǫ. The
runtime is given in the last two rows. By setting the Digits variable in Maple
we controlled the precision of Maple’s software floating-point numbers for the
floating assignments. In all cases starting with the standard value of 10, Al-
gorithm 2 increased Digits at most twice by 5, resulting in a maximal Digits
value of 20. The numerical results, plotted in Figure 2, fit in well with the
approximations given in [8].

As a side note we mention that Algorithm 2 computed an upper bound ≺ 1,
and thus proved inconsistency, after the first few iterations in all investigated
cases, almost as fast as the consistency algorithm from Section 3.

Computing approximations for the critical radius. From the data dis-
played in Figure 2 one can suspect that the critical radius, i.e., the smallest

14

Figure 2: QD(0) for different values of D, n = 100.

value of D for which QD(0) = 1, lies somewhere between 2.7 and 3. We com-
bined binary search with the consistency algorithm from Section 3 to determine
the critical radius up to an error of 0.01. During the binary search, the algo-
rithm from Section 3 has to analyze PSPs that come closer and closer to the
verge of (in)consistency. For the last (and most expensive) binary search step
that decreases the interval to 0.01, our algorithm took <1, 1, 3, 8 seconds for
n = 20, 50, 100, 150, respectively. For n = 150, we found the critical radius to
be in the interval [2.981, 2.991]. Harris [8] estimates 2.9.

5 Conclusions

We have presented a new, simple, and efficient algorithm for checking the con-
sistency of PSPs, which outperforms the previously existing LP-based method.
We have also described the first algorithm that computes reliable lower and up-
per bounds on µf . The sequence of bounds converges linearly to µf . To achieve
these properties without sacrificing efficiency, we use a novel combination of ex-
act and inexact (floating-point) arithmetic. Experiments on PSPs from concrete
branching processes confirm the practicality of our approach. The results raise
the question whether our combination of exact and inexact arithmetic could be
transferred to other computational problems.

Acknowledgments

We thank several anonymous referees for pointing out inaccuracies and helping
us clarify certain aspects of the paper. The second author was supported by the
DFG Graduiertenkolleg 1480 (PUMA).

References

[1] GMP library. http://gmplib.org.

[2] K. B. Athreya and P. E. Ney. Branching Processes. Springer, 1972.

15

[3] A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical
Sciences. SIAM, 1994.

[4] J. Esparza, S. Kiefer, and M. Luttenberger. Convergence thresholds of
Newton’s method for monotone polynomial equations. In Proceedings of
STACS, pages 289–300, 2008.

[5] J. Esparza, A. Kučera, and R. Mayr. Model checking probabilistic push-
down automata. In LICS 2004, pages 12–21. IEEE Computer Society,
2004.

[6] K. Etessami and M. Yannakakis. Recursive Markov chains, stochastic gram-
mars, and monotone systems of nonlinear equations. Journal of the ACM,
56(1):1–66, 2009.

[7] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Com-
binatorial Optimization. Springer, 1993.

[8] T. E. Harris. The theory of branching processes. Springer, Berlin, 1963.

[9] S. Kiefer, M. Luttenberger, and J. Esparza. On the convergence of Newton’s
method for monotone systems of polynomial equations. In Proceedings of
STOC, pages 217–226. ACM, 2007.

[10] C. D. Manning and H. Schuetze. Foundations of Statistical Natural Lan-
guage Processing. MIT Press, June 1999.

[11] D. Wojtczak and K. Etessami. PReMo: an analyzer for probabilistic re-
cursive models. In TACAS, volume 4424 of Lecture Notes in Computer
Science, pages 66–71. Springer, 2007.

16

A Proofs of Section 4

Here is a restatement of Proposition 4.1.

Proposition 4.1. Let f be a PSP of size s. We can compute in time O(n · s)
a perfectly superlinear PSP f̃ with Var(f̃) = Var(f)∪ {X̃} of size O(n · s) such
that µf = (µf̃)Var(f).

Proof. In a first step, we add to the equation system X = f(X) an (n + 1)-st
equation X̃ = 1

3X̃2 + 2
3 . It is easy to see that the least solution of this equation

is X̃ = 1. In order to make f purely superlinear, we take all components fi that
are not yet superlinear and multiply a monomial of fi by X̃. For instance, if
fi = 1

4Xj+
1
3Xk, then we replace fi with 1

4XjX̃+ 1
3Xk. This transformation does

not change the least fixed point in the non-X̃-components. Call the resulting
PSP again f for simplicity. Notice that f is now purely superlinear.

In a second step we make sure that all superlinear SCCs are purely super-
linear. For this, we repeatedly apply a certain operation: Let Xj be a variable
that occurs in a monomial m of a component fi, i.e., there is a monomial m̃
with m = Xj · m̃. The operation that replaces the monomial m in fi with
0.5 ·m + 0.5 · fj · m̃ is called substituting (an occurrence of) Xj. It is easy to
see that applying this operation to a PSP yields a PSP with the same set of
fixed points. Notice that substituting does not change the dependency relation
between the variables.

In order to make all superlinear SCCs purely superlinear, we apply a se-
quence of substituting operations. Take a superlinear SCC S which is not
purely superlinear and let g(S) denote the PSP obtained by restricting f to
the S-components and replacing all variables which are not in S by the con-
stant 1. Since S is superlinear and not purely superlinear, the PSP g(S) is,
by definition, superlinear and not purely superlinear. So there exist variables
Xi, Xj ∈ S such that Xi directly depends on Xj in g(S), and g(S)i is linear,
and g(S)j is superlinear. Substitute the corresponding occurrence of Xj in fi.
This makes g(S)i superlinear. By proceeding this way, at most n substituting
operations suffice to make all superlinear SCCs purely superlinear.

To make f perfectly superlinear, it remains to make each variable directly
depend on itself. We achieve that by replacing, for all variables X , the polyno-
mial fX with 0.5fX + 0.5X . It is easy to see that f has the same least fixed
point, the sum of the coefficients is still at most 1 in all components, and no new
variable dependencies are created by this operation except that every variable
now depends directly on itself. So, this operation makes f perfectly superlinear.

Clearly, the bottleneck of this whole procedure consists of the substituting
operations. Notice that computing the DAG of SCCs can be done in time
O(s) with Tarjan’s algorithm. The size of each single polynomial at the end
of the substituting procedure is O(s), so the total size of the resulting PSP is
O(n · s).

Here is a restatement of Proposition 4.2.

Proposition 4.2. Algorithm 1 is correct and terminates after at most n
iterations.

Proof. We will prove the following invariant of the algorithm:

17

(a) 0 ≤ x ≤ f(x);

(b) for all components j with (f i(0))j > 0 we have 0 < xj < fj(x).

The invariant implies that the loop terminates after at most n iterations, because
fn(0) ≻ 0 holds as µf ≻ 0. The invariant also implies that we have 0 ≺ x ≺ f(x)
after the loop terminates.

So it remains to show the invariant. Part (a) clearly holds throughout the
loop because for all components j either 0 = xj holds or 0 < xj < fj(x) is guar-
anteed by the floating assignment. Assume inductively that the invariant holds
after i ≥ 0 iterations. It suffices to prove that (b) holds after i + 1 iterations.
Let x(i) denotes the value of x after i iterations. Let (f i+1(0))j > 0. Then
fj(0) > 0 or there is a monomial in fj which consists only of variables Xk with
(f i(0))k > 0. In the second case we have, by induction hypothesis part (b), that

x
(i)
k > 0 holds for those variables Xk. In both cases it follows fj(x

(i)) > 0. Fur-
thermore, we have by induction hypothesis part (a) that fj(x

(i)) ≤ fj(f(x(i)))
where, in fact, the inequality is strict because Xj depends on itself (as f is per-
fectly superlinear). We conclude that 0 < fj(x

(i)) < fj(f(x(i))), and hence the

floating assignment guarantees 0 < x
(i+1)
j < fj(x

(i+1)). So the invariant holds
after i + 1 iterations.

A.1 Proof of Proposition 4.4

For the proof of Proposition 4.4 we need some auxiliary lemmas that will also
used later on for Theorem 4.3. We start with the following simple lemma on
linear PSPs.

Lemma A.1. Let f be a linear PSP. Then µf is the unique fixed point of f .

Proof. Recall that µf ≻ 0. Assume that there is a fixed point x of f different
from µf . Then, by the linearity of f , all points on the straight line through x

and µf are fixed points of f . So there is a point y ≥ 0 on this straight line with
yi = 0 for some i ∈ {1, . . . , n}. This contradicts the fact that µf is the least
fixed point of f .

The following lemma shows how to compute a post-fixed point that satisfies
certain properties and is arbitrarily close to 1.

Lemma A.2. Let f be a perfectly superlinear PSP. Let r ∈ R with 0 < r < 1.
Let x = µf + r(1 − µf). Then f(x) ≤ x. Furthermore, let p = fn(x). Then
f(p) ≤ p and fi(p) < pi holds for all i ∈ {1, . . . , n} with (µf)i < 1.

Proof. Letting u,v be any vectors, we write f(u+v) = f(u)+f ′(u)v+R(u,v)
for the Taylor expansion of f at u. Then we have

µf + f ′(µf)(1− µf) + R(µf , 1− µf) = f(µf + (1− µf)) = f(1) ≤ 1 = µf + (1− µf) ,

18

so it follows f ′(µf)d + R(µf ,d) ≤ d where d := 1− µf . Moreover, we have

f(x) = f(µf + rd) = f(µf) + f ′(µf)rd + R(µf , rd)

= µf + rf ′(µf)d + R(µf , rd)

≤ µf + rf ′(µf)d + rR(µf ,d) (since R(µf , ·) is superlinear)

= µf + r(f ′(µf)d + R(µf ,d))

≤ µf + rd (from above)

= x ,

i.e., x is a post-fixed point, hence µf ≤ x ≤ 1. Consider the sequence x ≥
f(x) ≥ f(f(x)) ≥ · · · . Since every component depends directly on itself, we
have for all components i that once (f j(x))i > (f j+1(x))i holds for some j,
we have (fk(x))i > (fk+1(x))i for all k ≥ j. On the other hand, it is easy
to see that if (f j(x))i > (f j+1(x))i for some j, then (fk(x))i > (fk+1(x))i

for some k ≤ n. It follows that fi(p) < pi holds for all components i for
which there exists j with (f j(x))i > (f j+1(x))i. It remains to show that for all
components i with (µf)i < 1 there exists j with (f j(x))i > (f j+1(x))i. Assume
for a contradiction that this does not hold. Choose a variable Xi that violates
the property (i.e., (µf)i < 1 and xi = (f j(x))i for all j) so that all components
in lower SCCs satisfy the property. Then for all Xj on which Xi depends we
have (µf)j = 1, and so xj = 1. Furthermore, we have (µf)S ≺ xS ≺ 1. Let
S denote the SCC of Xi and let g be the PSP obtained by restricting f to
the S-components and replacing all variables in lower SCCs by the constant 1.
Notice that Lemma A.1 guarantees that g is not linear, since both (µf)S and
xS are fixed points of g. Hence, g is superlinear. For any vectors u,v we write
g(u+v) = g(u)+g′(u)v+T (u,v) for the Taylor expansion of g at u. We have:

rdS = xS − (µf)S

= g(xS)− (µf)S

= g((µf)S + rdS)− (µf)S

= (µf)S + g′((µf)S)rdS + T ((µf)S , rdS)− (µf)S

= g′((µf)S)rdS + T ((µf)S , rdS)

Moreover, as dS ≻ 0 and g is superlinear, the following inequality is strict in at
least one component:

g(1) = g

(

(µf)S +
1

r
rd

)

= g((µf)S) + g′((µf)S)
1

r
rdS + T

(

(µf)S ,
1

r
rd

)

≥ (µf)S +
1

r
g′((µf)S)rdS +

1

r2
T ((µf)S , rd)

> (µf)S +
1

r
(g′((µf)S)rdS + T ((µf)S , rd))

= (µf)S +
1

r
rdS (as computed above)

= (µf)S + dS = 1

This is the desired contradiction as g(1) ≤ 1 should hold since g is a PSP.

19

The following lemma is used for the proof of Proposition 4.4, but will also
be essential to prove the convergence statement of Theorem 4.3.

Lemma A.3. Let f be a perfectly superlinear PSP. Let f(p) ≤ p ≤ 1 and
fi(p) < pi for all i ∈ {1, . . . , n} with (µf)i < 1. Then the sequence (p(i))i∈N

defined by
p(0) := p and p(i+1) := f(p(i)) for i ≥ 0

converges linearly to µf .

Proof. If (µf)i = 1 then (µf)j = 1 has to hold for every component j on which
i depends. As µf is the least post-fixed point by Knaster-Tarski’s theorem, we
have fk

i (p) = 1 for every k ∈ N. Hence we can ignore the 1-components in our
convergence proof and assume w.l.o.g. that µf ≺ 1 and with the assumptions
f(p) ≺ p. By the monotonicity of f and as every variable depends on itself, we
get by a simple induction that p(i) ≻ p(i+1) ≻ µf for all i ∈ N. This already
shows that (p(i)) converges to some limit point.

For every u ≻ µf with u ≻ f(u) we write u = µf + ∆u and get:

f(u)− µf = f(µf + ∆u)− µf

= f(µf) + f ′(µf)∆u + R(µf ,∆u)− µf (Taylor expansion)

Since R(µf ,∆u) depends at least quadratically on ∆u, one can write

R(µf ,∆u) = R̃(µf ,∆u) · ∆u for a nonnegative matrix R̃(µf ,∆u). Contin-
uing the above equaliy, we obtain:

= (f ′(µf) + R̃(µf ,∆u))∆u

≺∆u (as u ≻ f(u).)

Define A(u) := f ′(µf) + R̃(µf ,∆u), so that we obtain

f(u)− µf = A(u) ·∆u ≺∆u. (A.1)

This holds especially for u = p. From the ≺-inequality in (A.1) follows that
there exists 0 < δ < 1 such that

f(p)− µf = A(p)∆p ≤ δ∆p. (A.2)

We now show for every i ≥ 0 that p(i) − µf = ∆p(i) ≤ δi∆p by induction

over i. This implies the linear convergence of (p(i))i∈N. The base case i = 1 is
proved by (A.2). For i > 1 note that if 0 ≤ u ≤ u′ and 0 ≤ v ≤ v′, we have
A(u)v ≤ A(u′)v′, since A(u) is nonnegative if u is nonnegative.

f i(p)− µf = f(p(i−1))− µf

= A(p(i−1))(p(i−1) − µf) (by (A.1))

≤ A(p)(δi−1∆p) (induction hypothesis)

= δi−1A(p)∆p

≤ δi∆p. (A.2)

20

Now we can prove Proposition 4.4 which we restate here.

Proposition 4.4. Let f be a perfectly superlinear PSP. Let 0 ≤ x ≤ 1. If
x ≺ f(x), then x ≺ µf . If x ≥ f(x), then x ≥ µf .

Proof. By Knaster-Tarski’s theorem, µf is the least post-fixed point; the fi-
nal statement of the proposition follows. It remains to show the first state-
ment. By choosing the number r from Lemma A.2 large enough we can find
a post-fixed point y with x ≺ y ≤ 1. By Lemma A.2 and Lemma A.3 the
sequence y, f(y), f(f(y)), . . . converges to µf . On the other hand, by re-
peatedly applying f to both sides of the inequality x ≺ y we obtain that
x ≻ f(x) ≤ f i(x) ≤ f i(y) holds for all i ≥ 0. Since (f i(y))i converges to µf ,
we have x ≺ µf .

A.2 Proof of Theorem 4.3

In order to prove Theorem 4.3 we can reuse some results of the previous subsec-
tion, but we need some additional lemmas. The following lemma was essentially
proved in [6, 4].

Lemma A.4. Let f be a perfectly superlinear PSP and let x ≺ f(x). Then
N (x) = x + (f ′(x))∗(f(x) − x), where for any square matrix A, we define the
matrix star A∗ =

∑∞
i=0 Ai = Id +

∑∞
i=1 Ai.

Proof. By Proposition 4.4 we have x ≺ µf . For such points x it was shown
in [6, 4] that ρ(f ′(x)) < 1. By standard matrix facts [3], the matrix star A∗

exists if and only if ρ(A) < 1. Furthermore, if A∗ exists, it is equal to (Id−A)−1.
Hence, (Id − f ′(x))−1 = f ′(x)∗, and the statement follows.

So, Lemma A.4 allows to replace the matrix inverse (Id − f ′(x))−1 with the
matrix star f ′(x)∗ as long as x ≺ f(x) holds, which will be true in this paper
whenever we compute N (x).

The following two lemmas are used to show the validity of the floating as-
signment in line 4 of Algorithm 2.

Lemma A.5. Let f be perfectly superlinear. Let 0 ≺ x ≺ f(x) ≺ 1 and
y = N (x). Then f(x) ≺ y ≺ f(y) ≺ 1.

Proof. By Lemma A.4 we have N (x) = x + f ′(x)∗(f(x) − x). Write ∆ =
f ′(x)∗(f(x) − x), i.e., y = x + ∆. As every variable depends directly on itself,
we have f ′(x)(f(x) − x) ≻ 0. Consequently,

f(x) ≺ x + (f(x)− x) + f ′(x)(f(x) − x)

= x +
∑

i=0,1

f ′(x)i(f(x)− x)

≤ x +

∞
∑

i=0

f ′(x)i(f(x) − x)

= x + ∆

= y .

21

Letting u,v be any vectors, we write f(u+v) = f(u)+f ′(u)v+R(u,v) for
the Taylor expansion of f at u. Notice that R(x,∆) ≻ 0, because x ≻ 0 and f
is purely superlinear. Hence we have

y = x + ∆

≺ x + ∆ + R(x,∆)

= x + f ′(x)∗(f(x) − x) + R(x,∆)

= x + (f(x) − x) + f ′(x)f ′(x)∗(f(x)− x) + R(x,∆)

= f(x) + f ′(x)∆ + R(x,∆)

= f(x + ∆)

= f(y) .

By [6, 9] we have y ≤ µf . By the monotonicity of f it follows that f(y) ≤
f(µf) = µf . Using the monotonicity of f once more and the fact that every
variable depends directly on itself, we obtain y ≺ f(y) ≺ f(f(y)) ≤ f(µf) = µf .
As µf ≤ 1, it follows f(y) ≺ 1.

The following lemma will also be used to show the validity of the floating
assignment in line 4 of Algorithm 2. It says that N (N (x)) is a post-fixed point
of the linearization of f at x.

Lemma A.6. Let f be perfectly superlinear. Let 0 ≺ x ≺ f(x). Let z =
N (N (x)). Then f(x) + f ′(x)(z − x) ≺ z.

Proof. Letting u,v be any vectors, we write f(u+v) = f(u)+f ′(u)v+R(u,v)
for the Taylor expansion of f at u. We write y = N (x) and ∆ = f ′(x)∗(f(x)−
x). Notice that y = x + ∆. We have

z = y + f ′(y)∗(f(y) − y)

= x + ∆ + f ′(y)∗(f(x + ∆)− x−∆)

= x + ∆ + f ′(y)∗(f(x) + f ′(x)∆ + R(x,∆)− x−∆)

= x + ∆ + f ′(y)∗((f(x) − x) + f ′(x)f ′(x)∗(f(x)− x)−∆ + R(x,∆))

= x + ∆ + f ′(y)∗(∆−∆ + R(x,∆))

= x + ∆ + f ′(y)∗R(x,∆) .

It follows

f(x) + f ′(x)(z − x) = f(x) + f ′(x) (∆ + f ′(y)∗R(x,∆))

= x + (f(x) − x) + f ′(x)f ′(x)∗(f(x)− x) + f ′(x)f ′(y)∗R(x,∆)

= x + ∆ + f ′(x)f ′(y)∗R(x,∆)

≤ x + ∆ + f ′(y)f ′(y)∗R(x,∆)

≺ x + ∆ + f ′(y)f ′(y)∗R(x,∆) + R(x,∆)

= x + ∆ + f ′(y)∗R(x,∆)

= z .

For the ≺-inequality in this inequality chain, notice that, since x ≺ f(x), we
have ∆ ≻ 0, and since f is purely superlinear, we have R(x,∆) ≻ 0.

22

The following lemma states that N (x) is the least post-fixed point of the
linearization of f at x.

Lemma A.7. Let f be a PSP. Let 0 ≺ x ≺ f(x). Let f(x) + f ′(x)(z− x) ≤ z.
Then N (x) ≤ z.

Proof. We write y = N (x) and ∆ = f ′(x)∗(f(x)− x). Notice that y = x + ∆.
We have

(Id − f ′(x)) (z− y) = z− x−∆ + f ′(x)(x + ∆− z)

= z− f(x) + (f(x)− x)− f ′(x)∗(f(x)− x) + f ′(x)f ′(x)∗(f(x) − x)

+ f ′(x)(x − z)

= z− f(x) + f ′(x)(x − z)

≥ 0 (by assumption) .

It follows that

z− y = (Id − f ′(x))
−1

(Id − f ′(x)) (z− y)

= f ′(x)∗ (Id − f ′(x)) (z− y) ≥ f ′(x)∗0 = 0 ,

i.e., N (x) = y ≤ z.

The following lemma shows the validity of the floating assignment in line 13
of Algorithm 2.

Lemma A.8. Let f be a purely superlinear PSP. Let 0 ≺ t ≺ 1 such that
f ′(1)t ≻ t. Let

y = 1−min

{

1,
mini∈{1,...,n}(f

′(1)t− t)i

2 ·maxi∈{1,...,n}(f(2))i

}

· t .

Then f(y) ≺ y ≺ 1.

Proof. Letting u,v be any vectors, we write f(u+v) = f(u)+f ′(u)v+R(u,v)

for the Taylor expansion of f at u. Let r = min

{

1,
mini∈{1,...,n}(f

′(1)t− t)i

2 ·maxi∈{1,...,n}(f(2))i

}

.

Then we have:

R(1,−rt) ≤ R(1, rt)

≤ r2R(1, t) (degree of R(1, ·) at least 2)

≤ r2R(1, 1) (t ≤ 1)

≤ r2f(2) (f(1 + 1) = f(1) + f ′(1)1 + R(1, 1))

≤ r2 max
i∈{1,...,n}

(f(2))i · 1

≤ r ·
mini∈{1,...,n}(f

′(1)t− t)i

2
· 1 (definition of r)

≤
r

2
· (f ′(1)t− t)

≺ r · (f ′(1)t− t) (f ′(1)t ≻ t)

23

Using this inequality we obtain

f(1− rt) = f(1) + f ′(1) · (−rt) + R(1,−rt)

≤ 1− rf ′(1)t + R(1,−rt) (f(1) ≤ 1)

≺ 1− rf ′(1)t + r · (f ′(1)t− t) (see above)

= 1− rt

The following lemma states a monotonicity property.

Lemma A.9. Let f be perfectly superlinear. Let y = f(x) ≤ x and fi(x) < xi

for some i ∈ {1, . . . , n}. Then f(y) ≤ y and fi(y) < yi.

Proof. We have f(y) = f(f(x)) ≤ f(x) = f(y) by the monotonicity of f .
Moreover, since each component depends on itself, the strict inequality fi(x) <
xi implies the strict inequality fi(f(x)) < fi(f(x)).

The following lemma will be used in the proof of Theorem 4.3 to show that
ubi < 1 eventually holds in the components i with (µf)i < 1.

Lemma A.10. Let f be a purely superlinear PSP and x ≥ 0,u ≻ 0. Then

f ′(x + u)u ≻ f(x + u)− f(x).

Proof. It suffices to show fi(x)−fi(x+u)+f ′
i(x+u)u > 0 for every component

i of f . We can write fi(x + u) as fi(x) +
∫ 1

0 f ′
i(x + su)u ds. Hence

fi(x)− fi(x + u) + f ′
i(x + u)u

= fi(x) − fi(x) −

∫ 1

0

f ′
i(x + su)u ds + f ′

i(x + u)u

= −

∫ 1

0

f ′
i(x + su)u ds + f ′

i(x + u)u

= −

∫ 1/2

0

f ′
i(x + su)u ds−

∫ 1

1/2

f ′
i(x + su)u ds + f ′

i(x + u)u

For 0 ≤ s ≤ 1, we have f ′
i(x + su)u ≤ f ′

i(x + u)u, and for 0 ≤ s ≤ 1/2, the
inequality is strict, because u ≻ 0 and f is purely superlinear. Hence

−

∫ 1/2

0

f ′
i(x + su)u ds−

∫ 1

1/2

f ′
i(x + su)u ds + f ′

i(x + u)u

> −

∫ 1
2

0

f ′
i(x + u)u ds−

∫ 1

1
2

f ′
i(x + u)u ds + f ′

i(x + u)u

= −f ′
i(x + u)u + f ′

i(x + u)u = 0.

Now we can prove Theorem 4.3 which is restated here:

Theorem 4.3. Algorithm 2 terminates and computes vectors lb,ub such
that lb ≤ µf ≤ ub and ub − lb ≤ ǫ. Moreover, the sequences of lower and
upper bounds computed by the algorithm both converge linearly to µf .

24

Proof. The validity of the floating assignment in line 4 follows from Lemma A.5
and Lemma A.6. Next we show the convergence of the lower bounds. Let
(lb(k))k be the sequence of the lower bounds lb in the algorithm, where lb

(0)

is the result of computeStrictPrefix(f). Moreover, define an “exact” Newton

sequence ν
(0) = lb(0) and ν

(k+1) = N (ν(k)). We prove by induction that ν
(k) ≤

lb(k). The induction base (k = 0) is trivial. Let k ≥ 0. Notice that the floating

assignment in line 4 guarantees f(lb(k))+ f ′(lb(k))
(

lb(k+1) − lb(k)
)

≤ lb(k+1).

Therefore, Lemma A.7 assures N (lb(k)) ≤ lb(k+1). Hence we have

ν
(k+1) = N (ν(k))

≤ N (lb(k)) (induction hypothesis, monotonicity of N as shown in [4])

≤ lb
(k+1) (as argued above) .

So we have ν
(k) ≤ lb(k) for all k. By the floating assignment in line 4, we

have lb(k) ≺ f(lb(k)), so lb(k) ≺ µf by Proposition 4.4. As (ν(k))k converges

to µf , the sequence (lb(k))k converges to µf as well. In addition, it was shown

in [9, 4] that (ν(k))k converges linearly to µf . As ν
(k) ≤ lb(k), the same holds

for (lb(k))k.
Now we turn the upper bounds ub. We prove the following invariants of the

algorithm:

(a) f(ub) ≤ ub ≤ 1;

(b) for all components j with ubi < 1, we have fi(ub) < ubi.

Clearly, this holds at the beginning (when ub = 1). The invariants are clearly
preserved by the assignment in line 8. Repeated application of Lemma A.9
shows that the floating assignment in line 9 is valid and that the invariants are
preserved. Lemma A.8 implies that the floating assignment in line 13 are valid
and preserve the invariants. Hence, the invariants hold.

Next we prove that for any component i with (µf)i < 1, we eventually
have ubi < 1. Let us assume for the sake of a contradiction that there exists a
component i with the property P (i), where P (i) means that (µf)i < 1 and ubi =
1 holds during the entire execution of the algorithm. Choose i “minimal” in the
sense that for all variables Xj on which Xi depends we have that either Xi and
Xj are in the same SCC, or P (j) does not hold. Let S be the SCC of Xi and let
Xj be any variable from Var\S on which Xi depends. Since P (i) holds, we must
have ubj = 1 during the entire execution of the algorithm, because if ubj < 1
were true at some point, it would take at most n iterations before ubi < 1. As
P (j) cannot hold by the minimality of i, we have (µf)j = 1. Therefore, letting
g denote the PSP obtained by restricting f to the S-components and replacing
all variables from other SCCs by the constant 1, we have µg = (µf)S ≺ 1. Since
ubS = 1 holds during the execution of the algorithm, we have g(1) = 1, i.e., 1
is a fixed point of g. Therefore, by Lemma A.1, g cannot be linear, as µg ≺ 1.
Since f is perfectly superlinear, g must then be purely superlinear. Application
of Lemma A.10 (with x := µg and u := 1− µg) yields

g′(1)(1 − µg) ≻ g(1)− g(µg) = 1− µg .

25

Since the sequence of lbS computed during the execution of the algorithm con-
verges to µg, the continuity of g′(1) implies that eventually g′(1)(1 − lbS) ≻
1 − lbS holds. But this means that the condition of line 12 is satisfied and,
thus, the following assignment causes ubS ≺ 1, contradicting our assumption
that P (i) holds. So we have shown that for any component i with (µf)i < 1,
we eventually have ubi < 1.

Denote by (ub(k))k the sequence of upper bounds ub computed by the
algorithm. It remains to show that this sequences converges linearly to µf .
We have shown above that there exists k0 such that for all k ≥ k0 we have
that ub

(k+1)
i ≤ ub

(k)
i < 1 holds for all components i with (µf)i < 1. Choose

a real number r with 0 < r < 1 such that for the point p := µf + r(1 − µf)

we have ub(k0) ≤ p ≤ 1 and the following is true for all components i: either

(ub
(k0))i = 1 or ub

(k0)
i < pi < 1. Define the sequence (p(k))k≥k0 by setting

p(k0) := p and p(k+1) := f(p(k)) for all k ≥ k0. By Lemma A.2 and Lemma A.3,

this sequence converges linearly to µf . To prove that the same holds for (ub(k)),

it suffices to show that ub(k) ≤ p(k) holds for all k ≥ k0. We proceed by
induction on k. The induction base (k = k0) holds by definition of p(k0). Let
k ≥ k0. Then we have:

ub
(k+1) ≤ f(ub

(k)) (such that clause of line 9)

≤ f(p(k)) (induction hypothesis)

= p(k+1) (definition of p(k+1))

This completes the proof.

A.3 Proof of Proposition 4.5

Here is a restatement of Proposition 4.5.

Proposition 4.5. Let f be an scPSP. Let t ≻ 0 be a vector with f ′(1)t ≤ t.
Then f is consistent.

Proof. Lemma 3.2 (4) implies ρ(f ′(1)) ≤ 1. Hence, f is consistent by Proposi-
tion 3.1.

