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Abstract
Best, E., J. Desel and J. Esparza, Traps characterize home states in free choice systems, Theoretical
Computer Science 101 (1992) 161-176.

Free choice nets are a subclass of Petri nets allowing to model concurrency and nondeterministic
choice, but with the restriction that choices cannot be influenced externally. Home states are
ground markings which can be reached from any other reachable marking of a system. A trap is
a structurally defined part of a net with the property that once it is marked (that is, carries at
least one token), it will remain marked in any successor marking.

The main result of this paper characterizes the home states of a live and bounded free choice
system by the property that all traps are marked. This characterization leads to a polynomial-time
algorithm for deciding the home state property. Other consequences include the proof that
executing all parts of a net at least once necessarily leads to a home state; this has been a long
standing conjecture.

1. Introduction

Inductive invariants (sometimes also called stable assertions, that is, predicates
which remain true once they are true) are frequently used in proofs of correctness
properties of systems, be they sequential or concurrent. Suppose that for some
system, some inductive invariant is not true in the initial state. Then either this
invariant can never be made true, or the initial state is not a home state. Indeed,
suppose it can be made true; then, by the “once true, always true” property, it
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cannot become false again, and so, the system is not able to revert to its initial state.
Hence we may infer that in any home state, all inductive invariants that could
possibly be made true, hold true already.

In this paper, we show a strengthened version of the above argument. The
strengthening consists of two parts. Firstly, we will examine the converse of the
statement: namely, that the truth of inductive invariants implies that a state is a
home state. This begs the original question, however, since it happéns that the
statement “this state is a home state is always an inductive invariant. The second
and essential point we wish to make in this paper, is that a few, carefully chosen
and structurally defined inductive invariants in some cases suffice for the converse.
The system model for which we will show that this is true, is the class of live and
bounded free choice systems. The structurally defined “inductive invariants” we
consider are called traps.

In order to introduce the formalism, consider the free choice system shown in
Fig. 1. The initial marking is live and bounded (even safe) but not a home state;
from any other reachable marking, it is impossible to reach the initial marking again.
The net also has an unmarked trap {so, 5, 3, 55, S¢}, i.€., @ set of places carrying
no tokens with the property that every output transition of the set is also an input
transition of the set.

This paper presents a proof that the nonexistence of an unmarked trap actually
characterizes the home state property. It also describes a series of related results
and consequences, including a polynomial-time decision procedure. It is structured
as follows. Sections 2, 3-and 4 are devoted to the proof of the main result. They
are intended to gently introduce the various lemmata and quotations from the
literature that are necessary for the proof. Section 5 describes a number of con-
sequences of the main theorem. Section 6 contains a few concluding remarks.
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We use the concepts of a net, a marking, a transition sequence, the set [ M) of
markings reachable from a given marking M, liveness, boundedness, etc. in their
usual meaning; the reader is referred to the Appendix of this paper for more details.

Definition 1.1. A net N = (S, T, F) is free choice iff
V(s, )e FR(SXT): s*={f}v r={s}.

Definition 1.2. Let (S, T, F) be a net. A set of places Q< S is called a trap iff Q #@
and Q°<=*Q. A set Q< S is called unmarked under a marking M iff M(Q)=0
(respectively, Q is called marked iff M(Q)>0).

The salient property of a trap is that if it is marked :once (M (Q)>0) then it is
marked always (M'(Q)>0 for all M'e[M)).

Definition 1.3. Let X = (N, M;) be a net with an initial marking M, (a system). We
call a marking M a home state of X iff

VM'e[My: Me[M).

A home state should not be confused with the weaker notion of markings M
which can always be reached again after they have been reached for the first time,
i.e. home states of (N, M) with M €[ M,). The following argument shows that such
markings exist for all bounded systems (while there are bounded systems without
home states [2]).

Fact 1.4. Let 3 =(N, M,) be a bounded system. Then there is a marking M €[ M)
such that M is a home state of (N, M).

Proof. Define a sequence of markings M,, M,, ... as follows. If M; is not a home
state of (N, M;) then choose a marking M,,,€[M;) with M;£[M,.,). In this way
we obtain a sequence of proper inclusions

[My)y=>[Mp)>---.

Since [M,) is finite by the boundedness of I, the sequence stops after at most
n=|[M,) steps, and the last marking M, of the sequence is a home state Qf
(N,M,). O

Throughout Sections 2-4, we assume globally that 3 = (S, T, F, M,) is a live and
bounded free choice system and that N = (S, T, F) denotes the underlying net of 2.
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2. Weak characterization of the set of home states

During the next three sections, we intend to show that a marking Me [M,) is a
home state of X if and only if M marks all traps of N.
The necessity of this characterization is very easy to prove.

Lemma 2.1. Let M be a home state of 2. Then M marks all traps of N.

Proof. Let Q be an arbitrary trap of N and let s€ Q. Since N can be covered by
cycles (recall that (N, M,) is live and bounded—see the Appendix), a transition
t€®s exists. Since X is live, there is a marking M € [ M,) such that M[¢)M’ for a
marking M'. Hence M’ marks Q.

Now let M be a home state of 3. Then, in particular, Me [ M’). Since traps, once
marked, remain marked, this implies that M marks Q. O

The difficult part is the sufficiency of the characterization, i.e. the implication
"‘Me [ M) marks all traps of N = M is a home state of 3. -

We will approach the proof of this implication gradually. First, we shall prove a
different—and much weaker—characterization of the set of home states of 2. This
characterization makes use of the fact that X possesses at least one home state.

Proposition 2.2. There exists a home state M of 2.
Proof. [2,12]. O

Proposition 2.3. The set of home states of 3 equals the (unique) set M of reachable
markings of X with the following property. If M € M and M[t)M’ for a transition t then
(a) M'e M,
(b) Me[M').

Proof. The uniqueness of /# is guaranteed by the fact that sets of markmgs satisfying
(a) and (b) are closed under union.

Obviously, (a) and (b) hold for the set of home states of 2. Hence each home
state is in . :

To prove the other inclusion, let M e and let M be some home state of 3
(which exists by Proposition 2.2). Then we find an occurrence sequence

MLEYM[IM, ... M, [ 1,)M.

By applying (a) n—1 times we obtain that fori=1,. -1, M; is in /. Hence
with (b) we get M e[M,)), M, e[M,), .. 1e[M) and therefore Me[M) (see
Fig. 2).

Since M is a home state, so are all markings which are reachable from M. In
particular, M is a home state. [
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>
1 2 n-1

Fig. 2. 1liustration of the proof of Proposition 2.3.

What remains to be shown to prove the sufficiency of the characterization is that
each reachable marking which marks all traps is an element of 4. The Property (a)
is always true for such markings, since a trap, once marked, remains marked for
each successor marking. Property (b) requires proving that

if M €[ M,) marks all traps of N then (M[t)M' = Mec[M").

3. T-invariants and T-components

We can reformulate the above-mentioned implication as follows.

If a marking M €[ M) marks all traps of N and enables a
transition ¢, then there is an occurrence sequence o which starts
with ¢ such that M{o)M. :

Since o reproduces the marking M, it generates a T-invariant.

Definition 3.1. A (nonnegative) T-invariant is a mapping J: T > N (where N denotes
the nonnegative integers) such that
VseS: Y J)= Y J(1).
te®s tes®

A T-invariant J is called activated by a marking M iff there exists an occurrence
sequence M[o)M' with P(o)=J (as is easy to see, M = M’ in this case).

Thus, it is necessary to find a T-invariant J and an occurrence sequence o with
the following properties:

(a) P(o)=1J,

(b) o starts with ¢,

(c) o is enabled by M.

The crucial item of this list of conditions is (c). Consider the example of Fig. 3.
The Parikh function of the sequence #t,¢; is a T-invariant J'. The transition ¢ is
enabled by the marking M depicted in Fig. 3. However, M does not enable any
occurrence sequence o' with 2(¢’) =J', in particular it does not enable tt,¢;. Hence
J' is not activated by the marking M.

Nevertheless, there is a feasible occurrence sequence which reproduces M and
starts with ¢, namely tt,1;t,¢,. Thus, the T-invariant J which maps each transition
to 1—rather than J'—is activated by M. :
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Fig. 3.

In order to find the activated T-invariant, it will be useful to have criteria for the
activation of T-invariants. Such criteria are not easy to derive for general T-invariants.
Since the sum of T-invariants is again a T-invariant, it is possible to compose each
T-invariant as the sum of minimal nonzero T-invariants. A result.in [1] proves that
minimal T-invariants induce special substructures of nets which are called T-
components. For T-components, activation criteria are known which are based on
the theory of T-graphs.

Definition 3.2. A T-graph is a net N'= (S, T", F') with Vse §": |*s|<1a|s®|=<1.
A strongly connected T-graph N'=(S’, T, F’) is called T-component of N iff
T'c T and Vte T': *tut®< S’ (where the pre- and post-sets are taken w.r.t. N).

Proposition 3.3. Let J be a minimal-T-invariant of N. Then
(a) There is a T-component N'=(S', T', F') of N such that J is the characteristic
function of T, i.e.

1 ifteT,

J(f) N {0 ifteT.

(b) Jis activated at M iff M marks all cycles of N'.
(¢) If M activates J and M([1t) with J (t) =1, then there is an occurrerice sequence
o' such that M[to"YM and P(to')=J.

Proof. See [1] for (a); (b) and (c) follow immediately from corresponding results
for T-graphs [3,8]. O

We will call a T-component activated iff its corresponding T-invariant is activated.
The next corollary follows immediately.
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Corollary 3.4. If M[t)M', and t belongs to a T-component which is activated by M,
then M e[M").

Proof. Use Proposition 3.3(c). O

By this corollary, if ¢ belongs to an activated T-component then M can be
reproduced from M’ as desired. A first result showing that we are heading in the
right direction is that ¢ belongs to at least one T-component.

Proposition 3.5 (Hack [10]). Let t be a transition of T. Then there is a T-component
N'=(S', T, F') of N such that te T'.

Proof. A short proof can be found in [1]. O

Unfortunately, it may be the case that none of the T-components containing ¢
are activated, so that Corollary 3.4 may not be immediately applicable (Fig. 3 may
serve as an example). The next section shows how this problem can be dealt with.

4. Proof of the main theorem vby means of allocations

First of all let us recall the problem. We have to%s‘hpw:

If M e[ M,) marks all traps of N and M[t)M ', then there is an
occurrence sequence o which starts with ¢ such that M[o)M.

If t does not belong to any T-component activated by M, we have no direct argument
that M € [M’). We proceed as follows: instead of finding a sequence M[o)M which
starts with #, we construct a sequence M[o')M containing . Then we show that
there is a permutation o of ¢’ starting with ¢ which is also enabled at M.

This sequence o' has four parts: o' = o, to;0, with M[a,)M[to;)M[o)M. o,
leads to a marking M which enables ¢ and activates a T-component containing .
to, is a reproduction sequence corresponding to the T-invariant generated by the
T-component. Finally, o, leads back to M.

Consider once again the example of Fig. 3. The unique T-component which
contains ¢ is not activated by the marking M shown in the figure. By the occurrence
of oy =1, however, a marking M can be reached which activates this T-component
and enables . Hence, we may find a reproducing sequence to; = tt;¢, with M[to)M.
Finally, the occurrence of o, =t, leads back to our original marking M.

Now consider the transitions ¢ and ¢,. They have disjoint pre-sets and hence none
of them disables the other one (i.e. they are concurrent). So we have both M[1,)
and M[t,t), and moreover, both sequences lead to the same marking. Hence, we
get from the above sequence the new sequence M[tt,1;¢,t,) M, which starts with ¢,
To show that this reasoning can be generalized, we need to prove the premises of
the following lemma.
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Lemma 4.1. Assume that M marks all traps of N and let M[t)M'. Assume further
that there exists an occurrence sequence M [o,)M with the following properties:
{a) M enables t;
.(b) M activates a T-component which contains t,
(c) There is an occurrence sequence M[a, )M ;
(d) For each transition t' occurring in o, we have *t°t' =§.
Then M e[ M’).

Proof. Assume that an occurrence sequence M[o,)M satisfies (a)-(d). Let M[t)M’,
which is possible by (a). Then, by Proposition 3.3(c), we find a sequence M[to)M
since by (b), M activates a T-component which contains . Successively, ¢ can be
interchanged with the respective previous transitions in o, since they have disjoint
pre-sets by (d) and hence obtain a sequence M[ta,)M’. Together with o, which
exists by (c) and o5, we have M[to,050,)M. (See Fig. 4.) O

M

Fig. 4. Illustration of the proof of Lemma 4.1.

We have to find an occurrence sequence o, with M[a;,)M which can be reversed
in the sense that there exists another sequence o, satisfying M[o,)M. The only
sufficient condition for a single transition occurrence M[#)M’ to be reversible that
we have identified so far is that M activates a T-component which contains f. This
condition can easily be generalized to occurrence sequences.

Definition 4.2. An occurrence sequence

M\[t)M[ )M ... M, _[t,_ )M,

is called involutional iff for each i€ {1,..., n—1}, M, activates some T-component
which contains ¢,.
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Corollary 4.3. If M[o)M,, is involutional then M, € [ M,)).

Proof. Follows inductively from the fact that M;e[M,,,) for ie{1,...,n—1} by
Corollary 3.4. [

We restrict ourselves to involutional sequences. Since condition (¢) of Lemma
4.1 always holds for such sequences, it is sufficient to show:

if M e[M,) marks all traps of N and M[¢)M’, then there exists an
involutional occurrence sequence M[o)M[t) such that
- M activates a T-component which contains 7;

*t'~ *t =9 for all transitions ¢’ occurring in o,.

We shall construct such an occurrence sequence.

The first task is to construct an occurrence sequence M[o )M such that M
activates some T-component which includes t. First of all, by Proposition 3.5 we
know that such T-components exist; we may choose one of them, say N'. The next
idea is to direct as many as possible tokens of the system to this T-component if
they are not there already. This will be done by means of an allocation function.

Definition 4.4. Let X < S be a set of places. An allocation of X isafunctiona: X > T
with Vse X: a(s)e s®. An allocation a of X is cycle-free iff there is no nonempty
set of places X'< X with X' < (a(X")".

Cycle-freeness is the property which will serve to prevent the occurrence of cycles
in the transportation of tokens towards the T-component in question.

One of the characteristic behavioural properties of free choice systems is that,
given an arbitrary allocation a of S, every live marking enables allocated transitions.

Proposition 4.5. Let a:S—> T be an allocation of all places. Then each M e[MO)
enables at least one transition t € a(S). :

Proof. M enables some transition t'e€ T since X is live. From the liveness and
boundedness of 2, it follows that N is covered by cycles (see the Appendix). Hence
*t'#@. Let s *t’. By the free choice property of N, M enables a(s).  [J

We will use this property to direct the tokens to the T-component N’ by means
of an occurrence sequence containing only transitions in the image of a certain
allocation. This allocation must satisfy the property that N is the only T-component
all of whose transitions are allocated, in order to ensure that the tokens reach their
final destination; otherwise they may get trapped in other T-components. The first
part of the next lemma states that such an allocation always exists. However, we
also have to make sure that this occurrence sequence is involutional. We will employ,
for this purpose, the second half of the lemma, stating that the image of an allocation
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always contains the transitions of at least one T-component. (The reader should be
warned that in the later use of this lemma, the T-component N’ of part (b) of the
lemma will differ from the T-component of part (a) of the lemma.)

Lemma 4.6. (a) Let N'=(S’, T', F') be a T-component of N. Then there exists an
allocation a : S— T such that N " is the only T-component all of whose transitions are
allocated by a.

(b) Let a: S~ Tbe anallocation. Then there exists a T-component N' = (S', T', F’)
of N such that N' contains only allocated transitions, i.e. T'< a(S).

Proof. (a) Define a inductively as follows:

(1) For all se S’ define a(s) as the umque output transition ¢ of sin N/, i
{t}=s°NT".

(2) Repeatedly select a place s € S with a(s) not defined yet, in such a way that
there is a place s’ € (s*)® which already has an allocated transition. Choose a(s)=t
where 1 € s°* 1 *s’ (this choice is not necessarily unique); the idea is that the allocation
a “points towards” N’ (see Fig. 5). ‘ ‘

o (s)

Fig. 5. Illustration of the construction used in Lemma 4.6.

This procedure terminates and leads to an allocation & of S since N is finite and
strongly connected. It follows from the free choice property that each place finally
has exactly one allocated transition in its post-set.

It remains to show that N' is the only T-component all of whose transitions are
allocated by a.

Assume that a T-component N” has only allocated transitions. Then each path
through allocated transitions only, which starts with an element of N”, remains in
N". Since by the above procedure, each path of sufficient length ends in N’, N’
and N" are not disjoint. Since for every common place of N’ and N” its allocated
transition belongs to both T-components, for each common transition, all of its
output places belong to both T-components as well, and since T-components are
strongly connected, it follows that N'= N".

(b) For every allocation @:S~ T there is an occurrence sequence of arbitrary
length which contains only allocated transitions (by repeated application of
Lemma 4.5).
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Let o be an occurrence sequence of length greater than the size of the set of reachable
markings of 3 (this set is finite by the boundedness of ) which contains only
allocated transitions. Then at least one marking M occurs twice in o. The sub-
sequence of o which starts with the first occurrence of M and ends with the second
occurrence of M in o reproduces M and hence induces a nonnegative T-invariant.
Thus, o contains all the transitions of a T-invariant and hence, by Proposition
3.3(a), all the transitions of some T-component N’ of N.

Since o contains only allocated transitions, N’ contains only allocated transitions
as well. [J

We will now approach the application of the property that M marks all traps, a
premise which so far has not entered the proof. When this condition holds, the next
lemma proves the following: given an arbitrary allocation (which will be for us the
one used to direct tokens to the T-component containing t), there is an activated
T-component whose enabled transitions (a nonempty set) are all allocated. Thus,
if M marks all traps, then it enables an allocated transition of an activated T-
component. But, after the occurrence of this transition, the new marking marks all
traps again. Hence, it enables another allocated transition of another activated
T-component, and so on. This means that we can construct an arbitrarily large
involutional sequence containing only allocated transitions.

Lemma 4.7. Suppose that M marks all traps of N and let a:S— T be an arbitrary
allocation.

Then M activates a T-component N'=(S’, T', F') such that all enabled (by M)
transitions of N' are allocated by a.

Proof. Let Sc S be the set of places which are not marked by M. We make use of
a result of [1], which states that if X is a set of places, and Q € X is the maximal
trap in X, then there exists a cycle-free allocation B of X\ Q. In our case, since all
traps are marked by M, the maximal trap contained in S is the empty set.' Hence,
there exists a cycle-free allocation 8:S5- T.

Compose the allocation y:S— T from « and 8 as follows:

a(s) ifsgS,

y(s)":{ﬁ(s) ifseS

By Lemma 4.6(b), there is a T-component N’ which contains only transitions
allocated by y. Since v is cycle-free on the set of unmarked cycles (inheriting the
corresponding property from B8), N’ does not contain an unmarked cycle, and hence
is activated. All input places of enabled transitions are marked and hence do not

In [1], the empty set has been allowed as a trap.
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belong to S. Thus, by the definition of v, all enabled transitions of N’ are allocated
by e. [ : ' v

Taking together all lemmata we are now ablg'tb state tyh‘é main result.
Theorem 4.8. M c[M,) is a home siate of X if and only.if M rr‘larks‘alvl traps of .N,

Proof. Lemma 2.1 proves the necessity of this characterization.

To prove the sufficiency, let & be the set of markings which mark all traps of N,
let M e N and assume M[f)M’ for a transition . By the invariance property of
traps we get M’ N. We show now that M € [M’). Once this is proved, we are done,
because # = A and Proposition 2.3 can be applied.

Let N’ be a T-component which includes the transition ¢; such a T-component
exists by Proposition 3.5. Choose an allocation «:S- T such that N’ is the only
T-component with the property that all of its transitions are allocated by «; such
an allocation exists by Lemma 4.6(a). '

Now consider a maximal involutional occurrence sequence o from M such that
only transitions of a(S) occur and such that no marking, except possibly the last
one, activates N’ or any other T-component containing ¢.

The sequence o is finite, since otherwise it would include a reproduction sequence
and hence all transitions of some T-component N” would occur (this follows as in
the proof of Lemma 4.6(b), using, in addition, Proposition 3.3(a)). By the definition
of a, N'=N", and since N” must be activated during o, we get a contradiction to
the definition of o. 7

Let M, be the final marking of 0. We now show that M, activates a T-component
containing t. To this end, it suffices to show that M, enables some allocated transition
which is contained in some activated T-component, since in this case the other
reason for o to stop at M,—viz. that M, activates a T-component containing t—must
be true.

Since M marks all traps of N, so does M,. By Lemma 4.7, there is an activated
(by M,) T-component N” of N all of whose enabled (by M,) transitions belong to
the allocation a. Any such transition does the job.

Now we are going to show that the preconditions of Lemma 4.1 are satisfied for
t and oy =o0.

First, o activates a T-component containing #, which settles condition (b).
Moreover, o does not contain any transitions t#t' with *t'n ®t#@, since such
transitions are not a-allocated; it does not contain ¢ either, since in that case one
of the intermediate markings reached along the sequence would activate a T-
component containing f, against the hypothesis (condition (d)). Thus, ¢ is inter-
changeable with o, which implies that the marking reached after o enables ¢
(condition (a)). Finally, involutional sequences can be “undone” (Corollary 4.3),
yielding condition (c). From Lemma 3.1 we infer Me[M"). O
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5. Consequences

We state a variety of consequences of Theorem 4.8.

The first one shows that any transition sequence which contains every transition
at least once must necessarily produce a home state. This property has been
conjectured in [9] where it has been phrased in terms of well-behaved bipolar
schemata® which (under the translation given there) correspond to a class of live
and bounded free choice nets—a class which can be more precisely characterized
by the results of [4].

Corollary 5.1. Let 3 =(S, T, F, M,} be a live and bounded free choice system. Let
M[7YM with a transition sequence € T* such that every transition of T occurs at
least once in 7. Then M is a home state of X.

Proof. By the liveness and boundedness of X, every place of S has at least one
output transition. Hence during 7, every trap has been marked at least once. Since
traps, once marked, cannot become unmarked, M must be a marking at which every
trap is marked. The result follows with Theorem 4.8. [J

Our result implies that the home state property is in a certain sense monotonic.

De'ﬁni’t‘iion‘,S.Zf.: A sjstem is cyclic iff for any tWo\geachable mgrkingé M and M":
Me[M).

In terms of home states this means that M, is a home state, or, put differently,
that the reachability graph is strongly connected. With our result we get the following
corollary.

Corollary 5.3. ‘A live and bounded free choice systém is cyclic if and only. :ij»"viisvinitial
marking marks all traps of N.

Since this characterization of reversibility does not say anything about the number
of tokens on single places we get a monotonicity result on cyclic systems. It requires
the following well-known lemma.

Lemma 5.4. If 3 =(N, M,) is a live and bounded free choice system and M, is a
marking of N with M, = M, (i.e., M,(s) = M(s) for all places s) then (N, M,) is live
and bounded as well.

2 Actually, the conjecture in [9] is weaker, as it concerns only the reproducibility of the marking in
question.
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Proof. See [6]. [

Corollary 5.5. If X = (N, M,) is a live, bounded and cyclic free choice system and M,
is a marking of N with and M, = M, then (N, M,) is live, bounded and cyclic as well.

The last corollary states that the home state property is polynomially decidable.
The proof is based on the following algorithm, which calculates the maximal trap
contained in a set of places (assuming this trap exists, otherwise the algorithm
returns the empty set).

Algorithm 5.6 (To find the maximal trap contained in a set of places).

Input: A subset X = S of places of a net N=(S, T, F)
Output: The maximal trap Q< X
Inmitialization: Q=X
while s Q:5s°2°Q do
Q= Q\{s}

endwhile

The correctness proof is very simple. First, it is immediate that, at the end of the
algorithm, either Q=@ or Q is a trap (otherwise the loop cannot have terminated).
Moreover, it is easy to see inductively that, if X'< X is a trap, then X'< Q. This
is due to the fact that none of the places of X' can ever fulfil the condition of the loop.

Finally, the algorithm is polynomial. We will give a rough estimation of its
performance. Each time the loop is executed, a place is removed from Q. Hence,
the loop is executed at most |X|=<|S| times. In order to find a place s fulfilling the
condition of the loop, at most |Q|=<|S| places have to be scanned. Checking if
s* & *Qforaplace s can be done in O(|s*|-|*Q|) < O(| T|-| T|). Hence, the complexity
of the algorithm is at most O(|S|*-|T}?).

Corollary 5.7. Let 3 =(S, T, F, M,) be a live and bounded free-choice system. Let
M e[ M,) be a reachable marking. Then it is decidable in polynomial time whether M
is a home state of 2.

Proof. Let S'< S be the set of unmarked places of N at M,. By Theorem 4.8, M,
is a home state iff S’ contains no trap. This happens iff Algorithm 5.6 returns the
empty set, which can be checked in polynomial time. [J

6. Concluding remarks

For live and bounded free choice Petri sets, we have proved a structural charac-
terization of a marking being a home state. This characterization holds equally for
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extended free choice nets (which satisfy the property Vp, g€ S: p*ng®#0 = p®=
q° which is slightly weaker than the free choice property), since all proofs go through
unchanged. However, it might be more difficult to generalize the result to larger
classes of nets. v

From the characterization, we have derived a variety of consequences, settling,
amongst others, an open conjecture and providing a polynomial-time algorithm to
decide the home state property. The result on polynomial decidability—together
with already known results of this type (see [7])—raises similar questions concerning
properties of structurally live and bounded free choice nets. Future work will
therefore concentrate on finding a structural characterization of reachability for live
and bounded free choice systems. This problem has been solved for cyclic live and
bounded free choice systems as reported in [5].

Appendix

Anet is, as usual, defined as a triple (S, T, F) suchthat Sn T=@and F<(Sx T)u
(T x S). We consider only finite and nonempty sets. Since a net can be viewed as
a directed graph, terminology can be transferred (for instance, strong or weak
connectedness). We exclude isolated places and isolated transitions and consider
only connected nets. The pre-set *x of xe(SuT) is defined as the set {ye
(SuT)|(y,x)e F}, and the post-set x* of xe(SuUT) is defined as {ye
(SU T)|(x, y) € F}. The notation is extended to sets X < (SU T) by *X =Uex °x,
and similarly for X°.

A marking is a function M :S->N. A marked net or system is a net N together
with an initial marking M,, written (N, M,) or, more fully, (S, T, F, M,). For X € S
we define M(X)=Y _, M(x).

A marking M enables a transition t€ T iff Vs € *t: M(s)= 1. The enabling of  is
denoted by M[t). An enabled transition can occur, yielding a new marking M’
defined by the rule that M'(s)=M(s)—1 for s€*\t*, M'(s)=M(s)+1 for se
t*\*1, and M'(s) = M(s) otherwise. The occurrence of ¢ is denoted by M[t)M'.

An occurrence sequence is a sequence

o=M[t)M,[t)M,... M,.

We say that o starts with M and leads to M,,. Sometimes we omit the intervening
markings since they are determined by M and the sequence of transitions. We also
say that M enables o (denoted by M[o)) iff there are intermediate markings such
that o is an occurrence sequence starting with M. The set [ M) is defined as the set
of all markings M’ such that some occurrence sequence leads from M to M’
#(o): T~ N defines the Parikh function of o, which maps each transition to its
number of occurrences in o.

A system (N, M,) with N=(S, T, F) is live iff for every te T and for every
M e[ M,) there is some M'e[M) such that M'[¢). The system is bounded iff for
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every place s€ S there is a number ke N such that all markings M e[ M,) satisfy
M(5) =k Since we consider only finite sets, (N, M,) is bounded iff [MO) is a finite
set.

Finally, we shall use the following fact: If a system (N, M,) is both: live and
bounded then N is covered by cycles (for a short proof of this, compare [1]). In
particular, since we only consider. connected nets, N is strongly connected.
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