
Complexity Results for 1-safe Nets?

Allan Cheng
Computer Science Department, Aarhus University
Ny Munkegade, DK–8000 Aarhus C, Denmark

acheng@daimi.aau.dk

Javier Esparza
Laboratory for Foundations of Computer Science
University of Edinburgh, The King’s Buildings

Edinburgh EH9 3JZ
je@dcs.ed.ac.uk

Jens Palsberg
Computer Science Department, Aarhus University
Ny Munkegade, DK–8000 Aarhus C, Denmark

palsberg@daimi.aau.dk

Abstract

We study the complexity of several standard problems for 1-safe
Petri nets and some of its subclasses. We prove that reachability,
liveness, and deadlock are all PSPACE-complete for 1-safe nets. We
also prove that deadlock is NP-complete for free-choice nets and for
1-safe free-choice nets. Finally, we prove that for arbitrary Petri nets,
deadlock is equivalent to reachability and liveness.

1



Petri net classes Reachability Liveness Deadlock

Arbitrary decidable decidable decidable
EXPSPACE-hard EXPSPACE-hard EXPSPACE-hard

1-safe PSPACE-complete PSPACE-complete PSPACE-complete
Acyclic NP-complete linear time linear time
1-safe acyclic NP-complete constant time constant time
Conflict-free NP-complete polynomial time polynomial time
1-safe conflict-free polynomial time polynomial time polynomial time
Free-choice decidable NP-complete NP-complete

EXPSPACE-hard
1-safe free-choice PSPACE-complete polynomial time NP-complete

Table 1: Summary of complexity results for Petri nets.

1 Introduction

Petri nets are one of the oldest and most studied formalisms for the investiga-
tion of concurrency [30]. Shortly after the birth of complexity theory, Jones,
Landweber, and Lien studied in their classical paper [22] the complexity of
several fundamental problems for Place/Transition nets (called in [22] just
Petri nets). This paper was later followed by many others (see [10] for an
overview).

It has been observed that the nets in which a place can contain at most
one token, called in the sequel 1-safe nets, have many interesting properties.
Places of 1-safe nets no longer model counters but logical conditions; a token
in a place means that the corresponding condition holds. This makes 1-
safe nets rather different from Place/Transition nets, even though both have
similar representations; for instance, finite Place/Transition nets can have
infinite state spaces, but finite 1-safe nets cannot.

The advantages of 1-safe nets are numerous, and they have become a
significant model. Several semantics can be smoothly defined for 1-safe nets

?Theoretical Computer Science, 147(1-2):117–136, 1995. Also in Proc. FST&TCS 13,

Foundations of Software Technology & Theoretical Computer Science, pages 326–337, held
15–17 December 1993, in Bombay, India [5].

2



[3, 28], but are however difficult to extend to Place/Transition nets. Nielsen,
Rozenberg and Thiagarajan [33, 28] have shown that a model of 1-safe nets,
called Elementary Net Systems, has strong categorical connections with many
other models of concurrency, such as event structures (another good reference
is [35]). Finally, 1-safe nets are closer to classical language theory, and can
be interpreted as a synchronisation of finite automata.

These properties have motivated the design of verification methods par-
ticularly suited for 1-safe nets. The obvious connection to Mazurkiewicz
trace theory [26, 35] has been exploited to design efficient “partial-order”
verification methods [34, 14]. Several other different proposals have recently
been presented in the literature [27, 9]. In order to evaluate them, and as a
guide for future research, it is necessary to know the complexity of verifica-
tion problems for 1-safe nets. This paper provides the first systematic study
for 1-safe nets.

We study what are perhaps the three most important verification prob-
lems for Petri nets: reachability, liveness, and existence of deadlocks. We de-
termine their complexity for 1-safe nets, and for three important subclasses:
acyclic, conflict-free and free-choice nets. In all cases, we compare the results
with the complexity of the corresponding problems for Place/Transition nets.
In a brief final section we study some other problems of interest.

This paper is a mixture of survey and new results. Our new results have
enabled us to complete Table 1. Throughout, we attribute previously known
results to their authors.

Two interesting subclasses of Petri nets are not covered by Table 1,
namely S- and T-systems [4]. For those, reachability, liveness, and dead-
lock are known to be polynomial in the Place/Transition case [4, 6, 13],
hence also in the 1-safe case. Related work concerning not the complexity
of particular verification problems but the complexity of deciding different
equivalence notions can be found in [21].

The paper is organised as follows. Section 2 contains basic definitions. In
section 3 we show that the deadlock problem is recursively equivalent to the
liveness and reachability problems. Section 4 shows that the three problems
are PSPACE-complete in the 1-safe case. In section 5, the different classes
of Petri nets mentioned above are considered. Finally, in section 6 other
problems are studied.

We finish this introduction with a remark. In the paper, 1-safe nets
are defined as a subclass of Place/Transition nets. Other versions of 1-safe

3



nets can be found in the literature, namely the Condition/Event systems
[30] and the Elementary Net Systems [33]. This multiplicity of definitions is
maybe annoying but harmless: the differences among them are small, and of
rather technical nature (see [1] for a discussion). In particular, our results
are independent of the definition used.

2 Definitions

We recall in this section some basic concepts about Place/Transition nets
and 1-safe nets, and define the reachability, liveness and deadlock problems.

A Place/Transition net, or just a net, is a fourtuple N = (P, T, F, M0)
such that

1. P and T are finite disjoint sets; their elements are called places and
transitions, respectively.

2. F ⊆ (P × T ) ∪ (T × P ); F is called the flow relation.

3. M0: P → IN ; M0 is called the initial marking of N ; in general, a map-
ping M : P → IN is called a marking of N

Given a ∈ P ∪T , the preset of a, denoted by •a, is defined as {a′ | a′Fa};
the postset of a, denoted by a•, is defined as {a′ | aFa′}.

Sometimes, we denote that a transition t has preset I and postset O in
the following way:

t : I → O

For technical reasons we only consider nets in which every node has a nonempty
preset or a nonempty postset. We will let + denote union of multisets.

We define the size of a net N = (P, T, F, M0) to be the sum |P |+ |T |+
|F | + |P | log2(m), where m is the maximum integer in the image of M0.

Let N = (P, T, F, M0) be a net. A transition t ∈ T is enabled at a mark-
ing M of N if M(p) > 0 for every place p in the preset of t. Given a transition

t, we define a relation
t

−→ between markings as follows: M
t

−→ M ′ if t is
enabled at M and for every place s, M ′(s) = M(s) + F (t, s)−F (s, t), where
F (x, y) is 1 if (x, y) ∈ F and 0 otherwise. The transition t is said to occur (or

fire) at M . If M0

t1−→ M1

t2−→ · · ·
tn−→ Mn for some markings M0, M1, . . .Mn,

then the sequence σ = t1 . . . tn is called an occurrence sequence. Mn is the

4



marking reached by σ, and this is denoted M0

σ
−→ Mn. A marking M is

reachable if it is the marking reached by some occurrence sequence. Given a
marking M of N , the set of reachable markings of the net (P, T, F, M) (i.e.,
the net obtained replacing the initial marking M0 by M) is denoted by [M〉.

Notice that the empty sequence is an occurrence sequence and that it
reaches the initial marking M0.

A marking M of a net N is 1-safe if for every place p of the net M(p) ≤ 1.
We identify a 1-safe marking M with the set of places p such that M(p) = 1.
A net N is 1-safe if all its reachable markings are 1-safe.

A net N is unary if at every reachable marking at most one transition is
enabled. N is 1-conservative if for every transition t, |•t| = |t•|.

The reachability problem for a net N is the problem of deciding for a given
marking M of N if it is reachable.

A net N is live if for every transition t of N and every reachable marking
M , some marking of [M〉 enables t. The liveness problem for a net is the
problem of deciding if it is live.

A marking of a net is a deadlock if it enables no transitions. The deadlock
problem for a net is the problem of deciding if any of its reachable markings
is a deadlock.

3 Place/Transition Nets

For Place/Transition nets, it is known that the liveness and reachability
problems are recursively equivalent [16], and that they are both decidable
and EXPSPACE-hard [24]. We complete the picture by showing that the
deadlock problem is recursively equivalent to them, and thus decidable and
EXPSPACE-hard.

Theorem 1 Reachability is polynomial-time reducible to deadlock.

Proof. Given a net N = (P, T, F, M0), and a marking M of N , we con-
struct a net N ′ = (P ′, T ′, F ′, M ′

0), as follows. Let V be the set of places
marked in M . The places and transitions of N ′ are:

P ′ = P ∪ {run} ∪ {bq, cq | q ∈ V }
T ′ = {tc | t ∈ T} ∪ {tp | p ∈ P} ∪ {terminate} ∪ {subq, loopq | q ∈ V }.

5



p

run

b_p

c_pt_p

terminatet_c

loop_p

sub_p

N

Figure 1: Reducing reachability to deadlock.

The flow relation of N ′ is given by:

For each t ∈ T : tc : •t + run → t• + run

For each p ∈ P : tp : p → p

terminate : run →
∑

q∈V bq

For each q ∈ V : loopq : cq → cq

For each q ∈ V : subq : cq + q + bq → bq.

Finally,
M ′

0 = M0 +
∑

q∈V

αqcq + run

where
M =

∑

q∈V

αqq, αq > 0.

The construction of N ′ is illustrated in figure 1.
Claim: M is reachable in N if and only if N ′ has a deadlock. To see this,

first notice that terminate can occur at most once, that this disables all the
tc transitions, and that as long as it has not occurred, no marking can be
dead: terminate can occur.

6



Suppose now that M is reachable in N . Having reached M in N ′ firing
only tc transitions, fire the terminate transition and use the subq transitions
to remove, for each q ∈ V , αq tokens from q. This yields a dead marking.

Suppose then that M is not reachable in N . Before terminate has fired,
there is no deadlock. When terminate has fired, no transition in N can fire.
There are two cases. Suppose first that M is the empty marking. Since M is
not reachable in N , there are still tokens in N . Thus, at least one tp transition
will remain enabled. Suppose then that M is a non-empty marking. If there
are no tokens in N , then at least one loopq transition will remain enabled. If
there are still tokens in N , then at least one tp transition will remain enabled.

2

Theorem 2 Deadlock is polynomial-time reducible to liveness.

Proof. Given a net N = (P, T, F, M0), we construct a net N ′ = (P ′, T ′, F ′, M ′

0),
as follows. The places and transitions of N ′ are:

P ′ = P ∪ {ok}
T ′ = {tc, t

′ | t ∈ T} ∪ {live}

The flow relation of N ′ is given by:

For each t ∈ T : tc : •t → t•

For each t ∈ T : t′ : •t → ok

live : ok → P ′

Finally, M ′

0 = M0.
Claim: N has no reachable dead marking if and only if N ′ is live. To see

this, suppose first that N can reach a dead marking Md. Clearly, also N ′ can
reach Md without firing any t′ transitions, and since the t′ transitions in N ′

have the same presets as the transitions in N , Md is dead in M ′. Thus, N ′

is not live.
Suppose then that N has no reachable dead marking. Then the initial

marking is not dead, so fire one of the t′ transitions. This places a token
on the ok place, and there the token remains. Thus from now on, the live

transition is enabled, and because the live transition places tokens on all
places in N ′, N ′ is live. 2

7



Corollary 3 The deadlock, liveness and reachability problems are recursively
equivalent. Thus, the deadlock problem is decidable and EXPSPACE-hard.

Proof. For the equivalence of the problems, combine theorems 1 and 2
with Hack’s reduction from liveness to reachability [16]. For the complexity
of the deadlock problem, use the equivalence with reachability and obtain
the decidability from Mayr [25] and the EXPSPACE-hardness from Lipton
[24]. 2

The technique of the proofs is similar to those of, for instance, Chapter
5 in Petersons book [29].

The same result holds for Place/Transition nets with arc weights. To see
this, just observe that our constructions can still be applied and that Hack
considers nets with arc weights [16].

4 1-Safe Nets

Given a Place/Transition net, it is PSPACE-complete to decide if the net is
1-safe [22, Corollary 3.4]. However, it is many times possible to guarantee
1-safeness by construction. Consider for instance the important case where
the nets are constructed as a synchronization of finite automata. In this
section we prove that the reachability, liveness and deadlock problems are
PSPACE-complete for 1-safe nets. First we consider the liveness problem.

Theorem 4 The liveness problem for 1-safe nets is PSPACE-complete.

Proof. To prove that the liveness problem is in PSPACE, we can use
essentially the technique of Jones, Landweber, and Lien [22, Theorem 3.9].
They proved that the liveness problem for 1-conservative (not necessarily
1-safe) nets is in PSPACE.

To prove completeness, we show that the problem (DETERMINISTIC)
LINEAR BOUNDED AUTOMATON ACCEPTANCE (which is PSPACE-
complete [12, pp.265]) is polynomial-time reducible to the liveness problem.
A linear bounded automaton is a Turing machine which only visits the cells
of the tape containing the input. The input is bounded by a left and a right
marker, say # and $, and the head can visit no cell to the left of # and no
cell to the right of $ (see [18] for a formal definition). The problem is defined
as follows:

8



Given: a deterministic linearly bounded automaton M0 and an input
x for M0,

To decide: if M0 accepts x.

First, we construct in polynomial time a deterministic linearly bounded
automaton M, satisfying the following two properties:

(1) M accepts x iff M0 accepts x, and

(2) M has a unique accepting configuration.

M simulates M0, but, before accepting, M erases the tape, moves the head
to the leftmost cell, and then enters its unique final state (a new state not
present in M0). In this way, M satisfies (2).

Let M = (K, Σ, Γ, δ, q1, q2, #, $), where K is the set of states, Σ the
alphabet, Γ ⊇ Σ ∪ {#, $} is the set of tape symbols, δ is the transition
relation, q1 the initial state, q2 the final state, and # and $ are the boundary
symbols. Moreover, let K = {q1, . . . , qm}, Γ = {a1, . . . , ap}, n = the size of
#x$, and β = K × Γ × {C, R, L} × K × Γ (i.e., the transition relation is a
subset of β).

We construct a 1-safe net N = (P, T, F, M0) as follows:

• P = {Ai,j | 1 ≤ i ≤ n, 1 ≤ j ≤ p}
∪ {Qi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}
∪ {B, C}

P contains a place Ai,j for every tape cell i and every tape symbol
aj; a token in Ai,j means that the symbol on tape cell i is aj. It also
contains a place Qi,j for every tape cell i and every state qj; a token
in Qi,j means that the automaton scans the cell i in state qj. Given a
configuration c of the automata M, c can be encoded as a subset of P

in the following way:

– if the automaton is in state qj scanning the i-th tape cell, then
Qi,j belongs to the set,

– if the tape cell i contains the symbol aj, then Ai,j belongs to the
set, and

– no other place belongs to the set.

9



Denote the set of places associated to the configuration c by M(c).
Notice that M(c) can also be interpreted as a 1-safe marking of N .

B and C play the role of a switch, as follows. If there is a token on B,
then the net simulates M; if there is a token on C, then the net behaves
nondeterministically in such a way that any marking corresponding to
a configuration of the linear automaton can be reached.

• T contains the following transitions for every element of β:

– If (qs, at, R, qr, al) ∈ δ (move right), then T includes for every cell
1 ≤ i < n a transition

Qi,s + Ai,t → Qi+1,r + Ai,l

(where we use + instead of set union to use the notation of [22];
notice that no transition is needed for the n-th cell). Similarly
for left moves and no motion. The transitions corresponding to
an element of β \ δ have C in their preset, and can therefore only
occur if C is marked.

– If (qs, at, R, qr, al) ∈ β \ δ, then T includes for every cell 1 ≤ i < n

a transition

C + Qi,s + Ai,t → Qi+1,r + Ai,l + C

Similarly for left moves and no motion.

– T contains the following two transitions tB→C , tC→B , where ci is
the initial configuration of M, and cf its unique accepting config-
uration.

tB→C : B + M(cf ) → C + M(cf )

If the net reaches the marking corresponding to the accepting con-
figuration cf , then the transition tB→C can occur and the net starts
behaving nondeterministically in such a way that for any configuration
c, the marking C + M(c) is reachable.

tC→B : C + M(ci) → B + M(ci)

The net can return to simulating M if, while behaving nondeterministi-
cally, it reaches the marking corresponding to the initial configuration.

10



• The initial marking M0 is the one corresponding to the initial configu-
ration, plus one token on the place B i.e., M0 = B + M(ci)

If M does not accept x, then N never reaches the marking B+M(cf ), corre-
sponding to the accepting configuration cf . This implies that the transition
tB→C can never occur, and therefore N is not live.

If M accepts x, then the net reaches the accepting configuration cf . So
the transition tB→C can occur, and N starts behaving nondeterministically.
Now, for every possible configuration c, the net can reach C + M(c). Hence
every transition, but tB→C , can become enabled at some reachable marking
containing C. In particular, the marking M(ci) + C can be reached too; this
marking enables tC→B . Therefore, the net can return to simulating M, and
everything starts anew, in particular tB→C can occur again. 2

We now consider the reachability problem. It is again possible to use a
reduction from linear bounded automaton acceptance. However, we prefer
to give another reduction from quantified boolean formulas. This reduction
has some interest in itself, and moreover shows that the problem is still
PSPACE-complete even if restricted to unary 1-safe nets.

First we prove the following useful lemma.

Lemma 5 Given a 1-safe net N and a 1-safe marking M , checking whether
M is reachable in N is in PSPACE.

Proof. Store M0 as the current marking. Set up a m-bit counter initialised
to 0, where m = |P |. Repeatedly do the following. Check if the current
marking equals M . If so, M is reachable. If not, check if the counter’s value
equals 2m. If so, M is not reachable, since any occurrence sequence longer
than 2m must have loops which do not contribute to exploring the state
space. If not, the counter’s value is less than 2m. If the current marking is a
deadlock, then M is not reachable. Otherwise, choose an enabled transition,
fire it, store the new marking as the current marking, and increment the
counter.

The above algorithm uses 2|P | bits, and is thus in PSPACE. 2

Theorem 6 The reachability problem for unary 1-safe nets is PSPACE-
complete.

11



Proof. By Lemma 5, the reachability problem is in PSPACE.
To prove PSPACE-hardness, we show that QUANTIFIED BOOLEAN

FORMULAS (which is PSPACE-complete [12]) is polynomial-time reducible
to the reachability problem.

The problem is defined as follows:

Given: A well-formed quantified Boolean formula

F = (Q1x1)(Q2x2) · · · (Qnxn)E

where E is a Boolean expression involving the variables x1, x2, . . . , xn

and each Qi is either “∃” or “∀”.

To decide: is F true?

If we are given a quantified boolean formula F , then we construct a unary
1-safe net N and a marking M of N such that M is reachable if and only if
F is true.

Before constructing the net and the marking, we rewrite F , in polynomial
time, into an equivalent closed formula G generated by the grammar:

P ::= x | ¬P | P ∧ P | ∃x.P

and such that all bound variables in G are distinct. Notice that G needs not
be a quantified boolean formula: the quantifiers in G need not occur at the
outermost level.

The construction of the net for G is illustrated in figure 2. Intuitively, the
idea is to try all possible assignments of bound variables. The construction
is essentially compositional. The only complication is the interpretation of
variables.

The net for G contains the places:

{P in, P T , P F | P is an occurrence of a subformula of G} ∪
{x is T , x is F | x is bound in G}

For readability, when in the following we name places and transitions, we
write not P for ¬P , we write P and Q for P ∧ Q, and we write Ex.P for
∃x.P .

The initial marking is {G in}.
The net for G contains the following transitions for each occurrence of a

subformula of G:

12



G_in G_T G_F

x_in x_T x_F

x_is_T x_is_F

read_x_is_T read_x_is_F

P_in P_T P_F

not_P_in not_P_T not_P_F

call_P not_P_is_Tnot_P_is_F

A

B

C

P_in P_T P_F

P_and_Q_in P_and_Q_T P_and_Q_F

call_P

P_T_and_Q_?

Q_in Q_T Q_F

P_F_and_Q_? P_T_and_Q_T P_T_and_Q_F

D

P_in P_T P_F

Ex.P_in

call_P_with_x_T Ex.P_is_F

Ex.P_T Ex.P_F

x_is_F

x_is_T

call_P_with_x_F x_F_P_Tx_T_P_T

E

Figure 2: Reduction from quantified boolean formulas.

13



Occurrence Transitions
x read x is T : x in + x is T → x T + x is T

read x is F : x in + x is F → x F + x is F

¬P call P : not P in → P in

not P is F : P T → not P F

not P is T : P F → not P T

P ∧ Q call P : P and Q in → P in

P T and Q ? : P T → Q in

P F and Q ? : P F → P and Q F

P T and Q T : Q T → P and Q T

P T and Q F : Q F → P and Q F

∃x.P call P with x T : Ex.P in → P in + x is T

call P with x F : x is T + P F → x is F + P in

x T P T : x is T + P T → Ex.P T

x F P T : x is F + P T → Ex.P T

Ex.P is F : x is F + P F → Ex.P F

To avoid name clashes we could let the name of an occurrence of a sub-
formula of G contain its position in the syntax tree for G. We omit these
details, for readability.

Intuitively, when P in (“the in-place for P”) becomes marked, then the
checking of the truth of P begins. When either P T (“true”) or P F (“false”)
becomes marked, this checking is completed. Let us consider in turn the
construction for each of the productions of the above grammar.

First, consider a variable x, see figure 2, box B. The places x is T (“x is
true”) and x is F (“x is false”) are not part of the net for x but are included
to indicate that they will be added when treating the quantification that
binds x. Note that all occurrences of the same variable x share these two
places. The two transitions implement the reading of the current value of x.

Second, consider a negation ¬P , see figure 2, box C. The transition call P

transfers the “control” to the subnet for P . The two other transitions imple-
ment the negation.

Third, consider a conjunction P ∧ Q, see figure 2, box D. The transition
call P transfers the “control” to the subnet for P . The four other transitions
implement the conjunction.

Fourth, consider an existential quantification ∃x.P , see figure 2, box E.
The places x is T (“x is true”) and x is F (“x is false”) are the ones we

14



mentioned above. The transition call P with x T assigns true to x and
transfers the “control” to the subnet for P . In case P was not true, the
transition call P with x F assigns false to x and transfers again the “control”
to the subnet for P .

If a formula P is open, then we can obtain an extended net for P as
follows. For every free variable x in P we extend the net with two places
x is T and x is F and mark exactly one of them. This marking may be
thought of as assigning a value to x.

The following fact expresses a relation between each formula P and the
extended net for P . The proof is by straightforward induction on the struc-
ture of P .

• Fact Let P be a formula generated from the above grammar and con-
sider the extended net for P . In the following we discount the marking
of the places for free variables; the marking of these are invariant.
From the marking {in P}, eventually either {P T} or {P F} will be
reached. The former is reached if and only if P is true under the given
assignment of its free variables, and the latter if not.

Using this observation it is easy to see that the marking {G T} is reach-
able in the net for G if and only if G is true.

Clearly, the net for G is 1-safe. Notice that for each reachable marking
at most one transition is enabled. 2

Theorem 7 The deadlock problem for 1-safe nets is PSPACE-complete.

Proof.
To show that the deadlock problem is in PSPACE, given a 1-safe net N

guess a 1-safe marking M of N , check in linear space if it is a deadlock, and,
by Lemma 5, check in PSPACE if M is reachable.

To prove completeness, we reduce the problem QUANTIFIED BOOLEAN
FORMULAS to the deadlock problem. Extend the net in the proof of The-
orem 6 with the transition

G F → G F

Clearly, the new net has a deadlock if and only if F is true. 2

15



The deadlock and and reachability problems turn out to be PSPACE-
complete even for 1-conservative unary 1-safe nets. This follows directly
from the constructions in the proof of Theorem 6 and the following “conser-
vativeness” observation.

First, we define the notion of reachability graph. The reachability graph
of a net N is the edge-labeled graph whose vertices are the reachable markings

of N ; if M
t

−→ M ′ for a reachable marking M , then there is an edge from
M to M ′ labeled with t.

Fact 8 There is a linear time algorithm which converts a 1-safe net N into a
1-conservative 1-safe net N ′ with the following property: there exists a simple
function f from the markings of N to the markings of N ′ such that (1) M

is reachable in N iff f(M) is reachable in N ′; (2) the initial marking of N

is mapped by f to the initial marking of N ′; and (3) M is a deadlock of N

iff f(M) is a deadlock of N ′. Hence the construction ‘preserves’ reachability
and the existence of deadlocks.

For N = (P, T, F, M0), the net N ′ is constructed by adding for every
place p of P a new place p called the complement of p. Then, for every arc
(p, t) of F \ F−1, a new arc (t, p) is added; similarly, for every arc (t, p) of
F \ F−1, a new arc (p, t) is added. Finally M ′

0 is defined by M ′

0(p) = M0(p)
for every place p of N , and M ′

0(p) = 1 − M0(p) for each complement place.
The construction is very similar to the one of [30], and therefore we omit the
proof of the result; the only difference is the special treatment of the case in
which two arcs (p, t) and (t, p) exist.

5 Subclasses

In this section we study the complexity of our three problems for three sub-
classes of nets which have been often studied in the literature. Most results
are already known; we have collected them and filled some gaps. The nets of
these subclasses satisfy some structural conditions that rule out some basic
kind of behaviours. In our first case, the acyclic nets, recursive or iterative be-
haviours are forbidden. The conflict-free nets do not allow nondeterministic
behaviours (actually, this depends slightly on the notion of nondeterminism
used). Finally, free-choice nets restrict the interplay between nondeterminism

16



and synchronizations. In particular, in 1-safe free-choice net the phenomenon
known as confusion [33] is ruled out.

A net N = (P, T, F, M0) is said to be acyclic if F + (the transitive closure
of F ) is irreflexive. It is easy to see that an acyclic net has no deadlocks if
and only if some of its transitions has empty preset; therefore the deadlock
problem can easily be solved in linear time. Similarly, an acyclic net is live if
and only if every place has some input transition; so the liveness problem is
also linear. Since all 1-safe acyclic nets contain deadlocks, the liveness and
deadlock problems are trivial. For both acyclic Place/Transition nets and
for acyclic 1-safe nets, the reachability problem is NP-complete. For acyclic
1-safe nets, NP-hardness of reachability was proved by Stewart [32], and for
acyclic Place/Transition nets, membership in NP follows by a straightforward
reduction to INTEGER LINEAR PROGRAMMING [5], which is in NP [18].
So, there are no essential differences between the general and the 1-safe case.

Conflict-free nets are a subclass in which conflicts are structurally ruled
out (actually, this depends slightly on the notion of conflict used). Their
complexity has been deeply studied in several papers; in particular, the com-
plexity of our three problems. A net N = (P, T, F, M0) is conflict-free if for
every place p, if |p•| > 1, then p• ⊆ •p. It is shown by Howell and Rosier
in [19, 20] that the reachability, liveness, and deadlock problems for 1-safe
conflict-free nets are solvable in polynomial time. They also show that, for
Place/Transition nets, the deadlock and liveness problems are still polyno-
mial, whereas the reachability problem becomes NP-complete [19, 20].

Free-choice nets are a well studied class, commonly acknowledged to be
about the largest class having a nice theory.

A net N = (P, T, F, M0) is free-choice if for any pair (p, t) ∈ F ∩ (P × T )
it is the case that p• = {t} or •t = {p}.

In a free-choice net, if some transitions share an input place p, then p is
their unique input place. It follows that if any of them is enabled, then all
of them are enabled. Therefore, it is always possible to freely choose which
of them occurs.

The reachability problem is still PSPACE-complete for 1-safe free-choice
nets. The reason is that for a 1-safe net N and a marking M , we can construct
a 1-safe free-choice net N ′ containing all the places of N (and possibly more),
such that M is reachable in N if and only if it is reachable in N ′. N ′ is the
so called ‘released form’ of N . Intuitively, every arc (p, t) such that |p•| > 1
and |•t| > 1 is removed and replaced by new arcs (p, t′), (t′, p′), (p′, t), where

17



P2

T1

P1 P2

T2

T2 T1

P1

NN released form of 

Figure 3: A net and its released form.

p′ and t′ are a new place and a new transition. The interested reader can
find a formal definition in [22, 17]. Figure 3 shows a non-free-choice net (on
the left), and its released form (on the right).

Perhaps surprisingly, the liveness problem is polynomial for this class.

Theorem 9 The liveness problem for free-choice 1-safe nets is solvable in
polynomial time.

Proof. See the paper by Esparza and Silva [11], and the paper by Desel
[7]. 2

We now show that the deadlock problem for 1-safe free-choice nets is NP-
complete. Membership in NP is non-trivial, and requires to introduce some
concepts and results of net theory.

Let N be a net and Q a set of places of N . For a marking M of N , M(Q)
denotes the total number of tokens that M puts in the places of Q (formally,
M(Q) =

∑
p∈Q M(p)). The set Q is said to be marked at M if M(Q) > 0,

and unmarked at M if M(Q) = 0.
A subset Q of places of N is a siphon if •Q ⊆ Q•, and a trap if Q• ⊆ •Q.
We use some well known lemmata about siphons and traps. They can all

be found in [15] or - a more accessible reference - in [2].

Lemma 10 Let N be a net, and M a marking of N .

(1) If Q is a siphon of N unmarked at M , then Q remains unmarked at all
markings reachable from M .

18



(2) If Q is a trap of N marked at M , then Q remains marked at all markings
reachable from M .

Proof. Follows easily from the definitions of siphon, trap, and the occur-
rence rule. 2

Lemma 11 Let M be a deadlock of a net N . Then, the set of places of N

unmarked at M is a siphon of N .

Proof. Let Q be the set of places of N unmarked at M . It suffices to
observe that, since M is a deadlock, every transition has some place in its
preset which is unmarked at M . So Q• contains all the transitions of N and,
since •Q is a subset of them, Q is a siphon. 2

Lemma 12 Let N be a free-choice net with initial marking M0. Let Q be
a siphon of N which contains no trap marked at M0. Then, there exists a
reachable marking M such that Q is unmarked at it.

Proof. See [15, 2]. This result is part of the proof of Commoner’s theorem.
2

Using these lemmata, we can now characterise when a free-choice net has
a deadlock.

Lemma 13 Let N be a free-choice net. N has a deadlock iff there exists a
siphon Q of N such that:

(1) for every transition t of N , Q contains some place of •t, and

(2) Q contains no trap marked at the initial marking.

Proof. (⇒): Let M be a deadlock of N . Define Q as the set of places of
N unmarked at M . By Lemma 11, Q is a siphon. Since no transition of N

is enabled at M , we have that, for every transition t, Q contains some place
of •t.

To prove (2), assume that Q contains a trap marked at the initial marking.
Then, since marked traps remain marked by Lemma 10, this trap is marked
at M . So Q is marked at M too, which contradicts the definition of Q.

(⇐): By Lemma 12, there exists a reachable marking M such that
M(Q) = 0. Since Q contains some place of the preset of each transition,
no transition is enabled at M . So M is a deadlock. 2

19



Theorem 14 The deadlock problem for 1-safe free-choice nets is NP-complete.

Proof. To solve the problem in nondeterministic polynomial time, we use
Lemma 13. Guess for each transition t of the net a place of •t. This set Q

of places is a siphon because Q• = T . Then, check in polynomial time that
it contains no trap marked at the initial marking using Starke’s algorithm to
find the maximal trap contained in a given siphon [31] (see [8] for a reference
in English).

We prove completeness by reducing the satisfiability problem of propo-
sitional formulas in conjunctive normal form (CON-SAT) to the deadlock
problem.

An instance φ of CON-SAT is a conjunction of clauses C1, . . . , Cm over
variables x1, . . . , xn. A clause is a disjunction of literals. A literal li is either
a variable xi or its negation xi.

Given an instance φ of CON-SAT, we construct a free-choice net N in
polynomial time and show that that it has a deadlock iff φ is satisfiable.
The construction is very similar to the one used in [22] to prove the NP-
completeness of liveness in general free-choice nets. We describe the set P

of places and the set T of transitions of N , together with their presets and
postsets. The set P contains the following elements:

(a) for every 1 ≤ i ≤ n, places Ai, xi, xi,

(b) for each clause Cj and every literal li appearing in Cj, a place (li, Cj),
and

(c) for each clause Cj, a place Fj.

The transitions in T are defined as follows:

(1) for each literal li, Ai → li,

(2) for each literal li, li →
∑

li∈Cj

(li, Cj),

(3) for each clause Cj,
∑

li∈Cj

(li, Cj) → Fj, and

(4) for each clause Cj, Fj → Fj.

20



The marking M0 is the set {Ai | 1 ≤ i ≤ n}.
An occurrence sequence σ of N is a truth sequence if:

• for every variable xi, it contains one of the two transitions Ai → xi,
Ai → xi, and

• only transitions of type (3), if any, are enabled at the marking reached
by σ.

A truth sequence σ is associated to the assignment f : {x1, . . . , xn} → {true, false}
given by f(xi) = true iff the transition Ai → xi occurs in σ.
The following fact follows easily from the construction of N :

• Fact The marking reached by a truth sequence enables a type (3)
transition iff the corresponding clause Cj is false under f .

Assume φ is satisfiable. Then, there exists an assignment f which makes
all clauses true. By the fact above, any truth sequence associated to f leads
to a deadlock.
Now, assume that M is a deadlock of N . It follows from the construction that
M only marks places of the form (li, Cj), and that any occurrence sequence
that leads to M is a truth sequence. By the fact above, no clause is false
under the assignment associated to σ. So φ is satisfiable. 2

There are differences between the 1-safe and the Place/Transition free-
choice nets. Using the releasing technique it is easy to show that the reach-
ability problem for free-choice nets is as hard as the reachability problem
for arbitrary Place/Transition nets, and therefore EXPSPACE-hard. The
liveness problem was shown to be NP-complete in [22]. Finally, our proof
of membership in NP for the deadlock problem did not rely on 1-safeness;
therefore, the deadlock problem is also NP-complete for Place/Transition
free-choice nets.

6 Other Problems

There exist other problems concerning Petri nets which have received atten-
tion in the literature.

21



The containment problem for two nets with the same set of places is the
problem of deciding whether all reachable markings of the first are reachable
in the second.

Given two 1-safe markings M , M ′ of a net, M is covered by M ′ if M ⊆ M ′.
The coverability problem for a given net N and a marking M of N is the
problem of deciding whether some reachable marking of N covers M .

A net N is said to be persistent [23] if for every reachable marking M , if

two different transitions t, t′ are enabled at M then M
t

−→ M ′ t′

−→ M ′′ for
some markings M ′, M ′′. The persistency problem for a net is the problem of
deciding whether the net is persistent. Notice that unary nets are persistent.

Let N = (P, T, F, M0) be a net. For any subset T0 of T let hT0
be the

“erasing” homomorphism from T ∗ to T ∗

0 which erases elements from T \ T0.
For a transition t ∈ T \T0 we say that T0 controls t by an occurrence sequence
γ in T ∗

0 if for every occurrence sequence σ from M0, if hT0
(σ) = γ then t is

not enabled at the marking M reached by the occurrence of σ. Crudely
speaking, once γ has occurred, even interleaved with transitions of T \ T0, t

cannot occur until some transition of T0 occurs. T0 is said to control t if T0

can control t by at least one sequence γ. The controllability problem [22] for
a net is the problem of deciding whether T0 controls t given N , T0, and t as
above.

For arbitrary Petri nets, the containment problem is undecidable [17],
whereas the coverability, persistency and controllability problems are EXPSPACE-
hard. It is shown by Howell and Rosier in [19, 20] that the coverability
problem for 1-safe conflict-free nets is solvable in polynomial time.

We study the first three of these problems in the 1-safe case.

Theorem 15 The containment, coverability and persistency problems for 1-
safe nets are PSPACE-complete.

Proof. We show that each of the three problems is in PSPACE. First,
consider the containment problem. Given two nets, guess a marking, and
by Lemma 5, check in PSPACE that the marking is reachable in the first
net and unreachable in the second net. This shows that the containment
problem is in co-NPSPACE and thus in PSPACE (by Savitch’s theorem and
because space complexity classes are closed under complementation).

Second, consider the coverability problem. Given a 1-safe net N and a
marking M of N , guess a marking M ′ ⊇ M and, by Lemma 5, check in
PSPACE that the marking M ′ is reachable.

22



Third, consider the persistency problem. Proceed as above, this time
guessing a marking M of N that enables two different transitions t and t′.
If M is reachable, then check in linear space that t′ cannot occur after the
occurrence of t.

To prove that each of the three problems is PSPACE-hard, we use the
same construction as in the proof of PSPACE-hardness of reachability. For
each of the following arguments, suppose we are given a quantified boolean
formula F . To begin with, transform it into an equivalent formula G as was
done for Theorem 6.

First, consider the containment problem. Construct both the same 1-
safe net N as in the proof of Theorem 6 and the following net N ′. The
net N ′ is obtained from N by removing all transitions, and taking {G T} as
initial marking. For convenience we construct a net whose places have empty
presets and postsets (isolated nodes), see remark at the beginning of section
2. The PSPACE-hardness can be shown for nets satisfying the assumptions
of no isolated nodes. Clearly, the set of reachable markings of N ′ is {G T},
and therefore it is contained in the set of reachable markings of N if and only
if F is true.

Second, consider the coverability problem. Clearly, there is a reachable
marking in N that covers {G T} if and only if F is true.

Third, consider the persistency problem. Extend the net in the proof of
Theorem 6 with two new places {V, W} and the transitions

G F → V

G F → W

Clearly, the new net is persistent if and only if F is true. 2

The proof of the result that controllability is EXPSPACE-complete [22,
Theorem 4.1] was in fact given for 1-conservative free-choice nets, and also
works when restricted to 1-safe nets. This is the only one of the problems
we consider for which the complexity does not decrease for 1-safe nets.

Using the techniques from the proofs of Theorem 6 and 15 one can proceed
to prove that numerous other problems for 1-safe nets are PSPACE-complete:
“is there an infinite occurrence sequence?”, “can a certain transition ever
occur?”, “is a certain transition live?”, etc. The interested reader will find
no problem in carrying out the corresponding proofs.

23



Acknowledgement. The authors thank Claus Torp Jensen for comments
that lead to a simplification of the proof of Theorem 6. The authors also
thank S. Purushothaman, P.S. Thiagarajan, and the anonymous referees for
helpful comments on a draft of the paper.

References

[1] Luca Bernardinello and Fiorella De Cindio. A survey of basic net models
and modular net classes. In Advances in Petri Nets 1992, pages 304–351.
Springer-Verlag (LNCS 609), 1992.

[2] Eike Best and Jörg Desel. Partial order behaviour and structure of Petri
nets. Formal Aspects of Computing, 2:123–138, 1990.

[3] Eike Best and César Fernández. Nonsequential Processes – a Petri Net
View. EATCS Monographs on Theoretical Computer Science Vol.13,
1988.

[4] Eike Best and P.S. Thiagarajan. Some classes of live and save Petri nets.
In K. Voss, H.J. Genrich, and G. Rozenberg, editors, Advances in Petri
Nets, pages 71–94. Springer-Verlag, 1987.

[5] Allan Cheng, Javier Esparza, and Jens Palsberg. Complexity results
for 1-safe nets. In Proc. FST&TCS 13, Thirteenth Conference on the
Foundations of Software Technology & Theoretical Computer Science,
pages 326–337. Springer-Verlag (LNCS 761), Bombay, India, December
1993.

[6] Fred Commoner, Anatole W. Holt, S. Even, and Amir Pnueli. Marked
directed graphs. Journal of Computer and System Sciences, 5:511–523,
1971.

[7] Jörg Desel. A proof of the rank theorem for extended free choice nets.
In Application and Theory of Petri Nets 1992, pages 134–153. Springer-
Verlag (LNCS 616), 1992.

[8] Jörg Desel and Javier Esparza. Reachability in reversible free choice
systems. In Proc. STACS’91, pages 384–397. Springer-Verlag (LNCS
480), 1991.

24



[9] Javier Esparza. Model checking using net unfoldings. In Proc. TAP-
SOFT’93, pages 613–628. Springer-Verlag (LNCS 668), 1993. Full ver-
sion to appear in Science of Computer Programming.

[10] Javier Esparza and Mogens Nielsen. Decidability issues on petri nets –
a survey. Bulletin of the EATCS, 52:245–262, February 1984. To appear
in the Journal of Information Processing and Cybernetics (EIK).

[11] Javier Esparza and Manuel Silva. A polynomial-time algorithm to decide
liveness of bounded free choice nets. Theoretical Computer Science,
102:185–205, 1992.

[12] Michael R. Garey and David S. Johnson. Computers and Intractability.
Freeman, 1979.

[13] Hartmann J. Genrich and Kurt Lautenbach. Synchronisationsgraphen.
Acta Informatica, 2:143–161, 1973.

[14] Patrice Godefroid. Using partial orders to improve automatic verifi-
cation methods. In Proc. CAV’90, 2nd Workshop on Computer-Aided
Verification, pages 176–185. Springer-Verlag (LNCS 531), 1990.

[15] Michel Hack. Analysis of production schemata by Petri nets. Master’s
thesis, MIT, 1972.

[16] Michel Hack. The recursive equivalence of the reachability problem and
the liveness problem for Petri nets and vector addition systems. In Proc.
15th Annual Symposium on Switching and Automata Theory, pages 156–
164, 1974.

[17] Michel Hack. The equality problem for vector addition systems is unde-
cidable. Theoretical Computer Science, 2:77–95, 1976.

[18] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages and Computation. Addison-Wesley Publishing Com-
pany, 1979.

[19] Rodney R. Howell and Louis E. Rosier. Completeness results for conflict-
free vector replacement systems. Journal of Computer and System Sci-
ences, 37:349–366, 1988.

25



[20] Rodney R. Howell and Louis E. Rosier. Problems concerning fairness
and temporal logic for conflict-free Petri nets. Theoretical Computer
Science, 64(3):305–329, 1989.

[21] Lalita Jategaonkar and Albert Meyer. Deciding true concurrency equiv-
alences on finite safe nets. In Proc. ICALP’93, pages 519–531, 1993.

[22] Neil D. Jones, Lawrence H. Landweber, and Y. Edmund Lien. Com-
plexity of some problems in Petri nets. Theoretical Computer Science,
4:277–299, 1977.

[23] Lawrence H. Landweber and E. L. Robertson. Properties of conflict-free
and persistent Petri nets. Journal of the ACM, 3:352–364, 1975.

[24] Richard J. Lipton. The reachability problem requires exponential space.
Technical Report 62, Yale University, 1976.

[25] Ernst W. Mayr. An algorithm for the general Petri net reachability
problem. SIAM Journal on Computing, 13:441–460, 1984.

[26] Antoni Mazurkiewicz. Trace theory. In Petri Nets: Applications and
Relationships to Other Models of Concurrency, pages 279–324. Springer-
Verlag (LNCS 255), 1986.

[27] Kenneth L. McMillan. Using unfoldings to avoid the state explosion
problem in the verification of asynchronous circuits. In Proc. CAV’92,
Fourth Workshop on Computer-Aided Verification, pages 164–174, 1992.

[28] Mogens Nielsen, Grzegorz Rozenberg, and P.S. Thiagarajan. Be-
havioural notions for elementary net systems. Distributed Computing,
4(1):45–57, 1990.

[29] J. L. Peterson. Petri net theory and the modeling af systems. Prentice-
Hall, 1981.

[30] Wolfgang Reisig. Petri Nets – An Introduction. EATCS Monographs in
Computer Science Vol.4, 1985.

[31] Peter H. Starke. Analyse von Petri-Netz-Modellen. Teubner, 1990.

26



[32] Iain A. Stewart. On the reachability problem for some classes of Petri
nets. Research Report, University of Newcastle upon Tyne, to appear
in Fundamenta Informaticae, 1992.

[33] P.S. Thiagarajan. Elementary net systems. In Advances in Petri Nets
1986, part I, pages 26–59. Springer-Verlag (LNCS 254), 1987.

[34] Antti Valmari. Stubborn sets for reduced state space generation. In
Grzegorz Rozenberg, editor, Advances in Petri Nets 1990, pages 491–
515. Springer-Verlag (LNCS 483), 1990.

[35] Glynn Winskel and Mogens Nielsen. Models for concurrency. Technical
Report DAIMI PB–429, Computer Science Department, Aarhus Univer-
sity, November 1992. To appear as a chapter in the Handbook of Logic
and the Foundations of Computer Science, Oxford University Press.

27


