
Derivation Tree Analysis for
Accelerated Fixed-Point Computation

Javier Esparza

Institut für Informatik, Technische Universität München, 85748 Garching, Germany

Stefan Kiefer

Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, Great Britain

Michael Luttenberger

Institut für Informatik, Technische Universität München, 85748 Garching, Germany

Abstract

We show that for several classes of idempotent semirings the least fixed-point of a
polynomial system of equations X = f(X) is equal to the least fixed-point of a
linear system obtained by “linearizing” the polynomials of f in a certain way. Our
proofs rely on derivation tree analysis, a proof principle that combines methods from
algebra, calculus, and formal language theory, and was first used in [10] to show that
Newton’s method over commutative and idempotent semirings converges in a linear
number of steps. Our results lead to efficient generic algorithms for computing the
least fixed-point. We use these algorithms to derive several consequences, including an
O(N3) algorithm for computing the throughput of a context-free grammar (obtained
by speeding up the O(N4) algorithm of [7]), and a generalization of Courcelle’s result
stating that the downward-closed image of a context-free language is regular [8].

Keywords: Fixed-point equations, semirings, derivation trees.

1. Introduction

Systems X = f(X) of fixed-point equations, where f is a system of polynomials,
appear naturally in program analysis [22, 24, 6, 23], language theory [25], seman-
tics of programming languages and process algebras [18, 21, 2] and in the study of
probabilistic systems [16, 11, 13, 12]. In many of these applications, the system of
equations is easily derived from a program or process by syntactic means; the sum and
product operations in the polynomials standing for choice and sequential composition,

Email addresses: esparza@model.in.tum.de (Javier Esparza), stekie@comlab.ox.ac.uk
(Stefan Kiefer), luttenbe@model.in.tum.de (Michael Luttenberger)

A previous version of this work has been published in the proceedings of DLT 2008.

Preprint submitted to Elsevier February 25, 2011

respectively. The system is solved over different domains corresponding to different
abstractions or overapproximations of the system [6, 23]. While the abstractions lose
information about the behaviour of the system, they are necessary in order to efficiently
compute a solution of the equations.

In this paper we study how to solve the equations for different classes of domains.
We follow an axiomatic approach, i.e., we investigate generic algorithms that can be
applied to equations over any domain satisfying a given set of axioms. Our work can be
seen as an algorithmic-oriented version of the approach to process algebra pioneered
by Bergstra and Klop [3, 4], and further developed by the “Dutch school” (see e.g.
[2, 14, 5]), in which the semantic models of a process are also classified in terms of
axioms. In fact, as shown in Section 2.1, our systems of equations can be interpreted as
recursive definitions of processes in Bergstra and Klop’s Basic Process Algebra (BPA),
but over models satisfying not only the right-distributivity axiom (x+y)·z = x·z+y·z,
but also the left-distributivity axiom x · (y + z) = x · z + y · z).

The starting point of our work is Kleene’s classical fixed-point theorem [20]. The
theorem shows that for any system X = f(X) of polynomial equations and for any
domain satisfying the axioms of a complete semilattice or, more generally, of an ω-
continuous semiring, there exists a least solution µf that can be approximated by iter-
atively computing f(0),f(f(0)),f(f(f(0))), The theorem is extremely useful
and finds many applications in distributive program analysis, analysis of context-free
grammars, trace semantics for process algebras, and probabilistic verification. How-
ever, it is often unsatisfactory from an algorithmic point of view, because it fails to
terminate in general. Consider for instance the equation X = a ·X+b over the lattice
of subsets of the language {a, b}∗. The least solution is the regular language a∗b, but
we have f (i)(0) = {b, ab, . . . , ai−1b} for i ≥ 1, i.e., the solution is not reached in any
finite number of steps.

In [10, 9] we have shown that Newton’s method—the well-known method from
numerical mathematics for approximating a zero of a differentiable function— can
be generalized to arbitrary ω-continuous semirings. Like Kleene’s, Newton’s method
proceeds by iteratively computing approximations to µf . We were able to show that
for idempotent (w.r.t. addition) and commutative (w.r.t. multiplication) semirings the
method terminates2, and in fact terminates after a small number of iterations: if the
system has n equations, then the n-th Newton approximant is already equal to µf .

Our proof of this result uses a (to the best of our knowledge) novel technique, which
we call derivation tree analysis. The system f induces a set T of derivation trees, a
generalization of the well-known derivation trees of context-free grammars. Each tree
can be naturally assigned a semiring element, called the yield of the tree. It is easy to
show that µf is equal to the sum of the yields of all derivation trees. Derivation tree
analysis first identifies a subset T ′ of derivation trees whose total yield Y(T ′) is easy
to compute in some sense, and then proves that T ′ satisfies the embedding property:
Y(t) v Y(T ′) for every derivation tree t. If the semiring is idempotent, the embedding
property implies Y(T) = Y(T ′), and so µf = Y(T ′). In [10], the set T ′ was chosen
so that Y(T ′) is equal to the n-th Newton approximant, and the embedding property

2A similar result was already proved in [19].

2

was proved using some tree surgery and exploiting the commutativity of the semiring.
The computation of the n-th Newton approximant can still require considerable

resources. In this paper we present a further application of derivation tree analysis
to idempotent semirings, leading to more efficient algorithms for computing the least
fixed point. For this, we define the set B of bamboos of a system f . Loosely speaking,
bamboos are derivation trees with an arbitrarily long stem but only short branches. We
first show that Y(B) is the solution of a linear system of equations whose functions are
similar (but not identical) to the straightforward linearisation of f . Then, we prove that
the following three classes of semirings satisfy the embedding property:

Star-distributive semirings are idempotent and commutative semirings satisfying
the additional axiom (a + b)∗ = a∗ + b∗ (where ∗ is the well-known Kleene iteration
operator). The so-called “tropical” (min,+)-semiring over the reals (extended with
+∞ and−∞) is star-distributive. Our tree analysis leads to an algorithm for computing
µf very similar to the generalized Bellman-Ford algorithm of Gawlitza and Seidl [15].
We use it to derive a new algorithm for computing the throughput of a context-free
grammar, a problem introduced and analyzed by Caucal et al. in [7]. Our algorithm
runs in O(N3), a factor N faster than the algorithm presented in [7].

Lossy semirings are idempotent semirings satisfying the additional axiom a+1 = a
where 1 is the neutral element of multiplication. A natural model are downward-closed
languages with union and concatenation as operations. Lossy semirings find applica-
tion in the verification of lossy channel systems, a model of computation thoroughly
investigated by Abdulla et al. (see e.g. [1]). Our tree analysis leads to an algebraic proof
of Courcelle’s theorem stating that the downward closure of a context-free language is
effectively regular [8].

1-bounded semirings are idempotent semirings where the equation a+1 = 1 holds.
A natural example is the “maximum probability” semiring with the interval [0, 1] as car-
rier, maximum as addition, and standard multiplication over the reals. Using derivation
tree analysis it is very easy to show that the least fixed-point µf of a polynomial system
f with n variables is given by fn(0), the n-fold application of f to 0.

The rest of the paper is organized as follows. After the preliminaries in Section 2
we introduce derivation tree analysis in Section 3. Bamboos are defined in Section 4.
In the Sections 5, 6 and 7 we apply derivation tree analysis to the semiring classes
mentioned above.

2. Preliminaries

As usual, N denotes the set of natural numbers including 0.
An idempotent semiring S = 〈S,+, ·, 0, 1〉 consists of a commutative, idempotent

additive monoid 〈S,+, 0〉, and a multiplicative monoid 〈S, ·, 1〉. In the following we
often omit the dot · in products. Both algebraic structures are connected by left- and
right-distributivity, e.g. a(b+c) = ab+ac, and by the requirement that 0 ·a = a ·0 = 0
for all a ∈ S. The natural order v on S is defined defined by a v b⇔ a+ b = b.

An io-semiring is an idempotent semiring which is further ω-continuous, i.e., on S
countable summation

∑
i∈N ai ∈ S is defined (with ai ∈ S), and satisfies the following

requirements: (i) summation is continuous, i.e., supv{a0 + a1 + . . .+ ak | k ∈ N} =

3

∑
i∈N ai for all sequences a : N → S; (ii) distributivity extends in the natural way

to countable summation; and (iii)
∑

j∈J

∑
i∈Ij

ai =
∑

i∈N ai holds for all partitions
(Ij)j∈J of N. Note that for io-semiring we have

∑
i∈N ai v b if and only if ai v b for

all i ∈ N. In every such io-semiring the Kleene-star operator ∗ : S → S is well-defined
by a∗ :=

∑
k∈N a

k for all a ∈ S. In the following we consider only io-semirings S.
We fix a finite, non-empty set X of variables for the rest of the section, and use

n to denote |X | in the following. A map from X to S is called a vector. The set
of all vectors is denoted by V with 0 ∈ V the vector which maps every X ∈ X to
0 ∈ S. We write both v(X) and vX for the value of a vector v at X ∈ X , also called
the X-component of v. Sum of vectors is defined componentwise: given a countable
set I and a vector vi for every i ∈ I , we denote by

∑
i∈I vi the vector given by(∑

i∈I vi

)
(X) =

∑
i∈I vi(X) for every X ∈ X .

A monomial of degree k is a finite expression a1X1a2 · · · akXkak+1 where k ≥ 0,
a1, . . . , ak+1 ∈ S \ {0} and X1, . . . , Xk ∈ X . A polynomial is an expression of
the form m1 + · · · + mk where k ≥ 0 and m1, . . . ,mk are monomials. Since S is
idempotent, we assume w.l.o.g. that all monomials of a polynomial are distinct. The
degree of a polynomial is the largest degree of its monomials. We let S[X] denote the
set of all polynomials.

Let f = α1X1α2 . . . Xkαk+1 be a monomial and let v be a vector. The evaluation
of f at v, denoted by f(v), is the product α1vX1α2 · · ·αkvXk

αk+1. We extend this to
any polynomial: if f =

∑k
i=1mi, then f(v) =

∑k
i=1mi(v).

A system of polynomials or polynomial system f : X → S[X] assigns to every
variable X ∈ X a polynomial fX and induces a map from V to V by componentwise
evaluation of the polynomials: f(v)X := fX(v) for all v ∈ V, and X ∈ X . We write
X = f(X) for the equation system

∧
X∈X X = fX (over the respective io-semiring

S). The following proposition, which follows easily from Kleene’s theorem and the
fact that f is a monotone and continuous mapping, shows that any polynomial system
f has a least fixed-point µf , i.e., the corresponding equation system X = f(X) has
a least solution µf .

Proposition 1. A polynomial system f has a unique least fixed-point µf , i.e., µf =
f(µf), and µf v v holds for all v with v = f(v). Further, µf is the supremum
(w.r.t. v) of the Kleene sequence (f i(0))i∈N, where f i denotes the i-fold application
of f .

2.1. Connection to Basic Process Algebra

Idempotent semirings are closely related to Basic Process Algebra (BPA), the frag-
ment of Bergstra and Klop’s process algebra involving only sequential composition and
choice [3]. Recall the axioms of BPA with deadlock–special constant δ–and immediate

4

termination–special constant ε (see Chapter 2 of [2]):

x+ y = y + x A1
(x+ y) + z = x+ (y + z) A2

x+ x = x A3
(x+ y) · z = x · z + y · z A4
(x · y) · z = x · (y · z) A5

x+ δ = x A6
δ · x = δ A7
x · ε = x A8
ε · x = x A9

It follows immediately from this list that every semiring S = 〈S,+, ·, 0, 1〉 yields a
model of BPA when δ and ε are interpreted as 0 and 1, respectively. The converse does
not hold, because semirings also satisfy the left-distributivity axiom

x · (y + z) = x · y + x · z .

Loosely speaking, this is the axiom that distinguishes linear from branching time mod-
els: in linear time models, the semantics of a process is a set of traces, and processes
that only differ on the point at which nondeterminism is resolved are considered equal;
in branching time models (like bisimulation or testing equivalence), the axiom does not
hold. Our work on semirings can therefore be seen as the algorithmic study of linear
time models of BPA.

3. Derivation Trees

We generalize the notion of derivation tree, as known from formal languages and
grammars. We identify a node u of a (ordered) tree t with the subtree of t rooted at u.
In particular, we identify a tree with its root.

Let f be a polynomial system over a set X of variables. A derivation tree t of
f is an ordered (finite) tree whose nodes are labelled with both a variable X and a
monomial m of fX . We write λv , resp. λm for the corresponding labelling-functions.
Moreover, if the monomial labelling of a node u is λm(u) = a1X1a2 . . . Xsas+1 for
some s ≥ 0, then u has exactly s children u1, . . . , us, ordered from left to right, with
λv(ui) = Xi for all i = 1, . . . , s. A derivation tree t is an X-tree if λv(t) = X . The
set of all X-trees of f is denoted by Tf ,X , or just by TX if f is clear from the context.

The left part of Figure 1 shows a derivation tree of the system f over the variables
X and Y given by fX = aXY b + c and fY = dX + Y e. The derivation trees of
f are very similar to the derivation trees of the context-free grammar with productions
X → aXY b|c and Y → dX|Y e. Note that the nodes of “our” trees are labeled
by “productions” (for instance, the label (X, aXY b) corresponds to the production
X → aXY b). This simplifies notation in the following proofs. On the right of Figure
1 the corresponding tree according to the standard definition is shown. The height
h(t) of a derivation tree t is the length of a longest path from the root to a leaf. The
set of X-trees (of f) of height at most h is denoted by T (h)

X . The yield Y(t) of a

5

(X, aXY b)

(X, c) (Y, dX)

(X, c)

X

a X

c

Y

d X

c

b

Figure 1: A derivation tree on the left, and its standard representation on the right

derivation tree t with λm(t) = a1X1a2 · · ·Xsas+1 is inductively defined to be Y(t) =
a1Y(t1)a2 · · ·Y(ts)as+1. We extend the definition of Y to sets T ⊆ TX by setting
Y(T) :=

∑
t∈T Y(t). E.g., the system f defined above has exactly two X-trees of

height at most 2: the tree consisting of a single node labeled by (X, c), and the left tree
of Figure 1. Their yields are c and acdcb, respectively, and so Y(T (2)

X) = c+ acdcb. It
follows Y(T (2)

X) = f3(0)X , i.e., the yield of the X-trees of height at most 2 is equal
to the “Kleene approximant” f3(0)X from Proposition 2. The following proposition,
easy to prove [9], shows that this is not a coincidence.

Proposition 2. For all h ∈ N and X ∈ X , we have Y(T (h)
X) =

(
fh+1(0)

)
X

.

Together with Proposition 2 we get:

Corollary 3. µfX = Y(TX).

3.1. Derivation Tree Analysis
We say that a set TX of X-trees satisfies the embedding property if Y(t) v Y(TX)

for every X-tree t ∈ TX Loosely speaking, this means that for a tree t ∈ TX \ TX , its
yield Y(t) is already taken into account when only considering TX . For our setting of
io-semirings, the embedding property is of course equivalent to Y(TX) v Y(TX) resp.
Y(TX) = Y(TX) as TX ⊆ TX . In combination with Corollary 3 we obtain:

Proposition 4. Let f be a system of polynomials over an io-semiring, and let X be
a variable of f . If a set TX of X-trees of f satisfies the embedding property, then
µf = Y(TX).

This proposition suggests a technique for the design of efficient algorithms com-
puting µf : (1) define a set TX of derivation trees whose yield is “easy to compute”
in some io-semiring, and (2) identify “relevant” classes of io-semirings for which TX

satisfies the embedding property. By Proposition 4, µf is “easy to compute” for these
classes. We call this technique derivation tree analysis.

4. Bamboos and their Yield

The difficulty of derivation tree analysis lies in finding a set TX exhibiting a good
balance between the contradictory requirements “easy to compute” and “relevant”: if
TX = ∅ then the yield is trivial to compute, but TX does not satisfy the embedding

6

property in any interesting case. Conversely, TX = TX trivially satisfies the embedding
property for every io-semiring, but is not easy to compute. The main contribution of
this paper is the identification of a class of derivation trees, bamboos, exhibiting this
balance. In this section we define bamboos and show that their yield is the least solution
of a system of linear equations easily derivable from f . The “easy to compute” part
is justified by the fact that in most semirings used in practice linear equations are far
easier to solve than polynomial equations (e.g., in the real semiring or the language
semiring with union and concatenation as operations). The “relevance” of bamboos is
justified in the next three sections.

Definition 5. Let f be a system of polynomials. A tree t ∈ Tf ,X is an X-bamboo if
there is a path leading from the root of t to some leaf of t, the stem, such that the height
of every subtree of t not containing a node of the stem is at most n − 1. The set of all
X-bamboos of f is denoted by Bf,X , or just by BX if f is clear from the context.

< n

< n

< n

< n

< n

< n

< n

< n

Figure 2: An example of the structure of a bamboo: it consists of a stem of unbounded length from which
subtrees of height less than n sprout; on the right it is shown with its stem straightened.

The linear system of equations mentioned above can be obtained by suitably general-
izing the notion of differential of a function. Recall from elementary calculus that the
differential of a function f(X) at value v is the linear function (more precisely, differ-
ential 1-form) Df |v(X) which describes the differential change of f in a neighborhood
of v. Over the real numbers, differential and derivative of a function are closely related,
indeed we have Df |v(X) = f ′(v)X which, neglecting the constant offset, is the best
linear approximation to f(X) in the neighborhood of v. Differentials can be suitably
extended to functions over several variables (where there is similar connection with the
partial derivatives).

This suggests to use differentials to “linearize” polynomial equations over semi-
rings, i.e., for finding linear equations whose solutions are good aproximations or even
equal to the solutions of the polynomial systems. For this, however, we must first come
up with a suitable definition of differential! In calculus the differential is defined in
terms of the derivative (see baove), which in turn is defined as a limit of quotients. Since
multiplication in a semiring does not necessarily have an inverse, there seems to be no

7

simple of way of generalizing the differential. To overcome this problem, we recall that
a polynomial function can be computed using simple rules very similar to the rules for
computing derivatives. For instance, the rule (fg)′(X) = f ′(X)g(X) + f(X)g′(X)
for the computation of derivatives yields the rule

D(f g)|v(X) = Df |v(X)h(v) + f(v)Dg |v(X)

for differentials. Since these rules only involve addition and multiplication, they can be
used to define the differential of a polynomial function not only for functions over the
reals, but for functions over an arbitrary semiring. This is what we do in Definition 6
below. Notice that, in principle, this definition is purely formal: nothing guarantees that
the differential of a polynomial over a semiring will be in any sense “a linear approxi-
mation” to the polynomial. However, this turns out to be the case: Definition 6 defines
a linearization of polynomial equations using this formal definition of differentals, and
Theorem establishes the relation between the elast solution of a system and the least
solution of its linearization.

Definition 6. Let f ∈ S[X] be a polynomial and let v ∈ V be a vector. The differential
of f at v w.r.t. a variableX is the map DX f |v : V → S inductively defined as follows:

DX f |v(a) =

0 if f ∈ S or f ∈ X \ {X}

aX if f = X
DX g |v(a) · h(v) + g(v) ·DX h|v(a) if f = g · h∑k

i=1 DXmi |v(a) if f =
∑k

i=1mi.

Further, we define the differential of f at v by Df |v(a) :=
∑

X∈X DX f |v(a).
The differential of a system of polynomials f at v is defined componentwise by
(Df |v(a))X := D(fX)|v(a) for all X ∈ X .

Example 7. For f(X,Y) = a ·X ·X · Y · b, v = (vX , vY), c = (cX , cY) we have:

DX f |v(c) = a · cX · vX · vY · b+ a · vX · cX · vY · b
DY f |v(c) = a · vX · vX · cY · b

Remark. At this point the reader may wonder why we use differentials instead of
derivatives, whose rules are simpler than the ones of Definition 6. The reason is that
the connection Df |v(X) = f ′(v)X only holds because multiplication over the reals is
commutative, which is not necessarily the case in semirings. Consider the polynomial
f(X) = aXb+a. Taking the derivative yields f ′(X) = ab and, subsequently, l(X) =
abX + a for the tangent at the point X = 0. Clearly, if multiplication is commutative,
then l(X) approximates f(X) from below, i.e., we have l(v) v f(v) for all v ∈ S
as l(X) = f(X). But on the language semiring generated by Σ = {a, b}, where
multiplication is notcommutative, this does not hold anymore, e.g., l(a) 6= f(a). Since
the connection between derivative and differential no longer holds, we are forced to
work directly with differentials.

Using differentials we define a particular linearization of a polynomial system. The
idea is to replace a polynomial system of equations X = f(X) by a linear system
X = fB(X) whose least solution is a “good approximation” to the least solution of
X = f(X).

8

Definition 8. Let f be a system of n polynomials. The bamboo system fB associated
to f is the linear system fB(X) = Df |fn(0)(X) + f(0). The least solution of the
system of equations X = fB(X) is denoted by µfB.

The following theorem establishes the relation between the least solutions of x =
f(X) and x = fB(X).

Theorem 9. Let f be a system of polynomials over an io-semiring. For every variable
X of f we have Y(BX) = (µfB)X , i.e., the yield of the X-bamboos is equal to the
X-component of the least solution of the bamboo system.

PROOF. In the following, tet B(h)
X := BX ∩ T (h)

X be the set of X-bamboos (w.r.t. f)
of height at most h. Note that B(n−1)

X = T (n−1)
X .

Further note that by Kleene’s fixed point theorem, we have

µfB =
∑
k∈N

Df |kfn(0)

(
f(0)

)
,

where Df |kfn(0) denotes the k-fold application of Df |fn(0). (In particular, we have
Df |0fn(0)

(
f(0)

)
= f(0).) By definition, we have

fB(X) = f(0) +Df |fn(0)

(
X
)
.

We now turn to the actual proof. We fist show that for all h ≥ 0

Y(B(h+n−1)
X) w

(
Df |hfn(0)

(
fn(0)

))
X
.

Note that Df |hfn(0)

(
fn(0)

)
w Df |hfn(0)

(
f(0)

)
as fn(0) w f(0) so that Y(BX) w(

µfB
)
X

follows by ω-continuity. We proceed by induction on h: For h = 0, we have

B(n−1)
X = T (n−1)

X , and Y(T (n−1)
X) = fn(0)X (cf. prop. 2). Thus,

Y(B(n−1)
X) = Y(T (n−1)

X) = fn(0)X =
(
Df |0fn(0)

(
fn(0)

))
X

follows immediately.
Consider therefore

(
Df |h+1

fn(0)

(
fn(0)

))
X

for h ≥ 0, and let Y(B(h)) denote the

vector defined by Y(B(h))X := Y(B(h)
X). We then have by induction on h and by

monotonicty of Df |fn(0) that(
Df |h+1

fn(0)

(
fn(0)

))
X

=
(
Df |fn(0)

((
Df |hfn(0)

(
fn(0)

)))
X

v
(
Df |fn(0)

(
Y(B(h+n−1))

))
X

= DfX |fn(0)

(
Y(B(h+n−1))

)
Assume that fX =

∑k
i=1mi where m1, . . . ,mk are monomials. As addition is idem-

potent, we may assume that these monomials are pairwise different. By linearity of the
differential, we obtain

DfX |fn(0)

(
Y(B(h+n−1))

)
=

k∑
i=1

Dmi |fn(0)

(
Y(B(h+n−1))

)
.

9

We only need to consider the monomials mi of degree at least one as for every con-
stant monomial its differential is always null. In particular, if fX is constant, then
D(fX)|v(a) = 0 for all v,a and B(h) = T (0)

X , and we are done. Hence, assume that
fX is not constant, and consider any monomial m = a1X1a2 . . . Xlal+1 of degree
l ≥ 1 in {m1, . . . ,mk}. We then have

Dm|fn(0)

(
Y(B(h+n−1))

)
=
∑
Y ∈X

DY m|fn(0)

(
Y(B(h+n−1))

)
by definition. Consider any Y ∈ {X1, . . . , Xl}, i.e. a variable appearing inm (for Y 6∈
{X1, . . . , Xn} the differential DY m is again 0), and let posY (m) = {i | Xi = Y } be
the set of “positions of Y in m”. We then may write

DY m|fn(0)

(
Y(B(h+n−1))

)
=

∑
p∈posY (m)

(
p−1∏
q=1

aq · fn(0)Xq

)
· ap · Y(B(h+n−1))Xp

·

(
l∏

q=p+1

aq · fn(0)Xq

)
· al+1

As fn(0) = Y(T (n−1)) we can rewrite the first product as follows:

p−1∏
q=1

aq·fn(0)Xq =
p−1∏
q=1

aq·Y(T (n−1))Xq =
p−1∏
q=1

aq·Y(T (n−1)
Xq

) =
p−1∏
q=1

aq·
∑

t∈T (n−1)
Xq

Y(t).

A similar calculation shows:
l∏

q=p+1

aq · fn(0)Xq
=

l∏
q=p+1

aq ·
∑

t∈T (n−1)
Xq

Y(t).

We therefore obtain:

DY m|fn(0)

(
Y(B(h+n−1))

)
=

∑
p∈posY (m)

(
p−1∏
q=1

aq · fn(0)Xq

)
· ap · Y(B(h+n−1))Xp

·

(
l∏

q=p+1

aq · fn(0)Xq

)
· al+1

=
∑

p∈posY (m)

p−1∏
q=1

aq ·
∑

t∈T (n−1)
Xq

Y(t)

 · ap ·

 ∑
t∈B(h+n−1)

Xp

Y(t)

·

 l∏
q=p+1

aq ·
∑

t∈T (n−1)
Xq

Y(t)

 · al+1

But this last sum is simply the yield of all X-bamboos t ∈ B(h+n)
X with λ2(t) = m

having height at least 1, and at most h+ n. As for every t ∈ B(h)
X its root is labeled by

a monomial λ2(t) in {m1, . . . ,mk}, we get by idempotence(
Df |fn(0)

(
Y(B(h+n−1))

))
X
v Y(B(h+n)

X).

10

For the other direction we show that for every t ∈ BX we have

Y(t) v
(
µfB

)
X
.

As already mentioned, for every io-semiring, this is equivalent to Y(BX) v
(
µfB

)
X

.
We proceed by induction on the number of nodes in t. If t has just one node then
Y(t) v (f(0))X v

(
µfB

)
X

. For the induction step, t has children. So assume w.l.o.g.
that λ2(t) = a1X1 · · ·Xsas+1 for some s ≥ 1. Denote the children of t by t1, . . . , ts.
Furthermore we assume w.l.o.g. that the backbone of t goes through t1. Hence, t1 is
itself a bamboo having less nodes than t. By induction we have Y(t1) v

(
µfB

)
X1

.
As t is a bamboo, the other children t2, . . . , ts have a height of at most n − 1. By
Proposition [?] we know that

Y(tr) v (fn(0))Xr for all 2 ≤ r ≤ s . (1)

Now we have:

Y(t) = a1Y(t1) · · ·Y(ts)as+1 (def. of yield Y)

v a1

(
µfB

)
X1
a2Y(t2) · · ·Y(ts)as+1 (by induction)

v a1

(
µfB

)
X1
a2(fn(0))X2 · · · (f

n(0))Xs
as+1 (Equation (1))

v DX1 (a1X1 · · ·Xsas+1)|fn(0)

(
µfB

)
(def. of differentials)

v DX1 fX |fn(0)

(
µfB

)
(t ∈ BX)

v DfX |fn(0)

(
µfB

)
(def. of differentials)

=
(
Df |fn(0)

(
µfB

))
X

(def. of differentials)

v
(
µfB

)
X

(def. of fixed point)

�

Together with Proposition 4 we get the following corollary.

Corollary 10 (derivation tree analysis for bamboos). Let f be a system of polyno-
mials over an io-semiring. If BX satisfies the embedding property for all X , i.e., for
all X-trees t it holds that Y(t) v Y(BX), then µf = µfB.

5. Star-Distributive Semirings

Definition 11. A commutative (w.r.t. multiplication) io-semiring S is star-distributive
if (a+ b)∗ = a∗ + b∗ holds for all a, b ∈ S.

A commutative io-semiring is star-distributive whenever the natural order v is total:

Proposition 12. Any totally ordered commutative io-semiring is star-distributive.

PROOF. Let w.l.o.g. a v b. Then (a+ b)∗ = b∗ v a∗ + b∗ v (a+ b)∗. �

11

In particular, the (min,+)-semiring over the integers or reals is star-distributive.
We have already considered commutative idempotent semirings in [10] where we

showed that µf can be computed by solving n linear equation systems by means of a
Newton-like method, improving the O(3n) bound of Hopkins and Kozen [19]. In this
section we improve this result even further for star-distributive semirings: One single
linear system, the bamboo system fB, needs to be solved. This leads to an efficient
algorithm for computing µf in arbitrary star-distributive semirings. In Section 5.1 we
instantiate this algorithm for the (min,+)-semiring; in Section 5.2 we use it to improve
the algorithm of [7] for computing the throughput of a context-free grammar.
We start by stating two useful properties of star-distributive semirings.

Proposition 13. In any star-distributive semiring the following equations hold:
(1) a∗b∗ = a∗ + b∗, and (2) (ab∗)∗ = a∗ + ab∗.

PROOF.

(1) The equation a∗b∗ = (a + b)∗ holds in any commutative idempotent semiring.
By star-distributivity, (a+ b)∗ = a∗ + b∗.

(2) In any commutative io-semiring, we have (ab∗)∗ = 1+aa∗b∗ (see e.g. [19]). By
(1), we have 1 + aa∗b∗ = 1 + aa∗ + ab∗ = a∗ + ab∗. �

We can now state and prove our result:

Theorem 14. µf = µfB holds for polynomial systems f over star-distributive
semirings.

The proof is technical. We therefore first sketch the main idea:
Proof Sketch. The proof is by derivation tree analysis. So it suffices to discharge the
precondition of Corollary 10. More precisely we show for any X-tree t that Y(t) v
Y(BX) holds. It suffices to consider the case where t is not an X-bamboo. Then the
height of t is at least n, and so t is “pumpable”, i.e., one can choose a path p in t from
the root to a leaf such that two different nodes on the path share the same variable-label.
So, by commutativity, t can be decomposed into three (partial) trees with yields a, b, c,
respectively, such that Y(t) = abc, see Figure 3(a).

Notice that, by commutativity of product, ab∗c is the yield of a set of trees obtained
by “pumping” t. We show ab∗c v Y(BX) which implies Y(t) v Y(BX). As t is
not an X-bamboo, t has a pumpable subtree disjoint from p. In this sketch we assume
that it is a subtree of that part of t whose yield is a, see Figure 3(b). Now we have
a = a1a2a3, and so ab∗c = a1a2a3b

∗c v a1a
∗
2a3b

∗c = a1a3b
∗c+a1a

∗
2a3c, where we

used commutativity and Proposition 13(1) in the last step. Both summands in the sum
above are yields of sets of trees obtained by pumping pumpable trees smaller than t,
see Figure 3(c+d). By an inductive argument those yields are both included in Y(BX).
�

We now present the complete proof of Theorem 14:

PROOF. We will need the following notation: If t′ is a subtree of a derivation tree t,
we write t = t̂ · t′ where t̂ is the partial derivation tree obtained from t by removing

12

a

b

c

(a)
a1

b

c

a2

a3

(b)

a1

b

c

a3

(c)
a1

ca2

a3

(d)

Figure 3: “Unpumping” trees to make them bamboos

t′. If, in addition, t′ = t̂′ · t′′, and t′ and t′′ have the same variable-label. we say the
decomposition t = t̂ · t̂′ · t′′ is pumpable, because t̂ · (t̂′)i · t′′ is a valid tree for all i ≥ 0.
We define t̂ · (t̂′)∗ · t′′ = {t̂ · (t̂′)i · t′′ | i ≥ 0}. Notice that, due to commutativity of
product, it holds that Y(t̂ · (t̂′)∗ · t′′) = Y(t̂) · Y(t̂′)∗ · Y(t′′). We call this yield the
pumping yield of the decomposition t = t̂ · t̂′ · t′′.

The proof is by derivation tree analysis. So it suffices to discharge the precondition
of Corollary 10. More precisely we need to show that, for any X-tree t, we have
Y(t) v Y(BX). If t does not have a pumpable decomposition, then t has a height
of at most n − 1, hence t ∈ BX and so Y(t) v Y(BX). It remains to show: if t
has a pumpable decomposition t = t̂ · t̂1 · t′1, then Y(t) v BX . In fact, we show
Y(t̂ · (t̂1)∗ · t′1) v Y(BX), which is stronger because Y(t) v Y(t̂ · (t̂1)∗ · t′1).

Denote by #(t) the number of nodes in a tree t. We assign to a pumpable decom-
position t = t̂ · t̂1 · t′1 a size by setting size(t = t̂ · t̂1 · t′1) = (#(t),#(t̂1 · t′1)). If t
has no pumpable decomposition, set size(t) = (#(t), 0). We order these sizes lexico-
graphically, i.e., we set (i, j)C (i′, j′) if either i < i′ or i = i′ and j < j′. We use this
order to prove by induction that for any size (i, j), if there is a pumpable decomposition
t = t̂ · t̂1 · t′1 of size (i, j), then Y(t̂ · (t̂1)∗ · t′1) v Y(BX).

The induction base is trivial because trees t with #(t) = 1 do not have a decom-
position. For the induction step, let t be an X-tree and let t = t̂ · t̂1 · t′1 be pumpable.
Choose a path p in t from the root to a leaf through t′1. If p is a valid stem of an X-
bamboo, then all trees in t̂ · (t̂1)∗ · t′1 are X-bamboos, so Y(t̂ · (t̂1)∗ · t′1) v BX . Hence,
assume that p is not a valid stem, i.e., there is some subtree of t, disjoint from p, with
height at least n. So this tree has a subtree t2 = t̂2 · t′2 such that t2 and t′2 have the same
variable-label. We distinguish two cases.

(a) Let t2 not be a subtree of t̂1. Then t̂1 and t̂2 are disjoint and so there exists a ỹ
such that Y(t) = ỹ · Y(t̂1) · Y(t̂2). Then:

Y(t̂ · (t̂1)∗ · t′1) = ỹ · Y(t̂1)∗ · Y(t̂2)
v ỹ · Y(t̂1)∗ · Y(t̂2)∗ (def. of Kleene ∗)
= ỹ · Y(t̂1)∗ + ỹ · Y(t̂2)∗ (Prop. 13 (1))

13

The expression ỹ · Y(t̂1)∗ equals the pumping yield of a decomposition of an
X-tree which is obtained from t by removing the substructure t̂2. Similarly, the
expression ỹ · Y(t̂2)∗ is equal to the pumping yield of a decomposition of an
X-tree which is obtained from t by removing the substructure t̂1. By induction
on the size, both of those pumping yields are v Y(BX).

(b) Let t2 be a subtree of t̂1. Then we can write t̂1 = ̂̂t1 · t̂2 · t′2. We have:

Y(t̂ · (t̂1)∗ · t′1) = Y(t̂) · Y(̂̂t1 · t̂2 · t′2)∗ · Y(t′1)

= Y(t̂) ·
(
Y(̂̂t1) · Y(t̂2) · Y(t′2)

)∗
· Y(t′1)

v Y(t̂) ·
(
Y(̂̂t1) · Y(t̂2)∗ · Y(t′2)

)∗
· Y(t′1)

=

 Y(t̂) · Y(̂̂t1) · Y(t̂2)∗ · Y(t′2) · Y(t′1) +

Y(t̂) ·
(
Y(̂̂t1) · Y(t′2)

)∗
· Y(t′1)

 (Prop. 13 (2))

=

{
Y(t̂ · (̂̂t1 · t̂2∗ · t′2) · t′1) +

Y(t̂ · (̂̂t1 · t′2)∗ · t′1)

}

The first expression in this sum equals Y((t̂ · ̂̂t1 ·t′1) · t̂2
∗ ·t′2). This is the pumping

yield of the decomposition t = (t̂ · ̂̂t1 · t′1) · t̂2 · t′2. Since t2 = t̂2 · t′2 is a proper
subtree of t̂1 · t′1, it has fewer nodes than t̂1 · t′1. So this decomposition is smaller
(in the second component), i.e., by induction, the first expression in the above
sum is v Y(BX).

The second expression in the above sum equals the pumping yield of the decom-
position of an X-tree which is obtained from t by removing the substructure t̂2.
By induction, this pumping yield is v Y(BX). �

5.1. The (min,+)-Semiring

Consider the “tropical” semiring R = (R ∪ {−∞,∞},∧,+R,∞, 0). By ∧ resp.
+R we mean minimum resp. addition over the reals. Observe that the natural orderv is
the order≥ on the reals.3 AsR is totally ordered, Proposition 12 implies thatR is star-
distributive. Assume for the rest of this section that f is a polynomial system overR of
degree at most 2. We can apply Theorem 14, i.e., µf = µfB holds. This immediately
suggests a polynomial algorithm to compute the least fixed-point: Compute fn(∞)
by performing n Kleene iterations, and solve the linear system X = Df |fn(∞)(X)∧
f(∞). The latter can be done by means of the Bellman-Ford algorithm.

Example 15. Consider the following equation system.(
X, Y, Z

)
=
(
− 2 ∧ (Y +R Z), Z +R 1, X ∧ Y

)
=: f(X)

3By symmetry, we could equivalently consider maximum instead of minimum.

14

We have f(∞) = (−2,∞,∞),f2(∞) = (−2,∞,−2),f3(∞) = (−2,−1,−2).
The linear system X = Df |fn(∞)(X) ∧ f(∞) = fB(X) looks as follows:(

X, Y, Z
)

=
(
− 2 ∧ (−1 +R Z) ∧ (Y +R −2), Z +R 1, X ∧ Y

)
.

This equation system corresponds in a straightforward way to the following graph.

S X
−2

Y

−2

Z

+1

00

−1

We claim that the V -component of µfB equals the least weight of any path from S to
V where V ∈ {X,Y, Z}. To see this, notice that (fk

B(∞))V corresponds to the least
weight of any path from S to V of length at most k. The claim follows by Kleene’s
theorem. So we can compute µfB with the Bellman-Ford algorithm. In our example,
X,Y, Z are all reachable from S via a negative cycle, so µfB = (−∞,−∞,−∞). By
Theorem 14, µf = µfB = (−∞,−∞,−∞). �

The Bellman-Ford algorithm can be used here as it handles negative cycles correctly.
The overall runtime of our algorithm to compute µf is dominated by the Bellman-
Ford algorithm. Its runtime is in O(n · m), where m is the number of monomials
appearing in f . We conclude that our algorithm has the same asymptotic complexity
as the “generalized Bellman-Ford” algorithm of [15]. It is by a factor of n faster than
the algorithm deducible from [10] because our new algorithm uses the Bellman-Ford
algorithm only once instead of n times.

5.2. Throughput of Grammars
In [7], a polynomial algorithm for computing the throughput of a context-free gram-

mar was given. Now we show that the algorithm can be both simplified and accelerated
by computing least fixed-points according to Theorem 14.

Let us define the problem following [7]. Let Σ be a finite alphabet and ρ : Σ→ N
a weight function. We extend ρ to words a1 · · · ak ∈ Σ∗ by setting ρ(a1 · · · ak) :=
ρ(a1) + . . .+ ρ(ak).4 The mean weight of a non-empty word w is defined as ρ(w) :=
ρ(w)/|w|. The throughput of a non-empty language L ⊆ Σ+ is defined as the infimum
of the mean weights of the words in L: tp(L) := inf{ρ(w) | w ∈ L}. Let G =
(Σ,X , P, S) be a context-free grammar and L = L(G) its language. The problem is
to compute tp(L). As in [7] we assume that G has at most 2 symbols on the right hand
side of every production and that L is non-empty and contains only non-empty words.

Note that we cannot simply construct a polynomial system having tp(L) as its
least fixed-point, as the throughput of two non-terminals is not additive. In [7] an
ingenious algorithm is proposed to avoid this problem. Assume we already know a
routine, the comparing routine, that decides for a given t ∈ Q whether tp(L) ≥ t
holds. Assume further that this routine has O(Nk) time complexity for some k. Using

4We write + for the addition of reals in this section.

15

the comparing routine we can approximate tp(L) up to any given accuracy by means
of binary search. Let d = maxa∈Σ ρ(a) − mina∈Σ ρ(a). A dichotomy result of [7]
shows that O(N + log d) iterations of binary search suffice to approximate tp(L) up
to an ε that allows to compute the exact value of tp(L) in time O(N3). This is proved
by showing that, once a value t has been determined such that t− ε < tp(L) ≤ t, one
can:

• transformG inO(N3) time into a grammarG′ of sizeO(N3) generating a finite
language, and having the same throughput as G (this construction does not yet
depend on tp(L));

• compute the throughput of G′ in linear time in the size of G′, i.e., in O(N3)
time.

The full algorithm for the throughput runs then in O(Nk(N + log d)) + O(N3)
time.

The algorithm of [7] and our new algorithm differ in the comparing routine. In the
routine of [7] the transformation of G into the grammar G′ is done before tp(L) has
been determined. Then a linear time algorithm can be applied to G′ to decide whether
tp(L) ≥ t holds. (This algorithm does not work for arbitrary context-free grammars,
and that is why one needs to transform G into G′.) Since G′ has size O(N3), the
comparing routine has k = 3, and so the full algorithm runs in O(N4 + N3 log d)
time.

We give a more efficient comparing routine with k = 2. Given a t ∈ Q, assign to
each wordw ∈ Σ+ its throughput balance σt(w) = ρ(w)−|w|·t. Notice that σt(w) ≥
0 if and only if ρ(w) ≥ t. Further, for two words w, u we now have σt(wu) = σt(w)+
σt(u). So we can set up a polynomial system X = f(X) over the tropical semiring
R where f is constructed such that each variable X ∈ X in the equation system
corresponds to the minimum (infimum) throughput balance of the words derivable from
X . More formally, define a map m by setting m(a) = ρ(a) − t for a ∈ Σ and
m(X) = X for X ∈ X . Extend m to words in (Σ ∪ X)∗ by setting m(α1 · · ·αk) =
m(α1) + · · ·+ m(αk). Let PX be the productions of G with X on the left hand side.
Then set fX(X) :=

∧
(X→w)∈PX

m(w). For instance, if PX consists of the rules
X → aXY and X → bZ, we have fX(X) = ρ(a)− t+X + Y ∧ ρ(b)− t+ Z.

It is easy to see that the relevant solution of the system X = f(X) is the least one
w.r.t. v, i.e., (µf)S ≥ 0 if and only if tp(L) ≥ t. So we can use the algorithm from
Section 5.1 as our comparing routine. This takes time O(N2) where N is the size of
the grammar. With that comparing routine we obtain an algorithm for computing the
throughput with O(N3 +N2 log d) runtime.

6. Lossy Semirings

Definition 16. An io-semiring S is called lossy if 1 v a holds for all a 6= 0.

Note that by definition of natural order the requirement 1 v a is equivalent to a = a+1.
In the free semiring generated by a finite alphabet Σ, and augmented by the equation
a = a + 1 (a ∈ S \ {0}), every language L ⊆ Σ∗ is “downward closed”, i.e. for

16

every word w = a1a2 . . . al ∈ L all possible subwords {a′1a′2 . . . a′l | a′i ∈ {ε, ai}}
are also included in L. By virtue of Higman’s lemma [17] the downward-closure of a
context-free language is regular. This has been used in [1] for an efficient analysis of
systems with unbounded, lossy FIFO channels. Downward closure was used there to
model the loss of messages due to transmission errors.

We say that a system f of polynomials is clean if µfX 6= 0 for all X ∈ X . Every
system can be cleaned in linear time by removing the equations of all variables X such
that µfX = 0 and setting these variables to 0 in the other equations (the procedure is
similar to the one that eliminates non-productive variables in context-free grammars).
We consider only clean systems, and introduce a normal form for them.

Definition 17. Let f ∈ S[X]X be a system of polynomials over a lossy semiring. f is
in quadratic normal form if every polynomial fX has the form

c+
∑

Y,Z∈X
aY,Z · Y · Z +

∑
Y ∈X

bl,Y · Y · br,Y

where for all Y,Z ∈ X : (i) c 6= 0, (ii) aY,Z ∈ {0, 1}, and (iii) if
∑

Z∈X aY,Z 6= 0,
then bl,Y , br,Y , bl,Z , br,Z 6= 0.

Lemma 18. For every clean g ∈ S[X]X we can construct in linear time a system
f ∈ S[X ′]X ′ in quadratic normal form, where X ⊆ X ′ and µgX = µfX for all
X ∈ X .

PROOF. For every clean g ∈ S[X]X we can find a f ∈ S[X ′]X ′ in normal form with
X ⊆ X ′ such that µgX = µfX for all X ∈ X as follows: We first transform g into
Chomsky normal-form, which gives us a system g′ over the same semiring. As the
transformation into Chomsky normal-form introduces new variables, g′ is given in a
superset X ′ of X with µg′X = µgX for all X ∈ X . Next, as g is clean, we can ensure
that g′ is clean, too. We therefore may set g′′ := g′ + 1 without changing the least
solution. Hence, every polynomial of g′′X has the form

c(X) +
∑

Y,Z∈X ′
a

(X)
Y,Z · Y · Z with 1 v c(X) and a(X)

Y,Z ∈ {0, 1}.

Finally, as 1 v µg′′ we have

µg′′X = g′′X(µg′′X)
= c(X) +

∑
Y,Z∈X ′

a
(X)
Y,Z · µg′′Y · µg′′Z

= c(X) +
∑

Y,Z∈X ′
a

(X)
Y,Z · (1 + µg′′Y) · (1 + µg′′Z)

= c(X) +
∑

Y,Z∈X ′
a

(X)
Y,Z

+
∑

Y,Z∈X ′
a

(X)
Y,Z · µg′′Y · µg′′Z +

∑
Y ∈X ′

(∑
Z∈X ′

a
(X)
Y,Z + a

(X)
Z,Y

)
· µg′′Y .

17

Note that
∑

Y,Z∈X ′ a
(X)
Y,Z v 1 by idempotence. As c(X) w 1, we therefore may write:

µg′′X = c(X) +
∑

Y,Z∈X ′
a

(X)
Y,Z · µg′′Y · µg′′Z +

∑
Y ∈X ′

(∑
Z∈X ′

a
(X)
Y,Z + a

(X)
Z,Y

)
· µg′′Y

= g′′X(µg′′X) +
∑

Y ∈X ′

(∑
Z∈X ′

a
(X)
Y,Z + a

(X)
Z,Y

)
· µg′′Y .

We now define f by setting for all X ∈ X ′

fX := g′′X +
∑

Y ∈X ′

(∑
Z∈X ′

a
(X)
Y,Z + a

(X)
Z,Y

)
· Y.

We then have g′′ v f , and, thus, µg′′ v µf , but also f(µg′′) = µg′′, i.e. µg′′ w µf .
�

Our main result in this section is that for strongly connected systems f in quadratic
normal form we again have that µf = µfB. We then show how this result leads to an
algorithm for arbitrary systems.

Given two variables X,Y ∈ X , we say that X depends on Y (w.r.t. f) if Y occurs
in a monomial of fX or there is a variable Z such that X depends on Z and Z depends
on Y . The system f is strongly connected if X depends on Y for all variables X,Y .

Theorem 19. µf = µfB holds for strongly connected polynomial systems f in
quadratic normal form over lossy semirings.

We first illustrate the construction underlying the proof of Theorem 19:
Proof Sketch. We consider a concrete example of a tree t that is not a bamboo, and
show how to construct a bamboo t̂ such that Y(t) v Y(t̂). The general procedure
for all non-bamboos can be found in the appendix. Let X = {X,Y }, and f with
fX = XY +X+Y +a, and fY = X+Y + b. Consider the X-tree t depicted on the
left of the picture below, where tr is some bamboo of height at least 2 (we inductively
assume that the original subtree has already been replaced by a bamboo with at least
the same yield). Since the left subtree of t has height 2, t itself is not a bamboo. Let s
denote the left-most leaf of t, and let r be the parent of s. In our example, we assume
that r has s as its only child. Then we proceed as follows:

(i) We remove from t the leaf s, and turn its father r into a leaf. Here, we make
use of the assumption that f is in quadratic normal form, and so every polynomial of
f contains a constant monomial, in our example b. We change the monomial-label of
r to b, and obtain the tree t′, which is a derivation tree of f . Moreover, t′ is a bamboo,
because its left subtree has now height 1, and its right subtree tr is a bamboo.

(ii) We prepend a (partial) derivation tree on top of tr having two linear chains as
subtrees: the left chain leads to the leaf s, and the right chain leads to t′. This gives us
the tree t̂ depicted on the right of the picture above. The proof of Theorem 19 shows
that these chains exist and have at most length n − 1 (in our example n − 1 = 1). It
follows that t̂ is a bamboo itself with stem t̂− t′′ − t′ − tr, and so Y(t̂) v Y(BX).

18

(X,XY) t

tr(X,Y)

(Y,X) r

(X, a) s

(X,XY)

(Y,X)
(X, a)

(X,XY)

(X,Y)

(Y, b)

t̂

t′′

t′

r

Figure 4: Transforming a derivation tree into a bamboo over a lossy semiring.

We have Y(t) = a · Y(tr) and Y(t̂) = a · b · Y(tr). Since the semiring is lossy,
we have 1 v b and so Y(t) v Y(t̂). Notice that, since product is not necessarily
commutative, it is important that a is the first factor of both yields. �

For the proof of Theorem 19, we first define partial derivation trees: These trees
result from derivation trees by removing exactly one subtree, leaving in some sense a
“dangling pointer”.

Definition 20. Let f ∈ S[X]X . Let t be some X-tree for X ∈ X . Further, let Y ∈ X
be some variable such that t has at least one leaf s with λv(s) = Y . By erasing exactly
one such leaf s from t, we obtain an XY -tree. We write TX,Y for the set of all XY -
trees.

The set BX,Y is defined similarly. A tree t ∈ BX,Y results from a tree t ∈ BX by
removing the exactly one such leaf s of t with λv(s) = Y , where s lies on a longest
path from t′ to a leaf.

The yield Y(t) of an XY -tree t is a linear monomial in Y defined analogously to
the yield of an X-tree; the single variable occuring in Y(t) corresponds to the missing
Y -subtree in t.

We visualize XY -trees by representing the missing subtree with .

Example 21. Consider the X-tree depicted on the left. By deleting the leaf labeled by
(Y, d), we obtain the XY -tree depicted in the middle, where we represent the missing
leaf/subtree by , with yield aY begfc. Similarily, we obtain the XX-tree shown on
the right by deleting the leaf labeled by (X, g) with yield adbeXfc.

(X, aY bZc)

(Y, d)
(Z, eXf)

(X, g)

(X, aY bZc)

(Z, eXf)

(X, g)

(X, aY bZc)

(Y, d)
(Z, eXf)

(X, g)

Note that we can replace in the XY -tree by any Y -tree in order to obtain a valid
X-tree, again.

19

Now we can prove Theorem 19:

PROOF. We again show that we can transform any X-tree t w.r.t. f into a tree t̂
contained in BX with Y(t) v Y(t̂). We proceed by induction on the number N of
nodes of t. If N = 1, then t has height 0. By definition, we have t ∈ BX , so we are
done.

Therefore assume N > 1. As f is in normal form, we either have λm(t) = blY br
or λm(t) = Y Z for some Y, Z ∈ X , and bl, br ∈ S \ {0}. If t is labeled by λm(t) =
blY br,

(X, blY br)
t

t1

then t has exactly one child t1, which immediately can be replaced by some tree t̂1 in
BY with Y(t1) = Y(t̂1) because of induction. This gives us the tree t̂

(X, blY br)
t̂

t̂1

and Y(t̂) = blY(t̂1)br = blY(t1)br = Y(t).
Hence, assume that λm(t) = Y Z, i.e. t has two children t1, t2.

(X,Y Z)
t

t1 t2

Descending into t1 by always taking the leftmost child, we end up at the left most leaf
s of t. We denote by t1,1 to t1,k the “right” children of the nodes located on the path
from t1 to s for some k ∈ N. Let r then be the father of s with λv(s) = V , and
λm(s) = a ∈ S. We assume that λm(r) = VW for some W ∈ X

(X,Y Z)
t

t1 t2

r(U, V W)

s(V, a)

t1,1

t1,k

20

As f is in normal form, and VW is a monomial of fU , there exists also a monomial
clWcr appearing in fU for some cl, cr ∈ S \ {0}. We first remove from t1 the leaf
s, and relabel the node r by setting λm(r) := clWcr. This gives us the tree t′1 with
Y(t1) v a · Y(t′1), as 1 v cl, cr:

t′1

r t1,1

t1,k

(U, clWcr)

As Y Z is a monomial of fX we can construct from the trees t′1 and t2 the tree t′′:

(X,Y Z)

(U, clWcr)

t′′

t′1

t1,k

t2

t1,1

Now, as f is strongly connected and in normal form, we find an Y -tree tY of height at
most n− 1 which has (V, a) as its single leaf, such that a v Y(tY); similarly, we find
a ZX-tree tZX of height at most n − 1 having as its single leaf; the “yield” of tZX

is some monomial dlXdr for some dl, dr ∈ S \ {0}. Using these, we construct the
following tree t′ with λv(t′) = X , and λm(t′) = Y Z. As left child of t′, we take the
Y -tree tY , whereas we take tZX as the right child, giving us:

t′

tY tZX

(X,Y Z)

(V, a)

We complete this partial derivation tree to a derivation tree by replacing with the tree
t′′:

21

(X,Y Z)

(V, a)

t′

tY tZX

(X,Y Z)

(U, clWcr)

t′′

t′1

t1,k

t2

t1,1

We now have

Y(t′) = Y(tY) · Y(tZX) = Y(tY) · dl · Y(t′′) · dr

w a · dl · Y(t′′) · dr

w a · Y(t′1) · Y(t2)
w Y(t1) · Y(t2)
= Y(t).

By construction of t′, the left child is a Y -tree of height at most n− 1, while every
node from tZX to t′′ has exactly one child. Hence, only the subtree t′′ might not have
the required form. But as t′′ has one node less than t, we find by induction on the
number of nodes a tree t̂′′ ∈ BX with Y(t′′) v Y(t̂′′). Replacing in t′ the subtree t′′ by
this tree t̂′′, we then obtain the tree t̂ with t̂ ∈ BX and Y(t̂) w Y(t′) w Y(t). This ends
the case that λm(r) = VW .

Assume therefore that λm(r) = clV cr for some cl, cr ∈ S \ {0}, i.e.

t1

r t1,1

s

(U, clV cr)

(V, a)

We proceed similarly to the previous case, but we define t′1 as follows: again, we
remove the leaf s from t1, but as r has s as its only child, we now relabel r by λm(r) :=
fU (0). As f is clean, we have fU (0) w 1. This gives us:

22

t′1

r t1,1
(U,fU (0))

and

t′

tY tZX

t′′

t′1 t2

r t1,1

(X,Y Z)

(V, a) (X,Y Z)

(U,fU (0))

Again, we can find a t̂′′ ∈ BX with Y(t′′) v Y(t̂′′) as t′′ has one node less than t, and
the induction is complete. �

Because of the preceding theorem, given a strongly connected system f , we may
use the linear system fB(X) = f(0) + Df |fn(0)(X) for calculating µf . As f is
strongly connected, fB is also strongly connected. The least fixed-point of such a
strongly connected linear system fB is easily calculated: all non-constant monomials
appearing in fB have the form blXbr for some X ∈ X , and bl, br ∈ S \ {0}. As fB is
strongly connected, every polynomial (fB)Y is substituted for Y in (fB)X again and
again when calculating the Kleene sequence (fk

B(0))k∈N. So, let l be the sum of all
left-handed coefficients bl (appearing in any fX), and similarly define r. We then have
(µfB)X = l∗

(∑
Y ∈X fY (0)

)
r∗ for all X ∈ X .

If f is not strongly connected, we first decompose f into strongly connected sub-
systems, and then we solve these systems bottom-up. Note that substituting the solu-
tions from underlying SCCs into a given SCC leads to a new system in normal form.
As there are at most n = |X | many strongly connected components for a given sys-
tem f ∈ S[X]X , we obtain the following theorem which was first stated explicitly for
context-free grammars in [8].

Theorem 22. The least fixed-point µf of a polynomial system f over a lossy semiring
is representable by regular expressions over S. If f is in normal form, µf can be
calculated solving at most n bamboo systems.

7. 1-bounded Semirings

Definition 23. An io-semiring S is called 1-bounded if a v 1 holds for all a ∈ S.

23

Natural examples are the tropical semiring over the natural numbers (N ∪
{∞},∧,+,∞, 0) and the “maximum-probability” semiring ([0, 1],∨, ·, 0, 1), where
∧ and ∨ denote minimum and maximum, respectively. Notice that any commutative
1-bounded semiring is star-distributive (as a∗ = 1 for all a), but not all 1-bounded
semirings have commutative multiplication. Consider for example the upward-closed
languages over Σ, i.e., the languages L such that w ∈ L implies u ∈ L for all u such
that w is a scattered subword of u. If we take union and concatenation of languages as
sum and product, and ∅ and Σ∗ as 0- and 1-elements, we obtain a 1-bounded semiring.
Upward-closed languages form a natural dual to downward-closed languages from the
previous section.
We show that µf can be computed very easily in the case of 1-bounded semirings:

Theorem 24. µf = fn(0) holds for polynomial systems over 1-bounded semirings.

PROOF. We reuse the notation from the proof of Theorem 14: If t2 is a subtree of a
derivation tree t, we write t = t1 · t2 where t1 is the partial derivation tree obtained
from t by removing t2.

Recall that, by Proposition 2, (fn(0))X = Y(T (n−1)
X), where T (n−1)

X contains
all X-trees of height at most n − 1. We proceed by derivation tree analysis, i.e., by
discharging the precondition of Proposition 4. So it suffices to show that for any X-
tree t there is a tree t′ of height at most n − 1 with Y(t) v Y(t′). We proceed by
induction on the number of nodes in t. For the induction base, t has just one node, so
t ∈ T (0)

X . For the induction step w.l.o.g. let t be an X-tree with a height of at least
n. Then there is a pumpable decomposition t = t1 · t2 · t3 with λ1(t2) = λ1(t3). We
have Y(t) = y1y2y3y4y5 where Y(t1) = y1y5, Y(t2) = y2y4 and Y(t3) = y3. Let
t′ = t1 ·t3. Notice that t′ is a validX-tree as λ1(t2) = λ1(t3). We have Y(t′) = y1y3y5

which is, by 1-bounded-ness, at least y1y2y3y4y5 = Y(t). As t′ has fewer nodes than
t, there is, by induction hypothesis, an X-tree t′′ of height at most n − 1 such that
Y(t′) v Y(t′′). Combined we get Y(t) v Y(t′) v Y(t′′). �

Theorem 24 appears to be rather easy from our point of view, i.e., from the point
of view of derivation trees. However, even this simple result has very concrete applica-
tions in the domain of interprocedural program analysis [23]. The main algorithms of
[23], the so-called post∗ and pre∗ algorithms, can be seen as solvers of fixed-point equa-
tions over bounded semirings, which are semirings that do not have infinite ascending
chains. Those solvers are based on Kleene’s iteration and the complexity result given
there depends on the maximal length of ascending chains in the semiring (cf. [23],
page 28). Such a bound may not exist, and does not exist for the tropical semiring
over the natural numbers (N∪ {∞},∧,+,∞, 0) which is considered as an example in
[23], pages 13 and 18. However, Theorem 24 can be applied to this semiring, which
shows that the program analysis algorithms of [23] applied to 1-bounded semirings are
polynomial-time algorithms, independent of the length of chains in the semiring.

8. Conclusion

We have shown that derivation tree analysis, a proof technique first introduced
in [10], is an efficient tool for the design of efficient fixed-point algorithms on io-

24

semirings. We have considered three classes of io-semirings with applications to lan-
guage theory and verification. We have shown that for star-distributive semirings and
lossy semirings the least fixed-point of a polynomial system of equations is equal to the
least fixed-point of a linear system, the bamboo system. This improves the results of
[10]: The generic algorithm given there requires to solve N different systems of linear
equations in the star-distributive case (where N is the original number of polynomial
equations), and is not applicable to the lossy case.

We have used our results to design an efficient fixed-point algorithm for the
(min,+)-semiring. In turn, we have applied this algorithm to provide a cubic algo-
rithm for computing the throughput of a context-free language, improving the O(N4)
upper bound obtained by Caucal et al. in [7].

For lossy semirings, derivation tree analysis based on bamboos has led to an al-
gebraic generalization of a result of Courcelle stating that the downward-closure of a
context-free language is effectively regular. Finally we have used derivation tree anal-
ysis to derive a simple proof that µf = fn(0) holds for 1-bounded semirings, with
some applications in interprocedural program analysis.

Acknowledgments

We thank two anonymous referees for helpful comments. The first author would
like to thank Jan Bergstra for his beautiful course at the Marktoberdorf Summer School
in 1990, which left a mark.

References

[1] P. A. Abdulla, A. Bouajjani, and B. Jonsson. On-the-fly analysis of systems
with unbounded, lossy FIFO channels. In CAV’98, LNCS 1427, pages 305–318.
Springer, 1998.

[2] J. Baeten and W.P. Wejland. Process Algebra. Cambridge University Press, 1990.

[3] J. Bergstra and J.W. Klop. Fixed point semantics in process algebras. Technical
Report IW 206, Math. Centre, Amsterdam, 1982.

[4] Jan A. Bergstra and Jan Willem Klop. Process algebra for synchronous commu-
nication. Information and Control, 60(1-3):109–137, 1984.

[5] Stefan Blom, Wan Fokkink, Jan Friso Groote, Izak van Langevelde, Bert Lisser,
and Jaco van de Pol. µcrl: A toolset for analysing algebraic specifications. In
Gérard Berry, Hubert Comon, and Alain Finkel, editors, CAV, volume 2102 of
Lecture Notes in Computer Science, pages 250–254. Springer, 2001.

[6] Ahmed Bouajjani, Javier Esparza, and Tayssir Touili. A generic approach to the
static analysis of concurrent programs with procedures. In POPL, pages 62–73,
2003.

25

[7] D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter. Efficient computation of
throughput values of context-free languages. In CIAA’07, LNCS 4783, pages
203–213. Springer, 2007.

[8] B. Courcelle. On constructing obstruction sets of words. EATCS Bulletin, 44:178–
185, 1991.

[9] J. Esparza, S. Kiefer, and M. Luttenberger. An extension of Newton’s method
to ω-continuous semirings. In DLT’07, LNCS 4588, pages 157–168. Springer,
2007.

[10] J. Esparza, S. Kiefer, and M. Luttenberger. On fixed point equations over com-
mutative semirings. In STACS’07, LNCS 4397, pages 296–307. Springer, 2007.

[11] J. Esparza, A. Kučera, and R. Mayr. Model checking probabilistic pushdown
automata. Logical Methods in Computer Science, 2006.

[12] Javier Esparza, Andreas Gaiser, and Stefan Kiefer. Computing least fixed points
of probabilistic systems of polynomials. In Jean-Yves Marion and Thomas
Schwentick, editors, STACS, volume 5 of LIPIcs, pages 359–370. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

[13] Kousha Etessami and Mihalis Yannakakis. Recursive markov chains, stochastic
grammars, and monotone systems of nonlinear equations. J. ACM, 56(1), 2009.

[14] W. Fokkink. Introduction to Process Algebra. Springer-Verlag, 2000.

[15] T. Gawlitza and H. Seidl. Precise fixpoint computation through strategy iteration.
In ESOP’07, LNCS 4421, pages 300–315. Springer, 2007.

[16] T.E. Harris. The Theory of Branching Processes. Springer, 1963.

[17] G. Higman. Ordering by divisibility in abstract algebras. Proc. London Math.
Soc., 2, 1952.

[18] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[19] M. W. Hopkins and D. Kozen. Parikh’s theorem in commutative Kleene algebra.
In LICS’99, 1999.

[20] W. Kuich. Handbook of Formal Languages, volume 1, chapter 9: Semirings
and Formal Power Series: Their Relevance to Formal Languages and Automata,
pages 609 – 677. Springer, 1997.

[21] R. Milner. Communication and concurrency. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1989.

[22] F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer, 1999.

26

[23] T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and
their application to interprocedural dataflow analysis. Science of Computer Pro-
gramming, 58(1–2):206–263, October 2005. Special Issue on the Static Analysis
Symposium 2003.

[24] Thomas W. Reps, Susan Horwitz, and Shmuel Sagiv. Precise interprocedural
dataflow analysis via graph reachability. In POPL, pages 49–61, 1995.

[25] Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of formal languages,
vol. 2: linear modeling: background and application. Springer-Verlag New York,
Inc., New York, NY, USA, 1997.

27

