
Abstraction Refinement with Craig

Interpolation and Symbolic Pushdown Systems ?

Javier Esparza, Stefan Kiefer, and Stefan Schwoon

Institute for Formal Methods in Computer Science, University of Stuttgart
{esparza,kiefersn,schwoosn}@informatik.uni-stuttgart.de

Abstract. Counterexample-guided abstraction refinement (CEGAR)
has proven to be a powerful method for software model-checking. In this
paper, we investigate this concept in the context of sequential (possibly
recursive) programs whose statements are given as BDDs. We exam-
ine how Craig interpolants can be computed efficiently in this case and
propose a new, special type of interpolants. Moreover, we show how to
treat multiple counterexamples in one refinement cycle. We have imple-
mented this approach within the model-checker Moped and report on
experiments.

1 Introduction

CEGAR is a powerful tool for automated abstraction of hardware and software
systems. Originally designed for verification of hardware designs, this technique
has been successfully utilized for software verification as well. Particularly, the
SLAM project [1] has gained attention and has demonstrated the effectiveness of
software verification for device drivers. The BLAST tool [2] and the MAGIC tool
[3] have been applied successfully in domains of security protocols and real-time
operating-system kernels.

The CEGAR paradigm was introduced in [4]. The goal is to check if a given
concrete program can reach a certain error label. Since the data space of the con-
crete program is too large, it is abstracted with a predicate abstraction method.
Initially, there are no predicates, therefore the initial abstraction is very coarse
(no data, only control flow). This abstract program is then model-checked.

Since the abstract program is, by construction, an overapproximation of the
concrete one, model-checking it can have two possible outcomes: Either the error
label is not reachable, then we know that it is not reachable in the concrete
program either and the CEGAR process terminates. Or it is reachable in the
abstract program, illustrated by means of a counterexample, i.e., a path leading
to the error label. Due to the overapproximation, this path may be spurious, i.e.,
not realizable in the concrete system. If it is not spurious (real counterexample),
it can be reported to the user and the process terminates. If it is spurious, then

? This work was partially supported by the DFG project Algorithms for Software

Model Checking.

suitable new predicates have to be introduced to refine the abstraction such that
this counterexample is excluded in future predicate abstractions.

This process continues in cycles, until the abstraction is fine enough to either
conclude that the error label is unreachable or that a real counterexample exists.

1.1 Our Work and Related Work

We develop a CEGAR scheme for the BDD-based model-checker Moped, a com-
bined reachability and LTL model-checker for symbolic pushdown systems [5].

From a high-level perspective, our approach can be characterized as follows:
We first translate a program with integer variables to a program with finitely
many variable bits (e.g. 8 or 16 bits per variable), as it is also done by compilers.
Thus, we reduce an infinite data space to a finite, but possibly still large data
space. Then we use CEGAR to reduce the state space even further. Whereas,
in the first step, we might lose some bugs that occur only with large numbers,
no precision is lost in the second step, because the abstraction is appropriately
refined during the process. Since we do not change the procedural structure in
both steps, recursion may always induce an infinite state space.

The input for our CEGAR scheme is essentially a sequential program with
procedures (potentially recursive) whose variables are represented by a finite
number of bits. BDDs capture the modification of the variables through the
program statements. The problem is whether this program can reach a specific
error label or not.

Moped could be directly used for this problem, but we use a CEGAR scheme
to reduce its resource consumption. Our abstract programs are other boolean
programs whose variables are previously introduced predicates. The statements
of the abstract programs modify the truth values of the predicates. This is again
captured by BDDs. Those abstract programs are checked using Moped.

The consequent use of BDDs throughout the CEGAR process distinguishes
our work from related work about CEGAR in software. For instance, in the
SLAM project [1], a BDD-based model-checker is employed on the abstract level,
but symbolic expression representations together with theorem provers are ap-
plied on the concrete level. [3] does not use BDDs at all, but relies on SAT solvers
and theorem provers. Also [2, 6] make use of theorem provers, whereas we use
BDD technology for the concrete program, the abstract programs, and for the
predicates in our abstraction mechanism. We therefore avoid theorem provers,
which assume infinite ranges of integer variables and often form bottlenecks in
related projects, e.g. in [1].

Another feature of our work is the use of multiple counterexamples in a sin-
gle refinement step. Moped constructs a “witness graph” (see [7]) which, in the
model-checking phase, records information about which program states can be
reached via which previously reached program states. When viewed from the
perspective of the error label, this graph is a DAG containing possible (ab-
stract) error traces. We use this DAG for abstraction refinement, not only a sin-
gle counterexample. If the counterexample DAG contains a real (non-spurious)
counterexample, it is reported. Otherwise we compute predicates that ensure

that none of the counterexamples in the DAG will occur again in future abstrac-
tions. In [8], multiple counterexamples are also used in a CEGAR scheme, but
not for software and not in a DAG structure.

For the predicate generation we use Craig interpolation (see [6, 9]). In contrast
to [6], we consider Craig interpolation for pure propositional logics. We show that
the computation of Craig interpolants works well with BDDs and that their use
gives us flexibility for heuristics about which interpolants to use, since Craig
interpolants are, in general, not unique.

Organization of the Paper. This paper proceeds as follows. In Sect. 2 we
investigate Craig interpolation for propositional logics and derive computation
schemes that are suitable for BDDs. In Sect. 3, symbolic pushdown systems, a
model for sequential programs, are reviewed. In Sect. 4, the techniques of Sect. 2
are applied to the computation of predicates that rule out DAGs of abstract
counterexamples. Section 5 sketches our predicate abstraction scheme. We give
evidence for the usefulness of our concepts in Sect. 6 and conclude in Sect. 7.
In [10], we give further details and proofs.

2 Craig Interpolation

In [11, 6], Craig interpolation was used to automatize abstraction refinement.
As in [11] (and in contrast to [6], where a specialized arithmetic proof system
is used) we are interested in Craig interpolants for pure propositional logic. We
write Occ(F) for the set of variables that occur (syntactically) in a formula F .

Definition 1. Let (F, G) be a pair of formulas with F ∧G unsatisfiable. A (syn-
tactic) interpolant for (F, G) is a formula I s.t. F implies I (written: F |= I),
I ∧ G is unsatisfiable and Occ(I) ⊆ Occ(F) ∩ Occ(G).

Craig’s Interpolation Theorem [12] states that interpolants always exist, but
they are not unique. In [11], interpolants are obtained from a resolution proof
of the unsatisfiability of F ∧ G, which is, in turn, constructed by a SAT solver.
However, in our BDD-based setting this result is no longer useful, because we
do not prove unsatisfiability of F ∧ G by means of a SAT solver. We show that
there exist interpolants that do not depend on the internal strategies of a SAT
solver or a theorem prover, and can be naturally computed by standard BDD
operations.

2.1 Strongest and Weakest Interpolants

It is easy to see that if I and I ′ are interpolants for (F, G), then so are I ∨ I ′

and I ∧ I ′ (see also [13]). It follows that “the strongest interpolant” and “the
weakest interpolant”, as defined below, exist and are unique.

Definition 2. The strongest interpolant for (F, G), denoted SI (F, G), is the
unique interpolant for (F, G) that implies any other interpolant. The weakest

interpolant for (F, G), denoted WI (F, G), is the unique interpolant implied by
any other interpolant.

Clearly, SI (F, G) |= WI (F, G) holds. Proposition 1 below shows that SI (F, G)
and WI (F, G) can be obtained by standard BDD operations (quantification over
variables). If F and G are any formulas, we define the notation F ↑ G :=
∃(Occ(F) \Occ(G)).F and F ↓ G := ∀(Occ(F) \Occ(G)).F . Notice that F ↓ G
|= F |= F ↑ G always holds.

Proposition 1 (Strongest and Weakest Interpolants). Let (F, G) be a for-
mula pair with F∧G unsatisfiable. Then SI (F, G)≡F↑G and WI (F, G)≡(¬G)↓F .

In the next sections, we consider the following problem: Given a formula F =
F1 ∧ . . . ∧ Fn, determine if F is unsatisfiable, and if so, find interpolants for the
pairs (Gi, Gi), i ∈ {1, . . . , n}, where Gi := F1∧ . . .∧Fi and Gi := Fi+1∧ . . .∧Fn.
We show that strongest and weakest interpolants for (Gi, Gi) can be computed
iteratively.

Proposition 2. Let F = F1 ∧ F2 ∧ . . . ∧ Fn be a formula and let Gi and Gi be
defined as above. Let {Ii} and {Ji} be families of predicates defined according to
the following procedures:
I0 := true, Ii+1 := (Ii∧Fi+1) ↑ Gi+1 and Jn := false, Ji−1 := (Fi → Ji) ↓ Gi−1.

(i) F is unsatisfiable iff In ≡ false iff J0 ≡ true.
(ii) If F is unsatisfiable, then Ii ≡ SI (Gi, Gi) and Ji ≡ WI (Gi, Gi).

Now, given F = F1∧ . . .∧Fn, we can iteratively compute BDDs for the sequence
Ii or Ji with the above procedure. We can decide if F is satisfiable using (i). If
F is unsatisfiable, then, by (ii), we have computed SI (Gi, Gi) or WI (Gi, Gi).

For our CEGAR purposes, we will need the following property:

Definition 3 (Tracking Property). Let F1 ∧ . . . ∧ Fn be unsatisfiable, and
let Ki be interpolants for (Gi, Gi). We say that the family {Ki} satisfies the
tracking property if Ki ∧ Fi+1 |= Ki+1.

Proposition 3. Let F1 ∧ F2 ∧ . . . ∧ Fn be unsatisfiable. Let {Ii} and {Ji} be
families of predicates defined according to the following procedures:
I0 := true, Ii+1 := any interpolant for (Ii ∧ Fi+1, Gi+1),
Jn := false, Ji−1 := any interpolant for (Gi−1,¬(Fi → Ji)).
Then {Ii} and {Ji} are interpolants for (Gi, Gi) and satisfy the tracking property.

Corollary 1. {SI (Gi, Gi)} and {WI (Gi, Gi)} satisfy the tracking property.

Finally, Prop. 4 shows the interplay between interpolants and disjunction:

Proposition 4.

(i) If (F ∨ G) ∧ H is unsatisfiable, then SI (F ∨ G, H) ≡ SI (F, H) ∨ SI (G, H).
(ii) If F ∧ (G∨H) is unsatisfiable, then WI (F, G∨H) ≡ WI (F, G)∧WI (F, H).

2.2 Conciliated Interpolants

Interpolants can be seen as explanations indicating why counterexamples are
spurious. It makes sense to look for “simple” explanations. It seems reasonable
to consider an interpolant “simple” if few variables occur in it. Since we work with
BDD libraries, it is natural to strengthen the notion of occurrence semantically:

Definition 4. A variable v occurs semantically in F if ∃v.F 6≡ F . The set of
variables that occur semantically in F is denoted by OccSem(F).

One could strengthen the notion of interpolants accordingly (by replacing Occ
by OccSem in Def. 1). Such semantic interpolants are also syntactic interpolants.
We now show that one can find simpler interpolants than the weakest and
strongest ones, still using only quantifications. If I and J are strongest and
weakest (syntactic or semantic) interpolants for (F, G), respectively, then we
have F |= I |= J |= ¬G, but not necessarily OccSem(I) = OccSem(J). Now
we can compute the strongest and weakest semantic interpolants I1, J1 for the
pair (I,¬J). Since F |= I |= I1 |= J1 |= J |= ¬G, we have that I1 and J1 are
also interpolants for (F, G). If OccSem(I) 6= OccSem(J), then at least one of
I1 and J1 will be simpler than I and J , since the variables in the symmetric
difference are quantified out. This simplification procedure can be iterated until
a pair In, Jn is reached such that OccSem(In) = OccSem(Jn).

Definition 5. Let (F, G) be formulas over a set V of variables s.t. F ∧G is un-
satisfiable, and let Z ⊆ V s.t. ∃Z.F and ∀Z.¬G are interpolants for (F, G).
We say that ∃Z.F, ∀Z.¬G are conciliated interpolants if OccSem(∃Z .F) =
OccSem(∀Z .¬G). We call OccSem(∃Z .F) a conciliating set in this case.

The algorithm in Fig. 1 computes a pair of conciliated interpolants.

function conciliate(formulas F, G) returns (Z, ∃(V \ Z).F, ∀(V \ Z).¬G)
/* F ∧ G unsatisfiable is an input requirement */
/* Z is the maximal conciliating set */

I := F ; J := ¬G; Z := OccSem(F) ∪ OccSem(G)
repeat X := OccSem(I) \ OccSem(J); I := ∃X.I; Z := Z \ X

Y := OccSem(J) \ OccSem(I); J := ∀Y.J ; Z := Z \ Y

until Y = ∅
return (Z, I, J)

Fig. 1. Computation of conciliated interpolants

Given a pair of formulas, the pair of conciliated interpolants is not unique.
Proposition 5 characterizes the pair computed by the algorithm.

Proposition 5.

(i) Let C1, C2 be the conciliating sets of the pairs I1, J1 and I2, J2 of conciliated
interpolants. Then C1 = C2 if and only if I1 ≡ I2 and J1 ≡ J2.

(ii) Conciliating sets are closed under union, but not under intersection.
(iii) There is a unique maximal conciliating set.
(iv) The algorithm of Fig. 1 computes the unique maximal conciliating set.

One may argue that, since we are interested in simple interpolants, we would
like to compute a minimal conciliating set. Unfortunately, there may be several.
We can compute one by means of a greedy algorithm that tries to quantify out
more and more variables. The interpolants produced by such a procedure might
be “simpler”, but could strongly depend on the arbitrarily chosen variable order.

In the context of abstraction refinement, one can use the algorithm from
Fig. 1 as interpolation (and simplification) method when computing a family of
interpolants according to Prop. 3. Thus, the tracking property is satisfied.

3 Symbolic Pushdown Systems

As our program model, we use symbolic pushdown systems (SPDSs) [5].

Definition 6 (SPDS1). An SPDS is a quadruple (G, Γ0 × L, ∆, γ0), where

– G = {true, false}nG , nG ≥ 0, is the set of global variable valuations,
– Γ0 is a set of control points,
– L = {true, false}nL , nL ≥ 0, is the set of local variable valuations,
– ∆ is a set of symbolic transition rules, where each rule is of the form 〈γ〉 ↪→

〈γ1 . . . γn〉 (R) with 0 ≤ n ≤ 2, γ, γ1, . . . , γn ∈ Γ0 and R ⊆ (G×L)×(G×Ln),
– γ0 ∈ Γ0 is the start address.

SPDSs model (possibly recursive) programs with procedures. The rules model
statements in a programming language. The relation R of a rule describes the
relation between the variables before and after execution of the rule. In our
setting, they are given as BDDs.

The right side of the rules can consist of zero, one or two control points.
Whereas a rule with one control point on the right side describes an intrapro-
cedural statement, a rule with two control points on the right side describes a
procedure call, a push: γ1 is the start address of the newly called procedure,
and γ2 the return address of the calling procedure. Parameter passing can be
encoded in the relation R of the rule by initializing the local variables of the
called procedure. A rule with zero statements is the termination of a procedure,
a pop. Return values can be encoded in the relation R of the rule by restricting
the global variables. SPDSs are discussed in greater detail in [5] and [13].

Example 1. Consider the procedures in Fig. 2. The procedure m calls the pro-
cedure f. Procedure f returns a value using the global variable G. Procedure m

has a local variable L, procedure f has a local variable A. The transition rules
of a corresponding SPDS are shown on the right side. The start address is m0.

Moped can model-check such a concrete SPDS. However, in our CEGAR scheme
we use Moped only to model-check boolean SPDSs that have the same control
flow structure, but overapproximate the given concrete SPDS.

1 This definition is slightly more restrictive than in [5].

procedure m

m0: L := L · (L + 1)
m1: call f(L)

m2: if G 6= 0 then goto error

〈m0〉 ↪→ 〈m1〉 (L′ = L · (L + 1) ∧ G′ = G)
〈m1〉 ↪→ 〈f0, m2〉 (L′′ = A′ = L ∧ G′ = G)
〈m2〉 ↪→ 〈error〉 (G 6= 0 ∧ G′ = G)

procedure f(A)

f0: if A even then

f1: A := 0
f2: else A := 561
f3: G := A

〈f0〉 ↪→ 〈f1〉 (A even ∧ G′ = G)
〈f1〉 ↪→ 〈f3〉 (A′ = 0 ∧ G′ = G)
〈f0〉 ↪→ 〈f2〉 (A odd ∧ G′ = G)
〈f2〉 ↪→ 〈f3〉 (A′ = 561 ∧ G′ = G)
〈f3〉 ↪→ 〈〉 (G′ = A)

Fig. 2. Two simple procedures along with an equivalent SPDS

4 Computing Predicates for a DAG of Counterexamples

We use Moped to model-check the (abstract) SPDSs generated in our refinement
cycle. If Moped finds that the error label is reachable in a given SPDS, it con-
structs a DAG that illustrates the abstract paths leading to the error (see [7] for
details on this construction). In brief, the nodes of the DAG are the configura-
tions of the SPDS, the arcs are labeled by symbolic transition rules. There is a
single “sink” node with no outgoing arcs, the error configuration.

For instance, consider the program in Fig. 3. In the initial abstraction, all
data is discarded, therefore Moped finds two counterexamples, one that does
not enter the loop body, and one that enters it exactly once. The resulting
counterexample DAG produced by Moped is shown on the right side of Fig. 3.
(For the time being, ignore the predicates in curly brackets.)

Once we have the DAG, we discard the information about the abstract vari-
able values and replace the abstract rules by their concrete counterparts. We
then need to decide if all counterexamples in the DAG are spurious or not. We
call the DAG spurious in the first case.

Let D be a DAG for the rest of the section. We describe our predicate gen-
eration method in three steps: for single counterexamples without procedures,
for counterexample DAGs without procedures, and finally for counterexamples
DAGs with a procedural structure. In all cases, we proceed as follows:

– We construct a so-called characteristic formula FD that is unsatisfiable if
and only if the DAG is spurious.

– For each node n in D, we compute a predicate Pn in such a way that, for
every edge (n1, R, n2) in D, {Pn1

} R {Pn2
} is a valid Hoare triple (recall

that a SPDS rule R corresponds to a program instruction).

– We show that unsatisfiability of FD can be decided by computing and exam-
ining these predicates Pn. If FD is unsatisfiable, i.e., if D is spurious, then
the predicates explain the infeasibility of the traces of D, and adding them
in future abstractions excludes those traces.

1: X := X · (X + 1)
2: while Y odd do

3: Y := Y + 1
4: if (X + Y) odd

then goto error

5: end

2′ {X even ∨ Y odd}

(Y even)

3 {X even ∨ Y even}

(Y odd)

{(X even ∨ Y odd) ∧ (X even ∨ Y even)}
≡ {X even}

(Y even)

1 {true}

X := X · (X + 1)

2

4 {X + Y even}

(X + Y odd)

Y := Y + 1

{false}error

Fig. 3. Program and counterexample DAG with weakest interpolants

4.1 Single Counterexamples

We first consider the case where D contains a single path. Since we do not
consider procedures yet, the nodes in D correspond to control points in the
program (without any calling context). In this case, we can equivalently view D
as a sequence of (intraprocedural) statements.

Consider the following SPDS with its equivalent program formulation:

〈0〉 ↪→ 〈1〉 (x′ ∧ (y′ ↔ y) ∧ (z′ ↔ z))
〈1〉 ↪→ 〈2〉 ((x′ ↔ x) ∧ (y′ ↔ x) ∧ (z′ ↔ z))
〈2〉 ↪→ 〈3〉 ((¬y ∧ z) ∧ (x′ ↔ x) ∧ (y′ ↔ y) ∧ (z′ ↔ z))

0: x := true
1: y := x
2: if (¬y ∧ z) then

3: error

Clearly, error is not reachable. However, if we check the initial abstraction
that ignores data, we obtain the (unique) abstract counterexample trace x :=
true; y := x; assume(¬y ∧ z). We demonstrate how by computing interpolants
we can simultaneously show that the trace is spurious and find an explanation
of why it is so. Renaming the variables in the trace yields the following formulas:

F1 ≡ x1 ∧ (y1 ↔ y0) ∧ (z1 ↔ z0) // x := true
F2 ≡ (x2 ↔ x1) ∧ (y2 ↔ x1) ∧ (z2 ↔ z1) // y := x
F3 ≡ (¬y2 ∧ z2) ∧ (x3 ↔ x2) ∧ (y3 ↔ y2) ∧ (z3 ↔ z2) // assume(¬y ∧ z)

For instance, the variables with index 2 (x2, y2 and z2) refer to the values of x, y
and z after x := true; y := x has been executed, and before assume(¬y ∧ z)
has been executed. The characteristic formula of the trace is FD ≡ F1 ∧F2 ∧F3.
It is unsatisfiable if and only if the trace is spurious.

The procedures derived from Prop. 2 show that FD is indeed unsatisfiable
and yield the following strongest and weakest interpolants:

I1 = SI (G1, G1) ≡ ∃{y0, z0, y1}.F1 ≡ x1

I2 = SI (G2, G2) ≡ ∃{x1, z1}.(SI (G1, G1) ∧ F2) ≡ (x2 ∧ y2)

J2 = WI (G2, G2) ≡ ∀{x3, y3, z3}.¬F3 ≡ (y2 ∨ ¬z2)
J1 = WI (G1, G1) ≡ ∀{x2, y2, z2}.(F2 → WI (G2, G2)) ≡ (x1 ∨ ¬z1)

Thus, the predicate Pn we are interested in at node n (where n = 0, 1, 2, 3), is
an interpolant for the formula pair (Gn, Gn), which is in fact a predicate over
variable values at n. For instance, the interpolants SI (G2, G2) and WI (G2, G2),
or any other interpolant for this pair, can only contain logical variables common
to G2 and G2, which must necessarily have index 2. These logical variables refer
to the values of the program variables after the execution of x := true; y := x
and before the execution of assume(¬y ∧ z).

Fact 1. Let F1 ∧ . . . ∧ Fk be the (unsatisfiable) characteristic formula of a spu-
rious trace consisting of statements c1; c2; . . . ; ck, let {Ki} be a family of inter-
polants satisfying the tracking property, and let Pi be the predicate over program
variables obtained by removing the index i from all logical variables in Ki.
Then {true}c1{P1}c2{P2} . . . {Pk−1}ck{false} is a valid Hoare annotation.

Hence, interpolants satisfying the tracking property “explain” the infeasibility
of a trace by providing Hoare annotations. In our example we obtain

{true} x := true {x} y := x {x ∧ y} assume(¬y ∧ z) {false} (Ii),
{true} x := true {x ∨ ¬z} y := x {y ∨ ¬z} assume(¬y ∧ z) {false} (Ji).

Notice that, by definition, we have Ii |= Ji; for instance, x ∧ y |= y ∨ ¬z. In this
example, conciliated interpolants provide a better explanation of infeasibility.
The procedures of Prop. 3 guarantee the tracking property and lead to the
Hoare annotation {true} x := true {x} y := x {y} assume(¬y ∧ z) {false}.

4.2 Multiple Counterexamples

We now extend the techniques from Sect. 4.1 to the more general case where
D contains multiple paths to the error. First, we adapt the construction of FD .
This is illustrated by the following formula, which represents the DAG in Fig. 3.
The main addition to the technique from Sect. 4.1 is the disjunction at control
point 4, where two branches of the DAG merge:

(X2 = X1 · (X1 + 1)) ∧ (Y2 = Y1)
∧ (X3 = X2) ∧ (Y3 = Y2 odd)
∧ (X2′ = X3) ∧ (Y2′ = Y3 + 1)
∧ (((X4 = X2) ∧ (Y4 = Y2 even)) ∨ ((X4 = X2′) ∧ (Y4 = Y2′ even)))
∧ (Xerror = X4) ∧ (Yerror = Y4) ∧ (X4 + Y4 odd).

As before, D is spurious if and only if FD is unsatisfiable [13]. For a node n, let
us define the formula pair of n as (F, G), where F is the formula corresponding

to the DAG “above n” and G is the formula corresponding to the DAG “below
n”. Then, our predicate Pn is an interpolant for its formula pair (F, G). In the
example above, P3 is an interpolant for the formula pair (F3, G3), where

F3 ≡ (X2 = X1 · (X1 + 1)) ∧ (Y2 = Y1) ∧ (X3 = X2) ∧ (Y3 = Y2 odd),
G3 ≡ (X2′ = X3) ∧ (Y2′ = Y3 + 1) ∧ (X4 = X2′) ∧ (Y4 = Y2′ even)

∧ (Xerror = X4) ∧ (Yerror = Y4) ∧ (X4 + Y4 odd).

It is easy to see that, in spurious DAGs, such formula pairs are unsatisfiable. By
definition, only current variable values can occur in interpolants for those pairs,
in above example, variable values with index 3.

Strongest and weakest interpolants at each control point in D can be com-
puted in a stepwise way as sketched in Props. 2 and 4.

In the example, the predicates in curly brackets in Fig. 3 are weakest in-
terpolants. Proposition 4 (ii) is used to compute the interpolant at point 2, as
sketched in the figure. Since the predicate computed at 1 turns out to be true,
one can infer (cf. Prop. 2) that the DAG is spurious and the computed predicates
are indeed interpolants. Strongest interpolants could be computed similarly. In
that case, the DAG is spurious if the predicate at error is indeed false.

Thanks to the tracking property, the interpolants computed in this manner
explain the infeasibility of the traces in the DAG. For instance, we have the valid
Hoare triple {X even ∨ Y even} Y := Y + 1 {X even ∨ Y odd}. Combined,
we have for the whole DAG D the Hoare triple {true} D {false}, which is an
alternative way to state the spuriousness of D.

In [10], we provide an example where exponentially (in the size of the DAG)
many counterexamples are excluded in only one refinement cycle.

4.3 Programs with Procedures

We now show how to handle the case where the underlying SPDS represents
a program with (possibly recursive) procedures. The nodes of D now represent
control points of the program plus calling context, i.e., a stack of return addresses.

The construction of the characteristic formula FD is the same as in Sect. 4.2.
However, FD now contains global and local variables. Local variables are saved
during procedure calls and restored upon completion of a procedure. Thus, if
we consider the formula pair (F, G) at a node n, where n is inside a callee, the
local variables of the callers become part of the common variables of F and G
and could occur in Pn. However, we believe that Pn should be independent of
the calling context, for two reasons:

– To generate the abstract transition rules in a simple and efficient way (see
Sect. 5), the predicate Pn should depend only on the data that is available
in the concrete transition rules that lead into or out of n.

– Allowing local data from the callers to ‘pollute’ the abstract data space of
the callee would severely impair the usefulness of the SPDS model, effectively
‘flattening’ the system into one that resembles a version where all procedures
have been inlined.

In the following, we sketch the modifications that arise in this case. Our
goals are to ensure that the predicates Pn at each node n are independent of the
calling context and still satisfy the tracking property. More details, in particular
concerning the computation of strongest and weakest interpolants, are given in
[10, 13].

– For all nodes n, we generate a predicate Pn(gin, lin, g, l) recording a relation
between the global/local data g, l at n and the data gin, lin that was valid
when entering the procedure that n belongs to. If n0 corresponds to the
entry point of a procedure, we ensure (gin ↔ g) ∧ (lin ↔ l) |= Pn0

.

– If an edge from node n is labeled by a transition rule Push(g, l, g′, l′, l′′)
(modeling a call), we generate an interpolant P>n(gin, lin, g′, l′, l′′) s.t. Pn ∧
Push |= P>n. Thus, P>n contains information about the arguments given to
the callee and the saved local data.

– If an edge from node n′ is labeled by transition rule Pop(g, l, g′) (a return
statement) and n is the node at which the corresponding call took place,
we first generate an interpolant P<n(gin, lin, g′), effectively a predicate that
argues about the effect of the callee, s.t. Pn′ ∧Pop |= P<n. Then, if n′′ is the
target node of the edge, we ensure that P>n ∧ P<n |= Pn′′ .

– If an edge from n to n′ is labeled by an intraprocedural rule R, we ensure
Pn ∧ R |= Pn′ , preserving the tracking property.

Figure 4 gives an example for a (spurious) counterexample DAG to the SPDS
in Fig. 2, which contains a procedure call. The left-hand side shows the control
flow in the procedure m, which is interrupted by a call to a function f, whose
control flow is shown on the right. The predicates associated with the nodes are
the weakest interpolants for our example.

f3m2

f0m2

(A odd)(A even)

Pf1m2
≡{true}

A := 0 A := 561

f2m2

G := A

f1m2

Pf3m2
≡ {Ain even → A = 0}

Pf2m2
≡ {Ain odd}

Pf0m2
≡ {A odd → Ain odd}

P<m1
≡ {Ain even → G = 0}

m2

(G 6= 0)

error

m1

L := L · (L + 1)

m0

Ain := L

Pm0
≡ {true}

Pm1
≡ {L even}

Pm2
≡ {G = 0}

Perror ≡ {false}

P>m1
≡ {Ain even}

Fig. 4. An example for counterexample DAG with procedure call

5 Computing the Abstract SPDS

In each CEGAR cycle, we derive predicates to refine our abstraction. By the
methods of Sect. 4, each predicate naturally belongs to a control point. Thus,
as in [6], we maintain for each control point a list of predicates that are useful
there. In this section we sketch how to compute an (overapproximating) abstract
SPDS given a concrete one along with the predicate lists.

Consider the example SPDS of Sect. 4.1. We derived conciliated interpolants
that explain the infeasibility of the error trace. At each control point, we now
associate each predicate (except for true and false) with a boolean variable
that reflects the truth of the predicate: [1] := l1 ↔ x and [2] := l2 ↔ y. A
concretization [i] would be a conjunction of more than one equivalence if the
predicate list of control point i consists of more than one predicate.

For the computation of the abstract rules, we use existential abstraction. For
instance, the concrete BDD R ≡ (x′ = x) ∧ (y′ = x) ∧ (z′ = z) of the SPDS rule
〈1〉 ↪→ 〈2〉 (R) is replaced by an “abstract” BDD

∃{x,y,z,x′,y′,z′}.
(

(l2 ↔ x)∧((x′ ↔ x)∧(y′ ↔ x)∧(z′ ↔ z))∧(l′3 ↔ y′)
)

≡ l′2 ↔ l1.

We can save variables, because we track the predicates only at the control points
where they were derived. In our example, we have only one predicate per control
point. Therefore, one abstract boolean variable suffices for the abstract SPDS:

〈0〉 ↪→ 〈1〉 (l′)
〈1〉 ↪→ 〈2〉 (l′ ↔ l)
〈2〉 ↪→ 〈3〉 (¬l)

0: l := true
1: skip

2: if ¬l then

3: error

The error label is no longer reachable in the abstract program. This is due to
the fact that the Hoare annotation of a concrete program can be abstractly
translated:
{true} x := true {x} y := x {y} assume(¬y ∧ z) {false} translates into
{true} l := true {l} skip {l} assume(¬l) {false}. Hence, if the predicates
that explain the infeasibility of a trace are added to the program by means of
an existential abstraction as above, this spurious trace is excluded.

The procedural case is more involved and is omitted for space reasons. We
sketch only one important concept here: The effect of a called procedure (the
predicate P<n) must be captured in an abstract variable and inspected by the
caller in order to incorporate the procedure effect into its local abstract variable
values. The details can be found in [13].

6 Case Studies

We have implemented the ideas of this paper in an extension of Moped, in
order to decrease resources needed for model-checking SPDSs. Moped accepts
multiple input languages including a subset of Java [14]. We did not compare our
program with existing CEGAR tools, since the assumptions of tools like BLAST
and SLAM (infinite variable ranges, theorem provers) differ significantly from
ours (finite variable ranges).

6.1 Locking Example

Figure 5 shows an example of a program where CEGAR clearly pays off, espe-
cially when the number of bits for the integer variables (“bit width”) is increased.
We want to model-check the fact that the assertions in the program always hold.
This property is actually independent of the integer variables. Table 1 shows per-
formance results (on an Intel Xeon CPU 2.40GHz and using 8 bits of bit width).

struct file {
bool locked;

int pos;

};
open(file f) {

assert(¬f.locked);
f.locked = true;

f.pos = 0;

}
close(file f) {

assert(f.locked ∨
f.pos==0);

f.locked = false;

}

rw(file f) {
assert(f.locked ∨ f.pos==0);

f.pos = f.pos + 1;

}
main() {

file f1,f2;

f1.locked = f2.locked = false;

open(f1);

while(*) { open(f2);

while(*) { rw(f2); rw(f1); }
close(f2);

}
close(f1);

}

Fig. 5. Locking example (pseudo code)

Table 1. Results of different Moped versions applied on the locking example

time/s memory/BDD nodes # cycles # gl. var. # loc. var.

w/o abstraction 460 440482 n/a n/a n/a
weakest interp. 0.43 89936 14 13 6
concil. interp. 0.29 80738 10 10 7

Moped without abstraction needs exponential time in the bit width. On the
other hand, using weakest or conciliated interpolants, our CEGAR scheme au-
tomatically abstracts from the integers and proves the assertions in constantly
many refinement cycles. The number of global and local variables in the final ab-
stract program (containing no spurious error traces anymore) is also shown in the
table and is also independent of the bit width. Time and memory consumption
of the abstract versions grows modestly with the bit width. Conciliated inter-
polants have the best performance, because the predicate simplification allows
them to “discover” that the f.pos fields are irrelevant to the property.

6.2 LinkedList Example

Abstraction can also be useful in positive instances (where the error label is
reachable) and in larger programs. As an example, we took Java code for
the class LinkedList from a textbook on data structures [15] and modified
only the main method simulating a user who accesses class methods randomly:

public class LinkedList { · · ·
private ListNode header;

public static void main (String[] args) {
LinkedList l = new LinkedList();

while (NONDET()) if (NONDET()) l.insert(null, l.zeroth());

else l.remove(null);

assert(l.header == null);

} }

The assertion to be checked is not valid in the class implementation. (This
is not a bug though.) Using 4 bits of bit width and 64 bits for Moped’s heap
representation, Moped without abstraction needs 143 seconds to find an error
trace, whereas with CEGAR, only 7.4 seconds are needed (memory consump-
tion: about 2.5 Mio. BDD nodes in both cases). A refinement is not necessary.
Moped’s performance without abstraction quickly degrades with growing heap
size, whereas with abstraction, the influence of the heap size is small.

We also discovered cases where with our predicate generation heuristics, ab-
straction did not pay off, particularly if complicated properties are checked.

7 Conclusions

Whereas Craig interpolation has been used for CEGAR in SAT solver and theo-
rem prover contexts, we found that it is useful as well to enhance a BDD-based
model-checker. Strongest and weakest interpolants, which are defined indepen-
dently from other tools, form a frame inside which heuristics can be applied
to find good predicates, e.g. conciliated interpolants. The number of refinement
cycles often depends crucially on the quality of the derived predicates.

BDD-based model-checkers record how program states can be reached, to be
able to report possible counterexamples. This information can be exploited by
a CEGAR scheme to exclude multiple counterexamples at the same time. This
can save exponentially (in the size of the DAG) many refinement cycles.

Our CEGAR scheme can achieve large savings, especially if the property to
be checked is much simpler than the full functionality of the program. For future
research, we plan to further improve predicate generation heuristics. Possibilities
include an adapted form of lazy abstraction [2, 13] and the incorporation of
dataflow information to detect relevant counterexample parts [16].

Acknowledgement. We thank Dejvuth Suwimonteerabuth for his great sup-
port with jMoped.

References

1. Ball, T., Rajamani, S.: Automatically validating temporal safety properties of
interfaces. In: SPIN 01. LNCS 2057 (2001) 103–122

2. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proc.
POPL’02, ACM Press (2002) 58–70

3. Chaki, S., Clarke, E., Groce, A., Jha, S., Veith, H.: Modular verification of software
components in C. In: Proc. 25th International Conference on Software Engineering
(ICSE), IEEE Computer Society Press (2003) 385–395

4. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Proc. CAV’00. LNCS 1855, Springer (2000) 154–169

5. Schwoon, S.: Model-Checking Pushdown Systems. PhD thesis, TU München (2002)
6. Henzinger, T., Jhala, R., Majumdar, R., McMillan, K.: Abstractions from proofs.

In: Proc. POPL’04, ACM Press (2004) 232–244
7. Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their

application to interprocedural dataflow analysis. Science of Computer Program-
ming 58 (2005) 206–263 Special Issue on the Static Analysis Symposium 2003.

8. Glusman, M., Kamhi, G., Mador-Haim, S., Fraer, R., Vardi, M.: Multiple-
counterexample guided iterative abstraction refinement: An industrial evaluation.
In: Proceedings of TACAS 2003. LNCS 2619, Springer (2003) 176–191

9. McMillan, K.: Applications of Craig interpolants in model checking. In: Proceed-
ings of TACAS 2005. LNCS 3440, Springer (2005) 1–12

10. Esparza, J., Kiefer, S., Schwoon, S.: Abstraction refinement with Craig interpo-
lation and symbolic pushdown systems. Technical Report 2006/02, University of
Stuttgart (2006)
http://www.fmi.uni-stuttgart.de/szs/publications/info/kiefersn.EKS06a.shtml.

11. McMillan, K.: Interpolation and SAT-based Model Checking. In: Proc. CAV’03.
LNCS 2725, Springer (2003) 1–13

12. Craig, W.: Linear reasoning. A new form of the Herbrand-Genzen theorem. Journal
of Symbolic Logic 22 (1957) 250–268

13. Kiefer, S.: Abstraction refinement for pushdown systems. Master’s thesis, Univer-
sity of Stuttgart (2005)
http://www.fmi.uni-stuttgart.de/szs/publications/info/kiefersn.Kie05.shtml.

14. Suwimonteerabuth, D., Schwoon, S., Esparza, J.: jMoped: A Java bytecode checker
based on Moped. In: Proceedings of TACAS 2005. LNCS 3440, Springer (2005)
541–545

15. Weiss, M.: Data Structures and Algorithm Analysis in Java. Addison-W. (1998)
16. Jhala, R., Majumdar, R.: Path slicing. In: Proc. of PLDI ’05, ACM (2005) 38–47

