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Abstract

Three kits of rules for top-down synthesis of Petri nets are introduced. The
properties and expressive power of the kits are compared. They are then used to
characterise the class of structurally live Free Choice nets by means of the rank of
the incidence matrix.

Introduction

It is a well learnt lesson that systems, even not very large ones, can be successfully built
only by means of disciplined design. A particular implementation of this discipline is
the top-down paradigm: systems are designed through stepwise refinement of a simple
initial system. Correctness is proved using induction: the initial system is shown to
meet the specification, and the refinements are shown to preserve it (i.e if a system in
the refinement sequence meets the specification, so does its succesor). This process is
well understood for sequential systems, but not so much for concurrent ones. Petri nets
provide a formal framework where this problem can be addressed.

In a previous paper [3], some research along this line was carried out. Two requirements
which are part of the specification of many systems were selected: absence of global or
partial deadlocks and absence of overflows in finite stores. In the Petri net formalism
they correspond to the properties of liveness and boundedness. On the other hand, also
the class of systems was restricted to the ones modelled by means of Free Choice nets,
a class of nets which permits to represent both concurrency and nondeterminism, but
constraints the interplay between both. The goal was to provide a sound and complete -
kit of refinements rules, i.e a kit of rules which preserves liveness and boundedness, and
allows one to synthetise every live and bounded Free Choice net. It turned out that two
refinement rules sufficed. 3

The technical details in [3] possibly hid the simplicity of the final result. The first goal of :;
this paper is to overcome this problem: the kit of rules is presented here again, hopefully .

*This work was partially supported by the DEMON Esprit Basic Research Action 3148
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in a readable form, and is situated in the context of other new kits, whose properties and
relationships are considered. The second goal is to show how synthesis procedures can
lead to a deeper understanding of the class of nets they synthetise: a simple algebraic
characterisation of structural liveness is given for the class of Free Choice nets that
can be decomposed into State Machines (Free Choice nets in which concurrency is due
to synchronous communication between sequential processes by rendez-vous). More
precisely, it is shown that structural liveness (the existence of a marking for which the
net is live) can be decided calculating the rank of the incidence matrix of the net. From
this result, Hack’s duality theorem and a polynomial algorithm for deciding liveness can
be easily derived.

The paper is organised as follows: section 1 contains basic definitions. In section 2, three
sets of refinement rules for top-down synthesis of nets are described, the last one being
the one introduced in [3] and mentioned above, and their properties discussed (this part
can be considered, up to a certaint extent, a survey). The algebraic characterisation is
proved in section 3. Finally, section 4 shows the two consequences mentioned above.

1 Basic definitions

N denotes the set N = {0,1,2,...}. Z is the set of integers Z = {...—2,-1,0,1,2,...}.
Q is the set of rational numbers. The cardinality of a set X is denoted |X|. A classis
a set whose elements are also sets.

1.1 Nets

A netis a triple N = (S, T, F) where
-SNT =9
-FC(SxT)U(T x S).

The elements of S, T and F are called places, transitions and arcs, respectively. Places
and transitions are called generically nodes. We assume that S and T are totally ordered,
and denote n = |S|, m = |T|. n and m inherit the subscripts of the net they refer to.
The Pre-set®z of z € SUT is given by *z = {y € SUT | (y,z) € F}. The Post-set z*
ofze SUTisgivenby 2°* ={y € SUT | (z,y) € F}. We also define for X C SUT

‘X=*z x*={=
. CpeXe -

If a node z belongs to more than one net, and there is ambiguity about which net the
dot ° refers to, the name of the net is added as a subscript, unless it is N: (*z)n» denotes
the Pre-set of z in N'.

The operation U on sets is extended to nets in the natural way. Given two nets Ny =
(51,1, R), N; = (52,3, F;) we define

NUN; =(S1US,iUT, R UR)
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The intersection of nets is defined analogously. Notice that both the union and the
intersection of two nets is a net.

W denotes the characteristic function of F'. The matrix C = |jc;;]|,1 <i<n,1<j<m
with

i = W(t;, 8i) — W(si,t;)

is called the incidence matriz of N. That is, to each place of the net corresponds a row
of the incidence matrix. Risking confusion, we denote this row with the name of the
place. The rank of a matrix A (i.e the maximal number of linearly independent rows)
is denoted by r(A).

A path of a net N = (§,T,F) is an alternating sequence (z1, f1,22,..., fr-1,2,) of
elements of SUT and F such that Vi,1 <i <r—1: f; = (i,2i+1). A path with arcs in
a certain set F' C F is called an F'~path.

Given a net N = (S, T, F), the net N~¢ = (T, S, F!) is called the reverse-dual net of
N. It is easy to see that if C is the incidence matrix of N, then —C7 is the incidence
matrix of N~¢,

A net N = (S,T,F)is called an S-graph iff Vt € T: |*t| = 1 = |t*|. N is called a T-graph
iff Vs € S:|°s| =1 =|s*|. N is called free choice iff Vs € S : |s*| > 1 = *(s°) = {s}.

A net N'=(9,T',F') is a subnet of N, denoted N’ C N, iff

SCS TCT F=Fa(SxT)u(T x5))

A place s’ € §' is a way-in (way-out) place of N' C N iff °s' Z T' (s'* € T'). N'C N is
an S-component (T-component) of N iff N’ is a strongly connected S—graph (T-graph)
and TV =°5'NS" (§'=°"T'UT").

N is said to be State Machine Decomposable (Marked Graph Decomposable) iff there is
aset {Ny,...,N,} of S—components (T-components) of N such that

N=UN

i=1

State Machine Decomposable will be shortened to SMD.

1.2 Place/transition nets or Petri nets

A function M: S — N is called a marking. Markings are also represented in vector form:
the ith component of the vector corresponds to M(s;).

A Place/Transition net or Petri net, is a pair (N,Mp) where N is a net and M, i
a marking called initial marking. A transition ¢ € T is enabled at a marking M iff
Vs € *t: M(s) > 0. If t € T is enabled at a marking M then ¢ may occur yielding a new
marking M’ given by

Vs€S: M'(s)=M(s)— W(s,t)+ W(t,s)

M[t)M' denotes the fact that M’ is reached from M by the occurrence of ¢.



185

t2

p2 pé

pl p5
p3

4
Figure 1: A live and bounded Petri net whose underlying net is not structurally bounded

A sequence of transitions, 0 = tit;...1,, is a transition sequence of (N, M) iff there
exists a sequence Moty MytoM; ...t M, such that V2,1 <i <r: M;_1[t;}M;. The mark-
ing M, is said to be reachable from M, by the occurrence of 0. The set of reachable
markings of (N, My) is denoted by R(N, Mp).

A Petri net (N, Mp) is k-bounded iff Vs € S,YM € R(N,Mo): M(s) < k. (N,Mo) is
bounded iff 3k € N: (N, Mp) is k-bounded. A net N is structurally bounded iff VM, 3k €
N: (N, Mp) is bounded.

A transition ¢t € T is live in (N, My) iff VM € R(N, Mo) 3IM' € R(N, M): M’ enables
t. (N, M) is live iff all t € T are live. N is structurally live iff IMo: (N, M) is live.
Structurally live and structurally bounded is shortened to SL&SB.

It follows from the definition that if N is SL&SB, then there is a marking My that
makes (N, Mp) live and bounded. But the converse is not true. The Petri net of figure
1, taken from [8], is an example. It is live and bounded for the given marking, but
unbounded for the marking (11110) (firing tstststs the marking (11120) > (11110) is
reached). Hence, the underlying net is not structurally bounded.

2 Refinement kits

Top-down synthesis of nets is performed starting from a very simple net to which re-
finement rules are applied stepwise. Given a class of rules (a kit), the nets that can
be produced applying a finite number of times the elements of the kit is the class of
nets generated by these rules. In this section we first formalise these concepts. Then
we introduce three different refinement kits, together with their properties. The seed of
the synthesis procedure is called initial net.

Definition 2.1 Initial net

The net Np = ({s}, {t},{(s,1), (2,9)}) is called initial net. w21

A refinement rule allows us to transform a net into another one, which under some
criterion is considered more complex than the old one. This is adequately represented
by means of an antisymmetric binary relation.
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Definition 2.2 Refinement rules

A refinement rule R is a binary antisymmetric relation on the class of nets A'. Given
(N,N) € R, N is called source net and N target net. A class {Ry,...,R.} of refine-
ment rules is called a refinement kit. The class of nets produced by {Ry,..., R},
denoted N'(Ry,...,R,), is the smallest class of nets given by:

1. No € N(Ry,...,R,) (the initial net is produced by the kit)

2. EN€N(R,,...,R)and 3,1 <i<a:(N,N) € R;, then N € N(Ry,...,Rd)
(i.e. if N is produced by the kit and NV is obtained by applying one of the rules
of the kit to N, then N is produced by the kit).

A sequence of nets (N;), 0 < i < r, where r € N, such that Ny is the initial net and
Vi, 05:i<(r—1):(Ni,Nis1) €ERj, 1<j<a
is called a synthesis sequence of N, in N(Ry,...,R,). m22

We can now introduce the three kits we deal with in this paper. Each of them is
composed by two rules.

The SMD kit The name of this kit is due to the fact that it produces all SMD nets
(as well as others, but we are not interested in this). The other kits will be obtained
taking subrelations of the rules of this kit, and therefore will generate smaller classes of
nets.

The two rules Ry, R; can be explained very easily in a graphical way. R, consists of
the addition of a new place to a net, with the condition that the new place must have
at least one input arc and one output arc. Figure 2 shows an example, where the new
place and its input and output arcs are printed in boldface.

R; consists of the substitution of a place by a connected S-graph. Two possible sub-
stitutions of the place § of figure 2 are shown in figure 3 (the S—graphs are printed in
boldface). Nevertheless, we impose two further conditions: one on the substituted place -
s and other on the S—graph N’ = (§',T", F') substituting it. :
First, s must satisfy Vt € ®s:[t*| > 1 and V¢ € s°:|°t| > 1, except maybe at the very -
beginning, when refining the only place of the initial net.

Second, every place of N’ must be contained in an F'-path starting at a way-in place
and ending at a way-out place of N'.

The substitution on the left of figure 3 is a legal one, since it satisfies both conditions.
The substitution on the right does not satisfy the second. s} is the only way-in and the
only way-out place of the S-graph. Nevertheless, no path of the S-graph starting and
ending at s) contains sj.

This second condition is included for the following reason: it is easy to see that if the
source net is strongly connected, the substitutions leading to a strongly connected target:
net are exactly the ones that satisfy it.

The formal definitions of the two rules are given next.
Let N =(S,T,F), N = (8, T, F) be two nets.
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Figure 2: The refinement rule R,

s3

Figure 3: Two possible substitutions of the place 3 of figure 2 by an S—graph. Only the
left one is allowed by rule R,
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Rule 1 (N,N) € R, iff:
1. §=5U3 where 5¢ S, and T =T
2. F = FUF;, where F; C ({8} x T)U(T x {3}) and (*3)5 # 0 # (5% = Rl

Definition 2.3 Let N = (S,T,F), N' = (§',T', F') be two nets, and s € S. It is
said that the net N = (5,7, F) is obtained replacing s by N’ in N iff

(S-{shugs

TUT

= FU F'UF,, where

-F=Fn($xT)U(T x 8))  (arcs remaining in N after removing s)
- F, is obtained in the following way:

for each arc f € FN({s} x T)U (T x {s}): select arbitrarily a place
s’ € &, replace s by s’ and add the resulting arc to F,
(arcs replacing the input and output arcs of s)

1. §
2. T
3. F

=23

Rule 2 (N,N) € R, iff there ezist s € S and an S-graph N' = (S, T',F') C N
satisfying:

1. N=NoV(Vte s: |t*| > 1AVt € s*:|*t| > 1)

2. N is obtained replacing s by N’ in N

3. Vs' € ' there egists an F'-path (sl,,...,s,...,80,), where sy, and s, are a
way-in and a way-out place of N', respectively. u R2
Remark 2.4

1. It is easy to see that, when applying Rp, s = Y5 8’ (Where, as was an-
nounced in the past section, we identify a place with its corresponding row in
the incidence matrix).

2. The nets of N(Ry, R;) are strongly connected. This can be proved induc-
tively: the initial net is strongly connected and the two rules preserve strong
connectedness.

3. Notice that R; always operates on the places added by means of Ry, except
when it is applied at No. The reason is that places not added by R; (and not
the initial place) must come from the refinement of a place by means of R,.
Then they belong to a subnet that is an S-graph, and therefore have one single
input transition or one single output transition in the net. But in this case
they do not satisfy condition 1 for the application of R,.

n24

Now we state the property that gives name to the kit.
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Figure 4: An SMD Petri net

Proposition 2.5

Let N be an SMD net. Then N € N(Ry, R;).

Proof: (sketch). We give here an outline of the synthesis procedure. Assume that N
_is connected (otherwise we generate its connected components separately). Let

'€ ={M,...,N,} beaset of S—components of N that cover it, with the following

Vi, 1Si<r—LNguaun(JN)#9

=1

It is not -difficult to see that such a set exists. The procedure synthesises first
Nl, then N1 U Nz, N1 UN2 U N3 and so on.

 Since V; is an strongly connected S—graph, it can be obtained applying R2 to
the initial net Nj.

Consider now the net N’ = (Ui=1 N;). Niys has a part in common with this net,
plus one or more several “private” connected subnets. For each of these subnets,
: we use R1 to add a new place to N, which is connected to N’ in the same way
than the corresponding subnet. Then these places are substituted by the subnets
themselves using R2. The net so obtained is Niy; U Uiz N7) =25

We Hlustrate this construction by means of an example. Consider the SMD net of
figure 4. The set of S-components described above is shown in figure 5. The steps of
the synthesis are described in figure 6. After the first application of R2, N; has been
generated. We add then a place, which is expanded to yield Ny UN;. Similarly, the
final net N = Ny U N; U N3 is produced.
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N3

N1 N2
Figure 5: A set of S—components that cover the net of figure 4

The SL&SB kit The kit we introduce now is more interesting, because it produces
only SL&SB nets (this is one of the results of [3]). Its two rules are modifications of the
rules Ry and R; of the SMD kit.

Let N = (S,T,F), N = (8, T, ﬁ‘) be two nets.

Rule 3 (N,N) € R; iff:
1. (N,N)€ Ry (i.e. N is obtained adding a place to N)
2. The new place 8 is a linear combination of places of S, i.e. § = T, \s;. mR3

The place § added to the net of figure 2 satisfies the second requirement. It is not
difficult to see that 3 = s; + 3.

Rule 4 (N,N ) € Ry iff the following conditions hold:
1. (N,N)€R,

2. The S-graph N' = (§',T',F') C N described in Rule R, satifies thatVs' € S,V
way-out place s;,, € §': there exzists an F'-path (s',...,5.,,). mR4

Due to condition 2, every place of N’ can receive tokens (through the way-in places it
is connected to), which can afterwards reach any of the way-out places. The idea lying
behind this construction is that, if tokens are needed to fire one of the output transitions
of a certain way-out place, it should be always possible for the tokens of N’ to reach
that place. Notice that the refinement performed with the net of figure 2 as source net
and the net of the left of figure 3 as ta.rget net does not satisfy this condition: there i is :
no F'-path from s§ to the way-out place sj.

It is immediate from the definition that N'(Rs, Ry) C N (R, R;), but the reverse is not
true.
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Figure 6: Synthesis of the net of figure 4
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Theorem 2.6 [3]

Let N be a net. If N € N(Rs, Ry), then N is SL&SB.

The reader can check that the underlying net of the marked net in figure 4 belongs to
N(Rs, R,) (all the applications of R, and R, satisfied also the conditions of R; and R,
respectively). This net is therefore SL&SB. In fact, the net with the marking of the
figure is live and bounded.

The Free Choice kit This kit consists of the new rule R; C Rs, defined below,
and the rule Ry. Obviously, it produces a smaller class than the previous kit (i.e.
N(Rs,Ry) C N(R3,R,)). Nevertheless, this smaller class has a clear characterisation:
namely, it is that of SL&SB Free Choice nets.

Let N = (S,T,F), N = (3, T, F) be two nets.
Rule 5 (N,N) € Rs iff:

1. (N,N ) € Rs (i.e. N is obtained adding o place § that is @ linear combination of
places of N) !

2. The new place § satisfies |3*| = 1. s RS

We state now a property that will be used later on.

Proposition 2.7

N(Rs, Ry) = N(Rs, Ry).

Proof: 1t is obvious that M(Rs, Ry) C N(Rs, R;). To prove the other inclusion notice:
that, as was mentioned in remark 2.4.3, R; is applied, except at Np, only to the:
places added by the action of R;. Since these places have exactly one output.
transition, the S-graphs that replace them have one single way-out place. Then
condition 4 of R; (every place is connected to at least one way-out place) is’

equivalent to condition 2 of Ry ( every place is connected to all way-out places)
This means that

(N € N(Rs, Bo) A (N, ) € By) = (N, §) € Rq

The inclusion follows by induction on the synthesis sequences.

Theorem 2.8 [§]

Let N be an SL&SB Free Choice net. Then N € N(Rs, Ry).

Using classical theory of Free Choice nets, this result can be somewhat extended.
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Proposition 2.9 [7] [1]

The four following classes of nets are identical:

1. N(Rs,Ry)
2. The class of SL&SB Free Choice nets
3. The class of structurally live SMD Free Choice nets

4. The class of Free Choice nets that can be endowed with a live and bounded
marking. =29

In [5], a kit of eigt rules was given for the synthesis of well behaved Bipolar Schemes.
These models are included in the class of live and 1-bounded Free Choice nets, and
can therefore be generated by the two-rule Free Choice kit, once the rules are slightly
modified to deal with markings. Nevertheless the (modified) Free Choice kit does not
guarantee 1-boundedness.

We would like to finish the section with some comments about the locality of the rules
of the second and third kit. A rule is said to be local if, loosely speaking, the conditions
for its application can be determined to hold or not by examining a small environment
of a node of the graph. Local rules are easier to handle than non-local ones. In the three
kits, the even-numbered rules are local, because the conditions can be checked examining
only the sustituted place and its input and output transitions. The odd-numbered rules
are possibly easier to state, but more difficult to deal with, since they are non-local: the
required linear combination could involve places of the system situated apart ones from
the others. This problem was also present in the kit of [5] and, in fact, it is probably
inherent to the problem. It is a widespread conjecture, though so far no proof has been
given, that it is not possible to generate all and only strongly connected graphs (and
therefore all and only strongly connected nets) using local rules only. Since a well known
result of net theory states that live and bounded nets are strongly connected [1], we
should not expect be able to synthesise live and bounded nets using local rules only.

3 An algebraic characterisation of live SMD-FC nets

We prove in this section the result mentioned in the introduction: structural liveness of
SMD-Free Choice nets can be characterised by means of the rank of the incidence matrix
(we prove it for N'(Rs, R4), which by theorem 2.8 is the same class). More precisely,
the theorem is stated as follows:

Theorem 3.1

Let N = (P,T,F) be a net, C its incidence matriz and a = |[FN(S x T)| (i.e. a is
the number of arcs of N leading from a place to a transition).

Then N € N(Rs,Ry) iff N is SMD and r(C)=n+m—a—1. - m31

The “if’ part of this characterisation was conjectured by Silva [9], and the ‘only if’ part
by Campos and Chiola [2).
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The proof requires some previous definitions and lemmata. We introduce the function
F: N — Z given by F(N) = r(C) — (n+ m — a —1). In a first step we will show
that, if N is an SMD net, then F(N) > 0. Then we will prove that F(N) = 0 iff
N € N(Rs, Ry).

Let us start by showing some useful relationships between n, m and a, very easy to
check.

Proposition 3.2
Let N = (S,T, F) be a strongly connected net. Then:

1. a2n,anda=n if N is a Marked Graph
2. a2m, and a =m if N is a State Machine

Proof: Follows easily from the definitions of State Machine and Marked Graph.
m3.2
Lemma 3.3
Let N be a strongly connected net and (N,N) € Ry. Then:
1. F(N)-F(N)>0
2. F(N) —F(N)=0<« (N,N) € Rs.
Proof: N is obtained by adding a place § to N such that |*5] # 0 5 |3*|. This means

fi=n+l m=m a=a+l5 >a
It follows:

F(N) = F(N)=r(€C) —r(C)—1+[5*] > 0
Since (C) — r(C) < 1, the equality holds iff (r(C) = r(C)A|5°] = 1). But in
this case § is linear combination of places of S, and by definition (N,N) € R;.
’ =33
Lemma 3.4

Let N be a strongly connected net and (N, N) € R;. Then F(N) - F(N)=0.

Proof: N is obtained by replacing a place s € S by an S-graph N’ = (&' T, F'). We
claim that r(C) — r(C) = n’ — 1. Let us prove first that if the claim is true then
the result follows. It is not difficult to see that

i=n+n'—1 tm=m+d éaG=a+d
and therefore
FN)-FWN)y=r(C)-r(C)—(n'-1)—d' +d' =0

Now we prove the claim.
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H8) r(€)—r(C) < n'—1. Thisis easy, because C has (n’ — 1) rows more than
C (the row corresponding to s is removed and the n' rows corresponding to
- & added). It is clear that the rank cannot grow more than the difference
i between the number of rows of C and C.
(b) r(€)—r(C) > n'—1. Consider the matrix C,, obtained by adding to € the
* row of C corresponding to the place s. By the first part of remark 2.4, s is
a linear combination of places of §'. Therefore r(C,) = r(C).
Let V4 be a set of linearly independent rows of C with |Vj| = r(C). Let W
be a set of rows of C, corresponding to S C &', with [V{| = n' — 1. We
show that the vectors of V3 U V{ are linearly independent.
As N' is an S-graph, 35’ € S1:((s"*)° € S§ V°(°s’) € S) (for instance, in
the net on the left of figure 3, if we remove s}, then #] and #; have no input
place. Similarly with s} and s3). Then 3’ € T: (*Y U#*)N 5] = 5.
It follows that &(s',t') # 0 and Vs € S; U Si,s # &' : &(s,¥') = 0. Then
clearly the row corresponding to s’ is not a linear combination of the other
vectors of V;UV/, and hence V; UV; is a set of linearly independent vectors.
In consequence

r(€)=r(C) 2 K UW| =n' =14 (C)
and the claim is proved.
u34
.hese two lemmas, it is now easy to prove the following result.

sition 3.5

t(N;), 0 < i < r be a synthesis sequence in N'(Ry, Rz). Then F is non-decreasing
' non-negative on (N;)

F is non-decreasing by lemmata 3.4 and 3.3. It is non-negative because F(No) =
0 and it is non-decreasing. m3.5

, we are well prepared to prove theorem 3.1.

of theorem 3.1

(=): Let (V:),1 < i < r be a synthesis sequence of N in N(Rs, Rs). By lemmas
34 and 3.3

Vi, 1 <i < (r —1): F(Nip1) = F(N:)

Since F(Np) = 0, we have F(N) = 0, and the result follows.

(«): As N isan SMD net, N € N (R, R;) by proposition 2.5. Let (N;),1 <i<r
be a synthesis sequence of N in N (Ry, R;). Since F is non-decreasing, we have

Vi,1<i<(r—1): F(Nipr) = F(V:)

Then, by lemma 3.3, N € N(Rs, Rz). By proposition 2.7, N € N(Rs, Ry).
wd.l
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4 Consequences

We show in this section two results that can be derived from theorem 3.1. The first one
is & new proof of Hack’s duality theorem [7]. This result was proved by M. Silva [9],
assuming that theorem 3.1 was true.

Theorem 4.1
Let N be a Free Choice net. N is SL&SB iff the reverse dual net of N is SL&SB.

Proof: Assume N is SL&SB, and let N~ be the reverse dual of N. We show that N~¢
satisfies the conditions of theorem 3.1. First, it is easy to see that N~¢ is also
Free Choice. A result of [7] ensures that N is Marked Graph Decomposable.
As the reverse-dual of a I'-component 18 an S-component, it follows that v ~*is
SMD.

Moreover, by theorem 3.1, F(N) = n +m — 1 — a. Places of N correspond
to transitions of N™¢, and viceversa. Arcs leading from places to transitions
are transformed into themselves (because the arcs are reversed!). Therefore
FINY)=m+n-1-a.

As N~ satisfies all the conditions of theorem 3.1, the result holds. m4l

We can obtain from this theorem the following corollary:

Corollary 4.2

Let N be an FC net. N is SL&SB iff N is Marked Graph Decomposable and r(C) =
n+m-1-—a.

Proof: (=): N™% = (T,P,F-') is SL&SB by theorem 4.1. Then, by theorem 3.1,
N-?is SMD and r(~C%T) = m + n — 1 —a. It follows that N is SMD and
r(C)=n+m-—-1-a.

(«): N-¢ is SMD and satisfies the equation. Therefore, by theorem 3.1, N~¢ is
SL&SB. By theorem 4.1, N is SL&SB as well. m42

It can be proved that a structurally live SMD-FC net is live iff all its S-components are
marked at Mo [7]. Using this property, the following result is obtained in [3].

Proposition 4.3

Let (N, Mo) be an SMD-FC Petri net such that N is structurally live. Then (N, M)
is live iff the following Linear Programming problem

minimise 07 .Y

subjectto YT.C =0
YT - My=0
Y>0

has no solution. md3

Notice that the optimisation function vanishes. This means that an optimal solution ‘
exists if and only if there exists a vector Y € Q" satisfying the constraints.
This results leads immediately to the following theorem:
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Theorem 4.4

Liveness of marked SMD-FC nets is decidable in polynomial time.

Proof: Obvious, since liveness can be decided calculating the rank of the incidence ma-
trix and solving a Linear Programming problem, problems for which polynomial
algorithms exist. m44

Conclusions

We have introduced and commented in this paper several kits of refinement rules for
performing top-down synthesis of nets. Many results (in fact, the more difficult ones)
were obtained in a previous paper. Here, free of the technical details, we have tried
to give the kits a clear organisation, point out their relationships and present them
in their simplest form. Our purpose was to convince the reader that small kits (in
fact, containing two elements) of easy-to-describe rules suffice to produce all the nets of
non-trivial subclasses enjoying desirable properties. Moreover, we wanted to show that
these kits are powerful tools for deepening our knowledge on the classes of nets they
generate. We hope to have achieved this by presenting a particular result: SMD-FC
nets are structurally live if and only if an equation relating the rank of the incidence
matrix to the number of places, transitions and arcs of the net holds. This theorem
allowed us also to derive Hack’s duality theorem, and to prove that liveness of SMD-FC
qets is a polynomial problem.

Two interesting questions remain open, both concerning the class N'(Rs, Ry): Are there
simple characterisations of this class, first in terms of meaningful conditions on the
structure of the nets (such as the Free Choice property is for N'(Rs, R4)), and second
in purely algebraic terms? We conjecture that the answer to the first question is “yes”,
and to the second “no”. Nevertheless, we also believe that it should be posible to find
some “quasi-algebraic” characterisation of this class.
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