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1 Introduction

A successful way of palliating the state-explosion prob-
lem when model-checking concurrent systems is to ap-
ply partial-order techniques. These techniques allow to
verify properties without exhaustively exploring all the
reachable states of the system.

Net unfoldings are a partial-order technique based on
the theory of true concurrency. Introduced by McMillan
in [12,13], it has since then been further analyzed and
improved [15,6-8], extended to full LTL model check-
ing [3-5], to symmetrical systems [2] and to nets with
read arcs [16], and applied, e.g., to conformance checking
[14], analysis of asynchronous circuits [9,10] and graph-
grammars [1]. The technique requires the system to be
modelled as a collection of communicating automata, as
a Petri net, or in any other formalism with a notion
of concurrent components and specifying which compo-
nents participate in each action. In this paper, we use
the Petri net formalism.

It is clear that a rooted transition system can be
unfolded or unrolled into a (possibly infinite) tree ex-
hibiting the same behaviour. A net unfolding is a true-
concurrency equivalent of this notion. Instead of a tran-
sition system we now have a Petri net A, and instead
of unfolding into a (possibly infinite) tree we unfold N/
into a (possibly infinite) acyclic Petri net with tree-like
properties. The unfolding can be constructed by a non-
deterministic procedure that starts from a net without
transitions, whose only reachable marking corresponds
to the initial marking of A'. The procedure adds new
transitions, one at a time. Intutitively, these transitions
correspond to particular occurrences of transitions of NV.

* Work done while this author was visiting the University of
Stuttgart, partially supported by the project “Algorithms for Soft-
ware Model Checking” funded by the Deutsche Forschungsgemein-
schaft.

The unfolding procedure can be extended to decide
properties of the net, e.g. whether a given place p of
N can ever become marked. The procedure attaches to
each new transition ¢ of the unfolding a reachable mark-
ing My When adding ¢, it checks whether M; marks p, in
which case it signals success and terminates. Otherwise,
the algorithm checks whether some transition ¢' added
earlier satisfies M{ = M,, in which case it marks ¢ as a
cut-off, meaning that this branch of the search will no
longer be explored. The search terminates without suc-
cess when no new transition can be added. The search
can be conducted using different strategies, most promi-
nently breadth-first and depth-first. In the best case, it
be exponentially faster than search algorithms acting on
the Petri net’s reachability graph, and experiments have
shown it to be also more efficient in many systems rele-
vant in practice (see e.g. [15,6,9]).

It is well-known that, unlike in the case of transition
systems, the correctness of the search, i.e., the property
that the search always terminates with the correct an-
swer, depends on the strategy [6]. Several papers [12,7,
6] have given correct breadth-first strategies. The ques-
tion whether correct depth-first strategies exist has been
open for several years (in fact, this question was already
considered by McMillan in his original work [11]). It
is an important question, not only because of the fact
that depth-first search tends to be more efficient than
breadth-first for positive instances (i.e., when the search
terminates successfully), but also because because many
efficient algorithms for transition systems, like the algo-
rithms for checking Biichi emptiness, are based on depth-
first search, and so their generalization from the transi-
tion system to the Petri net case relies on the correctness
of depth-first search.

In this note we present a counterexample showing
that depth-first search in net unfoldings is not correct.
The note is organized as follows. In Section 2 we define
unfoldings of transition systems. In Section 3 we intro-



duce net unfoldings as a generalization of the transition-
system case. Section 4 introduces the notion of correct
search algorithms. Section 5 presents the counterexam-
ple showing that depth-first-search algorithms are not
correct. Finally, in Section 6 we discuss the result.

2 Unfoldings of transition systems

A transition system is a triple A = (S, T, sr), where S
is a set of states, T C S x S is a set of transitions, and
s; € S is the initial state.

A transition system .4 can be ‘unfolded’ into a tree.
The unfolding can be seen as the ‘limit’ of the construc-
tion that starts with the tree having one single node
labeled by sy, and iteratively extends the current tree as
follows: if A has a transition ¢t = (s, s’), and the current
tree has a node labeled by s, then we add a new edge to
the tree, labeled by ¢, leading to a new node labeled by
s' (to be precise, we only add the edge if it hasn’t been
added before). We call this edge a possible extension of
the current tree. If the transition system has a cycle,
then its unfolding is an infinite tree. Notice that we can
also look at the unfolding as a labeled transition system,
i.e., as a transition system whose states and transitions
carry labels. The states of the unfolding are the nodes
of the tree (labeled with states of A), and its transi-
tions are the edges of the tree (labeled with transitions
of A). In this note we call the transitions of the unfold-
ing events. Many states (possibly infinitely many) of the
unfolding may be labeled by the same state of A: they
correspond to different visits to the state. Similarly, an
event symbolises a particular occurrence of a transition.

The reachability problem for a transition system A
is as follows: given a target state st, decide if there is a
path from s; to sp. Clearly, this is the case if and only
if the unfolding of A contains a state labelled by sp.

A search algorithm for the reachability problem, like
breadth-first or depth-first search, explores a prefiz of
the unfolding of A. Such an algorithm explores the un-
folding, one event at a time. After exploring a new event,
the algorithm sometimes marks it as a “cut-off”, whose
successors are not explored. An event is marked as a cut-
off if the label of the state it leads to, say s, satisfies one
of the following conditions:

(1) s = s7; in this case the algorithm stops with the
result ‘reachable’.

(2) ‘s is already known to be reachable’; i.e., some other
state of the current tree is also labeled by s.

If the algorithm reaches a point at which no new event
can be added and no state of the current tree is labeled
by sr, then it terminates with ‘unreachable’.

At this level of abstraction, search algorithms only
differ in the way they select the next event to be explored
among the possible extensions of the current tree. For

Fig. 1. The safe Petri net Aj.

instance, breadth-first search algorithms select a possi-
ble extension having smallest distance to the root, while
chaotic search algorithms choose the new event randomly.

It is not difficult to prove that, if A is finite, then
all search algorithms terminate with the correct answer
(‘reachable’ or ‘unreachable’), i.e., the order in which
events are explored does not affect correctness.

3 Net unfoldings

In this section we define the unfolding of a Petri net as
a generalization of the unfolding of a transition system.
The definition will be informal, but hopefully precise.
For formal definitions the reader is referred to [7].

8.1 Preliminaries.

A Petri net is a pair (P,T,Mj), where P is a set of
places and T C 2F x 2F is a set of transitions. Given a
transition t = (Py, P2), we call P, and P; the sets of input
and output places of t, respectively. A marking M is a
mapping assigning to each place a number of tokens, and
M7y is an initial marking. If, at a given marking, all the
input places of a transition hold at least one token, then
the transition can occur, which leads to a new marking
obtained by removing one token from each input place
and adding one token to each output place.

An occurrence sequence is a sequence of transitions
that can occur from M; in the order specified by the
sequence. A marking M of N is reachable if some occur-
rence sequence leads from M to M. In this note we con-
sider safe Petri nets, which are those in which M (p) <1
for every reachable marking M and every place p. Fig-
ure 1 shows an example of a safe Petri net. (This net will
later serve as our counterexample.) We often identify a
marking M with the set that contains all places p for
which M (p) = 1.



Fig. 2. A prefix of the unfolding of the net of Figure 1

3.2 Unfoldings

We have defined the unfolding of a transition system
as a labeled transition system; analogously, the unfold-
ing of a Petri net A is a labeled Petri net whose places
and transitions are labeled with the names of places and
transitions of /. We also speak of the label of a marking
m of the unfolding, meaning the set of all the labels of
the elements of m. As in the case of transition systems,
we call the transitions of the unfolding events.

When unfolding A, we start with one state, labeled
with the initial state of A. In the same way, when un-
folding NV, we start with one place for each element of
the initial marking M. For the Petri net N}, of Figure
1, we have M1 = {a,b,c,d}, so we start with the four
places at the top of the figure.

We now generalize the notion of possible extension:
if in the current labeled net we can reach a marking
m labeled by a marking M of the original net, and M
enables a transition ¢ leading to a marking M', then we
add to the unfolding a new event labeled by ¢, and for
each output place p of t in N a new place labeled by p.

Figure 2 shows a snapshot of the unfolding process
of N}, after the addition of nine events. We call these
snapshots prefizes of the unfolding. The initial marking
{p1,p2,p3,ps} with label {a,b,c,d} enables the tran-
sitions A and B, so we have two possible extensions.
We choose to add event e first, labeled by A. Now
the prefix has a new reachable marking, correspond-
ing to marking {c,d,%,k} in A}, which leads to a new
possible extension with label C. Suppose that we add
event e, with label B next. Now the prefix has two
additional reachable markings, {ps,ps, p7,ps} (labelled
by {a7 b7j7 l}) and {p57p67p77p8} (la‘beued by {i7j7 k7 l})
These two markings enable extensions labelled with D
and T, respectively. After event es with label C we have
a new marking labelled by {e, h,i}, enabling possible ex-
tensions with labels £ and H become enabled, etc.

As in the transition system case, the unfolding of N/
is defined as the ‘limit’ of the unfolding procedure. It is

easy to show that the ‘limit’ is unique up to isomorphism,
and that it is a safe labeled Petri net. Moreover, the
occurrence sequences of A' and its unfolding coincide,
i.e. t;...t, is an occurrence sequence of N if and only
if its unfolding contains an occurrence sequence e; ... e,
labeled by t; ...t,.

3.3 The place-reachability problem

For convenience, we consider a special version of the
reachability problem that we call the place-reachability
problem: Given a safe Petri net A/ and a target place pr
of N, does some reachable marking M put a token on pr,
i.e., does M(pr) = 1 hold for some reachable marking
M? Tt is well-known that for safe Petri nets, the usual
reachability problem, where we ask for the reachability
of a marking M, can be reduced in linear time to the
place-reachability problem, and vice versa.

Since the occurrence sequences of a net N and its
unfolding coincide, some reachable marking of A/ puts a
token on pr if and only if some place of the unfolding of
N is labeled by pr. In the net A}, of Figure 1 the place
p is reachable.

3.4 Search algorithms for place-reachability

We study search algorithms for the place reachability
problem. These algorithms explore (or construct) increas-
ingly large prefixes of the unfolding of N. As in the case
of transition systems, they explore one event at a time,
and some events are marked as cut-offs, whose succes-
sors are not explored anymore. The problem is how to
generalize the definition of cut-off events to Petri nets. A
solution was presented by McMillan in [12,13]. The key
is to attach to each event e a suitable reachable marking
M, of the original Petri net A. This is done in three
steps, which we illustrate on event ez of Figure 2:

— Compute the set [e] of all predecessors of e, i.e, the
set of all events e’ such that the unfolding contains a
path from e’ to e. We have [e3] = {e1,e3}.

— Choose any occurrence sequence ¢ containing each
element of [e] exactly once (which is guaranteed to
exist), and let it occur. In our case, o = ejes.

— Let m be the marking of the unfolding reached by
firing o (which can be shown to be independent of
the choice of ¢), and define M, as the label of m. In
our case, m = {pe, Py, P10} and M., = {e, h,i}.

For each new event e the algorithms compute and store
the marking M. Notice that these are the only markings
of A/ which the algorithms know to be reachable.

Now we can easily generalize conditions (1) and (2).
An event e is marked as a cut-off if the marking M,
satisfies one of the following conditions:

(') M.(pr) = 1; in this case the algorithm stops with
the result ‘reachable’.



(2’) ‘M, is already known to be reachable’; i.e. either
M, = My, or M, = M, for some other event e'.
In that case, €’ is called the corresponding event of e.

The unfolding prefix in Figure 2 has a reachable mark-
ing {p14, 15, P16, P17}, corresponding to {a, b, c,d}. This
enables a possible extension labelled by A, which would
be associated with the marking {c,d, %, k}. Since that is
equal to M,,, such an extension would be a cut-off.

4 Search algorithms for place-reachability

We have seen that chaotic search is a correct algorithm
for the reachability problem in transition systems. Is this
still the case for place reachability in Petri nets?

It is easy to see that chaotic search in the unfolding
of a safe Petri net always terminates: Since an event e
can only be added if its marking M, was not known
before, the algorithm can only explore as many events
as the (finite) number of reachable markings of A/. Also,
if the algorithm answers ‘reachable’, then the place pr
is indeed reachable. Unfortunately, the algorithm may
produce false negatives. This fact was already implicit
in [12], and an explicit counterexample is shown in [7].

In [12], McMillan gave a correct search algorithm
which generalized breadth-first search.

Definition 1. The size of an event e is defined as the
number of elements of [e]. A search algorithm for place-
reachability works small-first if it explores events in or-
der of increasing size. Le., if the algorithm adds events
€1,...,€n, in this order, then the size of e; is smaller
than or equal to the size of e; for every 1 <i < j <mn.

Unfortunately, McMillan’s algorithm used a weaker
notion of cut-off than Definition 1. With that notion, the
algorithm may explore up to 2" events for a net with n
reachable markings. Correct small-first algorithms with
the above definition of cut-off event, and therefore ex-
ploring at most n events, were presented in [7] and [6].

The question whether there exist correct search algo-
rithms that generalize depth-first search has been open
for several years. Already McMillan considered it [11].
The question is important from an algorithmic point of
view. In [4] a model-checking algorithm for LTL based
on net unfoldings was described. The algorithm checks
emptiness of a Biichi net (a Petri net with accepting
places and a Biichi acceptance condition). In the worst
case, the algorithm has quadratic complexity in the num-
ber of reachable markings of the Petri net. This is due to
the fact that the emptiness check has to be carried out
using the small-first search of [6,5], and breadth-first-like
algorithms for Biichi emptiness have quadratic complex-
ity. A correct depth-first-search algorithm could lead to
a linear algorithm, as in the transition system case.

To answer the question we must make precise the
meaning of ‘generalize depth-first search’. We present a

condition which (we think) any depth-first-search algo-
rithm should reasonably satisfy. Let P be an unfolding
prefix and E the set of possible extensions of P. Assume
that we add to P the event e € E to yield the prefix
P'. Now, let E' be the possible extensions of P'. We call
E'"\ E the possible extensions of P’ enabled by e.

Definition 2. An algorithm A for place-reachability is
depth-first if the following holds: Let P be the current
prefix, and let e be the last event added by A. The pos-
sible extensions of P enabled by e are explored by A
before any other possible extension of P.

This condition is a straightforward generalization of
the idea that depth-first search tries to extend the cur-
rent computation before branching to a new one.

5 Depth-first-search algorithms are incorrect

In the rest of this note we demonstrate an instance of
the place-reachability problem such that all depth-first
search algorithms give the wrong answer to the problem.
This shows that none of these algorithms are correct.

Proposition 1. FEvery depth-first search algorithm an-
swers ‘unreachable’ for the instance (N, p), where N},
is the net shown in Figure 1.

Proof. Clearly, p is reachable in A}, e.g. by firing the
sequence A, B,T. However, we show that a particular
depth-first exploration answers ‘unreachable’, and argue
that the same holds for any other depth-first traversal.
For reference, Figure 3 shows the resulting unfolding.

Initially, there are two possible extensions ey, es, la-
belled by A and B, respectively. Let us say that the
algorithm picks e; first (the other case is symmetric).
Adding e; enables a new event ez labelled by C. Since
e3 is the only event enabled by e;, the algorithm adds
it. Now, e3 enables two further events ey, e5 labelled by
FE and H, respectively. By the depth-first policy, the al-
gorithm adds one of the two, say e4, and, since e4 does
not enable any new event, it then adds es (adding es
first leads to the same result). After e4 and e5 have both
been added, new events eg and e; are enabled, labelled
by A and B, respectively. Since we have M., = M,,,
the algorithm can, w.l.0.g., add eg first and mark it as
a cut-off (this has no consequences, it does not enable
any event). The algorithm now adds e7, which enables
event eg labelled by D, and eg in turn enables eg and
e10, labelled by F and G, respectively. As in the case of
e4 and ey, the algorithm adds both eg and ejg, enabling
two new events e, €12 labelled by A and B, respectively.
Since M.,, = M., and M,,, = M., both become cut-
offs. Now the algorithm finally adds ez, marking it, too,
as a cut-off because M., = M,,. At this point no more
events can be added and the algorithm stops. No event
labelled by T has been added.



Fig. 3. A depth-first unfolding of N}. The dashed lines connect
cut-offs to their corresponding events.

Notice that the constructed prefix contains three pairs
of places labelled by 4, j, which could lead to events la-
belled by T. However, at least one place of each pair is
produced by a cut-off, meaning that no pair is explored.

6 Conclusions

We have shown that depth-first-search algorithms for
place reachability in Petri nets are not correct or, putting
it differently, that depth-first search may fail to construct
an unfolding prefix representing all reachable markings.
In the terminology of [7], depth-first-search algorithms
may not generate a complete prefix. Our result makes the
existence of a linear algorithm (in the size of the com-
plete prefix) for model-checking LTL on Petri nets un-
likely. Incidentally, there is an interesting analogy with
BDD techniques: all known algorithms for checking empti-

ness of a Biichi automaton encoded as a BDD have
quadratic complexity.

Our counterexample indicates that the only hope lies
in asking whether Definition 2 really captures the essence
of depth-first search in a true concurrent setting. There
might be a depth-first-like algorithm which chooses the
next event not only among the possible extensions en-
abled by the event added last, but also among the pos-
sible extensions that are concurrent with this event. We
think that such algorithms are unlikely to exist due to
the non-transitivity of the concurrency relation between
events, but we do not have a proof.
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