Symposium on Theoretical Aspects of Computer Science year (city), pp. numbers
www.stacs-conf.org

COMPUTING LEAST FIXED POINTS OF
PROBABILISTIC SYSTEMS OF POLYNOMIALS

JAVIER ESPARZA AND ANDREAS GAISER AND STEFAN KIEFER

Fakul@t fur Informatik, Technische Universit Miinchen, Germany
E-mail address{espar za, gai ser, ki ef er }@mwdel . i n. tum de

ABSTRACT. We study systems of equations of the forkh = fi(X1,...,Xn),...,Xn =
fn(X1,...,X,) where eacly; is a polynomial with nonnegative coefficients that add up.t@he

least nonnegative solution, sayof such equation systems is central to problems from various areas,
like physics, biology, computational linguistics and probabilistic progranfieation. We give a
simple and strongly polynomial algorithm to decide whethet (1, ..., 1) holds. Furthermore, we
present an algorithm that computes reliable sequences of lower ard lupmnds on, converging
linearly to . Our algorithm has these features despite using inexact arithmetic faeefy. We
report on experiments that show the performance of our algorithms.

1. Introduction

We study how to efficiently compute the least nonnegative solution of artiegusystem of
the form
X1=hHX, X)) 0 Xy = (X, X))
where, for everyi € {1,...,n}, f; is a polynomial overXy, ..., X,, with positive rational coef-
ficients thatadd up to 1* The solutions are the fixed points of the functibn R® — R™ with
f=(f1,-.., fn). We call f aprobabilistic system of polynomialshort: PSB. E.g., the PSP

1 1 1 1 1
X1, Xo)= = X1 Xo+ =, - XoXo+-X;+ =
f(X1, Xo) (2 1 2+2,4 2 2—1-4 1+2>

induces the equation system
X1=3X1Xo+3 Xo=3XXo+ X145

Obviously,1 = (1,...,1) is a fixed point of every PSP. By Kleene’s theorem, every PSP has a
least nonnegative fixed point (called just least fixed point in what fd)pgiven by the limit of the

sequence, f(0), f(£(0)), ...
PSPs are important in different areas of the theory of stochastic pexasd computational

models. A fundamental result of the theory of branching processesnwiitterous applications in
physics, chemistry and biology (see e.g. [9, 2]), states that extinctidrabildies of species are

1998 ACM Subject Classificatiorf.2.1 Numerical Algorithms and Problems, G.3 Probability and Statistics.
Key words and phrasescomputing fixed points, numerical approximation, stochastic modelschitag processes.
1Later, we allow that the coefficients add upatiomost1.

L SYMPOSIUM
mvl_'_ ON THEORETICAL
ASPECTS
<4 - . .
7 S%F[(NSPPUT[R @© J. Esparza, A. Gaiser, and S. Kiefer
© Creative Commons Attribution-NoDerivs License

2 J. ESPARZA, A. GAISER, AND S. KIEFER

equal to the least fixed point of a PSP. The same result has been restetly for the probability
of termination of certain probabilistic recursive programs [7, 6]. Thesi=tency of stochastic
context-free grammars, a problem of interest in statistical natural laeguagessing, also reduces
to checking whether the least fixed point of a PSP eqluéee e.g. [11]).

Given a PSPf with least fixed poinf. s, we study how to efficiently solve the following two
problems: (1) decide whether = 1, and (2) given a rational number> 0, computdb, ub € Q"
such thatlb < uy < ub andub —1b < € (whereu < v for vectorsu, v means< in all
components). While the motivation for Problem (2) is clear (compute the bildipaf extinction
with a given accuracy), the motivation for Problem (1) requires perisame explanation. In the
case study of Section 4.3 we consider a family of PSPs, taken from [9]ellimgpthe neutron
branching process in a ball of radioactive material of radiu@he family is parameterized by).
The least fixed point is the probability that a neutron produced throughtapeous fissiodoes
not generate an infinite “progeny” through successive collisions with atontbeoball; loosely
speaking, this is the probability that the neutdmes nogenerate a chain reaction and the blakés
notexplode. Since the number of atoms in the ball is very large, spontanesios fisoduces many
neutrons per second, and so even if the probability that a given nquriivdnces a chain reaction is
very small, the ball will explode with large probability in a very short time. It igéfiere important
to determine the largest radid3 at which the probability of no chain reaction is sfilllusually
called thecritical radius). An algorithm for Problem (1) allows to compute the critical radius using
binary search. A similar situation appears in the analysis of parameteriabdiplistic programs.
In[7, 6] it is shown that the question whether a probabilistic program alswsly terminates can
be reduced to Problem (1). Using binary search one can find the “triv@iaie of the parameter
for which the program may not terminate any more.

Etessami and Yannakakis show in [7] that Problem (1) can be solvedyngial time by
a reduction to (exact) Linear Programming (LP), which is not known to mngly polynomial.
Our first result reduces Problem (1) to solving a system of linear equsatiesulting in a strongly
polynomial algorithm for Problem (1). The Maple library offers exa@hanetic solvers for LP and
systems of linear equations, which we use to test the performance of wualgerithm. In the
neutron branching process discussed above we obtain speed-aipsutfone order of magnitude
with respect to LP.

The second result of the paper is, to the best of our knowledge, thpriatical algorithm for
Problem (2). Lower bounds fqr; can be computed using Newton’s method for approximating a
root of the functionf(X) — X. This has recently been investigated in detail [7, 10, 5]. However,
Newton’s method faces considerable numerical problems. Experimemigisfinaive use of exact
arithmetic is inefficient, while floating-point computation leads to false results frevery small
systems. For instance, the PReMo tool [12], which implements Newton's methibdleating-
point arithmetic for efficiency, reporjs; > 1 for a PSP with only 7 variables and small coefficients,
althoughpy < 1 is the case (see Section 3.1).

Our algorithm produces a sequence of guaranteed lower and uppstdydooth of which con-
verge linearly tgus. Linear convergence means that, loosely speaking, the number oatebits
of the bound is a linear function of the position of the bound in the sequenioe.algorithm is
based on the following idea. Newton’s method is an iterative proceduregitiah a current lower
boundlb on ¢, applies a certain operatdf to it, yielding a new, more precise lower bouf@1b).
Instead of computing/(1b) using exact arithmetic, our algorithm compute®s consecutive New-
ton steps, i.e V(N (Ib)), usinginexactarithmetic. Then it checks if the result satisfies a carefully
chosen condition. If so, the result is taken as the next lower boundotftimen the precision is
increased, and the computation redone. The condition is eventually satifgoning the results

COMPUTING LEAST FIXED POINTS OF PROBABILISTIC SYSTEMS OF RONOMIALS 3

of computing with increased precision converge to the exact result. Ustlalyepeated inexact
computation is much faster than the exact one. At the same time, a carefulataed delicate)
analysis shows that the sequence of lower bounds converges lineagly to

Computingupperbounds is harder, and seemingly has not been considered in the litdrature
fore. Similarly to the case of lower bounds, we applyvice toub, i.e., we computg (f (ub)) with
increasing precision until a condition holds. The sequence so obtainedohayen converge to;.

So we need to introduce a further operation, after which we can thee pn@ar convergence.

We test our algorithm on the neutron branching process. The time needbthto lower and
upper bounds on the probability of no explosion with= 0.0001 lies below the time needed to
check, using exact LP, whether this probabilityl isr smaller than one. That is, in this case study
our algorithm is faster, and provides more information.

The rest of the paper is structured as follows. We give preliminary defisitend facts in
Section 2. Sections 3 and 4 present our algorithms for solving Problerasd1(?), and report on
their performance on some case studies. Section 5 contains our conclUsierfall version of the
paper, including all proofs, can be found in [4].

2. Preliminaries

Vectors and matricedVe use bold letters for designating (column) vectors, e.g.R"™. We write

5 with s € R for the vector(s,...,s)’ € R™ (where ' indicates transpose), if the dimensian

is clear from the context. Theth component ofr € R™ will be denoted by;. We writex =y
(resp.x < y resp.x < y)if x; = y; (resp.x; < y; resp.x; < y;) holds for alli € {1,...,n}.

By x < y we meanx < y andx # y. By R"*" we denote the set of real matrices withrows
andn columns. We writeld for the identity matrix. For a square matri, we denote by (A)

the spectral radiusof A4, i.e., the maximum of the absolute values of the eigenvalues. A matrix is
nonnegativef all its entries are nonnegative. A nonnegative mattix R™*" isirreducibleif for
everyk,l € {1,...,n} there exists an € N so that(A%);; # 0.

Probabilistic Systems of Polynomial&/e investigate equation systems of the form

X1=hHX, 0 X)) 0 X = (X X0,
where thef; are polynomials in the variableX, ..., X,, with positive real coefficients, and for
every polynomialf; the sum of its coefficients &t mostl. The vectorf := (f1,..., f,) ' is called

a probabilistic system of polynomia(®SP for short) and is identified with its induced function
f:R* - R™ If X1,...,X, are the formal variables of, we defineX := (Xi,...,X,)"
and Valf) := {X;,..., X, }. We assume thaf is represented as a list of polynomials, and each
polynomial is a list of its monomials. § C {X;, ..., X, }, thenfs denotes the result of removing
the polynomialf;(X1,...,X,) from f for everyz; ¢ S; further, givenx € R" andB € R"*",
we denote bk g andBgg the vector and the matrix obtained frotrand B by removing the entries
with indicesi such thatX; ¢ S. The coefficients are represented as fractions of positive integers.
Thesizeof f is the size of that representation. Tiegreeof f is the maximum of the degrees of
f1,-.., fn. PSPs of degree (resp.1 resp.>1) are calledconstant(resp.linear resp.superlineaj.
PSPsf where the degree of eaghis at least are calledpurely superlinear We write f’ for the
Jacobianof f, i.e., the matrix of first partial derivatives ¢f

Given a PSPf, a variableX; depends directlyn a variableX; if X; “occurs” in f;, more

formally if g){_j is not the constarfl. A variable X; dependsn X; if X; depends directly orX;

4 J. ESPARZA, A. GAISER, AND S. KIEFER

or there is a variable(;, such thatX; depends directly oX;, and X, depends onX;. We often
consider thestrongly connected componerfts SCCs for short) of the dependence relation. The
SCCs of a PSP can be computed in linear time using e.g. Tarjan’s algorithm. @i $€a PSPf
is constantresp.linear resp.superlinearresp.purely superlineaiif the PSP/ has the respective
property, wheref is obtained by restricting to the S-components and replacing all variables not
in S by the constant. A PSP is arscPSHf it is not constant and consists of only one SCC. Notice
that a PSP is an scPSP if and only jf’(1) is irreducible.

A fixed point of a PSP is a vectorx > 0 with f(x) = x. By Kleene’s theorem, there exists
a least fixed poinj:; of f, i.e., us < x holds for every fixed poink. Moreover, the sequence
0, £(0), f(£(0)),... converges tq:;. Vectorsx with x < f(x) (resp.x > f(x)) are calledpre-
fixed (resp.post-fixed points. Notice that the vectdris always a post-fixed point of a PSP due
to our assumption on the coefficients of a PSP. By Knaster-Tarski'sahggi; is the least post-
fixed point, so we always hawe< n; < 1. Itis easy to detect and remove all componenisth
(¢); = 0 by a simple round-robin method (see e.qg. [5]), which needs linear time in thefsjze
We therefore assume in the following that > 0.

3. An algorithm for consistency of PSPs

Recall that for applications like the neutron branching process it is driienow exactly
whetheru; = 1 holds. We say a PSP is consistentf ,; = 1; otherwise it isinconsistent
Similarly, we call a component consistent if(;.r); = 1. We present a new algorithm for the
consistency problem, i.e., the problem to check a PSP for consistency.

It was proved in [7] that consistency is checkable in polynomial time byataluto Linear
Programming (LP). We first observe that consistency of general &8Hse reduced to consistency
of scPSPs by computing the DAG of SCCs, and checking consistencywsse(-7]: Take any
bottom SCCS, and check the consistency §§. (Notice thatfs is either constant or an scPSP;
if constant,fs is consistent ifff¢ = 1, if an ScCPSP, we can check its consistency by assumption.)
If fs is inconsistent, then so ig, and we are done. Ifs is consistent, then we remove evefy
from f such that;; € S, replace all variables of in the remaining polynomials by the constdnt
and iterate (choose a new bottom SCC, etc.). Note that this algorithm pesasssh polynomial at
most once, as every variable belongs to exactly one SCC.

It remains to reduce the consistency problem for scPSPs to LP. Thetéipsis:

Proposition 3.1.[9, 7] An scPSPf is consistent iff(f/(1)) < 1 (i.e., iff the spectral radius of
the Jacobi matrixf’ evaluated at the vectdris at mostl).

The second step consists of observing that the mgtfik) of an scPSF is irreducible and non-
negative. Itis shown in [7] thai(A) < 1 holds for an irreducible and nonnegative mat#ixff the
system of inequalities
Ax>x+1,x>0 (3.1)

is infeasible. However, no strongly polynomial algorithm for LP is knowrd e are not aware
that (3.1) falls within any subclass solvable in strongly polynomial time [8].

We provide a very simple, strongly polynomial time algorithm to check whethg(1)) < 1
holds. We need some results from Perron-Frobenius theory (se8B.g. [

Lemma 3.2. Let A € R™*" be nonnegative and irreducible.

(1) p(A) is asimpleeigenvalue ofA.
(2) There exists an eigenvecter- 0 with p(A) as eigenvalue.

(3)
(4)

COMPUTING LEAST FIXED POINTS OF PROBABILISTIC SYSTEMS OF RONOMIALS 5

Every eigenvectov > 0 hasp(A) as eigenvalue.
Forall a, 8 € R\ {0} andv > 0: if av < Av < v, thena < p(A) < .

The following lemma is the key to the algorithm:

Lemma 3.3. Let A € R™*™ be nonnegative and irreducible.
(@) Assume there i € R™\ {0} such that{Id — A)v = 0. Thenp(A) < 1iff v = 0orv < 0.

(b)

Proof.

Assumev = 0 is the only solution of/d — A)v = 0. Then there exists a uniquec R"
such that(Id — A)x = 1, andp(A) < 1iff x > 1T and Ax < x.

(@) From(ld — A)v = 0 it follows Av = v. We see thawv is an eigenvector ofi with

(b)

eigenvaluel. Sop(A) > 1.

(«): As bothv and—v are eigenvectors oft with eigenvaluel, we can assume w.l.0.g.
thatv = 0. By Lemma 3.2(3)p(A) is the eigenvalue of, and sop(A) = 1.

(=): Sincep(A) < 1 andp(A) > 1, it follows thatp(A) = 1. By Lemma 3.2(1) and
(2), the eigenspace of the eigenvaluis one-dimensional and contains a vector 0. So

v = - x for somea € R, a # 0. If a > 0, we havev > 0, otherwisev < 0.

With the assumption and basic facts from linear algebra it follows(that- A) has full
rank and thereforé/d — A)x = 1 has a unique solutior. We still have to prove the second
part of the conjunction:

(«=): Follows directly from Lemma 3.2(4).

(=): Letp(A) < 1. Assume for a contradiction that A) = 1. Then, by Lemma 3.2(1),
the matrix A would have an eigenvectar # 0 with eigenvaluel, so (Id — A)v = 0,
contradicting the assumption. So we have, in fa¢d) < 1. By standard matrix facts
(see e.g. [3]), this implies thatld — A)~! = A* = Y 22, A exists, and so we have
x = (Id — A)71T = A*T > T. FurthermoreAx = > 0%, AT < Y2 A'T = x. "

In order to check whether(A) < 1, we first solve the systeiffd — A)v = 0 using Gaussian
elimination. If we find a vectov # 0 such tha{/d— A)v = 0, we apply Lemma 3.3(a). ¥ = 0is
the only solution of Id — A)v = 0, we solve(Id — A)v = 1 using Gaussian elimination again, and
apply Lemma 3.3(b). Since Gaussian elimination of a ratierdiimensional linear equation system
can be carried out in strongly polynomial time usii¢n?) arithmetic operations (see e.g. [8]), we

obtain:

Proposition 3.4. Given a nonnegative irreducible matrix € R™*", one can decide in strongly
polynomial time, using (n?) arithmetic operations, whethex(4) < 1.

Combining Propositions 3.1 and 3.4 directly yields an algorithm for checkingahsistency
of scPSPs. Extending it to multiple SCCs as above, we get:

Theorem 3.5. Let f(X1,...,X,) be a PSP. There is a strongly polynomial time algorithm that
usesO(n?) arithmetic operations and determines the consistengfy of

3.1. Case study: A family of “almost consistent” PSPs

In this section, we illustrate some issues faced by algorithms that solve thsteang problem.
Consider the following family:(™) of scPSPsyp > 2:

) —

(0.5X2+0.1X2+0.4, 0.01X2 + 0.5X, +0.49 , ... ,0.01X2_, +0.5X, +0.49) " .

6 J. ESPARZA, A. GAISER, AND S. KIEFER

n=25|n=100|n=200|n =400 | n =600 | n = 1000
Exact LP < 1sec 2 sec 8sec| 67 sec| 208 sec > 2h
Our algorithm| < 1 sec| < 1sec 1sec 4 sec| 10sec 29 sec

Table 1: Consistency checks fbf)-systems: Runtimes of different approaches.

It is not hard to show thai(™ (p) < p holds forp = (1 — 0.02",...,1 — 0.02>*~1)T, so we have
py < 1 by Proposition 4.4, i.e., the™ are inconsistent.

The tool PReMo [12] relies on Java’s floating-point arithmetic to computecxppations of
the least fixed point of a PSP. We invoked PReMo for computing approxsnoén,, ., for different
values ofn betweens and100. Due to its fixed precision, PReMo’s approximations fQg., are
> 1in all components if» > 7. This might lead to the wrong conclusion that” is consistent.

Recall that the consistency problem can be solved by checking theifidasiithe system (3.1)
with A = f/(1). We checked it with Ipsolve, a well-known LP tool using hardware floating-point
arithmetic. The tool wrongly states that (3.1) has no solutiorf&t-systems with: > 10. This is
due to the fact that the solutions cannot be represented adequatelynasihime number precisidn.
Finally, we also checked feasibility with Maple’s Simplex package, which esast arithmetic, and
compared its performance with the implementation, also in Maple, of our corsistyorithm. Ta-
ble 1 shows the results. Our algorithm clearly outperforms the LP appréacimore experiments
see Section 4.3.

4. Approximating i, with inexact arithmetic

Itis shown in [7] tha.; may not be representable by roots, so one can only approxjmata
this section we present an algorithm that computes two sequeib&s); and (ub(?);, such that
1b® < up < ub® andlim; ., ub® —1b® = 0. In words:1b(® andub® are lower and upper
bounds ory, respectively, and the sequences converge;toMoreover, they converge linearly,
meaning that theumber of accurate bitsf Ib(*) andub(® are linear functions of. (The number of
accurate bits of a vector is defined as the greatest numbesuch that(u; — x);|/|(ks);| < 27F
holds for allj € {1,...,n}.) These properties are guaranteed even though our algorithm uses
inexact arithmetic: Our algorithm detects numerical problems due to rounding erecovers from
them, and increases the precision of the arithmetic as needed. Incre@sprgdision dynamically
is, €.9., supported by the GMP library [1].

Let us make precise what we mean by increasing the precision. Congigégraentary op-
erationg, like multiplication, subtraction, etc., that operates on two input numbexsdy. We
cancomputeg(x, y) with increasing precisiorif there is a procedure that on inputy outputs a
sequencg/) (z,y), 9@ (z,y),... that converges tg(z,y). Note that there are no requirements
on the convergence speed of this procedure — in particular, we daeqoire that there is ah
with ¢ (z,y) = g(z,y). This procedure, which we assume exists, allows to implerfieating
assignmentsf the form

z e~ g(z,y) such that¢(z)

with the following semanticsz is assigned the valug® (z,y), wherei > 1 is the smallest index
such thatp(¢?) (, y)) holds. We say that the assignmentagid if ¢(g(z,)) holds and involves

2The mentioned problems of PReMo andsiplve are not due to the fact that the coefficients:6P cannot be
properly represented using basis 2: The problems persist if onecesplae coefficients o™ by similar numbers
exactly representable by machine numbers.

COMPUTING LEAST FIXED POINTS OF PROBABILISTIC SYSTEMS OF RONOMIALS 7

only continuous functions and strict inequalities. Our assumption on the atithguarantees that
(the computation underlying) a valid floating assignment terminates. As “dim&amar”’, more
complex operations (e.g., linear equation solving) are also allowed in floasigrenents, because
they can be decomposed into elementary operations.

We feel that any implementation of arbitrary precision arithmetic should satisfyegjuire-
ment that the computed values converge to the exact result. For instaaadbmentation of
the GMP library [1] states: “Each function is defined to calculate with ‘infinrecfsion’ followed
by a truncation to the destination precision, but of course the work dondyisanat’'s needed to
determine a result under that definition.”

To approximate the least fixed point of a PSP, we first transform it intotainenormal form. A
purely superlinear PSP is calledperfectly superlineaif every variable depends directly on itself
and every superlinear SCC is purely superlinear. The following piopostates that any PSP
can be made perfectly superlinear.

Proposition 4.1. Let f be a PSP~of size. We can compute in tim@(n - s) a perfectly superlinear
PSP f with Var(f) = Var(f) U{X} of sizeO(n - 5) such thatuy = (1 f)var(y)-

4.1. The algorithm

The algorithm receives as input a perfectly superlinear P&Rd an error bound > 0, and
returns vectordb, ub such thatlb < py < ub andub —1b < € A first initialization step
requires to compute a vectarwith 0 < x < f(x), i.e., a “strict” pre-fixed point. This is done in
Section 4.1.1. The algorithm itself is described in Section 4.1.2.

4.1.1. Computing a strict pre-fixed poinflgorithm 1 computes a strict pre-fixed point:

Algorithm 1: Procedureonput eStri ct Prefi x

Input: perfectly superlinear PSP

Output: x with0 < x < f(x) < 1

x «— 0;

while 0 4 x do
Z —{i|1<i<n,fi(x)=0}
P—{i|l1<i<n,fi(x)>0}
Yz < 0;
yp «~ fp(x)such thatd < yp < fp(y) < 1;
XY,

Proposition 4.2. Algorithm 1 is correct and terminates after at masiterations.

The reader may wonder why Algorithm 1 uses a floating assigngnent- f»(x), given that
it must also perform exact comparisons to obtain the Sedd P and to decide exactly whether
yp < fp(y) holds in thesuch that clause of the floating assignment. The reason is that, while we
perform such operations exactly, we do not want to usedabaltof exact computations as input for
other computations, as this easily leads to an explosion in the required pmedisioinstance, the
size of the exact result gfp(y) may be larger than the size pf while an approximation of smaller
size may already satisfy ttgeich thatclause. In order to emphasize this, meverstore the result
of an exact numerical computation in a variable.

8 J. ESPARZA, A. GAISER, AND S. KIEFER

4.1.2. Computing lower and upper bound#lgorithm 1 uses Kleene iteratidn f(0), f(f(0)),. ..

to compute a strict pre-fixed point. One could, in principle, use the samengdimecompute lower
bounds ofu, as this sequence convergeg:itofrom below by Kleene’s theorem. However, conver-
gence of Kleene iteration is generally slow. It is shown in [7] that forltlitmensional PSF with
f(X) =0.5X2+0.5 we haveu; = 1, and thei-th Kleene approximant(¥) satisfiess® <1 — 1.
Hence, Kleene iteration may converge only logarithmically, i.e., the numbercofa@e bits is a
logarithmic function of the number of iterations.

In [7] it was suggested to use Newton’s method for faster convergdncerder to see how
Newton’s method can be used, observe that instead of computirane can equivalently compute
the least nonnegative zero ¢fX) — X. Given an approximant of ;¢, Newton's method first
computeg; ™) (X), the first-order linearization of at the pointx:

g¥(X) = f(x) + ['(x)(X —x)
The next Newton approximastis obtained by solvingd = ¢®)(X), i.e.,

y=x+Id— f'(x)"(f(x) —x).
We write N¢(x) = x + (Id — f'(x))"(f(x) — x), and usually drop the subscript &f;. If
v(0 < py is any pre-fixed point off, for instancev(¥) = 0, we can define &lewton sequence
(v®); by settingy(+1) = /(™) fori > 0. It has been shown in [7, 10, 5] that Newton sequences
converge at least linearly fo;. Moreover, we have < v < f(v®) <y, for all 4.

These facts were shown only for Newton sequences that are compuatettiyeke., without
rounding errors. Unfortunately, Newton approximants are hard to ctamgxactly: Since each
iteration requires to solve a linear equation system whose coefficientadlepehe results of the
previous iteration, the size of the Newton approximants easily explodesiefohe we wish to
use inexact arithmetic, but without losing the good properties of Newton'saddtiliable lower
bounds, linear convergence).

Algorithm 2 accomplishes these goals, and additionally computes post-fixets pb of f,
which are upper bounds op;. Let us describe the algorithm in some detail. The lower
bounds are stored in the variadle. The first value oflb is not simply0, but is computed by
conput eStri ct Prefi x(f), inorder to guarantee the validity of the following floating assign-
ments. We use Newton’s method for improving the lower bounds becausesgrges fast (at least
linearly) when performed exactly. In each iteration of the algorithag Newton steps are per-
formed using inexact arithmetic. The intention is that two inexact Newton stepddsimprove the
lower bound at least as much as one exact Newton step. While this may l#@iadsague hope
for small rounding errors, it can be rigorously proved thanks tcstiah that clause of the floating
assignment in line 4. The proof involves two steps. The first step is to phaté/ (N (b)) is a
(strict) post-fixed point of the functiop(X) = f(1b) + f/(1b)(X — 1b), i.e., N (N (Ib)) satisfies
the first inequality in thesuch that clause. For the second step, recall thalib) is the least fixed
point of g. By Knaster-Tarski’'s theorery/ (1b) is actually the least post-fixed point gf So, our
valuex, the inexact version o' (N (1b)), satisfiesx > N(Ib), and hence two inexact Newton
steps are in fact at least as “fast” as one exact Newton step. Thub, teaverge linearly tq.;.

The upper boundab are post-fixed points, i.ef,(ub) < ub is an invariant of the algorithm.
The algorithm computes the setsand P so that inexact arithmetic is only applied to the compo-
nentsi with f;(ub) < 1. In the P-components, the functiofiis applied toub in order to improve
the upper bound. In fact; is applied twice in line 9, analogously to applying twice in line 4.
Here, thesuch thatclause makes sure that the progress towards at least as fast as the progress
of one exact application of would be. One can show that this leads to linear convergengg.to

COMPUTING LEAST FIXED POINTS OF PROBABILISTIC SYSTEMS OF RONOMIALS 9

Algor

ithm 2 : Procedureal cBounds

Input: perfectly superlinear PSP, error bound: > 0
Output: vectorslb, ub such thalb < ;i <ubandub —1b <€
1 1b <« computeStrictPrefix(f);

2 ub
3 whi
4

© 0 N o O

11
12

13

14

<—T;

leub —1b £ €do

x «~ N (N (b)) such that f(1b) + f'(Ib)(x — Ib) < x < f(x) < 1;

Ib — x;
Z —{i|1<i<n,fi(ub)=1};
P—{i|1<i<n,fi(ub) <1};
yz < 1,

yp <~ fp(f(ub)) suchthat fp(y) < yp < fr(ub);

forall superlinear SCCS of f with ys =1 do

t «— 1 —lbg;
if f{g(1)t > tthen B
miﬂies(fés(l)t

Vs Ml—min{l,

ub «—y;

_ t)z’ o
— -t h that 1;
2 - max;es(fs(2)) } such that fs(y) < ys <

The rest of the algorithm (lines 10-13) deals with the problem that, givessgfixedub, the
sequencaib, f(ub), f(f(ub)),... does not necessarily convergestp. For instance, iff (X) =

0.75X2 + 0.25, thenpuy = 1/3, butl = f(1) = f(f(1)) = ---

. Therefore, the if-statement

of Algorithm 2 allows to improve the upper bound fromto a post-fixed point less than by
exploiting the lower boundib. This is illustrated in Figure 1 for 8-dimensional scPSFP. The

./‘
./
14)_/
= (1,1)
‘/
0,8 R
- /‘/‘
P
X, 064 .- - &
| |
0,4-
|
0,2 0,2
O. I. T T T T 1 O I. T T T T 1
0 0,2 0,4 0,6 0,8 1 1,2 0 0,2 0,4 0,6 0,8 1 1,2
X, X
— 2 — 2
----- X =08X X, +02—-— X,=04X + 01X, + 0.5| | X, =08X,X) +02 ==X, =04X; + 01X, +05
(@) (b)

Figure 1: Computation of a post-fixed point less than

10 J. ESPARZA, A. GAISER, AND S. KIEFER

dotted lines indicate the curve of the poifs;, X7) satisfyingX; = 0.8X; X5 + 0.2 and X, =
0.4X7 4+ 0.1X2 + 0.5. Notice thatuy < T = f(I). In Figure 1 (a) the shaded area consists of
those pointdb where f’(1)(1 — Ib) = 1 — 1b holds, i.e., the condition of line 12. One can show
that .y must lie in the shaded area, so by continuity, any sequence converging ito particular

the sequence of lower bountls, finally reaches the shaded area. In Figure 1 (a) this is indicated
by the points with the square shape. Figure 1 (b) shows how to exploitasspoimtlb to compute

a post-fixed pointub < 1 (post-fixed points are shaded in Figure 1 (b)): The post-fixed pdint
(diamond shape) is obtained by startind @&nd moving a little bit along the straight line between
1 andlb, cf. line 13. The sequenagb, f(ub), f(f(ub)),... now converges linearly to;.

Theorem 4.3. Algorithm 2 terminates and computes vectlissub such thaflb < .y < ub and
ub — Ib < €. Moreover, the sequences of lower and upper bounds computed higtirithm both
converge linearly tQu .

Notice that Theorem 4.3 is about the convergence speed of the appnigjmat about the time
needed to compute them. To analyse the computation time, one would need rstegugiements
on how floating assignments are performed.

The lower and upper bounds computed by Algorithm 2 have a speciardeatiey satisfy
Ib < f(Ib) andub > f(ub). The following proposition guarantees that such points are in fact
lower and upper bounds.

Proposition 4.4. Let f be a perfectly superlinear PSP. Let< x < 1. If x < f(x), thenx < p;.
If x > f(x), thenx > py.

So a user of Algorithm 2 can immediately verify that the computed bounds amctofo summa-
rize, Algorithm 2 computes provably and even verifiably correct lowergper bounds, although
exact computation is restricted to detecting numerical problems. See Section &®@eriments.

4.2. Proving consistency using the inexact algorithm

In Section 3 we presented a simple and efficient algorithm to check the wtsiof a PSP.
Algorithm 2 is aimed at approximating;, but note that it can also prove the inconsistency of a
PSP: when the algorithm setsh; < 1, we know(us); < 1. This raises the question whether
Algorithm 2 can also be used for proving consistency. The answer jsayekthe procedure is
based on the following proposition.

Proposition 4.5. Let f be an scPSP. Lat- 0 be a vector withf’(1)t < t. Thenf is consistent.

Proposition 4.5 can be used to identify consistent components.
Use Algorithm 2 with some (smalfto computeub andlb. Take any bottom SCG.
e If f/(1)(1 —lbg) < 1 — lbg, mark all variables inS as consistent and remove tlhe
components fronf. In the remaining components, replace all variableS imith 1.
e Otherwise, remové and all other variables that depend $ifrom f.
Repeat with the new bottom SCC until all SCCs are processed.
There is no guarantee that this method detectswaith (1), = 1.

COMPUTING LEAST FIXED POINTS OF PROBABILISTIC SYSTEMS OF RONOMIALS 11

D 2 3 6 10
n 20 50 100, 20 50 100] 20 50 100, 20 50 100
inconsistent (yes/no) n n ni vy y y y y y y y y

Cons. check (Alg. Sec.)< 1 <1 21<1 <1 21<1 <1 21<1 <1 2
Cons. check (exactLP) | <1 20 258| <1 22 124{<1 16 168/ <1 37 222
Approx.Qp (e=107%) | <1 <1 4 2 8 32| 1 5 21| 1 4 17
Approx.Qp (e=10"%) | <1 <1 4 2 8 34| 2 7 28] 1 6 23

Table 2: Runtime in seconds of various algorithms on different valués afidn.

4.3. Case study: A neutron branching process

One of the main applications of the theory of branching processes is thdlimpadé cascade
creation of particles in physics. We study a problem described by Harf@§.ilConsider a ball of
fissionable radioactive material of radills Spontaneous fission of an atom can liberate a neutron,
whose collision with another atom can produce further neutrons etd i§ very small, most
neutrons leave the ball without colliding. Ip is very large, then nearly all neutrons eventually
collide, and the probability that the neutron’s progeny never dies is lArgell-known result shows
that, loosely speaking, the population of a process that does not gotextimes exponentially over
time with large probability. Therefore, the neutron’s progeny never dyitgotually means that
after a (very) short time all the material is fissioned, which amounts to a muekgtosion. The
task is to compute the largest valuedffor which the probability of extinction of a neutron born
at the centre of the ball is still (if the probability is1 at the centre, then it is everywhere). This
is often called the critical radius. Notice that, since the number of atoms thatgmdpontaneous
fission is large (some hundreds per second for the critical radius o, if the probability of
extinction lies only slightly below 1, there is already a large probability of a clesintion. Assume
that a neutron born at distangdrom the centre leaves the ball without colliding with probability
[(€), and collides with an atom at distangdrom the centre with probability densiti (¢, n). Let
further f(z) = Zpopixi, wherep; is the probability that a collision generateseutrons. For a
neutron’s progeny to go extinct, the neutron must either leave the ball witldiding, or collide
at some distancefrom the centre, but in such a way that the progeny of all generatdtnsigoes
extinct. So the extinction probability , (£) of a neutron born at distangefrom the centre is given
by [9], p. 86:

D
Qp(€) = 1(6) + /0 R(&n) F(Qp(n)) dn

Harris takesf (x) = 0.025 + 0.830z + 0.07z2 + 0.0523 + 0.025x*, and gives expressions for both
[(¢) andR(&,n). By discretizing the intervald, D] into n segments and replacing the integral by
a finite sum we obtain a PSP of dimensiont 1 over the variable§Qp(;D/n) | 0 < j < n}.
Notice thatQ) p(0) is the probability that a neutron born in the centre does not cause aniexplos

ResultsFor our experiments we used three different discretizations 20, 50, 100. We applied
our consistency algorithm from Section 3 and Maple’s Simplex to check gist@mcy, i.e., to check
whether an explosion occurs. The results are given in the first 3 rioliedbée 2: Again our algorithm
dominates the LP approach, although the polynomials are much denser than if¥ taystems.

We also implemented Algorithm 2 using Maple for computing lower and upper dsoun
on @ p(0) with two different values of the error bound The runtime is given in the last two
rows. By setting theDigits variable in Maple we controlled the precision of Maple’s software
floating-point numbers for the floating assignments. In all cases startingtvdtbtandard value

12 J. ESPARZA, A. GAISER, AND S. KIEFER

of 10, Algorithm 2 increase®igits at most twice bys, resulting in a maximabDigits value of20.
We mention that Algorithm 2 computed an upper bound, and thus proved inconsistency, after
the first few iterations in all investigated cases, almost as fast as the afgdritin Section 3.

Computing approximations for the critical radiuafter computing@ p(0) for various values oD
one can suspect that the critical radius, i.e., the smallest valde fof which Qp(0) = 1, lies
somewhere between 2.7 and 3. We combined binary search with the cotysiskgorithm from
Section 3 to determine the critical radius up to an errdr.0f. During the binary search, the algo-
rithm from Section 3 has to analyze PSPs that come closer and closer togh@fén)consistency.
For the last (and most expensive) binary search step that decteageterval ta).01, our algorithm
took <1, 1, 3, 8 seconds forn = 20, 50, 100, 150, respectively. For, = 150, we found the critical
radius to be in the interva®.981, 2.991]. Harris [9] estimate&.9.

5. Conclusions

We have presented a new, simple, and efficient algorithm for checkirmptiséstency of PSPs,
which outperforms the previously existing LP-based method. We have etswibled the first al-
gorithm that computes reliable lower and upper bounds anThe sequence of bounds converges
linearly to ;. To achieve these properties without sacrificing efficiency, we use@ nombina-
tion of exact and inexact (floating-point) arithmetic. Experiments on P®Rsdpncrete branching
processes confirm the practicality of our approach. The results r@spigstion whether our com-
bination of exact and inexact arithmetic could be transferred to other datigmal problems.

AcknowledgmentsWe thank several anonymous referees for pointing out inaccurauigsedping
us clarify certain aspects of the paper. The second author was segpgithe DFG Graduiertenkol-
leg 1480 (PUMA). We also thank Andreas Reuss for proofreading tmeisaaipt.

References

[1] GMP library. http://gmplib.org.
[2] K. B. Athreya and P. E. NeyBranching ProcessesSpringer, 1972.
[3] A.Berman and R. J. Plemmon¥onnegative Matrices in the Mathematical Scien&AM, 1994.
[4] J. Esparza, A. Gaiser, and S. Kiefer. Computing least fixed pofmigeobabilistic systems of polynomials. Technical
report, Technische Univerait Miinchen, Instituttir Informatik, 2009.
[5] J. Esparza, S. Kiefer, and M. Luttenberger. Convergencshioids of Newton’s method for monotone polynomial
equations. IrfProceedings of STACBages 289-300, 2008.
[6] J. Esparza, A. Kbera, and R. Mayr. Model checking probabilistic pushdown automatddS 2004 pages 12—-21.
IEEE Computer Society, 2004.
[7] K. Etessami and M. Yannakakis. Recursive Markov chains hstsiic grammars, and monotone systems of nonlin-
ear equationslournal of the ACM56(1):1-66, 2009.
[8] M. Grotschel, L. Lowasz, and A. SchrijveGeometric Algorithms and Combinatorial Optimizati@pringer, 1993.
[9] T. E. Harris.The theory of branching process&pringer, Berlin, 1963.
[10] S. Kiefer, M. Luttenberger, and J. Esparza. On the converyeh Newton’s method for monotone systems of
polynomial equations. IRroceedings of STQ@®ages 217-226. ACM, 2007.
[11] C. D. Manning and H. SchuetzBoundations of Statistical Natural Language ProcessM§T Press, June 1999.
[12] D. Wojtczak and K. Etessami. PReMo: an analyzer for probabilistansive models. ITACAS volume 4424 of
Lecture Notes in Computer Scienpages 66—71. Springer, 2007.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visitht t p: / / creat i veconmons. or g/ | i censes/ by- nd/ 3. 0/.

