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Abstract. Fixed point equations x = f(x) over ω-continuous semirings
can be seen as the mathematical foundation of interprocedural program
analysis. The sequence 0, f(0), f2(0), . . . converges to the least fixed point
μf . The convergence can be accelerated if the underlying semiring is com-
mutative. We show that accelerations in the literature, namely Newton’s
method for the arithmetic semiring [4] and an acceleration for commu-
tative Kleene algebras due to Hopkins and Kozen [5], are instances of a
general algorithm for arbitrary commutative ω-continuous semirings. In
a second contribution, we improve the O(3n) bound of [5] and show that
their acceleration reaches μf after n iterations, where n is the number
of equations. Finally, we apply the Hopkins-Kozen acceleration to itself
and study the resulting hierarchy of increasingly fast accelerations.

1 Introduction

Interprocedural program analysis is the art of extracting information about the
executions of a procedural program without executing it, and fixed point equa-
tions over ω-continuous semirings can be seen as its mathematical foundation.
A program can be mapped (in a syntax-driven way) to a system of fixed point
equations over an abstract semiring containing one equation for each program
point. Depending on the information on the program one wants to compute, the
carrier and the abstract semiring operations can be instantiated so that the de-
sired information is the least solution of the system. To illustrate this, consider
a (very abstractly defined) program consisting of one single procedure X . This
procedure can either do an action a and terminate, or do an action b and call
itself twice. Schematically:

X
a−→ ε X

b−→ XX

The abstract equation corresponding to this program is

x = ra + rb · x · x (1)

where + and · are the abstract semiring operations. In order to compute the
language L(X) of terminating executions of the program, we instantiate the
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semiring as follows: The carrier is 2{a,b}∗
(the set of languages over the alphabet

{a, b}), ra = {a}, rb = {b}, + is set union, and · is language concatenation. It is
easy to prove that L(X) is the least solution of (1) under this interpretation. But
we can also be interested in other questions. We may wish to compute the Parikh
image of L(X), i.e., the set of vectors (na, nb) ∈ N

2 such that some terminating
execution of the program does exactly na a’s and nb b’s, respectively. For this,
we take 2N

2
as carrier, ra = {(1, 0)}, rb = {(0, 1)}, define + as set union and

· by X · Y = {(xa + ya, xb + yb) | (xa, xb) ∈ X, (ya, yb) ∈ Y }. We may also be
interested in quantitative questions. For instance, assume that the program X
executes a with probability p and b with probability (1−p). The probability that
X eventually terminates is the least solution of (1) interpreted over R

+ ∪{0, ∞}
with ra = p, rb = (1 − p), and the standard interpretation of + and · (see for
instance [3,4]). If instead of the probability of termination we are interested in
the probability of the most likely execution, we just have to reinterpret + as the
max operator.

The semirings corresponding to all these interpretations share a property
called ω-continuity [7]. This property allows to apply the Kleene fixed point
theorem and to prove that the least solution of a system of equations x = f(x)
is the supremum of the sequence 0, f(0), f2(0), . . ., where 0 is the vector whose
components are all equal to the neutral element of +. If the carrier of the semir-
ing is finite, this yields a procedure to compute the solution. However, if the
carrier is infinite, the procedure rarely terminates, and its convergence can be
very slow. For instance, the approximations to L(X) are all finite sets of words,
while L(X) is infinite. Another example is the probability case with p = 1/2; the
least fixed point (the least solution of x = 1/2x2 +1/2) is 1, but fk(0) ≤ 1− 1

k+1
for every k ≥ 0, which means that the Kleene scheme needs 2i iterations to
approximate the solution within i bits of precision1.

Due to the slow convergence of (fk(0))k≥0, it is natural to look for “accelera-
tions”. Loosely speaking, an acceleration is a procedure of low complexity that
on input f yields a function g having the same least fixed point μf as f , but
such that (gk(0))k≥0 converges faster to μf than (fk(0))k≥0. In [5], Hopkins and
Kozen present a very elegant acceleration—although they do not use this term—
that works for every commutative and idempotent ω-continuous semiring2, i.e.,
for every ω-continuous semiring in which · is commutative and + is idempotent
(this is the case for both the Parikh image and the probability of the most likley
computation). They prove that, remarkably, the acceleration is guaranteed to
terminate. More precisely, they show that the fixed point is always reached after
at most O(3n) iterations, where n is the number of equations.

In this paper we further investigate the Hopkins-Kozen acceleration. In the
first part of the paper we show that, in a certain formal sense, this acceleration
was already discovered by Newton more than 300 years ago. In the arithmetic
semiring, where the carrier is R

+ ∪ {0, ∞} and + and · have their usual mean-

1 This example is adapted from [4].
2 Actually, in [5] the result is proved for commutative Kleene algebras, an algebraic

structure more general than our semirings (cf. Section 4.1).
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ings, one can compute the least solution of x = f(x) as a zero of f(x) − x. Due
to this connection, Newton’s numerical method for approximating the zeros of a
differentiable function (see [8]) can also be seen as an acceleration for the arith-
metic case, which has been been studied by Etessami and Yannakakis [4] in a
different context. Here we show that the Hopkins-Kozen acceleration and New-
ton’s are two particular instances of an acceleration for equations over arbitrary
commutative ω-continuous semirings [7] and, in this sense, “the same thing”.

In a second contribution, we improve the O(3n) bound of [5] and show that
the acceleration is actually much faster: the fixed point is already reached after
n iterations. Finally, in a third contribution we investigate the possibility of
“accelerating the acceleration”. We study a hierarchy {Hi}i≥1 of increasingly
faster accelerations, with H1 as the Hopkins-Kozen acceleration, and show that
k iterations of the i-th acceleration can already be matched by ki iterations of
the basic acceleration.

In Section 2 we introduce commutative ω-continuous semirings following [7].
In Section 3 we introduce the Hopkins-Kozen acceleration and Newton’s method.
In Section 4 we present our generalisation and derive both the Hopkins-Kozen
acceleration and Newton’s method as particular cases. In Section 5 we prove
that the Hopkins-Kozen acceleration terminates after n steps. The hierarchy of
accelerations is studied in Section 6. Missing proofs can be found in a technical
report [2].

2 ω-Continuous Semirings

A semiring is a quintuple 〈A, +, ·, 0, 1〉 s.t.

(i) 〈A, +, 0〉 is a commutative monoid,
(ii) 〈A, ·, 1〉 is a monoid,
(iii) a · (b + c) = a · b + a · c and (a + b) · c = a · c + b · c for all a, b, c ∈ A,
(iv) 0 · a = a · 0 for all a ∈ A.

A semiring is

– commutative if a · b = b · a for all a, b ∈ A;
– idempotent if a + a = a for all a ∈ A;
– naturally ordered if the relation ≤ given by a ≤ b ⇔ ∃c ∈ A : a + c = b

is a partial order (this relation is always reflexive and transitive, but not
necessarily antisymmetric);

– complete if it is possible to define “infinite sums” as an extension of finite
sums, that are associative, commutative and distributive with respect to · as
are finite sums. The formal axioms are given in [7]. In complete semirings,
the unary ∗-operator is defined by a∗ =

∑
j≥0 aj . Notice that a∗ = 1 + aa∗;

– ω-continuous if it is naturally ordered, complete, and for all sequences (ai)i∈N

with ai ∈ A

sup

{
n∑

i=0

ai | n ∈ N

}

=
∑

i∈N

ai.
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Notation 1. We abbreviate commutative ω-continuous semiring to cc-semiring.

Remark 1. For our proofs the existence and ω-continuity of countable sums is
sufficient. While in the idempotent case there is the term of commutative closed
semirings for such structures (see [6]), it seems that there is no such term in the
non-idempotent case.

Examples of semirings include 〈N ∪ {0, ∞}, +, ·, 0, 1〉, 〈R+ ∪ {0, ∞}, +, ·, 0, 1〉,
〈N ∪ {0, ∞}, min, +, ∞, 0〉 and 〈2Σ∗

, ∪, ·, ∅, ε〉. They are all ω-continuous. The
last two have an idempotent +-operation (min resp. ∪), and all but the last one
are commutative.

2.1 Systems of Power Series

Let A be an ω-continuous semiring and let X = {x1, . . . , xn} be a set of variables.
We write x for the vector (x1, . . . , xn)�. For every i ∈ {1, . . . , n}, let fi(x) be a
(semiring) power series with coefficients in A, i.e., a countable sum of products
of elements of A ∪ X , and let f(x) = (f1(x), . . . , fn(x))�. We call x = f(x) a
system of power series over A. A vector x̄ ∈ An with f(x̄) = x̄ is called a solution
or a fixed point of f .

Given two vectors x̄, ȳ ∈ An, we write x̄ ≤ ȳ if x̄i ≤ ȳi (w.r.t. the natural
order of A) in every component. The least fixed point of f , denoted by μf , is the
fixed point x̄ with x̄ ≤ ȳ for every fixed point ȳ. It exists and can be computed
by the following theorem.

Theorem 1 (Kleene fixed point theorem, cf. [7]). Let x = f(x) be a
system of power series over an ω-continuous semiring. Then μf exists and
μf = supk∈N

fk(0).

3 Two Acceleration Schemes

Loosely speaking, an acceleration is a procedure that on input f yields a function
g having the same least fixed point μf as f , but converging “faster” to it, meaning
that fk(0) ≤ gk(0) for every k ≥ 0. In order to exclude trivial accelerations
like g(x) = μf , a formal definition should require the procedure to have low
complexity with respect to some reasonable complexity measure. Since such a
definition would take too much space and would not be relevant for our results,
we only use the term “acceleration” informally.

We describe two accelerations for different classes of cc-semirings. Both of
them are based on the notion of derivatives. Given a polynomial or a power
series f(x), its derivative ∂f

∂xi
with respect to the variable xi is defined as follows,

where a ∈ A and g, gj, h are polynomials or power series (see also [5]):

∂a

∂xi
=0

∂

∂xi
(g + h) =

∂g

∂xi
+

∂h

∂xi

∂

∂xi
(g · h)=

∂g

∂xi
· h + g · ∂h

∂xi

∂xj

∂xi
=

{
0 if i = j
1 if i = j

∂

∂xi

∑

j∈N

gj =
∑

j∈N

∂gj

∂xi
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The Jacobian of a vector f(x) is then the n×n-matrix f ′(x) given by f ′(x)ij =
∂fi

∂xj
.

3.1 The Hopkins-Kozen Acceleration

In [5] Hopkins and Kozen introduce an acceleration of the Kleene procedure for
idempotent cc-semirings and prove that it reaches the fixed point after finitely
many steps. Given a system of power series x = f(x), the Hopkins-Kozen se-
quence is defined by

κ(0) = f(0) and κ(k+1) = f ′(κ(k))∗ · κ(k).

Theorem 2 (Hopkins and Kozen [5]). Let x = f(x) be a system of power
series over an idempotent cc-semiring. There is a function N : N → N with
N(n) ∈ O(3n) s.t. κ(N(n)) = μf , where n is the number of variables of the
system.

Actually, [5] prove the theorem for commutative Kleene algebras, whose axioms
are weaker than those of idempotent cc-semirings. There is no notion of infinite
sums in the Kleene algebra axioms, especially the Kleene star operator ∗ and its
derivative are defined axiomatically.

Example 1. Let 〈2{a}∗
, +, ·, 0, 1〉 denote the cc-semiring 〈2{a}∗

, ∪, ·, ∅, {ε}〉. For
simplicity, we write ai instead of {ai}. Consider the equation system

x =
(

x1
x2

)

=
(

x2
2 + a
x2

1

)

= f(x) with f ′(x)∗ = (x1x2)∗
(

1 x2
x1 1

)

.

The Hopkins-Kozen acceleration reaches the least fixed point μf after two steps:

κ(0) = (a, 0)�, κ(1) = (a, a2)�, κ(2) = (a3)∗(a, a2)�.

It is easy to check that κ(2) is a fixed point of f . By Theorem 2 we have κ(2) = μf .

3.2 Newton’s Acceleration

Newton’s method for approximating the zeros of a differentiable real function
g(x) is one of the best known methods of numerical analysis. It computes the
sequence

x(0) = s and x(k+1) = x(k) − g′(x(k))−1 · g(x(k)).

starting at the seed s. Under certain conditions on g(x) and on the seed s (typ-
ically the seed must be “close enough” to the solution) the sequence converges
to a solution of the equation g(x) = 0.

In order to approximate a solution of an equation system x = f(x) over the
reals, we can apply Newton’s method to the function g(x) = f(x) − x, which
gives the sequence

x(0) = 0 and x(k+1) = x(k) + (1 − f ′(x(k)))−1(f(x(k)) − x(k)).
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4 An Acceleration for Arbitrary cc-Semirings

We show that the Hopkins-Kozen and Newton’s accelerations are two instances
of a general acceleration for arbitrary cc-semirings, which we call the cc-scheme.
The proof relies on lemmata from [5] and [4], which we reformulate and generalise
so that they hold for arbitrary cc-semirings.

The cc-scheme is given by:

ν(0) = 0 and ν(k+1) = ν(k) + f ′(ν(k))∗ · δ(ν(k)),

where δ(ν(k)) is any vector s.t. ν(k) + δ(ν(k)) = f(ν(k)).
The scheme leaves the choice of δ(ν(k)) free, but there is always at least one
δ(ν(k)) satisfying the condition (see Lemma 2 below).

The following theorem states that the cc-scheme accelerates the Kleene scheme
(fk(0))k∈N.

Theorem 3. Let x = f(x) be a system of power series over a cc-semiring.
Then the iterates ν(k) of the cc-scheme exist and satisfy fk(0) ≤ ν(k) ≤ μf for
all k ≥ 0.

The proof uses the following fundamental property of derivatives in cc-semirings:

Lemma 1 (Taylor’s Theorem, cf. [5]). Let f(x) and d be vectors of power
series over a cc-semiring. Then

f(x) + f ′(x) · d ≤ f(x + d) ≤ f(x) + f ′(x + d) · d.

The following lemma assures the existence of a suitable δ(ν(k)) for each k.

Lemma 2. Let ν(k) be the k-th iterate of the cc-scheme. For all k ≥ 0 :
f(ν(k)) ≥ ν(k). So, there is a δ(ν(k)) such that ν(k) + δ(ν(k)) = f(ν(k)).

What remains to show for Theorem 3 is fk(0) ≤ ν(k) ≤ μf (cf. [2]).
In the rest of the section we show that the Hopkins-Kozen acceleration and

Newton’s acceleration are special cases of the cc-scheme.

4.1 Idempotent cc-Semirings

If addition is idempotent, we have x ≤ y iff x + y = y, as x ≤ y implies that
there is a d with x+ d = y so that x+ y = x+(x+ d) = x+ d = y. By Lemma 2
we have ν(k) ≤ f(ν(k)). In the cc-scheme (see above) we therefore may choose
δ(ν(k)) = f(ν(k)). Moreover, since f ′(ν(k))∗ ≥ 1 by the definition of the Kleene
star and since ν(k) ≤ f(ν(k)) by Lemma 2 we get

ν(k) ≤ f(ν(k)) ≤ f ′(ν(k))∗ · f(ν(k))

and by idempotence

ν(k) + f ′(ν(k))∗ · f(ν(k)) = f ′(ν(k))∗ · f(ν(k)) .
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So the cc-scheme collapses in the idempotent case to

ν(0) = 0 and ν(k+1) = f ′(ν(k))∗ · f(ν(k)).

In other words, ν(k+1) results from ν(k) by applying the operator Nf (x) :=
f ′(x)∗ · f(x). Recall that the Hopkins-Kozen sequence is given by

κ(0) = f(0) and κ(k+1) = f ′(κ(k))∗ · κ(k).

So it is obtained by repeatedly applying the Hopkins-Kozen operator Hf (x) :=
f ′(x)∗ · x, starting from f(0). While the two sequences are not identical, the
following theorem shows that they are essentially the same.

Theorem 4.

1. For all k > 0 : κ(k−1) ≤ ν(k) ≤ κ(k).
2. For all k ≥ 0 : κ(k) = Hk

f (f(0)) = N k
f (f(0)).

4.2 The Semiring over the Nonnegative Reals

We now consider the cc-semiring 〈R+ ∪ {0, ∞}, +, ·, 0, 1〉. In order to instantiate
the cc-scheme, we have to choose δ(ν(k)) so that ν(k) + δ(ν(k)) = f(ν(k)) holds.
By Lemma 2 we have ν(k) ≤ f(ν(k)), and so we can take δ(ν(k)) = f(ν(k))−ν(k).
The cc-acceleration becomes

ν(0) = 0 and ν(k+1) = ν(k) + f ′(ν(k))∗ · (f(ν(k)) − ν(k)) .

It is easy to see that for any nonnegative real-valued square matrix A, if∑
k∈N

Ak = A∗ has only finite entries, then (1 − A)−1 exists and equals A∗.
If this is the case for A = f ′(ν(k))∗, then Newton’s method coincides with
the cc-acceleration for the reals and thus converges to μf . In [4] Etessami and
Yannakakis give sufficient conditions for f ′(ν(k))∗ = (1 − f ′(ν(k)))−1 when f is
derived from a recursive Markov chain.

5 Convergence Speed in Idempotent Semirings

In the first subsection we want to analyse how many steps the Newton iteration
or, equivalently, the Hopkins-Kozen iteration needs to reach μf when we consider
an idempotent cc-semiring 〈A, +, ·, 0, 1〉, i.e. we have the additional equation
1 + 1 = 1. In the subsequent subsection we then generalise the obtained results
to the setting of commutative Kleene algebras.

5.1 Idempotent cc-Semirings

In this subsection f again denotes a system of n power series in the variables
X = {x1, . . . , xn}, i.e. we have fi(x) =

∑
ι∈Nn c

(i)
ι xι, where xι denotes the

product xι1
1 · . . . · xιn

n and c
(i)
ι ∈ A for all ι ∈ N

n and 1 ≤ i ≤ n. We define the
concept of derivation trees of our system f as in formal language theory.
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Notation 2. In the following, if u is a node of a tree t, we identify u with the
subtree of t rooted at u. In particular, t is also used to denote t’s root. The
height h(t) of t is defined as usual, e.g. a tree consisting only of a single node
has height 0.

Definition 1. A partial derivation tree t of xi is a labelled tree satisfying:

– every node of t is labelled by either an element of A or an element of X ,
– its root is labelled by xi, and
– for each node u of t labeled by some variable xk the following holds: Let pu(x)

be the product of the labels of u’s children. Then pu is a summand of fk, i.e.
there exists a ι ∈ N

n with c
(k)
ι = 0 and c

(k)
ι xι = pu(x).

We call a partial derivation tree t a derivation tree if no leaf of t is labelled by
a variable. The yield Y (t) of a derivation tree t is the product of the labels of its
leaves.

As in the case of formal languages we have the following

Theorem 5.

1. The sum of yields of all derivation trees of xi with height ≤ h equals (fh(0))i.
2. The sum of yields of all derivation trees of xi equals (μf)i.

In the following we show that because of commutativity and idempotence already
a special class of derivation trees is sufficient to reach μf .

Definition 2 (cf. Fig. 5.1). The dimension dim(t) of a tree t is defined by:

1. A tree of height 0 or 1 has dimension 0.
2. Let t be a tree of height h(t) > 1 with children c1, c2, . . . , cs where dim(c1) ≥

dim(c2) ≥ . . . dim(cs). Let d1 = dim(c1). If s > 1, let d2 = dim(c2), other-
wise let d2 = 0. Then we define

dim(t) :=
{

d1 + 1 if d1 = d2
d1 if d1 > d2.

Note that for a derivation tree t we have h(t) > dim(t).

Definition 3. Let t be a derivation tree. We denote with V (t) the number of
distinct variables appearing as labels in t. We call t compact if dim(t) ≤ V (t).

In the following, we state two central lemmata that lead to the main result of this
section. Lemma 3 tells us that it is sufficient to consider only compact derivation
trees. Lemma 4 shows the connection between the dimension of a derivation tree
and the Hopkins-Kozen sequence.

Lemma 3. For each derivation tree t of xi there is a compact derivation tree t′

of xi with equal yield.
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T<k

T<k

T<k

Tk−1 Tk−1

(a) (b) (c)

Fig. 1. (a) shows the general structure of a tree of dimension k, where T<k (Tk−1)
represents any tree of dimension < k (= k − 1). (b) and (c) give some idea of the
topology of one-, resp. two-dimensional trees in general.

Lemma 4. Let t be a derivation tree of xi s.t. dim(t) ≤ k. Then Y (t) ≤ (κ(k))i.3

The proof of Lemma 3 bears some similarity to the proof of the pumping lemma
for context free languages. Let us call a partial derivation tree a pumping tree (p-
tree) if it has exactly one leaf which bears the same label as its root and all other
leaves are labelled by elements of A. Because of commutativity, reallocating such
a p-tree from one subtree of t to another one does not change t’s yield. We use a
reallocation procedure to inductively reduce the dimension of t’s subtrees, which
eventually results in decreasing the dimension of t itself.

Theorem 6. Let f : An → An be a system of power series over an idempotent
cc-semiring 〈A, +, ·, 0, 1〉. Then μf = κ(n).

Proof. First recall that by Theorem 3 (ν(k) ≤ μf) and Theorem 4 (κ(k−1) ≤
ν(k) ≤ κ(k)) we have κ(n) ≤ μf . Obviously, V (t) ≤ n for every derivation tree
t of xi. Lemma 3 allows to assume that t is compact, i.e. dim(t) ≤ V (t) ≤ n.
Lemma 4 thus implies Y (t) ≤ (κ(n))i. Therefore the sum of yields of derivation
trees of xi is less than or equal to (κ(n))i. But Theorem 5 tells us that this sum
is already (μf)i. Hence μf ≤ κ(n) ≤ μf . ��

Remark 2. The bound of this theorem is tight as can be shown by a general-
isation of Example 1: If f(x) = (x2

2 + a, x2
3, . . . , x

2
n, x2

1)
�, then (κ(k))1 = a for

k < n, but a2n ≤ (κ(n))1 = (μf)1.

5.2 Generalisation to Commutative Kleene Algebras

Notation 3. Let M be any set. Then RExpM denotes the set of regular expres-
sions generated by the elements of M . We write RM : RExpM → 2M∗

for their
canonical interpretation as languages.

3 In fact one can similarly show that (κ(k))i equals exactly the sum of yields of all
derivation trees of xi of dimension less than or equal to k.
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For this subsection, let f denote a system of n regular expressions fi ∈ RExpK∪X .
We are again interested in the least solution μf of x = f(x), but this time over
the commutative Kleene algebra 〈K, +, ·,∗ , 0, 1〉. A commutative Kleene algebra is
an idempotent commutative semiring 〈K, +, ·, 0, 1〉 where the ∗-operator is only
required to satisfy these two equations for all a, b, c ∈ K:

1 + aa∗ ≤ a∗ and a + bc ≤ c → b∗a ≤ c.

In [5] it is proved that μf can be computed by applying the Hopkins-Kozen
operator Hf to f(0) for a finite number of times. In addition, Hi

f (f(0)) ≤ μf for
all i ∈ N.

As in the setting of cc-semirings the Hopkins-Kozen operator is defined by
Hf (x) = f ′(x)∗x. For H to be well defined over Kleene algebras, one has to
define the partial derivatives ∂

∂xj
over RegK∪X . This is done in [5] just as in the

case of cc-semirings (see the beginning of Section 3), however the equation for
the

∑
-operator is replaced by the axiom ∂α∗

∂xj
= α∗ ∂α

∂xj
for α ∈ RExpK∪X .

We lift the result of the previous subsection to commutative Kleene algebras,
improving the O(3n) bound in [5]. More precisely we show that

f(Hn
f (f(0))) = Hn

f (f(0)). (2)

In order to prove (2) we appeal to Redko’s theorem [1] that essentially states
that an equation of terms over any commutative Kleene algebra holds if it holds
under the canonical commutative interpretation. See [2] for a technical justifica-
tion of this fact. Let Σ be the finite set of elements of K appearing in f . The
canonical commutative interpretation cΣ : RExpΣ → 2N

Σ

is then defined by
cΣ(α) = {#w | w ∈ RΣ(α)}, where #w is the Parikh-vector of w ∈ Σ∗, i.e.
a ∈ Σ appears exactly (#w)a-times in w. We omit the subscript of cΣ in the
following. The idempotent cc-semiring of sets of Parikh-vectors CΣ is defined by
CΣ = 〈2N

Σ

, ∪, +, ∅, {0}〉 with A + B = {a + b | a ∈ A, b ∈ B} for all A, B ⊆ N
Σ

and
∑

S =
⋃

S for all S ⊆ 2N
Σ

. By Redko’s theorem, we can prove (2) by
showing c(f(Hn

f (f(0)))) = c(Hn
f (f(0))) over CΣ.

For any function g : RExpΣ → RExpΣ , let gc denote the commutative inter-
pretation of g as a map over CΣ, i.e. c(g(α)) = gc(c(α)) for all α ∈ RExpΣ . In
particular c(α∗) =

⋃
i∈N

c(αi). Notice that this definition is consistent with the
axiomatic definition of derivatives of ∗-expressions, since

c(
∂

∂xi
(α∗))=c(α∗ ∂

∂xi
(α)) =

⋃

j∈N

c(αj)
∂

∂xi
(c(α)) =

∂

∂xi

⋃

j∈N

c(αj) =
∂

∂xi
(c(α∗)).

We then have (Hf )c = Hf c . Furthermore, by Theorem 6, Hn
f c(fc(∅)) solves the

equation system x = f c(x) over CΣ. Combined, we have

c(f(Hn
f (f(0))))= f c((Hn

f )c(f c(∅))) = f c(Hn
f c(fc(∅))) = Hn

f c(fc(∅)) = c(Hn
f (f(0))).

This proves the following theorem.

Theorem 7. Let f ∈ RExpn
K∪X define a system x = f(x) over a commutative

Kleene algebra 〈K, +, ·,∗ , 0, 1〉. Then μf = κ(n).
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6 A Hierarchy of Accelerations

In this section we apply the Hopkins-Kozen acceleration to itself. Let x = f(x) be
an equation system of degree-2-polynomials over a commutative Kleene algebra.
Any polynomial equation system (even with ∗-expressions) can be reduced to
this “Chomsky normal” form by introducing auxiliary variables.

Recall the Hopkins-Kozen operator Hf (x) = f ′(x)∗x. As shown in [5] and
in the previous section, the sequence Hi

f (f(0)) is “faster” than f i(f(0)) to the
extent that the fixed point iteration of Hf reaches μf in a finite number of
steps, whereas the fixed point iteration of f may not reach μf . We study in this
section how fast accelerations HHf , HHHf

, . . . are compared to Hf . We write H1

for Hf and Hi+1 for HHi = ( ∂
∂x (Hi(x)))∗x. In the following we mean Hf when

the subscript of H is omitted. Our hierarchy theorem states that using Hi once
amounts to using H i-times:

Theorem 8. For all i ≥ 1 : Hi(x) = Hi(x).

Combined with Theorem 6 we conclude that the least fixed point μf can be
computed by (a) iteratively applying H to f(0) (n times) or (b) computing the
operator Hn and applying it to f(0) once or (c) computing the operator Hn and
applying it to f(0) once. A discussion which method is most appropriate depends
on the the particular applications and is beyond the scope of this paper.

Example 2. We continue Example 1 where we have shown that H2(f(0)) = μf .
Now we illustrate Theorem 8 by showing that H2(f(0)) = μf . We have

H(x) = f ′(x)∗x = (x1x2)∗
(

x1 + x2
2

x2
1 + x2

)

,

H′(x) = (x1x2)∗
(

1 + x3
2 x2

1 + x2
x2

2 + x1 1 + x3
1

)

,

H′(f(0)) =
(

1 a2

a 1 + a3

)

and H′(f(0))∗ = (a3)∗
(

1 a2

a 1

)

.

So H2(f(0)) = H′(f(0))∗f(0) = (a3)∗
(

a
a2

)

= μf .

7 Conclusions

We have studied the Hopkins-Kozen acceleration scheme for solving fixed point
equations x = f(x) over commutative Kleene algebras [5]. We have shown that,
maybe surprisingly, the scheme is tightly related to Newton’s method for approx-
imating a zero of a differentiable real function. Loosely speaking, the scheme is
the result of generalising Newton’s method to commutative ω-continuous semi-
rings in a very straightforward way, and then instantiating this generalisation to
the case in which addition is idempotent. In the proof we very much profit from
a result by Etessami and Yannakakis on using Newton’s method to solve fixed
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point equations derived from recursive Markov chains [4]. At the same time,
our result extends Etessami and Yannakakis’ result to arbitrary commutative
ω-continuous semirings, a much more general algebraic setting.

We have also proved that the Hopkins-Kozen scheme terminates after n iter-
ations for a system of n equations, improving on the O(3n) bound of [5]. As in
[5], our bound holds for arbitrary commutative Kleene algebras.

Finally, we have studied the result of applying the scheme to itself, leading
to a sequence of faster and faster accelerations. The Hopkins-Kozen scheme can
be “arbitrarily faster” than the basis scheme derived from Kleene’s theorem
(the scheme computing (fk(0))k≥0) because it is guaranteed to terminate, while
Kleene’s scheme is not. We have shown that, on the contrary, the reduction in
the number of iterations achieved by subsequent accelerations is very moderate:
one iteration of the scheme obtained by applying k times the acceleration to
itself is already matched by k iterations of the Hopkins-Kozen scheme.

Our work can be extended in several directions. Our proof of the new bound
relies on formal languages concepts, and is therefore very non-algebraic. We
intend to search for an algebraic proof. We also plan to investigate accelerations
for the non-commutative case.
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