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Abstract. I briefly review the history of the unfolding approach to
model checking.

Carl Adam Petri passed away on July 2, 2010. I learnt about his death
three days later, a few hours after finishing this text. He was a very
profound and highly original thinker, and will be sadly missed. This note
is dedicated to his memory.

In some papers and talks, Moshe Vardi has described the history of the automata-
theoretic approach to model checking, the verification technique that inspired the
SPIN model checker and other tools. He traces it back to the work of theoreticians
like Büchi, Prior, Trakhtenbrot and others, whose motivations were surprisingly
far away from the applications that their ideas found down the line. Inspired by
this work, in this note I briefly present the origins of the unfolding approach to
model checking [21], a branch of the automata-theoretic approach that alleviates
the state-explosion problem caused by concurrency.

Since the unfolding approach is based on the theory of true concurrency,
describing its origins requires to speak about the origin of true concurrency
itself. However, here I only touch upon those aspects of the theory that directly
inspired the unfolding approach. This leaves many important works out, and so
this is a very partial and “false” history of true concurrency.

The theory of true concurrency starts with two fundamental contributions by
Carl Adam Petri, described in detail by Brauer and Reisig in an excellent article
[11]. Both were a result of Petri’s interest in analyzing the connection between
mathematical, abstract computing machines, and their physical realizations. In
his dissertation “Kommunikation mit Automaten”, defended in 1962, Petri ob-
serves that the performance of a physically implemented Turing machine will
degrade over time if the machine uses more and more storage space, because
in this case signals have to travel longer and longer distances over longer and
longer wires. To solve this problem he proposes an asynchronous architecture in
which the storage space can be extended while the machine continues to operate.
In the dissertation this abstract machine is described with the help of several
semi-formal representations, but three years later Petri has already distilled the
first mathematical formalism for asynchronous computation, and, arguably, the
beginning of concurrency theory: Petri nets.



Petri’s second contribution is an analysis of the notion of execution of a
machine as a sequence of global states, or as a sequence of events ordered by
their occurrence times with respect to some global clock. He observes that global
states or global clocks are again a mathematical construct that cannot be “im-
plemented”: since information can only travel at finite speed, no part of a system
can know the state of all its components at a certain moment in time.1 He pro-
poses to replace executions by nonsequential processes, sets of events ordered
not by the time at which they occur, but by the causality relation, which is in-
dependent of the observer. The theory of nonsequential processes, subsequently
developed by Goltz, Reisig, Best, Devillers, and Fernández, among others [26, 8,
9], distinguishes a system that concurrently executes two events a and b (usually
denoted by a ‖ b in process algebra) from a system that chooses between exe-
cuting a and then b, or b and then a, (usually denoted by a.b + b.a): they have
the same executions, namely ab and ba, but different nonsequential processes. In
fact, a ‖ b is not equivalent to any sequential system, and hence the name “truly
concurrent semantics” or “true concurrency.”

The next important step was due to Nielsen, Plotkin, and Winskel [51] in the
early 80s. Recall that the executions of a system can be bundled together into a
computation tree: the tree of events in which the nodes are the global states, and
the children of a state are the states that the system may possibly reach next
(where “next” implicitly assumes a global clock). Similarly, Nielsen, Plotkin, and
Winskel showed how to bundle the nonsequential processes of the system into
the unfolding of the system, a truly-concurrent branching-time semantics.2 Inci-
dentally, their motivation was to extend Scott’s thesis (stating that the functions
between datatypes computable by sequential programs are the continuous func-
tions) to concurrent programs. The theory of unfoldings was further developed
by Engelfriet, Nielsen, Rozenberg, Thiagarajan, Winskel, and others in [52, 53,
60, 61, 18].

All this research was taking place in the area of semantics, with semantic
goals: to provide a precise, formal definition of the behaviour of a concurrent
system that could be used as a reference object to prove the correctness of, for
instance, proof systems à la Hoare. The success of model checking introduced a
new way of looking at semantics: semantical objects were not only mathematical
objects that allowed to formally prove the correctness or completeness of proof
systems; they could also be constructed and stored in a computer, and used to
automatically check behavioural properties. More precisely, model checking sug-
gested to construct and store an increasingly larger part of the (usually infinite)
computation tree until all global states have been visited (which was bound to
happen for systems with finitely many global states). By the end of the 80s model
checking had already achieved significant success. However, it faced the state-
explosion problem: the number of states of the system could grow very quickly

1 This can be taken a bit further: relativity theory shows that if the parts of a system
move with respect to each other there is no physical notion of a global moment in
time.

2 “Unfolding” is not the term used in [51].



as a function of the size of the system itself. One of the causes of the problem
was concurrency: the number of global states of a system with n concurrent
components, each of them with m local states, can be as large as mn.

The state-explosion problem was attacked by Ken McMillan in his PhD The-
sis “Symbolic Model Checking”, where he famously proposed the use of Binary
Decision Diagrams as a data structure for storing and manipulating sets of states.
But the thesis also contains a second idea: instead of computing an initial part
of the computation tree containing all global states (a complete prefix), McMil-
lan suggests to construct a complete prefix of the unfolding. The unfolding of a
concurrent system contains the same information as the computation tree, but
encoded in a different way: where the computation tree represents all global
states explicitly, as different nodes of a graph, the unfolding represents them
implicitly, as the tuples of local states satisfying a certain condition. McMil-
lan was the first to observe that this implicit representation provided a line of
attack on the state-explosion problem, due to the smaller size of the implicit
representation [45–47]. He showed how to algorithmically construct a complete
prefix of the unfolding, and provided convincing experimental evidence that this
approach contributed to solving the state-explosion problem. Thanks to McMil-
lan’s ideas, the unfolding moved from being a mathematical object, born out of
abstract work on the nature of concurrency, into a data structure for compactly
representing the set of global states of a concurrent system.

McMillan’s approach, however, still faced two problems. First, while the com-
plete prefix of the unfolding constructed by his algorithm was usually much more
compact than a complete prefix of the computation tree, it could also be expo-
nentially bigger in the worst case. Second, McMillan’s algorithms could only
check specific problems, like deadlock freedom or conformance. Both problems
were overcome in the next years. Improved algorithms for constructing complete
prefixes were described in [49, 22, 23, 31, 32, 35, 36, 38, 24], and extensions to (al-
most) arbitrary properties expressible in Linear Temporal Logic (LTL) were
presented in [16, 19, 20].

Since 2000 the algorithms for constructing complete prefixes have been par-
allelized [33, 55] and distributed [5]. Initially developed for systems modeled as
“plain” Petri nets, the unfolding approach has been extended to high-level Petri
nets [37, 55], symmetrical Petri nets [17], unbounded Petri nets [1], nets with read
arcs [59, 4], time Petri nets [25, 14, 15, 58],products of transition systems [22] au-
tomata communicating through queues [44], networks of timed automata [10,
12], process algebras [43], and graph transformation systems [3, 2]. It has been
implemented many times [55, 56, 33, 42, 50, 29, 31, 20] and applied, among other
problems, to conformance checking [48], analysis and synthesis of asynchronous
circuits [39, 41, 40], monitoring and diagnose of discrete event systems [7, 6, 13,
27], and analysis of asynchronous communication protocols [44]. Two unfold-
ers available online are Mole and PUNF, developed and maintained by Stefan
Schwoon and Victor Khomenko, respectively [57, 34].

The unfolding approach to model checking is another example of how theoret-
ical considerations about the nature of computation, and the relation between



ideal and physical machines, have evolved into a pragmatic technique for the
automatic verification of concurrent systems.
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22. Javier Esparza and Stefan Römer. An unfolding algorithm for synchronous prod-
ucts of transition systems. In Jos C. M. Baeten and Sjouke Mauw, editors, CON-
CUR, volume 1664 of Lecture Notes in Computer Science, pages 2–20. Springer,
1999.
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