Symbolic Context-Bounded Analysis of
Multithreaded Java Programs*

Dejvuth Suwimonteerabuth, Javier Esparza, Stefan Schwoon

Technische Universitdt Miinchen, Boltzmannstr. 3, 85748 Garching, Germany

Abstract. The reachability problem is undecidable for programs with
both recursive procedures and multiple threads with shared memory. Ap-
proaches to this problem have been the focus of much recent research.
One of these is to use context-bounded reachability, i.e. to consider only
those runs in which the active thread changes at most k times, where k
is fixed. However, to the best of our knowledge, context-bounded reacha-
bility has not been implemented in any tool so far, primarily because its
worst-case runtime is prohibitively high, i.e. O(nk), where n is the size of
the shared memory. Moreover, existing algorithms for context-bounded
reachability do not admit a meaningful symbolic implementation (e.g.,
using BDDs) to reduce the run-time in practice. In this paper, we propose
an improvement that overcomes this problem. We have implemented our
approach in the tool jMoped and report on experiments.

1 Introduction

The analysis of procedural multithreaded programs has been intensively studied
in the last years. If both recursion and multithreading are allowed, checking as-
sertions such as reachability of program points is undecidable, even for programs
whose variables are all of boolean type (see for instance [1]).

In order to cope with this undecidability result, three approaches have been
proposed. First, the reachability of program points (and other, more general
problems) has been studied and shown to be decidable for several special cases,
like no communication between threads (but unrestricted thread creation) [2];
communication through nested locks [3,4]; communication following a transac-
tional policy [5]; or communication following a task-based policy [6]. In a second
approach, techniques have been developed that compute an overapproximation
of the set of reachable states. In [7,8] it is shown that so called commutative
abstractions of the set of reachable states can be effectively computed, while [9,
10] describes a CEGAR loop for another class of abstractions; this loop has been
implemented in the MAGIC and Spade systems.

This paper lines with the third approach to the problem, namely the com-
putation of underapproximations of the set of reachable states. In [11], Qadeer
and Rehof proposed the first nontrivial technique, working for possibly recursive

* Partially supported by the DFG project Algorithms for Software Model Checking.

multithreaded programs communicating through global variables. They intro-
duce the notion of contert switch (transfer of control from one thread to another)
and show how to compute, for a fixed k, the set of states reachable by compu-
tations with at most k context switches. The algorithm of [11] was extended in
[12] to a more general programming model allowing for both global and local
variables. In [13] it was also adapted to the analysis of concurrent queue systems.

Given a computation with k& context switches, let us define its trace as the
sequence of valuations of the global variables at which the switches take place.
A shortcoming of the algorithms of [11,12] is that they require to explicitly
examine each trace one by one. If the global variables have n possible valuations,
the number of traces is O(n*), which seriously limits the applicability of the
approach. Recently, Lal et al. have proposed a new algorithm which avoids this
problem at the expense of, loosely speaking, computing the reachability relation
for a thread instead of only the set of reachable states [14]. To the best of our
knowledge, none of the techniques for computing underapproximations presented
in [11,12,14] has been implemented yet.

We present an improvement of context-bounded reachability algorithms that
no longer requires to consider each trace individually. Our algorithm admits a
symbolic implementation, using BDDs, which makes it usable in practice. We
have implemented this approach as an extension of the jMoped tool [15]. The
implementation can deal with Java code “as is”, without replacing non-native
libraries by stubs or manually translating the code into the modelling language
of the checker. More specifically, the contributions of the paper are as follows:

— A new algorithm for the computation of the states reachable after a bounded
number of context switches, based on lazy splitting. The algorithm deals
symbolically with sets of traces that do not need to be distinguished, and
splits them only when necessary. It addresses the same problem as [14], but
with a different approach. The techniques of [11,12] and [14] are compared
in some more detail in the conclusions.

— Implementations of the algorithm of [11,12] and the new algorithm in the
jMoped tool.

— Optimizations of the algorithm for dealing with Java programs.

— Experimental evaluation on different versions of the Bluetooth driver con-
sidered in [9, 10], and on the java.util.Vector class.

We proceed as follows: Section 2 discusses preliminaries, recalls the details
of the context-bounded reachability, and gives an overview of previous work
(i.e., [11,12]) and ours. Section 3 presents the novel elements of our algorithm.
Section 4 discusses details of our implementation, and Section 5 provides exper-
imental data. We conclude in Section 6.

2 Context-Bounded Reachability

In this section we define the problem we are working on and briefly discuss
previous solutions.

2.1 Pushdown Networks

We will consider systems with n parallel processes, where n is a positive integer.
Let [n] = {1,...,n}. A pushdown network is a triple N' = (G, I, (4;)[n)), where:

— @ is a finite set of globals;

— I' is a finite stack alphabet;

— A, for each i € [n], is the finite set of transition rules for the i-th process
(see below for its precise definition).

A local configuration of N is a pair (g,a) € G x I'*, i.e. a global and a word
over the stack alphabet. A global configuration of N is a tuple (g, a1, ..., an),
where g is a global and «; to a,, are words over the stack alphabet. For bet-
ter distinction, we will denote local configurations by lowercase letters (e.g., c)
and global configurations by uppercase letters (e.g., C). Intuitively, the system
consists of n processes, each of which have some local storage (i.e., the local
storage of the i-th process is the word «;), and the processes can communicate
by reading and manipulating the global storage represented by g. A pushdown
system is a pushdown network where n = 1.

For each i € [n], A; contains rules of the form (g,v) — (¢, a), where g, ¢’
are globals, v € I', and a € I'*. We define the local transition relation of the
i-th process, written —;, as follows: (g,v08) —i (¢, aB) iff (9,7) — (¢’,a) in
A; and 8 € I'*. In other words, each process by itself is a pushdown system;
however, its control location is the global store shared by all processes. The
transition relation of N, denoted — s or just — for short, is defined as follows:
(gya1y vy Qiyeeoyan) =N (g a1, ah, . an) iff (g, 00) = (¢,). By —7,
—3» —, we denote the reflexive and transitive closures of these relations.

2.2 Extensions

The computational model introduced in Section 2.1 is equivalent to the concur-
rent pushdown systems (CPS) originally used by Qadeer and Rehof [11]. In [12]
an extension was studied, called APN. There, every thread has an additional lo-
cal state, and transitions can either be “global” (depending on the global state,
the local state of the thread and its stack) or “local” (depending only on the
latter two). APN have the same expressive power as CPS, but allow for more
refined complexity analysis. Since this aspect plays only a minor role in this pa-
per, we chose to omit local states to simplify the presentation. However, it will
be easy to see that our techniques also work for APN, with minor modifications.

Both [11] and [12] also studied extensions of the model with “dynamic” rules,
i.e. the ability to fork new threads. We do not present this aspect in any detail
here because the context-bounded reachability problem for systems with thread
creation can be reduced to the context-bounded reachability problem for systems
without (see [11] for details). Our implementation, discussed in Sections 4 and
5, does handle thread creation, and in these cases we denote a “fork” rule by
(9,7) — (¢', &) > . In this case, the global changes from g to ¢’, the active
process replaces its top-of-stack symbol v by o/, and a new thread with stack
contents o’ is generated.

2.3 The reachability problem for pushdown networks

Let N'= (G, I, (4Ai)ic[n)) be pushdown network. We define the following reach-
ability problems:

— Given ¢ € [n] and an initial local configuration ¢y = (go, o), the local
(forward) reachability problem for the i-th process is to compute the set
posti(cog) = {c | co —F ¢}, ie. the set of local configurations reachable by
moves of the i-th process alone.

— Given an initial global configuration Cy = (go, a1, ..., ay), the (forward)
reachability problem for N is to compute the set post*(Cp) = { C | Ch —* C'}
of globally reachable configurations.

Both problems can be extended to sets of configurations in the usual manner.
It is well-known that local reachability is closed under regularity, i.e. post}(co)
is a regular set, and the result still holds when ¢q is replaced by a regular set of
configurations. Moreover, the local reachability problem can be solved efficiently,
in time proportional to |G|? - |4;| [16].

In contrast, the (global) reachability problem is undecidable; more precisely,
it is in general undecidable whether C' € post*(Cy), for a given pair C,Cy [1].
For this reason, one tries to approximate post*(Cp). One such approximation,
introduced in [11], uses the notion of context-bounded computations:

A context of N is a sequence of transitions where all moves are made by a
single process. In other words, let us define a (global) reachability relation ~»
as follows: (g, a1,..., 0, ...,0n) ~ (¢, a1,..., a0k, ... o) iff (g,a;) =F (¢,)
for some ¢ € [n]. Then ~ is a relation between global configurations reachable
from each other in a single context. Correspondingly, we define M: (Co) =
{C| Cy —F C},ie. post; (Cp) is the set of global configurations reachable from
Co by moves of the i-th process. Moreover, we denote by ~+;, where j > 0,
the reachability relation within j contexts: ~»(is the identity relation on global
configurations, and ~»;41 = ~»; o ~. We can now define our central problem:

— Given k > 1 and an initial global configuration Cy, the (forward) context-
bounded reachability problem is to compute the set of configurations reach-
able in at most k contexts, i.e. the set post’,; (Co) = {C | Jj < k:Co~; C }.

The context-bounded reachability problem is decidable, and its solution can be
computed in a time that is essentially proportional to (n - |G|)* [11,12].

2.4 View tuples

Let us fix a pushdown network V' = (G, I, (4;)ic[n)), a global configuration Co,
and a context bound k£ > 1 for the rest of the section.

The principal problem that one faces when solving the context-bounded
reachability problem is to find a data structure for representing the set
postt, (Co). Note that while the global storage can assume only finitely many
values, the number of possible stack contents is infinite, thus finding a suitable

data structure for representing sets of global configurations is not straightfor-
ward. Here, we define a data structure that will be helpful to discuss the algo-
rithms in previous work [11,12] and in this paper. The main idea is to represent
post, (Co) by so-called view tuples, which represent subsets of post’, (Cp).

Definition 1. Let ¢ = (g, a1, ..., ay) be a global configuration. For i € [n], we
call the local configuration (g, ;) the i-view of ¢. A view tuple T = (Vi,...,V,)
s a collection where V; is a regular set of local configurations, i.e. a set of i-
views for each i € [n], represented by a finite automaton. T is associated with
the following set of configurations:

[T]1={(9,1,-..,0an) | (g,0:) €V for alli € [n]}

Not every set of global configurations can be represented as a view tuple. As a
running example, let us consider a system with two processes, globals g, ¢/, g and
stack alphabet a, b. Consider the set Co = {(g, a,a), (¢',b,a),(g",a,a), (¢",b,b)}.
Suppose that there is a view tuple T = (Vq, V2) such that [T] = Cy. Then V3
necessarily contains the pair (¢”,a) and Vs the pair (¢”,b). But then, [T7] also
contains (g”, a,b), which is not in Cyp.

More importantly, the sets arising in the context-bounded reachability prob-
lem are not representable as view tuples. Continuing the example, suppose that
A = {{g.a) — (¢',b)} and Ay = {{g.a) — {g",a),{g',a) — (g".b)}. Then
postt,((g,a,a)) is exactly the set Cy from above.

In general, therefore, the result of a context-bounded reachability query is
only representable as a union of view tuples. For instance, Cy can be partitioned
into the sets C; := {(g,a,a),(¢”,a,a)} and Cs := {(¢’,b,a),(g"”,b,b)}, which are
both representable as view tuples. As we shall see, our work differs from [11,12]
in the way we choose the view tuples contained in this union; more to the point,
our representation requires (in general) fewer tuples.

2.5 A meta-algorithm for context-bounded reachability

In this section we discuss a meta-algorithm to solve the context-bounded reach-
ability problem that unifies the solutions in [11,12] and in this paper. It can be
characterised as a worklist algorithm that computes the effect of one context at
a time. While the algorithms from [11,12] differ in some details, they can — for
the purposes of this paper — be summarised by Algorithm 1.

The entries of the worklist are triples (j,4,T), where T is a view tuple reach-
able within j contexts such that ¢ was the process that made the last move
(¢ = 0 iff j = 0). Initially, the worklist contains just one view tuple representing
the initial configuration Cy. In each iteration, the algorithm picks a view tuple
from the worklist and computes the configurations that can be reached through
a single additional context. Notice that since we are dealing with regular sets of
configurations, this can be done by solving the local reachability problem, see,
e.g., [16] or [17] for details. The previously active process, i, is excluded from
consideration because it would not add any new information.

Input: N = (G, T, (A;); € [n]), context bound k, initial configuration
Co = (g070£(1)7...,ag)
Output: the set of reachable global configurations.

1 result := (;

2 worklist := { (07 0, ({(907 O‘(l))}7 BN {(907 ch)})) };
3 while worklist # () do

4 remove (7,4, T) from worklist;

5 add [T7] to result;

6 if j < k then

7 forall i’ € [n] \ {i} do

8 P = posty (I71);

9 forall 7" € split(P) do
10 | add (j +1,i',T") to worklist;

11 return result;

Algorithm 1: Worklist algorithm for context-bounded reachability

The result of the local reachability algorithm is denoted by P, and the prin-
cipal problem is that P may no longer be representable as a single view tuple.
The task of the split function in line 9 is to generate a set of view tuples such
that Uz egpiis(p)[1”] = P. Our work differs from previous solutions in the way
this function is implemented. In [11,12], split works as follows:

split(P) = {1y | g € G }, where
Ty=Pn{(g,01,....,00) |, €I'*, i €[n]}

It can be shown that the resulting sets are always view tuples. However, after each
context, every worklist entry is split |G| different ways. In the following, we call
this approach eager splitting. Loosely speaking, eager splitting processes n* - |G|*
worklist entries. Moreover, after each split, the algorithm will consider every
element of G individually, which does not lend itself to a meaningful symbolic
implementation (e.g., using efficient set representations such as BDDs). These
reasons have been the major obstacle for a practical adoption of these algorithms.

In Section 3, we identify a coarser partition of P that leads to fewer splits,
in the hope of making the algorithm faster in practice. We call this approach
lazy splitting. We also describe how the partition can be computed using BDDs,
which gives rise to a symbolic implementation of our algorithm.

3 Lazy Splitting

As discussed in Section 2.5, the algorithm for context-bounded reachability is
parametrised by a function that splits the result of a local reachability query into
view tuples. In this section, we present the key ingredient for our lazy splitting
approach, i.e. we show how to (symbolically) compute a coarse partitioning.

To simplify the presentation we consider the case of two processes and assume
w.l.o.g. that the second process is active, i.e. given a view tuple T' = (V4, V2),
the task is to (i) compute the set post,([T]) and (ii) split this set into new
view tuples. Recall that a global configuration of a pushdown network with
two processes is a tuple ¢ = (g, a1, a2), where g is a global and «; is a local
configuration of the i-th process.

Throughout this section we identify a set X C X; X...x X, and the predicate
X(x1,...,2,) such that X(ay,...,a,) holds iff (ay,...,a,) € X. We liberally
mix set and logical notations, and write for instance A(x) = 3 y: B(z,y) to
mean A = {z | Jy: B(z,y) }. Abusing notation, we shall sometimes denote the
set [T], where T is a view tuple, simply by 7.

We proceed as follows: We first identify a property between globals (called
confluence) that prevents certain configurations from being included in the same
partition. We then show how the confluence relation can be computed symboli-
cally, using BDDs, and finally how partitions can be computed from this relation.

3.1 Confluence and safe partitions

Let Ra(g,c,¢’,a’) be the reachability predicate for the second thread, i.e.,
Ra(g,,¢', ') holds iff (g,) —% (¢',). (As usual, we use unprimed variables
for the initial configuration and primed ones for the final configuration.) Using
standard logical manipulations we obtain

posty(T)(g',n,ah) = g+ (Vilg, 1) A 30z s Va(g,02) A Ralg, a2, ',0))

=:Uz(g,9’,0)

Since g is existentially quantified, post,(T) is not always a view tuple. We
present a generic approach for representing it as a union of view tuples. The
approach is parameterized by a partition of G. We need the following definition.

Definition 2. Two distinct global values g4, gy € G are confluent if there exist
g, oy, aly such that Us(ga, g, 0b,) and Us(gs, g', o) hold. A partition of G is
safe if none of its sets contains two confluent values.

Intuitively, two values in the same set of a safe partition cannot be trans-
formed by the second thread into the same value. For instance, let us return to the
example from Section 2.4. If we choose T such that [To] = {(g,a,a), (¢, b,a)},
then posts(Ty) = Co because (g,a,a) —o (¢”,a,a) and (¢',b,a) —2 (g",b,b).
In other words we have Us = {(g,¢",a),(¢’,g",b)}. Therefore, g and ¢’ are
confluent, and any safe partition must keep these two values apart.

Notice that safe partitions always exist, because the partition that splits G
into singletons is always safe. However, finding a coarser safe partition is not
necessarily straightforward because U; may contain infinitely many tuples, and
we will show how to deal with this problem later. For the time being, it suffices to
point out that any safe partition can be used to represent M; (T') as a union of

view tuples. Let G, ..., G, be a safe partition of G. We define sets V{,, ..., V]

of 1-views and sets V..., Vy, of 2-views as follows:
Vi;(g' 1) = 39 : Vi(g,01) AGj(g) A 3ay : Ua(g, g', o) (1)
V3;(g' ah) =39 : Uz(g, 9", 03) A Gji(9) (2)

Intuitively, Vl’j contains the local configurations of the first thread for which
the second thread can reach the local configuration o, while leaving the global
variable in state ¢’. Therefore, if the first thread initially has (g, 1) as 1-view,
it ends with (¢, @1): the local configuration «; has not changed, but the value
of the global variable has. The intuition behind V5, is similar.

In the example above, we could choose G; = {g,¢"} and G2 = {¢'} as a
safe partition. Under this assumption the view tuples (V{;,V3;) and (Vy, Vay)
as defined above would represent the sets C; and Cs from Section 2.4, whose
union is indeed equal to Cy. The following theorem, whose proof is given in the
appendix, states that this works for every safe partition.

Theorem 1. Let {V{,}jeim) and {V3;}je(m) be defined as in (1) and (2). Then

Posts (T)(g/, on,) = (vlj g'sa1) A V3 (g, ab))

\|<3

Proof. (=):
FoRTa (1o a1, 0) *
= 3dg: Vi(g,a1) AUa(g 9:9 ',) (def. of posty(T'))
= dg: Vi(g,a1) AU2(g,9',ab) A3j € [m] : G4(9)
= 33 € [m] : Vi;(g', 1) A Va;(g', as) (logic, def. of V{;, V5;)

\/(Vlj g o) AVyi(g, az))

(«): Let (¢',a1,0a5) be a triple satisfying V{;(g’, 1) A V3;(g’,a3) for some
j € [m]. By the definition of V{; and V;; there exist ga, gp, and aj such that
Vi(ga, 1), G(9a)s U2(ga, g’ a5), Ua(gs, ', o), and G;(gs) hold. So, in particu-
lar, g, and g, belong to the same set of the partition of G, namely G;. Further-
more, since Ua(ga, g, &%), Ua(gs, §', &), it follows from Definition 2 that g, and
gv are either confluent or equal. Since the partition used to construct {VY;};em)
and {V3,}jem) is safe, we get go = gp. So, in particular, Usz(ga,g’, o) holds,
which together with Vi (gq, 1) implies posty(T)(g', a1, o).

3.2 Computing the confluence relation

In this part, we show how to compute the relation C(z,y) of confluent pairs z,y
symbolically, using BDDs. By Definition 2, we have

C(gar 9) = ga # g N3G, g, 0y 2 Ua(gar 9 0hg) A Ua(g, g, cty)

Notice that the relation Uy contains stack words and cannot be directly rep-
resented by a BDD. However, we first show that Us can be represented as a
symbolic finite automaton and then use the automaton to compute C.

Let us recall the definitions of Ua(g, ¢’, af) and posts(Va)(g’, ob):

UQ(gaglaO/Q) = day: ‘/2(9,(12) ARQ(Q,QQ,QI,O(IQ)
pOSt;(%)(g/,Oé/2> = ElgaoQ : ‘/2(97QQ> A R2(95a27g/5a/2)

We now reduce the computation of Uy to a local reachability problem w.r.t. a
modified pushdown system (G x G, I, A}). In other words, we change the system
by duplicating the globals. Moreover, we have ((g, g),v) — ((g,¢'),) in A} iff
(9,7) — (¢, a) in Ag, i.e. the value of the first copy is never changed by any
transition rule. The reachability relation for the second thread of the modified
system is given by Ra((g,9), a2, (7, 4'),ah) = Ra(g,az,g’,ab) A g = g'. Define
Va((g,9), a2) = Va(g,a2) A g = g. We have:

Us(g,9',a5) = Jaz : V2(97042) A Ry(g, 02,9,)
=Jday : ((9); a2) A Ra((g,9), a2, (9,9'), o)
:HE,Q,QQ ((Eag)a)/\RQ(() ag,(g,g’),aé)
= post3(V2)((g, 9'), ab)

Recall that if T = (V3, V3) is a view tuple, then Vi and V5 (and V5) are regular
sets, representable by symbolic finite automata [17]. Moreover, [17] shows how
to transform a symbolic automaton for Vs into one for Uy = posts(Vs).

We turn to the question how to compute C' from the automaton representing
Us. For this, let us define Us(g,¢’) := Ja: Ua(g, ¢, «). Then we have:

C(gar 9) = ga 7 9o N 39":U3(9a,9") N U3(g8, 9")

The modified pushdown system defined above has G x G as its set of globals.
Thus, the symbolic automaton for Us uses G X GG as initial states, and a con-
figuration ((g,¢’), «) is accepted if, starting at state (g, g’), the automaton can
read the input « and end up in a final state. Thus, Uj(g, ¢’) holds if some input
is accepted from the state (g, g’'). Since the transitions of a symbolic automaton
are represented by BDDs, this can be easily implemented with standard BDD
operations.

3.3 Computing a safe partition

Given the confluence relation C, our final goal now is to compute a safe partition.
Notice that a partition is safe if and only if its sets are cliques of —C, the
complement of C. Since finding a minimal partition into cliques of a given graph
is NP-complete, we restrict ourselves to finding a reasonably coarse safe partition
in a symbolic manner. The resulting performance of the reachability algorithm
is evaluated in Section 5.

Input: Confluence relation C(z,y), total order L(z,y)
Output: A safe partition G1,...Gp, of G

S(z,y) == ~C(z,y); j :== 0;
while S # () do
pick (zo,yo) from S,
F(z) = 8(z, yo);
while true do
D(z,y) = L(z,y) A F(x) A F(y) A=S(z,y);
exit if D = (;
F(z) = F(z) A~(3y : Dlx,y)
J=J+1
Gj(z) := F(x);
S(@,y) == S(z,y) A ~F(x) A=F(y);

© 0 N0 A W N

-
(=]

=
=

Algorithm 2: An algorithm for computing equivalence classes

Algorithm 2 shows the computation of the partition. Its inputs are the conflu-
ence relation C' and an arbitrary total order relation L on globals. The algorithm
repeatedly computes sets of the partition. The inner loop makes sure that F' is
a clique of S when exiting the loop. D contains the confluent pairs (z1,22) of
F x F such that z is smaller than zo with respect to the order L. If D = () then
F is a clique. Otherwise, for each (x1,z2) € D we remove z1. The role of L is
to guarantee that D is antisymmetric, and so that if x; and xo are confluent we
remove exactly one of them from F'.

Notice that the algorithm only uses boolean operations and existential quan-
tification, and can therefore be easily implemented in a BDD library, given BDD
representations of L and C. The computation of C' was presented in Section 3.2,
and a BDD representation for L C G x G is trivial to generate, because by
assumption the set G is finite, and any total order (e.g. some lexicographical
ordering based on the BDD variables) will do.

Finally, equations (1) and (2) only use G;, V1, Uz, which are all representable
as BDDs or as symbolic automata, connected by boolean operations. Thus, the
new view tuples can be obtained by standard operations on BDDs and automata.

4 Implementation

We implemented the algorithm presented here in jMoped [18,15], an Eclipse
plug-in for testing Java programs by means of model-checking techniques. To
test a method, users specify the number of bits of the program variables and
the heap size (no knowledge of model-checking techniques is required). jMoped
computes the reachable states of the program for all values of the method’s argu-
ments within the given range. During the analysis, jMoped displays progress by
labelling lines of code with diverse markers, e.g. red markers for assertion viola-
tions, green and black markers for reachable and unreachable lines, respectively.

Like Java virtual machines we use heaps to simulate Java objects. In particular,
the heap size determines the number of objects that can be generated.

4.1 The Model

Internally, jMoped operates on pushdown networks that can also contain rules
for thread creation (cf. Section 2.2). jMoped uses a symbolic representation of
pushdown networks like in [17], where the stack symbols are tuples (I,v) such
that [is a valuation of local variables and « a label, i.e. a possible value of the pro-
gram counter. A network is stored as a list of symbolic rules. For instance, given
labels v,~',~"”, the set of all rules of the form (g, (I,7v)) — (¢, (I',¥")(1",~")) is
represented by one single rule annotated with a relation R:

v =" R(g,l,q',1',1")

R specifies which tuples correspond to a rule and is stored as a BDD.

4.2 The Translator

jMoped analyzes which classes are statically reachable from the starting method,
and then translates their bytecodes into a pushdown network. The translation
process is relatively simple: in most cases a bytecode instruction is mapped into
one symbolic rule. However, the BDD for the symbolic rule is not computed
beforehand; we only store the information needed to construct it on-the-fly if
needed. Constructing BDDs only on demand saves considerable resources.

We maintain four types of variables when analyzing Java bytecodes. Static
variables and local variables are modelled by globals and locals, respectively.
Heaps are essentially arrays of globals. When an object is created, it occupies
some parts of the array where it keeps relevant information such as fields, object
type, and lock information. The object itself can be seen as a pointer to the
array. Objects are never garbage collected in the current implementation.

The Java virtual machine uses an operand stack for each method call. This
stack can be loaded with constants or values from local variables or fields. Many
instructions pop operands from the stack, operate on them, and push the result
back. Operand stacks are also used to prepare parameters for method calls and
to receive method results. The maximum depth of the operand stack for a given
method is determined at compile time and stored in the corresponding class file.
jMoped models operand stacks by arrays of locals plus an extra top-of-stack
pointer. The array lengths are equal to the maximum depths of the stacks.

We give a flavour of how jMoped works. Figure 1 shows a small Java pro-
gram, its bytecodes, and a simplified version of the translation into a pushdown
network. Bytecode instructions are translated one-to-one into transition rules.
The operand stack is simulated by the array s and the top-of-stack pointer sp.
Similarly, we use heap and ptr for the heap and the heap pointer. The top-of-
stack and heap pointers are initialized to 0 and 1, respectively. The heap at index
zero is reserved for null objects. Local variables have identifiers of the form lv;.

class C { 0: iconst_0
static int x; 1: putstatic C.x
static void m() { 4: new Thread
x =0; 7: dup
new Thread(new Runnable() { 8: new C$1
public void run() { 11: dup
// New thread works 12: invokespecial C$1.<init>
}}) .startQ; 15: invokespecial Thread.<init>
// Main thread works 18: invokevirtual Thread.start
} 21:
} e: return
mo — mi s[sp) =0 Asp’ =sp+1)

mi < my x' =s[sp—1]Asp’ =sp—1)
my — my s[sp]’ = ptr Asp’ = sp + 1 A heap[ptr] = 1 A ptr’ = ptr + 2)
mr7 — ms

s[sp]’ = ptr Asp’ = sp + 1 A heap[ptr] = 2 A ptr’ = ptr + 1)
s[sp)’ =s[sp— 1] Asp’ =sp+ 1)

Ivo =s[sp— 1] Asp” =sp—1)

vy =s[sp — 2] Alvi =s[sp — 1] Asp” =sp — 2)
heap|heap[s[sp — 1] + 1]] =2 Alvg =s[sp — 1] Asp’ =sp — 1)

/

[
s{sp]/ =s[sp—1]Asp’ =sp+1)
[

mi1 — Mmi2

miz2 < Co Mis5
mis < to mas
mig — Mm21 > 7o

(
(
(
(
mg — mi1 (
(
(
(
(

Me < €

Fig. 1. A small Java programs, its bytecodes, and a corresponding pushdown network

At the beginning of m, the global variable x is initialized to zero in two steps.
The constant 0 is pushed onto the operand stack, retrieved, and stored in x.
Then, a new object of type Thread is created, and a reference to the object
is pushed onto the operand stack. jMoped simulates this behaviour by pushing
the current value of the heap pointer and updating it to a next (empty) heap
element. The heap at ptr is also set to the object type of Thread, which is 1 in
this example. We update the heap pointer based on sizes of objects. Every object
needs one heap element for each field plus an extra heap element for storing its
type. The object for Thread has size two (see later), and so the pointer gets
updated by two. The instruction dup duplicates the top element of the operand
stack. At offset 8, an object of type C$1 is allocated. Class C$1 is an inner class of
C which implements the interface Runnable. C$1 specifies the method run which
will be executed when the thread starts. Note that C$1 has type 2 and size 1.

Two initialization methods are called at offsets 12 and 15 for C$1 and
Thread, respectively. The corresponding translation also shows how arguments
are passed. A reference to C$1 (resp. to Thread) is passed to lvy when initializing
C$1 (resp. Thread). However, for Thread a reference to C$1 is also passed as the
second argument, and a reference to C$1 is stored as its only field (not shown).
Recall that Thread has size 2 for the purpose of storing an object reference which
implements Runnable interface. This information is used later on at offset 18.

There, we fork a new thread rg if the only field of the thread specified by the
top element of the operand stack has type 2. Also, a reference to C$1 is passed
to the new thread. Note that we need information about object types to start
the right thread. The same technique is used in the case of virtual method calls.

jMoped translates all Java bytecode instructions. Calls to Java libraries are
not replaced by stubs, since the bytecodes of the library are available. Notice
however that some classes contain native code, and for those stubs are necessary.

5 Experiments

All experiments were performed on an AMD 3 GHz machine with 64 GB memory.

5.1 java.util.Vector Class

In this experiment we consider class java.util.Vector from the Java library.
The Vector class implements a growable array of objects. In [19], a race condition
in a constructor of Vector was reported. The following test method illustrates
the situation where the race condition can occur.

static void test(Integer x) {
final Vector<Integer> vl = new Vector<Integer>();
vl.add(x);
new Thread(new Runnable() {

public void run() { vl.removeAllElements(); }

}) .start);
Vector<Integer> v2 = new Vector<Integer>(vl);
assert(v2.isEmpty() || v2.elementAt(0) == x);

}

The method creates two vectors. First an empty vector v1 is created, and then
an integer x is added to it as its first element. After that, a new thread is forked,
which removes all elements from v1 (only x in this case). In parallel, the first
thread creates a copy v2 of v1. Intuitively, only two cases are possible: if the
elements of vl are removed before v2 is created, then v2 is empty; if v2 is
created before the elements of v1 are removed, then the first element of v2 is
equal to x. The last line of code asserts this property.

However, in Java 5.0, the constructor of v2 is not atomic, and as a result
the assertion can be violated. jMoped detects this bug. The first half of Table 1
shows the time until the bug is found, the numbers of BDD nodes required, and
the numbers of view tuples inspected in several experiments. In all experiments
the bit size of all variables except x is set to 8, the heap size to 50 blocks, and
the context bound to 3. The experiments differ on the size of x (1 to 8 bits), and
on the splitting mode (eager or lazy).

In the current version of Java (version 6.0), the bug has been fixed. We reran
all experiments with Java 6.0 and verified that, within the given bounds, the
assertion is not violated. The second half of Table 1 presents the results.

Sizes of x (bits) 112|345 6 7 8
Eager|Time (s) 9.3 {10.8{16.9|31.1| 67.9 |117.8|225.7| 457.9
Nodes (x10%)[0.4 |0.5|0.8|1.4| 2.5 | 5.2 | 9.0 | 18.1
View tuples | 48 | 87 | 167|327 | 648 | 1348|2567 | 5126
Lazy |Time (s) 19.7|117.7|19.6|17.5| 17.2 | 18.9 | 16.7 | 18.8
Nodes (><106) 12112121312 | 13| 1.3 1.3
View tuples 3 13|33 3 3 3 3
Eager| Time (s) 15.1{18.6|37.5|64.3|147.7|301.7|642.0{1732.0
Nodes (x10%)[0.4]0.7|1.1|2.0| 3.7 | 7.1 |13.9] 27.9
View tuples |105|209|417|833|1655|3329|6657|13313
Lazy |Time (s) 20.9|20.8(19.4|22.3| 20.8 | 18.8 | 23.4 | 23.2
Nodes (x10%)1.3|1.3[1.3]13| 1.3 | 1.3 | 1.3 | 1.3
View tuples 313 1|3|3 3 3 3 3

Java 5.0

Java 6.0

Table 1. Experimental results: java.util.Vector class

The behaviour of the program is independent of the value of x. The lazy
approach benefits from this, and does not split at all when switching contexts.
Therefore, the running time remains essentially constant when the number of
bits of x increases. On the other hand, the time for eager splitting increases
exponentially. However, the eager approach is faster and requires fewer BDD
nodes when x is small. One of the reasons is that the lazy approach requires an
extra copy of globals for keeping relations between current values of globals and
initial values when the thread is awakened, which results in bigger BDDs.

One could argue that, since the Java 5.0 bug is already detected when x has
1 bit, the lazy approach does not give any advantage in this case. For Java 6.0,
however, the analysis of larger ranges provides more confidence in the correctness
of the code, and here the lazy approach clearly outperforms eager splitting.

Finally, we remark that the example is not as small as it seems. While the test
method has only a few lines of code, the class Vector actually involves around
130 classes which together translate into a pushdown network of 30,000 rules. We
are able to automatically translate all classes without any manipulations except
java.lang.System, where the method arraycopy is implemented in native code.
We need to manually create a stub in this case.

5.2 Windows NT Bluetooth Driver

In this experiment, we consider three versions of a Windows NT Bluetooth
driver [20,9]. Figure 2 shows a Java implementation of the second version. All
three versions follow the same idea and differ only in some implementation de-
tails. All versions use the following class Device, which contains four fields:

int pendinglo; boolean stopFlag, stopEvent, stopped;
Device(){ pendingIlo = 1; stopFlag = stopEvent = stopped = false; }

— pendingTIo counts the number of threads that are currently executing in the
driver. It is initialized to one in the constructor, increased by one when a
new thread enters the driver, and decreased by one when a thread leaves.

— stopFlag becomes true when a thread tries to stop the driver.

— stopEvent models a stopping event, fired when pendingIo becomes zero.
The field is initialized to false and set to true when the event happens.

— stopped is introduced only to check a safety property. Initially false, it is set
to true when the driver is successfully stopped.

The drivers has two types of threads, stoppers and adders. A stopper calls
stop to halt the driver. It first sets stopFlag to true before decrementing
pendingTo via a call to dec. The method dec fires the stopping event when
pendingTo is zero. An adder calls the method add to perform I/O in the driver.
It calls the method inc to increment pendinglo; inc returns a successful sta-
tus if stopFlag is not yet set. It then asserts that stopped is false before start
performing I/O in the driver. The adder decrements pendingIo before exiting.

static void add(Device d) { d.pendingIo++;
int status = inc(d); }
if (status > 0) { if (d.stopFlag) {
assert(!d.stopped) ; dec(d);
// Performs I/0 status = -1;
} } else status = 1;
dec(d); return status;
} }
static void stop(Device d) { static void dec(Device d) {
d.stopFlag = true; int pio;
dec(d); synchronized (d) {
while (!d.stopEvent) {} d.pendingIlo--;
d.stopped = true; pio = d.pendinglo;
} }
static int inc(Device d) { if (pio == 0)
int status; d.stopEvent = true;
synchronized(d) { }

Fig. 2. Version 2 of Bluetooth driver

In the first version of the driver, the method inc was implemented differently:

private int inc(Device d) {
if (d.stopFlag) return -1;
synchronized (d) { d.pendingIo++; }
return O;

}

Moreover, the if-statement in add reads if (status == 0). [20] reports a race
condition for this version, which occurs when the adder first runs until it checks

Version 1 | Version 2 | Version 3 Threads, Contexts|Time(s)
Eager|Lazy|Eager|Lazy|Eager|Lazy 1+1,3 3.8
Time (s) 1.1 | 1.3 | 51.7 [36.0| 11.9 | 6.0 1+1,4 8.3
Nodes (x10%)| 46 | 88 | 720 |1851| 195 | 518 24 1,4 127.1
View tuples 21 4 1460 | 154 | 234 | 16 2+1,5 712.3
Contexts 3 5 4 2+1,6 5528.2
2425 6488.0
2426 timeout

Table 2. Experimental results: Bluetooth drivers (left) and binary search trees (right)

the value of stopFlag. Then, the stopper thread runs until the end, where it
successfully stops the driver. When the context switches back to the adder, it
returns from inc with status zero and finds out that the assertion is violated.

In [9] a bug in the second version of the driver was reported. The bug only
occurs in the presence of at least two adders, and four context switches are
required to unveil it: (i) The first adder increases pendingIo to 2 and halts just
before the assertion statement. (ii) The stopper sets stopFlag to true, decreases
pendingTo back to 1, and waits for the stopping event. (iii) The second adder
increases pendingIo to 2. However, since stopFlag is already set it decreases
pendinglo back to 1 again. It returns from inc with status —1, which makes
pendingTo become 0 and fires the stopping event. (iv) The stopper acknowledges
the stopping event and sets stopped to true. (v) The first adder violates the
assertion. Note that the bug can also be found in a slightly different manner
where the second adder starts before the stopper.

The third version moves dec(d) inside the if-block in the method add. This
eliminates the bug for the case with two adders and one stopper. However,
jMoped found another assertion violation for one adder and two stoppers. We
believe that this has not been previously reported, although it is less subtle
than the previous bugs, requiring three context switches: (i) The adder increases
pendingTo to 2 and halts just before the assertion statement. (ii) The first
stopper decreases pendingTo to 1. (iii) The second stopper decreases pendinglo
to 0 and sets stopped to true. (iv) The adder violates the assertion.

Table 2 reports experimental results on these three versions. Notice that the
lazy approach always involves fewer view tuples. This becomes more obvious
when the number of contexts grows. We argue that by splitting lazily we can
palliate explosions in the context-bounded reachability problem.

5.3 Binary Search Trees

We briefly give an intuition on the scalability of our approach by considering a
binary search tree implementation [21] that supports concurrent manipulations
on trees. Unlike the previous two experiments, this algorithm is recursive. There
are two types of threads, inserter and searcher. An inserter puts a node into the

tree while a searcher looks for a node with a given value. We consider the situ-
ation where inserters insert non-deterministic values into the tree and searchers
search for the same values. We run jMoped with different numbers of inserters
and searchers, and generate all reachable configurations within given contexts.

Table 2 gives the running times. The numbers of threads are in the form
x + y, where z and y are the numbers of inserters and searchers, respectively.
The analysis took more than three hours in the case of 2 + 2, 6.

6 Conclusions

We have reported on (to the best of our knowledge) the first implementation of
the context-bounded technique of Qadeer and Rehof [11]. The implementation
extends the jMoped tool, and allows to deal directly with Java code, mostly
without having to manually manipulate it or replace Java libraries by stubs.

The algorithm for context-bounded reachability as presented in [11] explicitly
deals with each possible trace of the system within the context bound. Therefore,
if the number of traces is exponential, then the algorithm necesarily takes expo-
nential time. We have presented a symbolic technique, lazy splitting, to palliate
this problem. Loosely speaking, the technique tries to symbolically examine all
traces in the same computation, and splits the set of traces only when necessary.

We have tested our implementation on a number of examples. Our best result
so far is the fact that we can find the bug in the Vector Java class reported in
[19] without any need for manual manipulation or unsound steps. The program
is compiled including all Java libraries, and the Java bytecode is automatically
translated into our formal model, without manual supervision.

Lal et al. have proposed a new algorithm which does not require to explicitly
examine all possible traces of the system [14]. The main idea is to compute
for each thread a regular transducer accepting the reachability relation of the
thread. Even though this leads to an attractive fully symbolic solution to the
problem, its performance in practice still needs investigation. Even for finite-state
systems, experiments show that the symbolic computation of the reachability
relation by means of iterative squaring is substantially more expensive than the
computation of the set of reachable states (see for instance [22]). While in the
case of multithreaded programs the advantage of a fully symbolic procedure
may compensate for the overhead of computing the reachability relation, this
remains to be seen. We have not followed this path because the algorithm for
the computation of the reachable states is the core of jMoped, and the result of
many optimizations, and so naturally we wished to reuse it.

On a more abstract level, the idea of [14] is that the effect of running a con-
text on a particular thread can be expressed by a summary. The idea of reusing
summaries could also be useful in our setting: as a side effect, the pushdown
reachability algorithm implementing the post} function computes (partial) pro-
cedure summaries. Summaries are largely independent of the context for which
they were computed and could potentially be re-used many times during other
called to post;. We did not yet use this trick in our implementation.

Acknowledgements The authors thank Tomas Brazdil for his helpful comments
and Tayssir Touili and Mihaela Sighireanu for pointing us to some examples.

References

1.

2.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.
21.

22.

Ramalingam, G.: Context-sensitive synchronisation-sensitive analysis is undecid-
able. ACM Trans. Programming Languages and Systems 22 (2000) 416-430
Bouajjani, A., Miiller-Olm, M., Touili, T.: Regular symbolic analysis of dynamic
networks of pushdown systems. In: Proc. CONCUR. LNCS 3653 (2005) 473-487
Kahlon, V., Ivancié¢, F., Gupta, A.: Reasoning about threads communicating via
locks. In: Proc. CAV. LNCS 3576 (2005) 505-518

Kahlon, V., Gupta, A.: On the analysis of interacting pushdown systems. In: Proc.
POPL, ACM (2007) 303-314

Qadeer, S., Rajamani, S.K., Rehof, J.: Summarizing procedures in concurrent
programs. In: Proc. POPL, ACM (2004) 245-255

Sen, K., Viswanathan, M.: Model checking multithreaded programs with asyn-
chronous atomic methods. In: Proc. CAV. LNCS 4144 (2006) 300-314

Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of
concurrent programs with procedures. In: Proc. POPL, ACM Press (2003) 62-73
Bouajjani, A., Esparza, J., Touili, T.: Reachability analysis of synchronized PA-
systems. In: Proc. Infinity. (2004)

Chaki, S., Clarke, E.M., Kidd, N., Reps, T., Touili, T.: Verifying concurrent
message-passing C programs with recursive calls. In: Proc. TACAS. LNCS 3920
(2006) 334-349

Patin, G., Sighireanu, M., Touili, T.: Spade: Verification of multithreaded dynamic
and recursive programs. In: Proc. CAV. LNCS 4590 (2007) 254-257

Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In:
Proc. TACAS. LNCS 3440 (2005) 93-107

Bouajjani, A., Esparza, J., Schwoon, S., Strejéek, J.: Reachability analysis of multi-
threaded software with asynchronous communication. In: Proc. FSTTCS. LNCS
3821 (2005) 348-359

La Torre, S., Madhudusan, P., Parlato, G.: Context-bounded analysis of concurrent
queue systems. In: Proc. TACAS. LNCS 4963 (2008) 299-314

Lal, A., Touili, T., Kidd, N., Reps, T.: Interprocedural analysis of concurrent
programs under a context bound. In: Proc. TACAS. LNCS 4963 (2008) 282-298
jMoped: The tool’s website (http://www7.in.tum.de/tools/jmoped/)

Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for
model checking pushdown systems. In: Proc. CAV. LNCS 1855 (2000) 232-247
Esparza, J., Schwoon, S.: A BDD-based model checker for recursive programs. In:
Proc. CAV. LNCS 2102 (2001) 324-336

Suwimonteerabuth, D., Berger, F., Schwoon, S., Esparza, J.: jMoped: A test envi-
ronment for Java programs. In: Proc. CAV. LNCS 4590 (2007) 164-167

Wang, L., Stoller, S.D.: Runtime analysis of atomicity for multithreaded programs.
IEEE Trans. Software Eng. 32(2) (2006) 93-110

Qadeer, S., Wu, D.: KISS: keep it simple and sequential. In: PLDI. (2004) 14-24
Kung, H.T., Lehman, P.L.: Concurrent manipulation of binary search trees. ACM
Trans. Database Syst. 5(3) (1980) 354-382

Burch, J.R., Clarke, E.M., Long, D.E., McMillan, K.L., Dill, D.L.: Symbolic model
checking for sequential circuit verification. IEEE TCAD 13(4) (1994) 401-424

