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Abstract. We prove the following property for safe conflict-free Petri nets and
live and safe extended free-choice Petri nets:

Given two markings M;, M, of the reachability graph, if some path leads from
M, to Mj, then some path of polynomial length in the number of transitions
of the net leads from M, to M,.

1 Introduction

Let My, M; be two markings of the reachability graph of a safe Petri net such that
M, is reachable from M;. What can be said about the length of the shortest path of
the graph leading from M, to M, ?

Since a safe Petri net with n places has less than 2" markings, this length is smaller
than 2*. However, in some situations we would like to have a better bound. A
first example is a system with a home state? which should be reached after a system
failure in order to start a recovery action: if the home state can only be reached
after an exponential number of steps, then the system cannot recover in reasonable
time. It has also been recently observed that the length of shortest paths between
pairs of markings is related to the complexity of the model checker developed in [3,7)
for arbitrary safe Petri nets. This model checker (based on the unfolding technique
developed in [13]) does not construct the reachability graph, but an unfolding of the
Petri net. It happens that the size of the unfolding - and, with it, the complexity of
the model checker - is strongly related to the length of the shortest paths between
markings. Therefore, a good bound on this parameter can be used to derive a good
bound on the complexity of verifying all the properties expressible in a temporal logic.

!Work partly done within the Esprit Basic Research WG 6087: CALIBAN and within SFB 342.
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3 A marking reachable from any other reachable marking
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We prove in this paper the following two results:
o If the Petri net is conflict-free [12,11], then the<leng'th of the shortest path is at
most
IT]- (T +1)
2

o If the Petri net is live and extended free-choice [10], then the length of the
shortest path is at most

IT- 71+ 1) - (171 +2)
6

where T is the set of transitions of the net.

The first of these two results has already been used in [7] to prove that the complex-
ity of the model checking technique developed there is polynomial in the size of the
system for conflict-free Petri nets. Our second result complements the result of [5],
namely that live and safe extended free choice nets have home states: not only they
exist, they are also reachable from any other reachable marking in a short number of
steps.

P

The paper is organised as follows. Section 2 contains basic definitions and results.
Section 3 studies so-called biased sequences. Using the results of Section 3, our two
results are proved in Section 4 and Section 5. Finally, Section 6 shows that for safe
persistent systems there exist no polynomial bounds for the length of shortest paths,

2 Definitions and V‘Preliminaries '

Let S and T be finite and nonempty disjoint sets and let F' C (S x T)U (T x S).
Assume that for each z € (S UT) there exists a y € (S UT) satisfying (z,y) € F or
(y,2) € F. Then N = (S,T, F) is called a net. S is the set of places and T the set of
transitions of N.

N is connected if for every two elements z, y of N, the pair (z,y) belongs to the
reflexive and transitive closure of F'U F~1. N is strongly connected if for every two
elements z, y of N, the pair (z,y) belongs to the reflexive and transitive closure of F.
A path of N is a nonempty sequence z, ...z of elements (places and transitions) of
N satisfying (21,23),...,(Zk-1,21) € F. Such a sequence is a circuit if, moreover,
(zk, 1) € F. .

Pre- and post-sets of elements are denoted by the dot-notation: *z = {y | (y,z) € F}
and z* = {y | (z,y) € F}. This notion is extended to sets of elements: *X is the
union of the pre-sets of elements of X and X* is the union of the post-sets of elements
of X. ‘ 2

A set ¢ C T is a conflict set if either ¢ = s* for some place s or ¢ = {t} for some
transition satisfying *t = 0. ' )
A marking of N is a mapping M:S — IN. A place s is called marked by a marking
M if M(s) > 0. ’
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A marking M enables a transition t if it marks every place of *t. The occurrence of
an enabled transition ¢ leads to the successor marking M’ (written M — M') which
is defined for every place s by

M@s)—-1 if sect\t
M(s)=3 M(s)+1 if set*\*t
M(s) if s¢ctUut*orsetnt*

If M, A, M, L2y ey M, then 0 =1, t,...1, is called occurrence sequence and
we write My — M, (sometimes we say that My —— M, is an occurrence sequence,
meaning that & is an occurrence sequence leading from My to M,). This notion
includes the empty sequence ¢ M —— M for each marking M. We call M’ reachable
from M if M -5 M’ for some occurrence sequence o. [M) denotes the set of all
markings reachable from M.

For a sequence o of transitions and a transition t, #(¢,0) denotes the number of
occurrences of ¢ in 0. For a set of transitions 1", #(7T", o) is the sum of all #(t,0) for
t € T'. If T is the set of all transitions T, then # (7", 0) is called the length of o.

A sequence o of transitions is a permuiation of a sequence 7 if #(1,0) = #(t,7) for
every transition t.

A net system (or just a system) is a pair (N, M), where N is a net and M, a marking
of N. If N is (strongly) connected, we call the system (N, M,) (strongly) connected.
A reachable marking of (N, M,) is a marking reachable from M,.

(N, M) is called live if for every reachable marking M and every transition ¢ there
exists a marking M’ € [M) that enables t. (N, M) is called safe if every reachable
marking M satisfies M(s) <1 for every place s.

The reachability graph (V, E) of (N, My) is the directed graph defined by V = [M,)
and E = {(M,M;) e VxV | M, s M, for some transition t}.

We use the two following results, which are well known:

Lemma 2.1

(1) Let My —=» M, be an occurrence sequence of a net N.
Then, for every place s,

My(s) = Mi(s) + #(*s, ) — #(s*, 0)

(2) Let M, 2+ M, and My - Mj be occurrence sequences of a net N.
If 7 is a permutation of o then My, = M. (]

3 Biased Occurrence Sequences

The purpose of this section is to prove Theorem 3.5, which yields un upper bound for
the shortest paths between two markings M; and M; when M, can be reached from
M, by means of a so called biased occurrence sequence. This theorem will easily lead
to our first result concerning conflict-free systems, and will be used as lemma in the
proof of our second result on extended free-choice systems.

The results of this section are a reformulation and small extension of results of [15].



227

Definition 3.1

Let N be a net. A sequence o of transitions of N is called biased if for every
conflict set ¢ of N at most one transition of ¢ occurs in 0.

Lemma 3.2
Let (N, M) be a safe system and My a reachable marking.
Let o be a biased sequence of transitions of N such that My -2+ M,. Let t be a
transition occurring in o and u a transition satisfying u® N°*t # §.

Then #(u,0) — #(t,0) < 1.

Proof:
Let s € u* N *t. Since o is biased and ¢ € s* occurs in o, no other transition of s*
occurs in 0. So #(t,0) = #(s*,0). We have then:

#(u,0) — #(t,0) #(u,0) — #(s*,0)

< #(°s,0) — #(s*,0) - (u€®s)
= M,(s) — Mi(s) ( Lemma 2.1(1) )
< My(s) ’

<1 (N, Mp) is safe )

Lemma 3.3
Let (N; M) be a safe system and M, a reachable marking.
Let 01 03t be a biased sequence of transitions of N such that

(i) t does not occur in o1 and

(i) every transition occurring in oy also occurs in o,

oyogt X oy toy .
If My —= M, is an occurrence sequence then My —— M, is also an occurrence
sequence.

Proof:

By induction on the length of o,.

Base: If o, is the empty sequence then oy 02t =0yt = 0y 1 7.

Step: Assume that o, is not empty and define o = o} u, where u is a transition.
Let My 25 My 25 M, % My - M,

By (ii), u also occurs in 3. So u occurs at least twice in oy 7.

By (i) and (ii), ¢ does not occur in 0y 3. So, by Lemma 3.2, u* N°t = §.

Hence t is already enabled at M,. Let M, - Mg.

Since oy o2 t is biased, *t N *u = 0. Hence the occurrence of ¢ does not disable u, and
so u is enabled at M;. Since u ¢ and t u are permutations, we get Mg —— M,.

The application of the induction hypothesis to o, o} t (taking o} for o;) yields an

o ‘ , B
occurrence sequence M, % Me. The result follows from Mg — M, and o u = 0.
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Lemma 3.4
Let (N, M) be a safe system and M, a reachable marking.
Let My —+ M, be a biased occurrence sequence.
Then there exists a permutation oy 0, of o such that M, 2% M,, no transition
occurs more than once in oy and every transition occurring in o, also occurs in
Oy.

Proof:

By induction on the length of o.

Base: If 0 = ¢, then take 0y = 03 = €.

Step: Assume that o is not the empty sequence. Let o = 7 1.

By the induction hypothesis, there is a permutation 7; 7, of 7 such that no transition
occurs more than once in 7; and every transition occurring in 73 also occurs in 7.

If ¢ occurs in 7y then 03 = 7 and o0, = 7yt satisfy the requirements.

If ¢ does not occur in 7; then 7 7, ¢ satisfies the conditions of Lemma 3.3, and so

ap TItT .
M; — M, is an occurrence sequence. Take then oy = 7, t and 03 = 7. ]

Theorem 3.5
Let (N, Mo) be a safe system and My a reachable marking.
Let My =+ M, be a biased occurrence sequence. Let k be the number of distinct
transitions occurring in o.
Then there exists a sequence T of transitions satisfying
(i) Ml = Mg, and
ke(k+1
(ii) the length of T is at most —(—2i——)-

Proof:

By induction on the length of o.

Base: If o0 = ¢ then choose T = ¢.

Step: Assume that o is not the empty sequence.

By Lemma 3.4, there exists a permutation 7, 7, of o such that M, AN M,, every
transition occurring in 7, occurs in 74, and no transition occurs in 7, more than once.

Since o ls not the empty sequence, 7; is not empty, and therefore 7 is shorter than o.
Let M; -2+ Mz -2+ M,. We distinguish two cases:

Case 1: Every transition occurring in 7y occurs in 7.

. . i . P1 P2
Again by Lemma 3.4, there exists a permutation p; p; of 7, such that M; 27, M,,
every transition occurring in p, occurs in p,, and no transition occurs in p; more
than once. Then a transition occurs in 7 if and only if it occurs in p;. Moreover,

no transition occurs more than once in either sequence. So every transition ¢ satisfies
#(t, 1) = #(t,p). Let My = Ms £ M,. Then, for each place s,

My(s) = My(s) + #("s, 1) — #(s*, 1) + #(*s, ;) — #(s", 1)

and hence

M4(3) = Ml(‘g) +2- (#(.sa Tl) - #(3.$ Tl))
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Since (N, Mo) is safe and My, M, € [M,), My(s) and M,(s) are both either 0 or 1.
Therefore, #(°s, ;) — #(s°,71) = 0 and hence M,(s) = M,(s).

So M; = M, and M; 24 M,. Since p2 is shorter than o, we can apply the induction
hypothesis to it, which yields an occurrence sequence 7 satisfying (i) and (ii).

Case 2: There exists a transition which occurs in 1; but does not occur in 7,.

We apply the induction hypothesis to Ms —2+ M,.

Since the number of distinct transitions occurring in 7, is at most k — 1, we get a

sequence Mz 2+ M, such that the length of p is at most M

Since each transition occurs in 7, at most once, the length of , is bounded by k.

(k=1)-k k-(k+1)
2 tk= 2

so it also satisfies (ii). n

The sequence 1 = 7y p satisfies (i). Its length is at most

4 T-Systems and Conflict-Free Systems

If a system has no forward branching places (i.e., |s*| < 1 for every place) then all
its occurrence sequences are biased. Hence Theorem 3.5 applies to every occurrence
sequence, and we get the following result:

Theorem 4.1

Let (N, My) be a safe system where N = (S, T, F) and |s*| < 1 for every s € S,
and let M, be a reachable marking. Let M, be a marking reachable from M,.
Then there erists an occurrence sequence My —— M, such that the length of T is

at most
IT1-(T1+ 1)
2
Proof:

Since M, is reachable from M;, there exists an occurrence sequence M; -2+ M,. o is
biased because every conflict set of N contains exactly one transition. The number of
distinct transitions occurring in o is at most |T'}. The result follows from Theorem 3.5.

]

This theorem applies in particular to T-systems, in which |s*| < 1 and I°s] €1
for every place s (T-systems are also called marked graphs [6] and synchronisation
graphs [9]). The bound of Theorem 4.1 is reachable for T-systems, i.e., there exist
T-systems and pairs of markings My, M, for which the bound above is the exact
value of the length of the shortest path leading from M; to M,. Consider the family
of T-systems of Fig. 1. The marking M,4; that puts a token in all places with odd
indices (shown in the figure) is safe. It is not difficult to see that the marking M,,.n
that puts a token in all places with even indices is reachabl(e from) M,q4. Moreover,
n-(n+1

the shortest path leading from M,y to M.,,., has length 5
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s1 s3 5203 S 2n-1

s2 S4 $2n-2 $2n
Fig. 1 A family of T-systems for which the bound of Theorem 4.1 is tight

Therefore, if the only available information is the number of transitions of the net,
then the bound of Theorem 4.1 cannot be improved.

Theorem 4.1 can be easily generalised to conflict-free nets, a well-known class of nets
studied e.g. in [12,11,15].

Definition 4.2
A net N is called conflict-free if every place s of N satisfies either |s*] < 1 or
8* C*s.
A system (N, My) is conflict-free if N is conflict-free.

Theorem 4.3
Let (N, My) be a safe conflict free system where N = (S,T,F), and let My be a
reachable marking. Let M, be a marking reachable from M,.
Then there exists an occurrence sequence My — Mj such that the length of T is

at most
[7]-(T1+1)
2
Proof:

Since M is reachable from M,, there exists an occurrence sequence M; -2+ M,.

Let 5’ be the set of places of N with more than one output transition. We proceed
by induction on |S'].

Base: If S’ = # then the result follows by Theorem 4.1.

Step: Assume that S’ # @-and let s € 5.

We show that the behaviour of N can be simulated by some conflict-free net N’ which
has less forward branched places than N. N’ is obtained from N by the following
transformation (note that by the conflict-freeness of N, s* \ *s is empty):

‘e For each ¢ € s* N *s, define a new place s, and arcs (s,1) and (2, 3;).
o For each ¥/ € * \ s? and each t € s* N *s, define an arc (¢, s,).

o Delete s and adjacent arcs.
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Fig. 2 Transformation of a conflict-free net into a net without forward branching places.

This transformation is shown in Fig. 2
For every marking M of N, we define a marking M’ of N’ as follows:

v _ J M(s") if 8 is aplace of N
M(s)"{M(s) ifs' =3

We claim that M; -£+ M, is an occurrence sequence of N iff M| —%» Mj is an
occurrence sequence of N'.

Clearly, it suffices to prove the claim for sequences p having the length one; the general
case follows by induction. So let p = ¢ for some transition ¢. We distinguish four cases

(where in the sequel the e-notion is used for pre- and post-sets in N and the symbol
o is used for pre- and post-sets in N'):

(i) t ¢ *sUs®. Then *t = °t and {* = t°, and the result follows.

(ii) t € *s\ s*. Then, in N', t € °s, \ s? for each transition u € s°, and the result
follows.

(iii) ¢ € s°\ *s. This case is impossible since N is conflict-free.

(iv) t € *sNs®. Then t € °s, N 83 for each transition u € s°, and the result follows.

By this claim, M{ = M}, is an occurrence sequence of N'.
By construction, N’ is conflict-free. Moreover, the set of places of N’ with more than
one output transition is S’ \ {s}. Hence, we can apply the induction hypothesis;
there exists an occurrence sequence M —— M} such that the length of 7 is at most
IT|-(1T1+1)

) .
Again by the above claim, M; — M, is an occurrence sequence of N. ]

5 Extended Free-Choice Systems

In this section we obtain an upper bound for the length of the shortest path between
two reachable markings of live and safe extended free-choice systems: it is never longer

* IT]- (1] +1) - (IT| + 2)
6
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Extended free-choice systems generalise free-choice systems introduced in [10].

Definition 5.1
A net is called extended free-choice if its conflict sets constitute a partition of its

set of transitions, i.e., every two places s, 8’ satisfy either s* = Sors*ns® =4.
A system (N, My) i is extended free-choice if N is extended fre&chowe

Note that every net w:thout forward branching places is extended free-choice.

The proof of our result is based on the notions of conflict order and sorted sequence.
They are introduced in the next definition.

Definition 5.2
Let N be an extended- free-choice net and let T be the set of transitions of N.
A conflict order < C T x T is 'a partial order such that two transitions ¢ and u are
comparable (i.e., t < u or u < t) if and only if they belong to the same conflict
set. u <% denotes u Xt and u # {. :
Let o be a sequence of transitions of N.

. A conflict-order < is said to agree with o if for every conflict set ‘c, either no
transition of € occurs in o, or the last transition of ¢ occurring in o is maximal,
ie., the greatest transition of ¢ with respect to <.

The sequence ¢ is called sorted with respect to a conflict order < if for every two
transitions t,u satnsfymg t -< u, t does not occur after u m o.

We outline the proof of the result. Let (N, M;) be a live and safe extended free-choice
system and M1 ——+ M, an occurrence sequence. We shall show:

(1) There exists a conﬂnct order < < that agrees with ¢ and a sorted permutation r
of o such that M, - M,.

@ r=n ... ks where - 7; is a biased SeQuerfce for every i, and k is less or equal
tha.n the number of transitions of N.. . . ‘ ,

Using (2) and Theorem 3.5, we sha]l prove that there exist sequenoes P1yP2y+ - P Of
bounded length such that, for every i, if M; =5 M;,, then M; 25 M.

We define p = py p;...pr. Then My <5 M,. Some arithmetic will yield the upper
bound on the length of p we are looking for.

Of these two steps, (1) is more involved (step (2) shall follow easily from the definition
of sorted sequence). To prove (1), we shall make use of the well-known decompasition
theorem of the theory of free-choice nets, which states that every live and safe extended
free-choice system can be decomposed into S-components carrying one token. Let us
recall both the definition of S-component and the decomposition theorem.

Definition 5.3

“An S-net is a net satisfying [*t] = [t*| = I for each transition t.
(N, My) is an S-system if N is an S-net.
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Fig. 3 An S-net and two live and safe markings

Definition 5.4

A strongly connected S-net N, is an S-component ofa net N if for every plaoe s
of N; holds:

¢ sis aplace of N,
o the pre-set of s in N; equals the pre-set of s in N, and
o the post-set of s in N, equals the post-set of s in N.

A net N is covered by a set of S-components {Ny, ..., N,} if every place of N is
contained in some S-component N; of this set. o ' '

Theorem 5.5 [10,2]

Let (N, My) be a live and safe extended free-choice system.

Then N is covered by a set of S-components {Ny,...,N,} such that each N; has

ezactly one marked place (which contains only one token because (N, My) is safe)
n

We shall prove (1) in two steps. First, we shall show that the statement holds for
connected live and safe S-systems (notice that every S-system is extended free-choice).
Then, using this result and Theorem 5.5, we shall extend the result to arbitrary live
and safe extended free-choice systems.

Let us illustrate the meaning of (1) with an example. Since (1) is already non-trivial
for the special case of S-systems, we choose as example the connected live and. safe
S-system (N, M) of Fig. 3, where M, is the marking that puts one token in s, (black
token), and M is the marking that puts one token in s; (white token).

We have My — M, for the sequence
o= tz't4 t3 tl t2 t5 tl tq t4 t)

The conflict sets of the net are {t,}, {t5, 15} and {t4,¢5}. The last transition of {¢,,23}
occurring in o is t; the last transition of {t,,5} occurring in o is ;. Therefore, the
only conflict order that agrees with o is the one given by #; < t; and t; < ;.
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Now, (1) asserts the existence of a sorted permutation 7 of o that also leads from
M, to M; - i.e., a permutation of o where 3 does not occur any more after the first
occurrence of 13, and t5 does not occur any more after the first occurrence of ¢4. In
this case, the permutation is unique:

T =tgtylatstylatytatyty
The condition requiring thé conflict-order to agree with o is essential for the result.
In our example, no sorted permutation of & with respect to a conflict order where
ty < t3 can lead to the markmg M;; because every occurrence sequence leadmg to M,
must have 1, as last transition.
The rest of the section is organised as follows. We prove (1) for live and safe connected
S-systems - actually, we prove.a stronger result - in Proposition 5.8. We generalise
the result to live and safe extended free choice systems in Theorem 5.10. Finally, we
obtain the upper bound in Theorem 5.11.

5.1_ " Sorted Occurrence Séquehéés of S-Systems ‘

The result we wish to prove has a strong graph theoretical flavour, because the oc-
currence sequences of live and safe S-systems correspond to paths of S-nets. In fact,
the main idea of our proof'is taken_ from the proof of the BEST-theorem [8] of graph
theory, which gives the number of Eulerian trails of a directed graph. In [8], {1] is
cited as the original reference. ’
The following result is well-known:

'Lemma 5.6 [4]
" A connected S-system (N, M) is live and safe if and only if tt ts strongly connected
" and exactly one place is marked with one token at M. n
Lemma 5.7 '

Let (N Mo) be.a lwc and safe connccted S—aystem and let My be a reachable
~marking. Let M, %+ M, be an occurrence sequence.
Then (N, M,) is still live and sefe. Let s be the unique place satisfying My(s) = 1.
- Let X be a conflict order which agrees with o and let Tp, be the set of maztmal
~ tmnsetwns (wzth respcct to <) occurring in o. .
. Then every circuit of N containing only tmnsmons of T,,. contains the place s.

Proof

Assume there exists a circuit of N which contains only transitions of T}, but does not

contain the place s. -

Let t,r,u be three consecutive nodes of the cireuit, where t, u are transatlons and r

is a place. Since t € Ty, t occurs in o.:Let ¢ =7 t p such that ¢ does not occur in p.

We have r # s, because the place s is not contained in the.circuit. - Since r is marked

after the occurrence of t, some transition which removes the token from r - i.e., some

transition of the conflict set r* — occurs:in: p. In particular, the maximal transition of
r* (w1th ‘Tespect to -<) occurrmg in o occurs in p; by the deﬁmtlon of the set T,,, this

transition is u.

So, for:every pair of consecutive transltnona t'and u of the cxrcult u occurs after ¢ in

. ‘This contradicts the finiteness of o.” Ce [ ]
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Proposition 5.8
Let (N, My) be a live and safe connected S-system and let M, be a reachable
marking. Let My —<» M, be an occurrence sequence.
Let < be a conflict order which agrees with o.
Then there exists a sequence T of transitions of N such that

(i) 7 is sorted with respect to <,
(i) My = M,, and

(iii) 7 ts @ permutation of o.

Proof:

Construct an occurrence sequence T as follows:
Start with M,. At every reached marking, choose an enabled transition according to
the following rule:

Take the least enabled transition (with respect to <) which occurs more
often in o than in the sequence obtained so far.

7 is the sequence obtained after applying this rule as long as possible. Notice that
the procedure eventually stops, because the rule can only be applied if the length of
the sequence constructed so far is less than the length of o.

Let M; —» M. Then (N, Ms) is still live and safe; let s be the unique place of N
marked by M3 (Lemma 5.6). By construction, 7 satisfies the following two properties:

o For every transition ¢ of N ;,#(t,r) < #(i,0), and

o For every transition ¢ of s°, #(t,7) = #(t,0).
(since every transition of s® is enabled at M, if for some transition ¢ € s® we
have #(t,7) < #(l,0), then 7 can be extended to T ¢ using the rule, which
contradicts the definition of 7.)

We claim that r satisfies (i) to (iii).
- (i) 7 is sorted by construction.

(i) We show M3 = M,. By Lemma 5.6, and since (N, M;) as well as (N, M) are
live and safe, both markings mark exactly one place with one token. Since
Ms(s) =1, it suffices to prove My(s) > My(s).

Mi(s)+ #(3,0) - #(s%,0)  ( My~ My)
Mi(s) + #(°s,7) — #(s*,7) ( propertiesof 1) .-
Ma(s) oMy S My)

Mz(s)

hiv i

(iii) Assume that 7 is not a permuta.t.lon ofos.
Then there are transitions occurring in o more often t.han in7. By construction
of 7, there are maximal transitions (with respect to 4) with the same property.
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Let T;, be the set of maximal transitions ¢ satisfying #(¢,7) < #(t,0).
Let s € T;,.. By (ii), M; = Mj and therefore

#(‘3a ‘7) - #(3.’”) = #(.sa T) - #(3.1 T)

By the first property of 7, #(t,7) < #(t,0) for every t € *s. Since s € T*,
we have #(°s,7) < #(*s,0). So #(s*,7) < #(s*, o). Let t be the maximal
transition in s*. As 7 is sorted, #(t,7) < #(2,0). Sot € T,,.

Therefore Ty, C *T,.

Since T, # 0 and by the finiteness of N, we find a circuit of N containing only
(places and) transitions of T},. Since all transitions of T, are maximal, we can
apply Lemma 5.7: the circuit contains the unique place s marked at M;. Let ¢
be the unique transition of s* contained in the circuit. Then t is enabled at Ms.
Since.t € T, we have #(t,0) > #(t,7) — contradicting the second property of
T. -

Our goal (1) was to prove the existence of a conflict order and a sorted permutation
7 of o leading to the same marking as 0. Proposition 5.8 proves-a stronger result,
namely that the conflict order can be arbitrarily chosen among those that agree with
o (notice that there always exist some conflict order that agrees with o).

5.2 Sorted Occurrence Sequences of Extended Free-Choice Systems

Theorem 5.5 suggests to look at extended free-choice systems as a set of sequential
systems (corresponding to the S-components carrying one token) which communicate
by means of shared transitions. The following lemma states that the projection of
an occurrence sequence of the system on one of its S-components yields a ‘local’
occurrence sequence of the component. The proof is simple (see e.g. [14]).

Lemma 5.9

Let (N, M) be a system and let My be a maclzablc markmy Let My = M, be
an occurrence sequence.
Let N; be an S-component of N. Let Mj, Mj be the restriction of the markmgs
M,, M; to the places of N;. Let o; denote the sequence obtained from o by deletion
of all transitions which do not belong to N;.

" Then M} ingts an occurrence sequence of N;. ]

Using this lemma, we now generalise Propos:tlon 5.8 to live and safe extended free-»
choice systems.

Proposition 5.10

Let (N, M) be a Itve and safe eztended free-chowe system and let M, be a reachable
marking. Let M, -2y M, be an occurrence sequence.

 Let X be a conflict order which agrees with o.

. Then there ezists a sequcncc 7 of transitions of N such that

(1) 7 is sorted with respect to <
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(ii) Ml —" Mg, and

(iif) T is a permutation of 0.

Proof:

By Theorem 5.5, N is covered by a set {N,,...,N,} of S-components with exactly
one place marked. In the sequel, we call these S-components state-machines of N.
Let N; be a state-machine of N. For each marking M of N, we define Mi as the
restriction of N to the set of places of N;. For a sequence of transitions a, a; denotes
the sequence obtained from « by deletion of all transitions which do not belong to N;.
By Lemma 5.9, for every state-machine N;, M{ —% Mj is an occurrence sequence of
N;. Since every conflict set of a state-machine N; is a conflict set of N, the restriction
of X to transitions of N; agrees with o;.

By Lemma 5.6, (N;, M}) is live and safe. By Proposition 5.8, we find for every state-
machine N; a sorted permutation p; of o; satisfying M = Mj,

Now we define 7 to be a maximal sequence (with respect to prefix ordering) satisfying

(a) 7 is an occurrence sequence

(b) For every state-machine N;, 7; is a prefix of p;

Since the empty sequence enjoys (a) and (b), such a maximal sequence T exists.

7 is sorted because every conflict set is contained in some state-machine N;, 7; is a
prefix of p;, and p; is sorted.

It remains to prove that M; —+ M, and that 7 is a permutation of o. Since 7 is
an occurrence sequence by construction, it suffices to prove the second part, i.e., that
#(t.' T)= #(t.,rr) for every transition f of N.

Let  be a transition of N and let N; be a state-machine containing ¢t. We have:

#(t’ T) = #(tvri)
< #(tp) ( 7i is a prefix of p; )
= #(t,0:) ( pi is a permutation of o; )
= #(t,a)

Let T} be the set of transitions ¢ satisfying #(¢,7) < #(¢,0). We prove T} = §.

Let S’ (T') be the set of places (transitions) of the state-machines that contain some
transition of T;. For each state-machine N; define p; = 7; 7/ (which is possible because
7; is a prefix of p;).

Let M; = M;. We show first that every transition ¢ € 7" has an input place in the
set S’ which is moreover unmarked at M;.

Case 1: t is in the conflict set of some transition in Tj.

Since N is an extended free-choice net, every two transitions of this conflict set have
the same presets. Hence we can assume without loss of generality that t is the least
transition in the conflict set which belongs to T}, i.e., t € T} and #(t’,n: #(t',0)
for every ¢’ < t.
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Let s € *t. Every state-machine containing s also contains ¢. Since t € T}, s € §’. So
*t C §'. It remains to show that ¢ has an unmarked input place.

Assume that every place s € *¢ is marked at M;. Then ¢ is enabled at Mj.

Let N; be an arbitrary state-machine containing ¢. By assumption, the unique place
s marked at Mj is in *t.

We claim the following:
(1) t occurs in 7.
We have:
#(1,0:) = F#(t,p) *( pi is a permutation of o; )
= #t,n7) i ( definition of 7)
= #m)+ #0,7) |

Since t € T}, #(t,7) < #(t,0), and therefore #(t,7;) < #(t o;). So #(t,7) > 0,
and therefore t occurs in 7.

(2) For every t' <'t, ¥ does not occur in 7}. '
Using the same arguments as in (1), we have #(t', ;) = #(t', ;) +#(', 7{). Since
t' does not belong to T, #(¢', r) #(t',0), and therefore #(¥',7;) = #(t', ;).
So #(t',7) =0.

Since M; = Mj is an occurrence sequence of N;, 7/ starts with some transition of s°,
the oonﬁnct set containing ¢. 7/ does not start thh a transition less than ¢ by (2). 7/
does not start with a transition greater than ¢ because 'r, is sorted, and ¢ is the least
transition in the conflict set that belongs to 7;. Hence 7! starts with t.

Since this holds for all state-machines N; conta.mmg t, the sequence 7' = 7 { satisfies
(a) and (b) - contradicting the definition of T.

Case 2: 1 is not in the conflict set of any tra.nsition in T}.

Since t € T", there exists a state-machine N; containing ¢ and some transition of 7j.
Let s be the unique place marked at Mj.

Since N; contains a transition of T}, 7/ is not empty (use the same argument of (1)
in Case 1). Let ¢ be the first transition of 7{. Then ¢ € T;. Since M‘ — M} is an
occurrence sequence of N, t' € s°.

Since ¢ and ¢’ do not belong to:the same conflict set, ¢ ¢ s°

Hence the umque place of Niin*tis unmarked at Mj. This place isin S’ by definition
of §.

So every transition ¢ € T has an input place in the set S’ which is moreover unmarked
at Ms. Assume Ty # 0. Then T' # 0. , ‘

Since every transition in 7' has an unmarked input place, no transition in T’ is enabled
at Ms. Since M, is a live marking, we find an occurrence sequence M, %4 M such
that M enables a transition ¢ of T'. Assume without loss of generallty that x is
minimal, i.e., no transition occurring in x belongs to T".

Let s be an mput-pla,ce‘of ¢ such that s € ' and s is not marked at M;. Since ¢
is enabled at M, yx contains a transition ¢ € *s. Every state-machine containing s
contains t'; hence ¢’ € T" - contradicting the minimality of x. ]
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5.3 An Upper Bound on the Length of Shortest Paths

We are finally ready to prove the result stated in the introduction.

Theorem 5.11

Let (N, My) be a live and safe extended free-choice system where N = (S, T, F),
and let My be a reachable marking. Let M, be a marking reachable from M,.
Then there is an occurrence sequence My 2 Mg such that the length of p is at

most
IT|- (71 +1) - (IT] +2)
6

Proof:

Since M is reachable from M,, there exists an occurrence sequence M, -2+ M.
By Proposition 5.10, there is a conflict order < and an occurrence sequence

M, = M, such that 7 is sorted with respect to <.

Let k be the number of distinct transitions occumng in 7. Then k < |T). We show

that there exists an occurrence sequence M LM, such that the length of p is at
k-(E+1)-(k+ 2)

most

6
We proceed by induction on k.
Base: If k = 0 then there is nothing to be shown.
Step: Assume that & > 0.
Decompose 7 = 71 73 such that 7, is the maximal prefix of p that contams at most
one transition of each conflict set. Then 7, is biased. Let My 25 My B M,
By Theorem 3.5, there is an occurrence sequence M, -2+ M, such that the length of

p1 ls at most _k_gfiﬂ

If M3 = M,, then we are finished because

k-(k+1) _ k-(k+1)-(k+2)
2 6

So assume that M3 # M,. Then 73 is not empty and starts with a transition £. Since
7; is maximal, 7; contains a transition #' in the conflict set of ¢.
Since 7 is sorted, t' < t and #' does not occur in 7,.
So the number of distinct transitions occurring in 7, is at most k — 1.
By the induction hypothesis, there exists an occurrence sequence M; -2+ M, such
(k=1)-k- (k + 1) '
6
Define p = p; p;. Then My £+ M, and the length of p is at most

ko(kt1) | (k=1)-k-(k+1) _ k-(k+1)-(k+2)
2 6 6

that the length of p; is at most
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6 A Family of Systems with Exponential Shortest Paths

We exlhiibit in this section a family of systems for which there exists no polynomial
upper bound in the length of the shortest paths. The family is shown in Fig. 4. All
the systems of the family are live and safe. They are even persistent, i.e, a transition
can only cease to be enabled by its own firing. -

The shortest path that, from the marking shown in the figure, reaches the marking
that puts a token in the places of the set ‘

{815 83, 85y375 ¢4 334n-3y 34n—1}

has exponential length in the number of transitions of the net. This can be easily
proved by showing that, in order to reach this marking, transition #;,.; has to occur
at least once and, for every 1 < i < n, transition ¢5;_; has to occur twice as often as
transition #3;41.

7 Conclusions

We have obtained polynomial bounds for the length of the shortest paths connecting
two given markings for two classes of net systems: safe conflict-free systems and live
and safe extended free-choice systems. Furthermore, we have shown that in the case
of safe conflict-free systems the bound is reachable, and that the length of shortest
paths in safe persistent systems can be exponential in the number of transitions. In
the proofs we have made strong use of results of Yen [15] on conflict-free systems and
of graph theoretical results on Eulerian trails [1,8].

Using the results of this paper, we have been able to prove in [7] that the model
checker described there has polynomial complexity in the size of the system for safe
conflict-free systems.

We do not know at the moment if the bound for live and safe free-choice nets is
reachable. In fact, we believe that a reachable bound should be quadratic in the
number of transitions. We are also working in the generalisation of our results to the
bounded case.
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