On the Mechanized Verification of Infinite Systems

Christine Rockl and Javier Esparza
Fakultat fir Informatik, Technische Universitat Miinchen

D-80290 Miinchen, Germany
http://www7.in.tum.de/{ esparza, “roeckl}

Abstract

Observation equivalence is a well-known technique for proving that
a concurrent system satisfies its specification. We report on our ex-
perience in the mechanization of observation equivalence proofs with
the help of a general-purpose theorem prover. Several case-studies
are considered, incluiding an sliding window and a cache-coherence
protocol. In all cases the system has an infinite number of states,
and sometimes also an arbitrarily large number of components. We
show how compositionality and bisimulation-up-to techniques can be
applied to reduce the size of the proofs.

1 Introduction

One of the main goals of the A3 Teilprojekt within the Sonderforschungsbe-
reich 342 is the development of verification techniques for distributed systems.
Since 1995, special emphasis has been put on automatic (model-checking)
and semi-automatic techniques, and in the period 1998-2000, A3 has devoted
special attention and resources to the development of machine support for the
analysis of systems with an infinite number of states. Dealing with infinite-
state systems is one of the keys to extending the success of formal verification
from hardware to software.

The A3 Teilprojekt has designed fully automatic verification algorithms
for restricted classes of systems exhibiting a regular structure. Since these
results cannot be extended to arbitrary systems due to well-known unde-
cidability results, A3 has also investigated the use of interactive theorem

provers. The goal is the mechanization of a proof technique allowing to split
a correctness proof into a potentially large number of “easy” cases, and a
small number of “difficult” cases. The theorem prover should be able to
automatically solve (most of) the easy cases, and guarantee that the proof
of the difficult cases, carried out interactively with humans, is correct and
complete. Moreover, the proof technique should offer the possibility to divide
the correctness proof of a system into proofs about their subsystems. That
is, the proof technique should exhibit good compositionality properties.

A3 has chosen observational equivalence, as introduced by Milner and
Park in classical papers [11, 6], as proof technique. In this approach, both
the system and its specification are formalized either as processes Sy and Sp
in an adequate process algebra, or simply as infinite labelled transition sys-
tems. The system satisfies the specification if Sy and Sp are observationally
equivalent, meaning intuitively that their behaviours cannot be distinguished
by an external observer.

Observational equivalence can be shown by exhibiting a relation between
the possible states of Sy and Sp, and proving that this relation is a bisim-
ulation. Loosely speaking, checking that a given relation is a bisimulation
amounts to proving for each pair (s,?) in the relation and for each possible
action of state s (¢) the existence of a “matching” action of state ¢t (s). The
proof is carried out by partitioning the relation into a suitable number of
subrelations for whose elements the matching property can be proved in an
analogous way. For most of these subrelations the proof is simple, and can
be done automatically or with little interaction.

In this paper, we apply the technique of observational equivalence to a
number of systems having an infinite state space. Proofs are carried out in
the theorem prover Isabelle/HOL. In Section 3 we present two introductory
examples which allow us to demonstrate how to exhibit bisimulations in a
theorem prover. The second of these examples is the well-known alternating-
bit protocol. In Section 4 we consider a sliding window protocol. Correct-
ness is proved for a window of arbitrary size n. The proof exploits the
compositionality of observation equivalence. Finally, in Section 5 we con-
sider a write-invalidate cache coherence protocol. We show correctness using
bisimulation-up-to techniques, which allow to substantially reduce the size
of the proof.

2 Isabelle/HOL

We use the general purpose theorem prover Isabelle/HOL [13, 12]. Isabelle’s
meta-logic is higher-order intuitionistic logic. On top of it, various object-

logics are defined, including a theory of higher-order logic (HOL), which is
the one we use. Users can extend Isabelle’s object-logics with theories of their
own; in particular, HOL allows the user to define recursive datatypes and
inductive sets, from which Isabelle automatically computes proof strategies
for structural and rule induction, respectively. A theory generally consists of
two parts: in a so-called .thy-file, the user defines new types and objects,
and in the associated .ML-file, he/she can formally derive theorems about the
new objects.

Proofs in Isabelle are based on unification, and are usually conducted
in a backward style: the user formulates the goal he/she intends to prove,
and then—in interaction with Isabelle—continuously reduces it to simpler
subgoals until all of the subgoals have been accepted by the tool. Upon
this, the goal can be stored in the theorem database of Isabelle/HOL to be
applicable in further proofs. The prover offers various tactics, most of them
applying to single subgoals. The basic resolution tactic resolve_tac, for
instance, allows the user to instantiate a theorem from Isabelle’s database
so that its conclusion can be applied to transform a current subgoal into
instantiations of its premises. Besides these classical tactics, Isabelle offers
stmplification tactics based on algebraic transformations. Powerful automatic
tactics, like auto_tac or force_tac, apply the basic tactics to prove given
subgoals according to different heuristics.

3 Applying Observational Equivalence

We assume that the system and its specification are modelled in terms of
labelled transition systems [14]. A labelled transition system consists of a set
of transitions of the form P —= P', where P and P’ are processes or states,
and « is an action. There are wvisible actions, included in a set Act, which
can be inputs a(?) (receive a list ¥ of values through channel a) or outputs
a(?) (send a list ¢ of values through channel a); and an invisible or internal
action 7. We write a and a whenever the list of values is empty. There is
also a distinguished nitial state.

Processes can either be basic processes or a parallel composition of basic
processes. The behaviour of a process P, that is, the transitions of the form
P % P is defined inductively, as the least set of transitions satisfying
given introduction rules. For a basic process P, these are axioms of the form
P %5 P', possibly with side conditions. For example, the parameterized set
of axioms

a(z mod 2)
Alz) —— A(z+1), z e N,

describes the transitions of the basic processes A(0), A(1),..., yielding the
infinite transition system

a(0)

O g1y M g9) 1@

A(0) 2 A@3)

Taking A(0) as initial state, we have thus modelled a system which repeatedly
outputs the values 0 and 1 through the channel a.
For a parallel composition of processes, the introduction rules are as follows:

o P P'implies P || Q@ — P'| Q,

e Q- Q implies P||Q = P Q,

° PMP’andQﬂQ’implyPHQL>P'||Q',and
¢ PP and Q ™ @ imply P || Q 55 P | Q.

The inductiveness of these rules yields a case analysis telling for a tran-
sition how it must have been derived. For a visible transition P || @ — R,
for instance, we can infer that there must exist some P’ or @' such that
P PandR=P ||Q,or Q> Q and R= P || Q. These inferences
are automatically computed by Isabelle/HOL, and in our case studies we
make extensive use of this feature.

Being interested in the visible behaviour of the systems rather than
in their internal activities, we use weak transitions abstracting over 7-
transitions. (In the sequel, we also refer to normal transitions as strong tran-
sitions.) We denote the reflexive transitive closure of — by =5 ()%,
and == is given by === In particular, P —=+ P’ implies P == P’

Bisimulation-based equivalences have been introduced by Park and Mil-
ner [11, 6]. For technical reasons, we slightly modify the standard definition
and use bisimulations wrt. a set of visible actions'. As usual, & denotes « if
« is a visible label, and € if a = 7.

Definition 1 (Bisimulation) R C &; x S is a bisimulation wrt. L C Act
if for all PRQ, alla € LU {7}, all P' € 8, and all Q' € S,
LFor readers with knowledge of process algebra, this more general definition makes the

restriction operator unnecessary, and so we can avoid formalizing additional transition
rules for processes with restriction.

(i) If P = P', there erists Q' € Sy such that Q =% Q' and P'RQ'.

(i) If @ = @', there exists P' € Sy such that P 2 P and P'RQ' .

Two processes P, () are observationally equivalent wrt. L if some bisimula-
tion wrt. L contains (P, Q). Equivalently, if ~;, is defined as the union of
all bistmulations wrt. L, then P, Q) are observationally equivalent wrt. L if
and only if P =~ Q.

So, loosely speaking, if two processes are observationally equivalent, then
any action of one of the processes can be matched by a sequence of actions of
the other process, and the results are again observationally equivalent. This
definition yields a method for a systematic analysis of reactive systems. In
order to prove that a system Sy is observationally equivalent to its specifica-
tion Sp, proceed as follows: (1) exhibit a relation containing the initial states
of Sy and Sp, and (2) prove that it is a bisimulation.

We illustrate how this procedure is carried out in Isabelle/HOL by means
of a toy example. Define a process B by

B X% p B “Yp

We prove that the process A(0), defined above, and B are observationally
equivalent. In a first step, we set up the systems and their specifications by
giving their states and transition rules in an inductive definition.

a(z mod 2)

Al A(x) — Az +1), ze€ N

B1 B4 p

B2 B p
From this definition, Isabelle computes sets of rules that can be used to reason
about the transitions in a constructive as well as in an analysing style. For
instance, Isabelle computes an elimination rule stating that, for every ¢, if
A(7) can perform a transition A(i) — P’ then necessarily a = @(i mod 2)
and P' = A(i +1).

In our example, the bisimulation candidate is

F Y rur
¥ {(A(7), B) | i even}
Fo ¥ {(AG),B) | iodd}

In Isabelle, this relation is proved to be a bisimulation wrt. the set
{a(0),a(1)}, by first using a (straightforward) formalization of Definition 1
as a rewrite rule, that is, by expanding the definition, and then deriving the
resulting proof obligations using Isabelle’s automatic tactic auto_tac.

Often, further theorems are necessary to provide additional information
about data types and functions used to model the transition systems (for
instance, as we shall see later, about insertion into or deletion from the finite
lists representing communication channels). In our example we need the
following basic theorems about the mod function:

T1, (2n+1)mod2=1 T1l, 2nmod2=0
T2, nmod2=1=dn.n=2m+1 T2, nmod2=0= dm.n=2m

In order to show that F is a bisimulation wrt. {@(0),a(1)}, we must prove
the following property for each ¢ € {1,2} and for each « € {a(0),a(1),7}: for
every (P,Q) € F, if P = P', for some P', then there exists a @' such that
Q == Q' and (P', Q') € F; and similarly for Q. So even in this toy example,
we have 2 x 3 x 2 = 12 proof obligations to fulfill. Seven of them are carried
out automatically by Isabelle using its tactic auto_tac. For the remaining
five obligations, very moderate interaction by the user is necessary, mostly
consisting of a suitable instantiation of results like T'1, through T2,.

Remark: It should be noted that, unlike in many proof mechanizations
in theorem provers, our Isabelle proofs are not much different from proofs
as one would perform them by hand. Yet, what is different is the emphasis
put on different parts of the proofs. Whereas in proofs by hand one has to
be careful not to forget any of the proof obligations, Isabelle automatically
takes care of this. On the other hand, an Isabelle user may have to spend a
lot of time interacting with the tool in order to prove simple theorems about
the data structures manipulated during a transition. In both cases, the weak
transitions have to be found by the person conducting the proof. However,
presenting them to Isabelle is not much more time-consuming than writing
them down on a piece of paper, and often it even suffices to provide the prover
with a scheme that enables it to generate the transitions automatically.

Observational equivalence is a compositional proof technique. In our
context, this means that if P and () are observationally equivalent wrt. a set
L of actions, then P || R is observationally equivalent to @ || R wrt. L for
any process R. In other words, P can be replaced by () in any context. We
shall make frequent use of this property.

K1 K(s) ace(g) K (z.s) L1 L(s) aceg) L(zs) (accept)

K2 K(szpt) — K(st) L2 L(sxt) — L(st) (lose)

K3 K(szpt) — K(szprpt) L3 L(szt) — L(szxt) (duplicate)

K4 K(sazpt) — K(swyt) (garble)

K5 K(szp) % K(s) L5 L(sz) % L(s) (deliver)

F1 2 F(z) Fr Fi%p (accept/discard)
F2 F(z) > F F2' F(z"t') -5 F(z") (lose, n > 0)

F3 F(z") 5 F(z") (duplicate)

F4 F(z) D) p F4’ F(z"H)) g (deliver, n > 0)

Table 1: Faulty Communication Channels. An implementation K can lose,
duplicate, and garble accepted messages (K1-K5). We assume garbling of
messages to be detectable. A bit b attached to each message tells whether the
message is still correct (b = ¢) or has been garbled (b = g). In combination
with a filter F' (F6-F9, F6’-F9’), it behaves like a specification L (L1-L5).

3.1 Faulty channels of unbounded size

Our first example is taken from [20]. It is of interest to us for the following
reasons: (1) it compares two nondeterministic infinite-state systems oper-
ating on similar data structures, and (2) for most of the resulting proof
obligations it suffices to find matching strong transitions, that is, in most
cases an action by one of the processes is matched by one single action of the
other processes. Reason (1) emphasizes that the bisimulation proof method
is universally applicable, and does not require, for instance, the specifica-
tion to be deterministic. As we shall see, reason (2) allows Isabelle/HOL to
conduct the proof almost automatically.

Consider two channels, K and L, of unbounded capacity; their contents
can be modelled by finite lists of arbitrary length, and so we denote a state
of channel K by K(z...x,), where z; ...z, is a list of messages, each of
them taken from an arbitrary set M of possible messages. K and L are basic
processes, and Table 1 contains the formal descriptions of their behaviour.
Both K and L may lose (K2, L2) or duplicate (K3, L3) messages, but
K is further able to garble data (K4). We suppose that it is possible to
detect whether a message is correct or garbled; therefore, all messages in K
are marked with an index c if they are correct, and g if they are garbled; b
stands for b or g. We consider a filter F' which, when attached to a channel,

delivers correctly transmitted messages (F1, F4, F4’) and discards garbled

ones (F1°). Like the channels, F' is itself faulty: it can lose (F2, F2’)

or duplicate (F3) messages. We prove that the parallel composition of K

and F' is observationally equivalent to L with respect to the set of actions

L, = {acc(z), del(z) | x € M }. (This is not so trivial as it may seem: for

instance, it does not hold if F' cannot lose messages, see the remark below.)
For this, we show that the relation

F ¥ {(K(s) || F, L(5)) | s an indexed sequence of messages,

§ = s without indices and garbage }

U {(K(s) || F(z™), L(52z™)) | s an indexed sequence of messages,
5§ = s without indices and garbage,
T a message }

is a bisimulation wrt. the set L;, where § in L are obtained from the lists s in
K by first eliminating all garbled messages and then clearing all remaining
messages of their ¢ tags. For a list s = a.a4a.b.b.cqa., for instance, § = aabba.
Proving that F is a bisimulation is not difficult, and most of the involvement
of the user goes into theorems describing, for instance, the relation between
$ and §' if ¢’ is obtained from s by losing one message. Provided with these
theorems, Isabelle proves by one single application of auto_tac that F is a
bisimulation, automatically guessing, for instance, the matching weak tran-
sitions. The proof script contains less than 300 lines, and has been set up
within a few hours only.

Remark: We have considered a faulty filter F' which loses and duplicates
messages itself. For a correct filter F' we do not have K || F' =, L. Intu-
itively, if the filter is correct then K || F' is more reliable than L, while obser-
vational equivalence requires the two systems to have the same (un)reliability.
In this case one can use observational preorder, in which L has to simulate
the behaviour of K || F’ but not vice versa.

3.2 The Alternating Bit Protocol

The Alternating Bit Protocol (ABP), proposed in [5, 1], is a well-established
benchmark for proof methodologies implemented in theorem provers (see, for
instance, [10, 2, 9, 3]). It turns unreliable channels into reliable communi-
cation lines. We consider an infinite-state variant in which the channels can
hold arbitrarily many messages, like in the previous example. We assume
that messages can be lost and duplicated, but not garbled. In order to con-
struct a protocol also dealing with (detectable) garbling we can use the result

Trans

accept deliver

—| Sender Replier [—=

ackno‘m ‘4

Ack

Figure 1: Components of the ABP. The protocol is designed to turn the
unreliable channels Trans and Ack into a reliable communication line.

System: sender and receiver

del

S1 S,(b) =5 8,(b) R1 R,(b) == R,(b) (accept /deliver)
s2 5,0 28 5, (b) R2 R,(b) "YU R, (transmit)
S3 Syu(b) — Ss(b) R3 Ry, (b) - Rs(b) (timeout)

S4 S,(b) el Sq(—b) R4 Ry(b) gy Ry (—b) (receive new copy)
S5 S,(0) “ 5,(5) R5 Ru(b) “Y Ry (b) (receive old copy)
Specification: one-place buffer

Bl B, > By B2 By E) B, (accept/deliver)

Table 2: Implementation and Specification of the ABP. Sender S (S1-S5)
and Replier R (R1-R5) repeatedly transmit copies of the current message
(acknowledgement) until they receive an acknowledgement (a new message).
Old copies are distinguished from new ones with the help of an alternating
bit b. The ABP is supposed to turn faulty channels of arbitrary size into
reliable one-place buffers B (B1-B2). The indices refer to the states S, R,
and B can assume.

of the previous subsection, replacing a channel by the parallel composition
of a channel and a filter. The compositionality of observational equivalence
automaticall guarantees the correctness of this new protocol.

The model as well as the outline of the proof follow [6]. The protocol
is modelled as the parallel composition of four processes: two unreliable
channels—one channel, Trans or 7" for short, transmitting messages, and the
other, Ack or A for short, returning acknowledgements—, a sender S, and a
replier module R; see Figure 1 for a schematic view.

The channels A and T are formalised exactly as channel L in the previous
subsection, and so we omit this part. The behaviour of sender and replier,
as well as of the specification, is formally described in Table 2. The initial

states of sender and receiver are S,(0) and R,(0), respectively. The sender
module continuously accepts messages from the environment (S1), transmits
them repeatedly over channel 7' (S2, S3) and waits for the current acknowl-
edgement along A (S4, S5), before accepting a new message. After having
delivered a message to the environment (R1), the replier R repeatedly trans-
mits tagged acknowledgements to the sender (R2, R3) until a new message
arrives (R4, R5). The initial state of the protocol is the process

ABP = 54(0) [| T(e) || A(e) | Rs(1) -

The system should behave like a buffer of capacity one. This specifica-
tion is also formalised in Table 2, the initial state being B,. We show that
ABP =, B,. Recall form the previous section that L; = {acc, del}.

The states of the protocol can be divided in two classes: a message can
either be accepted or delivered, possibly after a finite number of silent tran-
sitions. The bisimulation relation B thus falls into the two corresponding
sub-relations

Ba B { (Su(-b) | () || A®) || Ro(b), B,)
(Sa(=0) || T(0") || AP) || R (b), B,)
(S5 (=0) | T((=0)") || A(B"(=0)7) || Bs(=b), By)
(S5 (=0) | T((=0)") || A(B?(=0)7) || Ruy(b), Ba)
(Sw(=0) | T((=0)") | A(BP(=0)7) || Rs(b), Ba)
(S (=0) | T((=0)") [| AP (=0)%) [| Rw(=D), Ba) | be{0,1}}

capturing those states eventually accepting a new message, and

o

(Ss(=0) | T((=6)™) [| A(t?) | Ra(=D), Ba)
(Sw(=0) [| T((=6)™) || A(Y?) || Ra(=b), Ba)
(Ss(=0) || T((=6)™0") || A(b?) || Bs(=b), Ba)
(Ss(=0) || T((=6)™0") || A(bP) || Ru(=b), Ba)
(Sw (=) | T((=0)™0") || A(6") || Rs(b), Ba)
(Sw (=) [| T((=0)™b") [| A(b”) [| Ruw(=b), Ba) | b€ {0,1}}

where eventually a message will be delivered. In every channel, there are
at most two types of messages or acknowledgements: copies of the one that
currently has to be delivered, and possibly copies of the previous one. The
finite lists in 7" and A are thus either of the form z", or z"y™; in Isabelle
this can be expressed in terms of the replicate operator from the built-in
theory for finite lists.

To show that B % B, U By is indeed a bisimulation wrt. {acc,del }, we

follow our usual scheme. As a typical example, consider the case where the
ABP performs a strong acc transition. We have to prove the obligation, if
(P,Q) € Band P =5 P', then there exists a state Q' such that Q = @',
and (P, Q') € B. Out of the six subrelations in B, differing in the shape of
P, Tsabelle automatically extracts the first two as those in which P can do
an acc. It remains to show that in both cases the resulting process P’ fits
the shape of the left process in the third and fourth subrelations of By. The
difficulty of this proof step results from the lists in 7" and A in B, looking
differently from those in B,. Once provided with the necessary theorems
about finite lists, however, Isabelle completes it fully automatically.

Another interesting example is the reverse case, in which @ = @’ and
P =5 P'. For the third through sixth case of B,, the user has to provide
suitable sequences of weak transitions leading to the acceptance of a new
message. In all of the cases, we can apply the following scheme: remove all
messages and acknowledgements from 7" and A (that this is possible can be
shown once in a separate proof, by an induction on the length of the lists
stored in the channels), then have R transmit an acknowledgement to S, and
finally execute the acc transition.

The proof script contains about 800 lines. As nearly half of it consists
of theorems about the finite lists used in the channels, some experience with
theorem provers is necessary to set up the proofs. The bisimulation part
itself can be set up within a few days by a user experienced both in the
bisimulation proof method and theorem proving. In particular, only a few
proof procedures strongly based on Isabelle’s automatic tactics are necessary
to capture all of the almost 100 proof obligations. As pointed out in [6],
this example is clearly on the edge of what can be proved without machine
assistance, if not beyond.

4 Using Compositionality

Various techniques have been developed with the intention to reduce the size
of bisimulation proofs. The basic idea behind all these techniques is to reuse
results that have already been proved before. In this section, we focus on
replacing larger sub-components with their specifications; in the next section,
we present a way of obtaining bisimilarity results by examining subsets of
bisimulations instead of entire bisimulations.

A major characteristic of observation equivalence is that it is composi-
tional [6]. This means that in bisimulation proofs about large composite
systems, it is possible to replace sub-systems with their specifications, and

Channel 0

AcCept I iy;stributor) Collector deliver

—| Channel n |—

Figure 2: A Specification of the SWP. The parameterized protocol consists
of a parallel composition of n communication lines implementing the ABP.

System: distributor and collector

D1 Dp sy D}(x) Cc1 C! o) Clinl(z) (accept /collect)
D2 Diz) Y pret c2 i)Y ot (distribute/deliver)
Specification: buffer of capacity n + 2
B3 B"*%(s) 4@ B"t2(sz) if [s|] <n+2 (accept)
B4 B""%(zs) o) B"t2(s) (deliver)

Table 3: Distributor and collector of the SWP. An SWP with n channels can
be specified by an n + 2-buffer.

continue the proof with the resulting system, which is usually considerably
smaller. Further, with observation equivalence preserving safety properties,
this technique is also applicable in order to reduce the size of a system before
verifying safety properties. This is especially interesting if observation equiv-
alence reduces an infinite system to a finite specification; in a combination
of theorem proving and model checking, the infinite system can be reduced
interactively to its finite specification in a first step, and in a second step,
safety properties can be checked fully automatically upon the specification.

4.1 A Specification of the Sliding Window Protocol

In [10], a simple parameterized Sliding Window Protocol (SWP) with input
and output windows of equal size is presented. The system consists of n
communication lines each of which uses the ABP on faulty channels. Figure 2
shows a schematical view. Incoming messages are cyclically distributed to the
communication lines by a distributor D,,, and are recollected and delivered
by a collector Cy; their behaviour is formally described in Table 3 (D1, D2,

cip(z

B5 B4(s) (%) BA(s[h:=1x]) ifslh=0 (accept)
B6 BA(s) 2% BA(slh:=0)) ifsth=2#0 (deliver)

Table 4: An array buffer B containing lists of length n.

and C1, C2). The initial state of the SWP is the process
SWP = D!|ABP,|...| ABP,| C!

where ABP; is a copy of the process of the last section?. The system should
behave like a buffer B"*2 of capacity n -+ 2, with n being the number parallel
channels in the system (the capacity is n+2 and not n because the distributor
and the collector contribute with one place each), see also Table 3 (B1, B2).
This time we cannot abstract from data, as the system needs not deliver a
message before accepting a new one: we have to guarantee that messages not
be swapped. So we prove AW P ~p, B"*? where L, = { acc(z),del(x) | m €

The proof falls into several parts, and makes extensive use of composi-
tionality.

(1) In a first step, the ABP components are replaced with one-place
buffers, using the result from the previous section.

(Dn || ABPI || || ABPn ” Cn) Ny (Dn || Bal || || Ban || Cn)

Observe that we have got rid of the infinite-state processes, but we still have
to carry out a parametric proof, valid for all n.

(2) We need a finite representation of the n one-place buffers put in
parallel. They can be described by a single component B#, which we refer to
as an array buffer. For every buffer in the SWP currently storing a message
z, the corresponding cell of B4 contains z as well; if the buffer is empty, B4
contains an auxiliary element O; see Table 4 for a formal description. We
use O to denote empty cells. We show that BA(0") ~r3 (Bai || --- || Ban),
where Ly, = {cis(v),c0, | h € IN }, using induction and the bisimulation
proof method described in Section 3, and so, exploiting compositionality,

(D [l Bat Il -+ |l Ban || Cn) 221, (D || BA(E™) || C)

(3) We proceed by comparing the resulting system to another system
given by a parallel version of an n-place buffer, BY (see B7 and B8 in

2the actions of these processes need to be suitably renamed.

B7 BP(h,l,s) a4 B (h+ 1,1,s[h:=x]) if sth=0O (accept)
B8 BP(h,1,5) ©% BP(h,l 41,5l :=0)) ifsll=x#0 (deliver)

Table 5: The parallel buffer BY.

Table 5), and two barrier one-place buffers, one attached to its front, and
another to its back. Internally, B is organized like B4, yet it possesses only
one input and one output connection, and stores and retrieves messages in a
cyclic order. We show

(Dn | BA@") || Cn) 21, (Ba || BY(T) || Ba)

again by exhibiting a bisimulation.

(4) To complete the proof we have to show by exhibiting suitable bisim-
ulations that BY with its two one-place buffers behaves like the n + 1-buffer
from the specification:

(Ba || B"(O") || Ba) &1, B™(007)

The proof script with the bisimulations verifying the SWP contains about
600 lines, and has been set up in less than two weeks. The proofs of (2) and
(3) are rather straightforward, as the processes related by the bisimulations
behave in similar ways. Isabelle therefore deduces the proofs automatically
without the user having to split them into single theorems covering the obli-
gations. Note that the weak transitions are directly derivable from strong
ones, thus need not be given by the user. Also, almost no additional re-
sults about the lists have to be provided by the user. The most challenging
part concerning the mechanization was the proof of the first part of (4), as
here the bisimulation maps the cyclic lists of BY to the linear lists stored in
B™*2(0O"). The corresponding theorems make up for nearly two thirds of the
proof; their derivation necessitates certain expertise in theorem proving. For
more information about the above case-studies, see [16].

5 Reducing Proofs with ‘Up to’-Techniques

In theorem proving, one is usually interested in splitting large proofs into
smaller sub-proofs in order to gain maximal profit from the automatic tac-
tics. In Section 3, we have achieved this by proving bisimulation obligations
in separate theorems. In Section 4, we have exploited compositionality of ob-
servation equivalence. Here, we discuss the application of ‘up to’-techniques

that have been proposed by Sangiorgi and Milner in [19] in order to reduce
the size of the relations. That is, instead of showing that a relation R is a
bisimulation, one chooses some suitable S and proves that SoR o S™! is a,
bisimulation. (Observe that the size of S o R o S7'. can be far larger than
the size of § and R.) The theory of ‘up to’-techniques—in particular, how a
suitable S should look like—has been further investigated by Sangiorgi [18].
In this section, we are concerned with the application in theorem proving of
one such technique, called ‘up to expansion’.

Intuitively, an expansion is a bisimulation in which the first process per-
forms at least as many internal steps as, or is less efficient than, the second
one. Expansion can be used to abstract, for instance, from internal timers,
or from internal communication of data. Every expansion (wrt. L) is a bisim-
ulation (wrt. L). The converse does not hold.

Definition 2 (Expansion) R C §; X S, is an expansion wrt. L C Act if
for all PRQ, allaw € LU{7}, all P' € &1, and all Q' € Sy,

(i) If P =5 P', there exists Q' € Sy such that Q N Q' and P'RQ'.
(i) If @ = @', there exists P' € Sy such that P == P' and P'RQ'.

We call >, the union of all expansions wrt. L.

Definition 3 (Bisimulation up to Expansion) R C &; X S, is a bisim-
ulation up to expansion wrt. L C Act if for all PRQ, all « € LU {7}, all
P eS8, and all Q' € Sy,

(i) If P = P', there exist P" € S, and Q',Q" € S, such that Q N Q'
and P' >; P"RQ" <; Q'

(ii) If @ =+ Q' there exists P', P" € S, and Q" € S, such that P = p
and P' >; P"RQ" <; Q'

It is a standard exercise to show that two states are observationally equiv-
alent (wrt. L) if they are bisimilar up to expansion (wrt. L).

5.1 Write-Invalidate Cache Coherence

As a last case study, we have chosen an example which is parameterized
both in number and size of its components. An interesting point is that
internal communications follow a broadcast mechanism. In our formalism
this can be easily taken care of by modifying the introduction rules for parallel
composition. The new rules are

The memory, used by specification and system

M1 M(s)rqr(z) M (s,1) (lookup)

M2 M(s,1) ret(elf) M(s) (return)

M3 M(s) "% M(s{v/slil}) (update)
Specification: interfaces to memory without caches

I1 Ij(stat, free) reads(i) Ij(stat, read (7)) ifi < |s] (read)

12 I;(awake, read(i))) I;(awake, wait) (lookup)

I3 I;(awake, wait) retty) I;(awake, del(v)) (return)

I4 Ij(stat, del(v)) returny(v) I;(stat, free) (serve)

15 I(stat, free) ") 1y(stat, write(i, v)) ifi < s (write)

16 I(awake, write(i, v)) T () I;(awake, free) (update)

I7 I;(awake, req;) 1. () I;(asleep, req;) (sleep)

I8 Ij(asleep, req;) retty) I;(awake, req;) (wake up)

19 I;(awake, req;) " () I;(awake, req;) (ignore)

System: interface to memory with caches

C2a If(c,stat,read(i)) — If(c;,stat, wait) if valid(q[7]) (cache)

C2b If(c;, awake, read(i)) &) ;(c1,awake, wait) if invalid(¢;[i]) (lookup)

C6 If(c;,awake, write(i,v)) Ty (4,2) If(c{(v, valid) /i}, awake, free) (update)

C9 If(c;, awake,req;) ") 7 £ (ci{(¢[i], invalid) /i}, awake, req;) (invalidate)

Table 6: Write invalidate cache coherence. Rules M1 to M3 describe the
behaviour of the memory. Rules I1 through 19 specify the behaviour of each
interface. The behaviour of the implementation is given by rules C1 through
C9 similar to I1 to I9 except for the rules that are explicitely shown above,

which involve cache cells.

Rules 11-14, respectively C1-C4, describe the

behaviour of interfaces ; and I} in the presence of a read request. I5, I6 and
C5, C6 handle write requests. 17, I8 and C7, C8 describe how the interfaces
fall asleep whenever they encounter a read request on the bus. I9 and C9
concern the detection that some other interface writes on the memory.

Implementation: with caches

Interfaces
Specification: without caches -
I I Memory

Figure 3: The structure of implementation and specification. In order to
read from or write to the memory, processors have to connect to one of
the interfaces. The interfaces of the implementation possess caches, whereas
those of the specification have to pass every read request to the main memory.

o P, Plimplies P || ... || P || ... || P» = Pi||...[| P/l ... || Py

O prand Vi#i. P 2 Plimply Py || ... || P, < PL||...| P

o P, Y
The system: implementation and specification We consider a set of
interfaces connected to a central memory M by a bus system, see Figure 3 for
a graphical overview. In order to access M (Table 6, M1-M3), a processor
has to connect to one of the interfaces which then serves its read or write
request. In the implementation, each interface I¢ (Table 6, C1-C9) contains
a cache of its own, so that a part of the read requests can be served without
accessing the bus. We consider a simple cache protocol, the informal de-
scription of which is based on [4], and which has already been proved correct
in a formal environment [7]. In the specification, the interfaces I; (Table 6,
I11-19) do not possess caches, but pass every read request to the memory M
along the bus.

In case of a read request, an interface I{ checks if the corresponding cache
cell is valid, otherwise it fetches the value from the memory (C1-C4); its
implementation I; always looks up the memory (I1-14). Write requests are
served by updating the memory as well as the concerned cache cell (C5-
C6 and I5-16). By continually snooping on the bus, interfaces notice read
and write requests sent along it. They wait upon a read request, until it
has been served (C7-C8 and I7-1I8), before accessing the bus themselves.
Write requests are ignored, only that interfaces I invalidate the concerned
cache cell (C9 and I9). Note that Table 6 only displays those axioms among
C1-C9 that considerably differ from 11-19, because some cache is involved.

Cache cells can either be valid or invalid. We show that the system with
the caches is observationally equivalent to the system without the caches. As

a consequence, the cache system can be safely applied instead of a system
without caches. Moreover, this result holds for systems of arbitrary size.
Let L3,

Ly ¥ {read;(), write;(,v), return;(v) | [,3 € IN, v of suitable type }
U {read;(i), write,(i,v), returny(v) | [,4 € IN, v of suitable type }

contain the visible behaviour of the systems consisting of communications
between processors and interfaces. Then,

Mem(s) [| I7(t1) || - - - || 1 (tn) ~ps Mem(s) || Ly (ua) || - - - [| Tn(un)

for every content s of the memory, and for all possible tuples of parameters
t1,...,t, and uy,...u,, where t; = (¢, stat;, req;) and u; = (stat;, req;), and
valid(¢[i]) implies ¢[i] = s[i], for all i. Note that this last condition re-
flects the safety property of the protocol, which is guaranteed by observation
equivalence.

Remark: Note that a value returned to the environment as the value of
some cell by an interface need not necessarily coincide with the current value
of that cell, neither in the implementation nor in the specification. This is
because an interface may delay the delivery of a value it has already retrieved
from the memory or from its cache, even until the cell has been updated in
the memory by another interface.

Bisimulation up to expansion For fixed but arbitrary n and m, the
(parameterized) relation R, ,, contains pairs of states of the implementation
and the specification in which all the interfaces are awake, that is, are allowed
to access the bus immediately, all caches are coherent, and in which the
requests in the If and I; are identical for all /.

Rnm & { (Mem(s) || I{(c1,awake,req;) || -.. || IS(c,, awake, req,,),
Mem(s) || I;(awake,req,) || ... || I.(awake, req,)) |
Isl]=m AV1<I<n,1<i<m. valid(g[i]) = qli] = s[i }

The relation does not consider states in which interfaces are asleep, that
is, where one of the interfaces has sent a read request on the bus. These
are dealt with by expansion relations £; = and &, ,; for details refer to [15].
They relate states of the implementation, respectively of the specification,
directly before and after a read request has been served by the main memory.
These states are observationally indistinguishable.

The proof falls into the following steps: (1) prove that identity on states,
1d, every &;,, UZd, and every &, UZd are expansions wrt. Lz; and, (2)
show that every R, ., is a bisimulation up to expansion wrt. L3, exploiting
the results proved in step (1). The proof follows the same pattern as those
in Section 3, see [15] for details.

The Isabelle/HOL proof script consists of approximately 1000 lines of
code. We were able to increase the profit from Isabelle’s automatic tactics by
splitting the proof obligations into separate subgoals. We further benefitted
from the uniform structure of the single proofs, so we were able to use the
same proof script for several obligations.

Standard bisimulation In astandard bisimulation proof, a lot more com-
binations have to be considered; both systems can be asleep, for instance, or

one system is asleep waiting for a read request to be served while the other
def

is awake. This yields bisimulation relations R}, = Rum URYS, URS’,, wrt.

L3, where R™S contains those pairs of states in which the implementation

n,m
is awake and the specification is asleep, and R;’ contains those in which
both are asleep. Pairs in RY% are due to an I retrieving a value from its

cache while the corresponding [; has to look it up in the main memory. The
combination R;*,, in which the interfaces of the implementation are asleep
while those of the specification are not, need not be considered: whenever an
If sends a read request along the bus, there is no need for the corresponding
I; to go a step further and serve the request.

In order to reduce the number of cases of this proof, we have modified
the transition systems so that interfaces that are asleep cannot even com-
municate with the environment. But still the proof script is as long as that
using bisimulations up to expansion, that is, around 1000 lines. Without the

simplification, it would have been even longer.

6 Discussion

In the previous sections, we have described how to obtain a general verifica-
tion technique for systems with an infinite number of states, by applying the
proof method of observational equivalence in interactive theorem-proving,
and have examined it on various benchmark examples. We now present
conclusions drawn from these case-studies, discussing both advantages and
deficiencies of the approach.

Range of applicability Observational equivalence is a natural specifica-
tion technique for communication protocols, in which the specification can be
described as an abstract system (for instance, a buffer of some type), which
must be implemented in a distributed way, or with components subject to
failure. It is less natural for specifications consisting of a list of properties
the system should satisfy, such as distributed algorithms? The technique is
most suitable for systems that can be concisely described but have infinitely
many states and use some nontrivial datatypes. These systems are still out
of reach for fully automatic tools, but lead to manageable bisimulations.

Is observational equivalence suitable? Observational equivalence has
been argued to be too discriminating in practice; in fact, often language (or,
trace) equivalence [6] is preferred. In the area of communication protocols,
this question seems to be a lesser problem. Many specifications are determin-
istic, and in this observation and fair testing equivalence [8]—and sometimes
even language equivalence—coincide. Compared to these two equivalences,
observational equivalences offers a better proof methodology. Thus, in cases
where the equivalences coincide, one can profit from bisimulation proof tech-
niques in order to show language or testing equivalence.

Sometimes one might be interested in over-specifications. In these cases,
observational preorder offers proof techniques based on simulations, consid-
ering only one direction of a bisimulation. The resulting proof methodology
is similar, and compositionality can be exploited as well.

Keeping bisimulations manageable Keeping the size of relations man-
ageable is an important problem of our approach. The compositionality of
observation equivalence is a big help, as we could see in Section 4: if we had
not been able to replace the ABP channels by one-place buffers, the bisimula-
tion would have been unmanageable. Furthermore, there exist various up-to
techniques, one of which is bisimulation up to expansion, see Section 5.

How to find a bisimulation? Searching for a bisimulation is an incre-
mental process. Usually, one starts with some base state of implementation
and specification, and adds pairs, or (probably infinite) families of pairs, until
one has obtained a bisimulation. This approach can be formally described in
terms of the coinductive method of fixed-point generation (see, for instance,

3For some distributed algorithms one can consider the most liberal system satisfying
the properties, and prove that the implementation behaves “as well, or better” than this
system. For this purpose, observational equivalence is replaced by the observational pre-
order.

[17]), and is supported by Isabelle/HOL [12]. The advantage of coinduction
is that finding the relation and proving that it is a bisimulation are inter-
twined, and Isabelle deals with all technical details as, for instance, “has pair
(s,t) already been considered or not?” One inconvenience is, however, that
the bisimulation cannot yet be extracted as an Isabelle constant from the
coinductive proof, to be available for further use.

Dealing with data structures Proving simple facts about the data struc-
tures of a system (list, stacks, et cetera) may amount to more than half of
the interaction with the theorem prover. These facts are stored in Isabelle’s
database for future use, but their application still requires considerable ex-
pertise in theorem proving. The user may decide not to perform the full
proof, by taking theorems about data structures as unproved axioms. For
simple theorems this is a sensible approach, since the proof loses almost no
credibility.

General evaluation and future work The approach is certainly labour
intensive when compared to automatic verification. It is useful for not too
large systems with an infinite state space which do not exhibit regularity
properties making it amenable to model checking. The approach is particu-
larly suitable for modular systems in which each of the modules has a separate
specification. Future work should concentrate in the interactive design of the
bisimulation. As mentioned above, coinduction techniques for this problem
are available in Isabelle, but they are still very unfriendly to the user.

References

[1] K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson. A note on reliable full-
duplex transmission over half-duplex links. Comm. of the ACM, 12(5):260-
261, May 1969.

[2] M. Bezem and J. F. Groote. A formal verification of the alternating bit
protocol in the calculus of constructions. Logic Group Preprint Series 88,
Dept. of Philosophy, Utrecht University, 1993.

[3] E. Gimenez. An application of co-inductive types in Coq: Verification of the
alternating bit protocol. In Proc. TYPES’95, volume 1158 of LNCS, pages
135-152. Springer, 1996.

[4] J. Hennessy and D. Paterson. Computer Architecture — A Quantitative Ap-
proach. Morgan Kaufmann, 1996.

[5]

[16]

[17]

[18]

W. C. Lynch. Reliable full-duplex file transmission over half-duplex telephone
lines. Comm. of the ACM, 11(6):407-410, 1968.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

J. S. Moore. An ACL2 proof of write invalidate cache coherence. In Proc.
CAV’98, volume 1427 of LNCS, pages 29-38. Springer, 1998.

V. Natarajan and R. Cleaveland. Divergence and fair testing. In Proc.
ICALP’95, volume 944 of LNCS, pages 648-659. Springer, 1995.

T. Nipkow and K. Slind. I/O automata in Isabelle/HOL. In Proc. TYPES’94,
volume 996 of LNCS, pages 101-119. Springer, 1994.

K. Paliwoda and J. Sanders. The sliding-window protocol. Technical Report
PRG-66, Programming Research Group, Oxford University, March 1988.

D. M. R. Park. Concurrency and Automata on Infinite Sequences, volume
104 of LNCS. Springer, 1980.

L. C. Paulson. Isabelle’s object-logics. Technical Report 286, University of
Cambridge, Computer Laboratory, 1993.

L. C. Paulson. Isabelle: a generic theorem prover, volume 828 of LNCS.
Springer, 1994.

G. Plotkin. Structural operational semantics. Technical report, DAIMI,
Aarhus University, 1981.

C. Rockl. Proving write invalidate cache coherence with bisimulations in
Isabelle/HOL. In Proc. of FBT’00, pages 69-78. Shaker, 2000.

C. Rockl and J. Esparza. Proof-checking protocols using bisimulations. In
Proc. of CONCUR’99, volume 1664 of LNCS, pages 525-540. Springer, 1999.

J. Rutten. Automata and coinduction (an exercise in coalgebra). In Proc.
CONCUR’98, volume 1466 of LNCS, pages 194-218. Springer, 1998.

D. Sangiorgi. On the bisimulation proof method. Math. Struct. in Comp.
Science, 1998. A summary appeared in Proc. MFCS’95.

D. Sangiorgi and R. Milner. The problem of weak bisimulation up-to. In Proc.
CONCUR’92, volume 630 of LNCS, pages 32-46. Springer, 1992. A revised
version has appeared as a technical report.

J. L. A. Snepscheut. The sliding-window protocol revisited. Formal Aspects
of Computing, 7:3-17, 1995.

