TUTI

TECHNISCHE
UNIVERSITAT
MUNCHEN

INSTITUT FUR INFORMATIK

Sonderforschungsbereich 342:
Methoden und Werkzeuge fiir die Nutzung
paralleler Rechnerarchitekturen

Checking System Properties
via Integer Programming

Stephan Melzer, Javier Esparza

TUM-19526
SFB-Bericht Nr.342/13/95 A
September 1995

TUM-INFO-09-95-126-0/1.~FI

Alle Rechte vorbehalten

Nachdruck auch auszugsweise verboten

©1995 SFB 342 Methoden und Werkzeuge fiir
die Nutzung paralleler Architekturen

Anforderungen an: Prof. Dr. A. Bode
Sprecher SFB 342
Institut fiir Informatik
Technische Universitdt Miinchen
Arcisstr. 21 / Postfach 20 24 20
D-80290 Miinchen, Germany

Druck: Fakultat fiir Informatik der
Technischen Universitat Miinchen

Checking System Properties via Integer
Programming*

Stephan Melzer and Javier Esparza
Institut fur Informatik
Technische Universitat Munchen
Arcisstr. 21, D-80290 Munchen
e-mail:{melzers,esparza}@informatik.tu-muenchen.de

Abstract. The marking equation is a well known verification method
in the Petri net community. It has also be applied by Avrunin, Corbett
et al. to automata models. It is a semidecision method, and it may fail to
give an answer for some systems, in particular for those communicating
by means of shared variables. In this paper, we complement the mark-
ing equation by a so called trap equation. We show that both together
significantly extend the range of verifiable systems by conducting several
case studies.

1 Introduction

The use of linear algebra and integer programming for verification purposes
has a long tradition in Petri net theory [6, 16, 15, 17]. One of the best known
techniques is the state or marking equation [6, 17]. This is a linear equation which
can be easily derived from the description of the net and its initial marking (in
linear time). It can be seen as a set of linear constraints £ that every reachable
marking must satisfy. In other words, the solutions of £ are a superset of the
reachable markings. In order to use the marking equation, we add to it new
linear constraints £ p, which specify the markings which do not satisfy a desirable
property P.2 Then, we use integer programming to solve the system £ U Lp: if
the system has no solution, every reachable marking satisfies P.

The disadvantage of this technique is the fact that the markings satisfying
L are only a superset of the reachable markings: the solutions of £ U Lp may or
may not correspond to a reachable marking. Therefore, the marking equation is
only a semidecision method. Its main advantage is that it does not explore the
state space, and therefore it avoids the state explosion problem. It can also be
used to verify systems having infinite state spaces.

The marking equation can be applied to many different models of concur-
rency, not only to Petri nets. Actually, the most comprehensive study of its
applications for verification has been carried out by Avrunin, Corbett et al. us-
ing coupled automata as a model [2, 3, 8]. They have developed the Constrained

* This work was partially supported by the Sonderforschungsbereich SFB-342 A3.

2 Tt is also possible to impose linear constraints on the occurrence sequence leading
to those markings. This is a very useful feature, but we omit it here for the sake of
simplicity.

Expression Toolset, later updated to the Inequality Necessary Condition Ana-
lyzer (INCA), a tool for the verification of a large class of safety and liveness
properties. It is easy to see that the basis of the technique implemented in INCA
is equivalent to the marking equation. In [7], Corbett shows that INCA is able
to prove deadlock freedom for 19 different examples taken from different sources,
and can compete with symbolic and partial order theorem provers.

One of the main limitations of the marking equation is that it tends to fail
for systems which communicate via shared variables. For instance, it cannot
prove mutual exclusion of any of the most popular mutual exclusion algorithms
(Dekker’s, Dijkstra’s, Knuth’s, Peterson’s etc.) without user’s help. The reason is
that the method 1s not sensitive to the guards which allow to perform an action
only if a variable has a certain value, in the sense that the systems with or without
the guards are assigned the same set of constraints. Since the correctness of these
algorithms crucially depends on these guards, the method fails.

In this paper, we show how to obtain a set of constraints which better ap-
proximate the set of reachable markings, and are sensitive to these guards. We
then test the improved algorithm on a number of examples. In particular, we
automatically prove mutual exclusion of five mutual exclusion algorithms.

This refined set of constraints is derived from some results of Petri net the-
ory concerning so called traps. Therefore, it is convenient to present our results
in Petri net terms. However, there would be no problem in recasting them for,
say, the communicating automata of Corbett [7], the synchronized products of
transition systems of Arnold and Nivat (see, for instance, [1]), or for CCS pro-
cesses of the form (Py | ... | P,)\L, where the P; are regular. All of them can be
easily translated into (1-safe) Petri nets. The common idea of the translations
is simple: each sequential component is modelled by means of a Petri net, just
mapping states to places and transitions of the transition system into transitions
of the Petri net. Communication is then modelled by merging transitions.

The paper is organised as follows. In Section 2 we introduce some basic
definitions. Section 3 describes the marking equation. In Section 4 we introduce
traps, and present our improved method. In Section 5 we apply the results to
examples. In Section 6 we present a result on checking deadlock freedom. Finally,
we present our conclusions in Section 7.

2 Basic notations

A netis atriple N = (P, T,W) where PNT =0 and W: (PxT)U(T x P) — IN..
P is the set of places (symbolized by circles), T' the set of {ransitions (symbolized
by rectangles) and W is the weight function. The pre-setof x € PUT is*x = {y €
PUT | W(y,z) > 0}. The post-setof x € PUT is z* = {y € PUT | W(x,y) > 0}.
The pre- and post-set of a subset of PUT are the union of the pre- and post-sets
of its elements.

All the examples of Section 5 (and all the examples of [7]) can be modelled
by ordinary nets, in which the weight function has codomain {0, 1}. However,

more general weight functions play an important role in the development of the
results of Section 4, and that is why we define nets in this generality.

A function M : P — IN is called a marking. A Peiri net is a pair (N, My)
where N is a net and My a marking of N called initial marking. A transition
t € T is enabled at M iff Vp € *t : M(p) > W(p,t). If ¢ is enabled at M, then

t may fire or occur, yielding a new marking M’ (denoted M 2, M"), where
M'(p) = M(p) + W(t,p) — W(p, 1).

A sequence of transitions, o = 1ty .. .1, is an occurrence sequence of (N, Mg)
iff there exist markings M, ... M, such that My 1, M, 2, M. .. LR M,.
The marking M, is said to be reachable from My by the occurrence of o (denoted
M 2 M,).

A Petri net (N, My) is safe iff M(p) < 1 for every reachable marking M and
every place p.

A linear programming problem or linear problem is a system A - X < B of
linear (in)-equalities called the constraints, plus maybe a linear function C7 - X
called the objective function. A solution of the problem is a vector of rational
numbers that satisfy the constraints. A solution is optimal if it maximises the
value of the objective function (over the set of all solutions).

An integer programming problem consists of the same elements as a linear
programming problem, but only integer solutions are allowed. In a mized pro-
gramming problem, some variables may take rational values, and some only in-
teger ones.

A linear, integer or mixed programming problem is feasible if it has a solution.
Otherwise it is infeasible.

3 The marking equation

Each place p of a net has associated a token conservation equation. Given an
occurrence sequence My —— M, the number of tokens that p contains at the
marking M is equal to the number of tokens it contains at My, plus the tokens
added by (the firings of) the input transitions of p, minus the tokens removed
by the output transitions. If we denote by #(o,t) the number of times that a
transition £ occurs in o, we can write the ftoken conservation equation for p as:

M(p) = Mo(p) + > #(o,)W(t,p)— Y _ #(o,t)W(p,1)

The token conservation equations for every place are usually written in the
following matrix form:
M=My+N.-o

where o = (#(o,t1),...,#(0,1m)) is called the Parikh vector of o, and N
denotes the incidence matriz of N, a P x T integer matrix given by

N(p,t) = W(p,t) = W(t,p)

If a given marking M is reachable from My, then there exists a sequence o
satisfying My —— M. So the following problem has at least one solution, namely

X =7.

Variables: X, integer.
M=My+N-X
X>0

The equation M = My + N - X (and, by extension, the whole problem) is
called the marking equation. If the marking equation has no solution, then M is
not reachable from Mj.

We wish to verify that every reachable marking satisfies a desirable property,
or, equivalently, that no marking satisfying the negation of this desirable prop-
erty is reachable. The negation of the property can often be expressed by means
of linear constraints on the markings of the net. Here are two examples:

— Mutual exclusion.
In Petri net models of mutual exclusion algorithms the possible states of
a process (idle, requesting, critical, ...) are modelled by places which can
hold at most one token. The process is in the critical section if the corre-
sponding place is marked. If s1,...,s, are the places corresponding to the
critical sections, then the reachable markings that violate the mutual exclu-
sion property are those satisfying

M(s1)+ ...+ M(sp) > 2

— Deadlock freedom in safe Petri nets.
A marking i1s a deadlock if it does not enable any transition. In safe Petri
nets a place can hold at most one token, and therefore a transition is enabled
if and only if the total number of tokens in its input places is at least equal
to the number of input places. In other words, the reachable deadlocked

markings satisfy
> M(s) <[]
sE®t

for every transition ¢.

A linear property of N is a predicate P on the markings of N (or, equivalently,
a subset of the markings of N) such that

P(M)e A-M<b

for some matrix A and vector b. We can use the marking equation to verify
properties whose negation is linear. If some marking satisfying P is reachable
from My, then the generalised marking equation

Variables: M, X: integer
M=My+N-X

A-M<b

M, X >0

has a solution.? Therefore, if the generalised marking equation is infeasible, every
reachable marking satisfies the negation of P. We can use integer programming
to check infeasibility.

The implication “infeasibility = P holds for every reachable marking” still
holds if M and X are allowed to take rational values. So, in principle, one may
try to use ordinary linear programming to check infeasibility. Unfortunately, the
experiments show that in most cases even though the desired property holds, the
marking equation has non-integer solutions, and therefore linear programming
is of little use. Using integer programming leads to much better results [7, 8].

Unfortunately, the marking equation still fails very often when the Petri
net models a distributed system with shared variables. The components of this
kind of systems test the value of a variable to determine the flow of control.
Now, consider the two Petri nets of Figure 1. The Petri net of the left models
a component which may change of state, from sg to s1, only if the variable z
has value 0, which happens not to be the case. In the Petri net on the right, the
component can change its state independently of the value of z. Obviously, the
marking {s;1} is not reachable on the left, and reachable on the right. However,
the marking equations of these two nets coincide. Therefore, the generalised
marking equation cannot be used to prove that {s1} is not reachable on the left.

x=0 x=0
S1L S1

Fig.1. A limitation of the marking equation

We could of course prove this by constructing the reachability graph, which
is very small in this example, but may grow exponentially in the size of the net
(or be infinite). An alternative is the use of traps [21, 9].

Definitionl. Traps

A set R of places of a net is a trap if R* C *R. ml

In the sequel, we shall use the letter © to denote traps. Traps have the
following fundamental property:

3 Since M is in fact a linear function of X, it would still be more general to add
a constraint of the form C - X < d, and this is in fact the approach of [8]. Since
the examples of this paper only consider constraints on markings, we will use the
constraint shown above for clarity.

Proposition2. Marked traps remain marked

Let (N, My) be a Petri nei, and let @ be a trap of N. If © is marked ai
My (e, if 37, co Mo(p) > 0), then © remains marked at every reachable
marking. m2

The set {sg, s2} is a trap of the net on the left, and this trap is marked at
the initial marking {so}. However, the trap is not marked at {s;}. Therefore,
the marking {s1} is not reachable.

If a marking marks every trap that is marked at M, we say that it satisfies
the trap property. Proposition 2 states that, on top of the marking equation, a
reachable marking must satisfy the trap property as well. We have thus a refined
test of non-reachability.

In order to check that every marking satisfying a linear property P violates
the trap property we may compute all the traps marked at My, say @, ...,O,,
and then compute iteratively the subsetes P; of P that mark the traps @4,...,60;
for 1 < i < n. However, this method is very inefficient, because the number of
traps may be exponential in the size of the net*. In order to make traps useful
for automatic verification, we have to find an alternative, which we present in
the next section.

4 The trap equation

In this section we obtain the generalised trap equation for a linear property P.
This is a linear equation which has a solution if and only if no marking satisfies
simultaneously P and the trap property.

The first step towards our goal is to find a link between traps and linear alge-
bra. Fortunately, we can profit from several existing results. In [14], Lautenbach
showed that there exists a tight relation between the traps of a net N and the
solutions of the equation Y7 -Ng = 0, where Ng is obtained from N by means of
a relatively complicated transformation. Later, Lautenbach’s results were used
and slightly improved by Esparza and Silva in [10]. Finally, Ezpeleta, Couvreur
and Silva found another improvement [11]. They showed that Lautenbach’s net
Ne can be replaced by a simpler one. N and the new Ng have the same places,
transitions and arcs: they only differ in the weights of some arcs leading from
transitions to places.

Theorem 3. Algebraic characterization of traps [11]
Let N = (P, T,W) be a net. Let No = (P, T,We), where

Wa(p,t) = W(p,1)
Welt,p) = {Ozp'e-t W(p',t)ifpet

otherwise

* In fact, it suffices to compute all minimal traps, which are the nonempty traps not
included in any other trap. However, there may also be exponentially many minimal
traps.

A set @ C P is a trap of the net N if and only if the equation YT -Ng > 0
has a nonnegative solution Y such that ||Y|| = ©. 3

We illustrate this result on the Petri net of Figure 2. The vectors YT and
Y satisfy the equation of Theorem 3, and therefore {s3,s5} and {s3, s, 56} are
traps of the net. The vector Y3 does not satisfy it, and in fact {s;,s2} is not a
trap.

Fig.2. An example.

-1 0 0 0 O
2_(1) (1)_(1) 8 YlT:(lﬂoﬂlaOalaO)
No=1 01 0-1 1 Y/ =(0,0,1,1,0,1)
_ [=
0 0-1 2 0 Vi =(1,1,0,0,0,0)
0 0 0 2-1

We can use Proposition 3 to test if a marking M violates the trap property.

Proposition4.

Let (N, My) be a Petri net, and let M be a marking of N. M satisfies the
trap property if and only if the problem below s infeasible.

Variables: Y : rational.
YT . Ng >0

Y >0(0=|Y| is a trap)
YT . My > 0 (O is initially marked)
YT .M =0 (O is not marked at M)

Proof: By Proposition 3, a solution of the problem corresponds to a trap initially
marked, but unmarked at M, and vice versa. m4

Now, in order to test if M violates the trap property we solve a linear pro-
gramming problem instead, which intensionally checks if every initially marked
trap remains marked at M.

However, Proposition 4 is not directly useful when we consider linear prop-
erties. If M becomes a variable subject to the linear condition A - M < b, then
the equation Y7 - M = 0 becomes non-linear, which very much complicates the
verification. To remove this difficulty we shall use one of the many versions of
the Minkowski-Farkas Lemma (see, for instance, [22]).

Theorem 5. Minkowski-Farkas Lemma
One and only one of the following two problems is feasible:

Variables: X : rational. Variables: Y : rational.

T.
A-X<b yoAzo
Y30 Yt -b<O0
2 Y >0

In order to apply this theorem, we first have to modify the problem of Propo-
sition 4. We observe that, since M is a nonnegative vector and any solution Y
must also be nonnegative, the constraint Y7 - M = 0 can be safely replaced by
YT . M < 0. So the problem is equivalent to (i.e., has the same solutions as):

Variables: Y: rational.
YT~(N@|—M)20
YT ~(—M0) <0
Y >0

where (N |— M) denotes the matrix obtained by adding —M to Ng as rightmost
column.

Now, by Proposition 4 and the Minkowski-Farkas Theorem, M satisfies the
trap property if and only if the following problem is feasible:

Variables: X: rational.
(No|— M) -X <—My
X>0

Notice that the dimension of X 1s equal to the number of transitions of N
plus 1, because of the addition of the column M. Define X = (X' | z), i.e., X’
is the vector containing all the components of X but the last, and z is the last
component of X. With these notations, we can rewrite the problem as:

Variables: X', z: rational.
xM > Mg+ Npg - X'
X' x>0

Assume that this problem has a solution for z = 0. Then, since M is nonnega-
tive, it also has a solution for every z > 0. So we can replace z > 0 by # > 0, and
the resulting problem is still feasible if and only if M satisfies the trap property.
Now, since z > 0, we can divide the first inequality by it. Redefining X := %X’
and then z := 1, we finally get the trap equation:

z)

Variables: M :integer; X, x: rational.
M >zxMy+ N - X

X >0

z>0

We have reached our goal: the trap equation is linear, and M appears isolated
on the left side, as in the marking equation. We can thus generalise it to linear
properties by adding the constraint A - M < b.

Theorem 6. Generalised trap equation

Let (N, My) be a Petri net, and let P be a linear property of the markings of
N, characterised by the equation A-M < b. If the problem below s infeasible,
then no marking satisfies both P and the trap property.

Variables: M : integer; X, z: rational
M >xMy+ Ng - X

A-M<hb
M, X >0
x>0

m6

Finally, putting together the marking and trap equations we obtain a negative
test for linear properties:

Corollary 7.

Let (N, My) be a Petri net, and let P be a linear property of the markings of
N, characterised by the equation A-M < b. If the problem below s infeasible,
then every reachable marking satisfies the negation of P.

Variables: M, X1: integer; Xa, x: rational
M=My+N-X;
M > xMy+ Ng - X
A-M<bh
M, X1,X2>0
z>0
m7

This problem can be solved using mized programmaing, a combination of linear
and integer programming. Mixed programming solves systems of the form A-X <
b, where part of the variables are required to take integer values, while others
may be rational. The constraint z > 0 does not fit in this format, but this
problem can be easily solved making use of the optimization facilities of mixed
programming solvers: we solve the system with z > 0 as constraint, but search
for the solution with maximal value of z. If this value is 0, then the original
problem is infeasible.

5 Examples

In this section we show that a number of properties of several systems that could
not be verified by the marking equation alone can be verified by the combination
of the marking equation and the trap equation.

As a first case study, we consider five popular mutual exclusion algorithms
taken from [20], namely those by De Bruijn, Dekker, Dijkstra, Knuth and Pe-
terson. For each of them we verify deadlock freeness and mutual exclusion.

The algorithms are easily encoded in B(PN)? (Basic Petri net Programming
Notation), an imperative language designed to have a simple Petri net seman-
tics [5]. 1-safe Petri nets are then automatically generated by the PEP-tool [4].
We then generate the corresponding mixed problems, which are solved using
CPLEXTM (version 3.0) on a SUN SPARC 20/712.

None of the properties can be proved using linear programming. However,
we do not have to require both M and X; to be integer in Corollary 7: it suffices
to require it for M. The results of the two tables below correspond to this case.

In the table on the left we have considered algorithms for two processes. On
the right we have considered Dijkstra’s algorithm for n processes.

Both tables have the same structure. The first column shows the name of
example, e.g. Diyksira 5 means Dijkstra’s mutex algorithm for 5 processes. The
next two numbers indicate the numer of places and transitions of the Petri
net. PEP generates a number of redundant places and transitions, which have
not been removed for the case study. The fourth column describes the verified
property: Deadlock (actually deadlock-freedom) or Mutex (mutual exclusion).
The next column shows which constraints were needed to verify the property:
ME (marking equation) or ME + TE (marking equation plus trap equation).
The last column gives the CPU time in seconds.

[Example [[P[[[T[[Property [Program [Time] [Example [[P[[|T[[Property [Program [Time |
Mutex TE + ME|0.27 Mutex TE + ME 0.22
Deadlock | TE + ME|[0.61 Deadlock | ME 0.25
Mutex TE + ME|0.31 Mutex TE + ME 5.02

Dekker 50| 75 Dijkstra 2| 64| 89

Peterson | 40| 69\ 5 ook IME 0.44 Dijkstra 3| 981605 o1 TME 0.88
s [e i e

The next table shows results for a a slotted ring protocol described in [18], in
which n processes are placed in a ring. In [18] the state space of the example was
encoded into BDDs and then used to check different properties, one of which
was deadlock freedom. The construction of the BDD for a ring of 9 processes
(the largest ring considered in [18]) took 4080 seconds. Using our method we
can prove deadlock-freedom in 0.68 seconds. The trap equation is not needed in
this case. The example shows that linear constraint methods can compete with
symbolic model checkers (there exist other examples (see [7]) in which BDD
methods are more efficient).

[Example [TPI[IT[[Property [Program[Time]|

Slotted Ring 2 | 20| 20|Deadlock|ME 0.02
Slotted Ring 3 | 30| 30|Deadlock|ME 0.03
Slotted Ring 4 | 40| 40|Deadlock|ME 0.03
Slotted Ring 5 | 50| 50|Deadlock|ME 0.07
Slotted Ring 6 | 60| 60|Deadlock|ME 0.20
Slotted Ring 7 | 70| 70|Deadlock| ME 0.32
Slotted Ring 8 | 80| 80|Deadlock|ME 0.63
Slotted Ring 9 | 90| 90|Deadlock| ME 0.68
Slotted Ring 10(100|100|Deadlock | ME 2.72

Finally, we consider a less academic example. We prove deadlock freedom
of two versions of a call handling for intelligent telephone networks which is
closely related to a Basic Call State Model [19] of the ITU-T (former CCITT)
standardization committee. The systems are described in [13]. We have used the
B(PN)? translations of [12]. The first version (Telephone) is the original protocol,
while the second version (Telephone (par)) is a refinement which allows parallel
communications.

[Example [TPI[IT[[Property [Program [Time |
Telephone 87|188|Deadlock|ME + TE| 10.82
Telephone(par)|232[672|Deadlock [ME + TE|705.68

6 Siphons

In Petri net theory, traps are usually studied together with siphons [21, 9]. The
results of Section 4 lead to ‘dual’ results about siphons. We study their possible
applications in this section.

Definition8. Siphons, proper siphons

A set R of places of a net is a siphon if * R C R*. A siphon is called proper
if it is not the empty set. R}

In the sequel, we shall use the letter X' to denote siphons. Since a transition
which puts tokens in the places of a siphon also removes tokens from them, we
have the following fundamental property:

Proposition9. Unmarked siphons remain unmarked

Let (N, My) be a Petri net, and let X be a siphon of N. If ¥ is unmarked
at My, then X remains unmarked at every reachable marking. m9

Proposition 9 provides a further negative test for reachability: if M marks
some siphon unmarked at My, then M is not reachable. Using another version
of the Alternatives Theorem we can obtain a siphon equation, which may be
added to the marking and trap equations. However, the siphon equation has little
interest. The reason is the following: since a siphon X' unmarked at My remains
unmarked, no transition of X* can ever occur. This is usually undesirerable and
a very serious design error. In all the Petri net models we have considered so far

(correct or incorrect), the initial marking marks every siphon, and so the siphon
equation does not add discriminating power.

Siphons do help in a different way. In Section 3 we showed that the set of
deadlocked markings of a Petri net that put at most one token on a place is
linear. It is easy to see that this property ceases to hold if the deadlocks may
put more than one token. In general, all we can say is that the set of deadlocks
is the union of a finite number of linear sets, namely those characterised by
equations of the form

M(s1)+ ...+ M(sp) =0

where the set {s1,...,s,} contains exactly one input place of each transition.
So in principle we could verify deadlock freedom by solving as many integer
problems as linear sets. However, this is very inefficient, because the number of
linear sets may be exponential in the size of the net.

The following observation is the key to a better method:

Proposition 10.

Let N = (P, T,W) be a net, and let M be a deadlocked marking of N. The
set ¥ ={p€ P| M(p) =0} is a proper siphon of N. |10

By this proposition, in order to check deadlock freedom it suffices to verify
that every proper siphon remains marked at every reachable marking. Moreover,
this new property is not too strong: most correct systems satisfy it, because the
input transitions of an unmarked siphon cannot occur anymore, and, once again,
this is undesirable in all the examples we have examined.

We borrow again a result from [11] :

Theorem 11. Algebraic characterization of siphons [11]
Let N = (P,T,W) be a net. Let N9 = (P,T,Wsx), where

Wy (p,t) = {ozpleﬂ Wi(t,p')ifpet

otherwise

WE(t;p) = W(tap)

A set X C P is a siphon of the net N if and only if the equation YT -Ny < 0
has a nonnegative solution Y such that ||Y|| = X. mil

So a marking M of N satisfies the siphon property iff the problem

Variables: Y :rational.
YT . Ny <0

Y >0 (X =||Y|| is a siphon.)
YT . M=0 (X is not marked at M.)

is feasible. Using another version of the Alternatives Theorem and following
a procedure similar to the one we used for the trap equation, we obtain that
the markings satisfying the siphon property are the solutions of the equation
M > Ny - X, where X < 0. Then, the markings which violate the property are
those satisfying M; < (Nx); - X, where M; is the i-th component of M, and
(Nx); the i-th row of Nx. So we have:

Theorem 12.

Let (N, My) be a Petri net. If none of the problems below is feasible, then
every reachable marking marks all siphons, and (N, My) is deadlock free.

Variables: M, X1: integer; Xs: rational
M =M+ N-X;
M; <(Nx)i-X»

M,X1>0
X2 <0

where M; is the i-th component of M, and (Nx); the i-th row of Nx.
m12

The number of inequation systems to solve is equal to the number of places
of the net. So we have reduce the possibly exponential number of systems to
linearly many.

7 Conclusion

We have extended the range of systems that can be verified using linear con-
straints by adding to the marking equation a new trap equation. The new
equation proves to be very useful for the analysis of systems communicating
by means of shared variables. We have proved properties of five mutual exclu-
sion algorithms and a telephone communication protocol, none of which could
be automatically proved before by linear methods.

We have also given a natural solution to a limitation of the method, namely
the fact that deadlock-freedom is not a linear property for arbitrary Petri nets.
We have introduce a slightly stronger property, in practice as desirable as dead-
lock freedom, which can be computed more easily.

References

1. André Arnold. Verification and comparison of transition systems. In M.C. Gaudel
and J.P. Jouannaud, editors, TAPSOFT ’93: Theory and Practice of Software
Development, volume 668 of Lecture Notes in Computer Science, pages 121-135.
Springer-Verlag, 1993.

2. G. S. Avrunin, J. C. Corbett, and U. A. Buy. Integer Programming in the Analysis
of Concurrent Systems. In K.G. Larsen and A. Skou, editors, Computer Aided
Verification, volume 575 of Lecture Notes in Computer Science, pages 92-102,
1991.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20

G.S. Avrunin, U.A. Buy, J.C. Corbett, ..K. Dillon, and J.C. Wileden. Automated
Analysis of Concurrent Systems with the Constrained Expression Toolset. ITFEFE
Transactions in Software Engineering, 17(11):1204-1222, 1991.

E. Best and H. Fleischhack (eds.). Pep: Programming environment based on nets.
Technical report, University of Hildesheim, Germany, 1994.

E. Best and R. P. Hopkins. B(PN)? — A Basic Petri Net Programming Notation.
In Proc. of PARLE-93, volume 694 of Lecture Notes in Computer Science, pages
379-390. Springer-Verlag, 1993

Also: Hildesheimer Informatik Fachbericht 27/92 (1992).

G.V. Brams. Réseaux de Petri: Theorie et Practique, Vols. I and II. Masson, 1982.
J.C. Corbett. Evaluating Deadlock Detection Methods for Concurrent Software. In
T. Ostrand, editor, Proceedings of the 1994 International Symposium on Software
Testing and Analysis, pages 204215, New York, 1994.

J.C. Corbett and G.S. Avrunin. Using Integer Programming to Verify general
Safety and Liveness properties. Formal Methods in System Design, 6(1):97-123,
1995.

. J. Desel and J. Esparza. Free-choice Petri Nets, volume 40 of Cambridge Tracts

in Theoretical Computer Science. Cambridge University Press, 1995.

J. Esparza and M. Silva. A Polynomial-Time Algorithm to Prove Liveness of
Bounded Free Choice Nets. Theoretical Computer Science, 102:185-205, 1992.

J. Ezpeleta, J. M. Couvreur, and M. Silva. A New Technique for Finding a Gener-
ating Family of Siphons, Traps and ST-Components. Application to Colored Petri
Nets. In G. Rozenberg, editor, Advances in Petri Nets, volume 674 of Lecture
Notes in Computer Science, pages 126-147. Springer Verlag, 1993.

B. Grahlmann. Verifying telecommunication protocols with pep (draft). Technical
report, University of Hildesheim, Germany, 1995.

Stephan Kleuker. A gentle introduction to specification engineering using a case
study in telecommunications. In P.D. Mosses, M. Nielsen, and M.I. Schwartzbach,
editors, TAPSOFT ’95, volume 915 of Lecture Notes in Computer Science.
Springer-Verlag, 1995.

K. Lautenbach. Linear algebraic calculation of deadlocks and traps. In
H.J. Genrich K. Voss and G. Rozenberg, editors, Concurrency and Nets, pages
315-336. Springer-Verlag, 1987.

K. Lautenbach. Linear Algebraic Techniques for Place/Transition Nets. In
W. Brauer, W. Reisig, and G. Rozenberg, editors, Petri Nets: Central Models and
Their Properties, Advance in Petri Nets 1986, volume 254 of Lecture Notes in
Computer Science, pages 142-167. Springer-Verlag, 1987.

G. Memmi and G. Roucairol. Linear Algebra in Net Theory. In W. Brauer, editor,
Net Theory and Applications, volume 84 of Lecture Notes in Computer Science,
pages 213-223. Springer-Verlag, 1980.

Tadao Murata. Petri nets: Properties, analysis and applications. Proc. of the
IEEE, T7(4):541-580, 1989.

Enric Pastor, Oriol Roig, Jordi Cortadella, and Rosa M. Badia. Petri net analysis
using boolean manipulation. In Robert Valette, editor, Application and Theory of
Petri Nets 1994, number 815 in Lecture Notes in Computer Science, pages 416 —
435. Springer-Verlag, 1994.

CCITT Recommendations Q.1200. Intelligent networks, final version. Technical
report, 1992.

M. Raynal. Algorithms for Mutual Exclusion. North Oxford Academic, 1986.

21. W. Reisig. Petri Nets, volume 4 of EATCS Monographs on Theoretical Computer
Science. Springer Verlag, 1985.

22. A. Schrijver. Theory of Linear and Integer Programing. Series in Discrete Mathe-
matics. Wiley, 1986.

SFB 342:

Methoden und Werkzeuge fiir die Nutzung paralleler
Rechnerarchitekturen

bisher erschienen :

Reihe A

342/1/90 A
342/2/90 A
342/3/90 A

342/4/90 A

342/5/90 A
342/6/90 A
342/7/90 A
342/8/90 A

342/9/90 A

Robert Gold, Walter Vogler: Quality Criteria for Partial Order Se-
mantics of Place/Transition-Nets, Januar 1990

Reinhard FoBmeier: Die Rolle der Lastverteilung bei der numeri-
schen Parallelprogrammierung, Februar 1990

Klaus-Jorn Lange, Peter Rossmanith: Two Results on Unambi-
guous Circuits, Februar 1990

Michael Griebel: Zur Lésung von Finite-Differenzen- und Finite-
Element-Gleichungen mittels der Hierarchischen Transformations-
Mehrgitter-Methode

Reinhold Letz, Johann Schumann, Stephan Bayerl, Wolfgang Bibel:
SETHEO: A High-Performance Theorem Prover

Johann Schumann, Reinhold Letz: PARTHEO: A High Performan-
ce Parallel Theorem Prover

Johann Schumann, Norbert Trapp, Martin van der Koelen: SE-
THEO/PARTHEO Users Manual

Christian Suttner, Wolfgang Ertel: Using Connectionist Networks
for Guiding the Search of a Theorem Prover

Hans-Jorg Beier, Thomas Bemmerl, Arndt Bode, Hubert Ertl, Olav
Hansen, Josef Haunerdinger, Paul Hofstetter, Jaroslav Kremenek,
Robert Lindhof, Thomas Ludwig, Peter Luksch, Thomas Treml:
TOPSYS, Tools for Parallel Systems (Artikelsammlung)

342/10/90 A Walter Vogler: Bisimulation and Action Refinement
342/11/90 A Jorg Desel, Javier Esparza: Reachability in Reversible Free- Choice

Systems

Reihe A

342/12/90 A Rob van Glabbeek, Ursula Goltz: Equivalences and Refinement

342/13/90 A Rob van Glabbeek: The Linear Time - Branching Time Spectrum

342/14/90 A Johannes Bauer, Thomas Bemmerl, Thomas Treml: Leistungsana-
lyse von verteilten Beobachtungs- und Bewertungswerkzeugen

342/15/90 A Peter Rossmanith: The Owner Concept for PRAMs

342/16/90 A G. Bockle, S. Trosch: A Simulator for VLIW-Architectures

342/17/90 A P. Slavkovsky, U. Riide: Schnellere Berechnung klassischer Matrix-
Multiplikationen

342/18/90 A Christoph Zenger: SPARSE GRIDS

342/19/90 A Michael Griebel, Michael Schneider, Christoph Zenger: A combina-
tion technique for the solution of sparse grid problems

342/20/90 A Michael Griebel: A Parallelizable and Vectorizable Multi- Level-
Algorithm on Sparse Grids

342/21/90 A'V. Diekert, E. Ochmanski, K. Reinhardt: On confluent semi-
commutations-decidability and complexity results

342/22/90 A Manfred Broy, Claus Dendorfer: Functional Modelling of Opera-
ting System Structures by Timed Higher Order Stream Processing
Functions

342/23/90 A Rob van Glabbeek, Ursula Goltz: A Deadlock-sensitive Congruence
for Action Refinement

342/24/90 A Manfred Broy: On the Design and Verification of a Simple Distri-
buted Spanning Tree Algorithm

342/25/90 A Thomas Bemmerl, Arndt Bode, Peter Braun, Olav Hansen, Peter
Luksch, Roland Wismiiller: TOPSYS - Tools for Parallel Systems
(User’s Overview and User’s Manuals)

342/26/90 A Thomas Bemmerl, Arndt Bode, Thomas Ludwig, Stefan Tritscher:
MMK - Multiprocessor Multitasking Kernel (User’s Guide and
User’s Reference Manual)

342/27/90 A Wolfgang Ertel: Random Competition: A Simple, but Efficient Me-
thod for Parallelizing Inference Systems

342/28/90 A Rob van Glabbeek, Frits Vaandrager: Modular Specification of Pro-
cess Algebras

342/29/90 A Rob van Glabbeek, Peter Weijland: Branching Time and Abstrac-
tion in Bisimulation Semantics

342/30/90 A Michael Griebel: Parallel Multigrid Methods on Sparse Grids

342/31/90 A Rolf Niedermeier, Peter Rossmanith: Unambiguous Simulations of
Auxiliary Pushdown Automata and Circuits

342/32/90 A Inga Niepel, Peter Rossmanith: Uniform Circuits and Exclusive
Read PRAMs

342/33/90 A Dr. Hermann Hellwagner: A Survey of Virtually Shared Memory
Schemes

342/1/91 A Walter Vogler: Is Partial Order Semantics Necessary for Action
Refinement?

Reihe A
342/2/91
342/3/91
342/4/91

342/5/91
342/6/91

342/7/91

342/8/91
342/9/91

342/10/91
342/11/91
342/12/91

342/13/91

342/14/91
342/15/91
342/16/91
342/17/91
342/18/91
342/19/91
342/20/91
342/21/91

342/22/91

A Manfred Broy, Frank Dederichs, Claus Dendorfer, Rainer Weber:
Characterizing the Behaviour of Reactive Systems by Trace Sets

A Ulrich Furbach, Christian Suttner, Bertram Fronhofer: Massively
Parallel Inference Systems

A Rudolf Bayer: Non-deterministic Computing, Transactions and Re-

cursive Atomicity

Robert Gold: Dataflow semantics for Petri nets

A. Heise; C. Dimitrovici: Transformation und Komposition von

P/T-Netzen unter Erhaltung wesentlicher Eigenschaften

A Walter Vogler: Asynchronous Communication of Petri Nets and the
Refinement of Transitions

A Walter Vogler: Generalized OM-Bisimulation

A Christoph Zenger, Klaus Hallatschek: Fouriertransformation auf
diinnen Gittern mit hierarchischen Basen

A Erwin Loibl, Hans Obermaier, Markus Pawlowski: Towards Paral-
lelism in a Relational Database System

A Michael Werner: Implementierung von Algorithmen zur Kompak-
tifizierung von Programmen fir VLIW-Architekturen

A Reiner Miiller: Implementierung von Algorithmen zur Optimierung
von Schleifen mit Hilfe von Software-Pipelining Techniken

A Sally Baker, Hans-Jorg Beier, Thomas Bemmerl, Arndt Bode, Hu-
bert Ertl, Udo Graf, Olav Hansen, Josef Haunerdinger, Paul Hof-
stetter, Rainer Knddlseder, Jaroslav Kremenek, Siegfried Langen-
buch, Robert Lindhof, Thomas Ludwig, Peter Luksch, Roy Milner,
Bernhard Ries, Thomas Treml: TOPSYS - Tools for Parallel Sy-
stems (Artikelsammlung); 2., erweiterte Auflage

A Michael Griebel: The combination technique for the sparse grid
solution of PDE’s on multiprocessor machines

A Thomas F. Gritzner, Manfred Broy: A Link Between Process Alge-
bras and Abstract Relation Algebras?

A Thomas Bemmerl, Arndt Bode, Peter Braun, Olav Hansen, Tho-
mas Treml, Roland Wismiiller: The Design and Implementation of
TOPSYS

A Ulrich Furbach: Answers for disjunctive logic programs

A Ulrich Furbach: Splitting as a source of parallelism in disjunctive
logic programs

A Gerhard W. Zumbusch: Adaptive parallele Multilevel-Methoden
zur Losung elliptischer Randwertprobleme

A M. Jobmann, J. Schumann: Modelling and Performance Analysis
of a Parallel Theorem Prover

=

A Hans-Joachim Bungartz: An Adaptive Poisson Solver Using Hier-
archical Bases and Sparse Grids

A Wolfgang Ertel, Theodor Gemenis, Johann M. Ph. Schumann, Chri-
stian B. Suttner, Rainer Weber, Zongyan Qiu: Formalisms and Lan-
guages for Specifying Parallel Inference Systems

Reihe A

342/23/91 A
342/24/91 A

342/25/91 A
342/26/91 A

342/27/91 A
342/28/91 A
342/29/91 A
342/30/91 A
342/31/91 A
342/32/91 A
342/1/92 A

342/2/92 A

Astrid Kiehn: Local and Global Causes

Johann M.Ph. Schumann: Parallelization of Inference Systems by
using an Abstract Machine

Eike Jessen: Speedup Analysis by Hierarchical Load Decomposition
Thomas F. Gritzner: A Simple Toy Example of a Distributed Sy-
stem: On the Design of a Connecting Switch

Thomas Schnekenburger, Andreas Weininger, Michael Friedrich: In-
troduction to the Parallel and Distributed Programming Language
ParMod-C

Claus Dendorfer: Funktionale Modellierung eines Postsystems
Michael Griebel: Multilevel algorithms considered as iterative me-
thods on indefinite systems

W. Reisig: Parallel Composition of Liveness

Thomas Bemmerl, Christian Kasperbauer, Martin Mairandres,
Bernhard Ries: Programming Tools for Distributed Multiprocessor
Computing Environments

Frank LeBlke: On constructive specifications of abstract data types
using temporal logic

L. Kanal, C.B. Suttner (Editors): Informal Proceedings of the
Workshop on Parallel Processing for Al

Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, Tho-
mas F. Gritzner, Rainer Weber: The Design of Distributed Systems
- An Introduction to FOCUS

342/2-2/92 A Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, Tho-

342/3/92 A

342/4/92 A
342/5/92 A
342/6/92 A
342/7/92 A
342/8/92 A

342/9/92 A

mas F. Gritzner, Rainer Weber: The Design of Distributed Systems
- An Introduction to FOCUS - Revised Version (erschienen im Ja-
nuar 1993)

Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, Tho-
mas F. Gritzner, Rainer Weber: Summary of Case Studies in FO-
CUS - a Design Method for Distributed Systems

Claus Dendorfer, Rainer Weber: Development and Implementation
of a Communication Protocol - An Exercise in FOCUS

Michael Friedrich: Sprachmittel und Werkzeuge zur Unterstiit- zung
paralleler und verteilter Programmierung

Thomas F. Gritzner: The Action Graph Model as a Link between
Abstract Relation Algebras and Process-Algebraic Specifications
Sergei Gorlatch: Parallel Program Development for a Recursive Nu-
merical Algorithm: a Case Study

Henning Spruth, Georg Sigl, Frank Johannes: Parallel Algorithms
for Slicing Based Final Placement

Herbert Bauer, Christian Sporrer, Thomas Krodel: On Distributed
Logic Simulation Using Time Warp

Reihe A

342/10/92 A H. Bungartz, M. Griebel, U. Riide: Extrapolation, Combination and
Sparse Grid Techniques for Elliptic Boundary Value Problems

342/11/92 A M. Griebel, W. Huber, U. Riide, T. Stortkuhl: The Combination
Technique for Parallel Sparse-Grid-Preconditioning and -Solution
of PDEs on Multiprocessor Machines and Workstation Networks

342/12/92 A Rolf Niedermeier, Peter Rossmanith: Optimal Parallel Algorithms
for Computing Recursively Defined Functions

342/13/92 A Rainer Weber: Eine Methodik fiir die formale Anforderungsspezif-
kation verteilter Systeme

342/14/92 A Michael Griebel: Grid— and point—oriented multilevel algorithms

342/15/92 A M. Griebel, C. Zenger, S. Zimmer: Improved multilevel algorithms
for full and sparse grid problems

342/16/92 A J. Desel, D. Gomm, E. Kindler, B. Paech, R. Walter: Bausteine
eines kompositionalen Beweiskalkiils fiir netzmodellierte Systeme

342/17/92 A Frank Dederichs: Transformation verteilter Systeme: Von applika-
tiven zu prozeduralen Darstellungen

342/18/92 A Andreas Listl, Markus Pawlowski: Parallel Cache Management of
a RDBMS

342/19/92 A Erwin Loibl, Markus Pawlowski, Christian Roth: PART: A Parallel
Relational Toolbox as Basis for the Optimization and Interpretation
of Parallel Queries

342/20/92 A Jorg Desel, Wolfgang Reisig: The Synthesis Problem of Petri Nets

342/21/92 A Robert Balder, Christoph Zenger: The d-dimensional Helmholtz
equation on sparse Grids

342/22/92 A llko Michler: Neuronale Netzwerk-Paradigmen zum Erlernen von
Heuristiken

342/23/92 A Wolfgang Reisig: Elements of a Temporal Logic. Coping with
Concurrency

342/24/92 A T. Stortkuhl, Chr. Zenger, S. Zimmer: An asymptotic solution for
the singularity at the angular point of the lid driven cavity

342/25/92 A Ekkart Kindler: Invariants, Compositionality and Substitution

342/26/92 A Thomas Bonk, Ulrich Riide: Performance Analysis and Optimiza-
tion of Numerically Intensive Programs

342/1/93 A M. Griebel, V. Thurner: The Efficient Solution of Fluid Dynamics
Problems by the Combination Technique

342/2/93 A Ketil Stolen, Frank Dederichs, Rainer Weber: Assumption / Com-
mitment Rules for Networks of Asynchronously Communicating
Agents

342/3/93 A Thomas Schnekenburger: A Definition of Efficiency of Parallel Pro-
grams in Multi-Tasking Environments

342/4/93 A Hans-Joachim Bungartz, Michael Griebel, Dierk Roschke, Chri-
stoph Zenger: A Proof of Convergence for the Combination Techni-
que for the Laplace Equation Using Tools of Symbolic Computation

Reihe A

342/5/93 A Manfred Kunde, Rolf Niedermeier, Peter Rossmanith: Faster Sor-
ting and Routing on Grids with Diagonals

342/6/93 A Michael Griebel, Peter Oswald: Remarks on the Abstract Theory
of Additive and Multiplicative Schwarz Algorithms

342/7/93 A Christian Sporrer, Herbert Bauer: Corolla Partitioning for Distri-
buted Logic Simulation of VLSI Circuits

342/8/93 A Herbert Bauer, Christian Sporrer: Reducing Rollback Overhead in
Time-Warp Based Distributed Simulation with Optimized Incre-
mental State Saving

342/9/93 A Peter Slavkovsky: The Visibility Problem for Single-Valued Surface
(z = f(x,y)): The Analysis and the Parallelization of Algorithms

342/10/93 A Ulrich Riide: Multilevel, Extrapolation, and Sparse Grid Methods

342/11/93 A Hans Regler, Ulrich Riide: Layout Optimization with Algebraic
Multigrid Methods

342/12/93 A Dieter Barnard, Angelika Mader: Model Checking for the Modal
Mu-Calculus using Gaufl Elimination

342/13/93 A Christoph Pflaum, Ulrich Riide: Gaui’ Adaptive Relaxation for
the Multilevel Solution of Partial Differential Equations on Sparse
Grids

342/14/93 A Christoph Pflaum: Convergence of the Combination Technique for
the Finite Element Solution of Poisson’s Equation

342/15/93 A Michael Luby, Wolfgang Ertel: Optimal Parallelization of Las Vegas
Algorithms

342/16/93 A Hans-Joachim Bungartz, Michael Griebel, Dierk Roschke, Chri-
stoph Zenger: Pointwise Convergence of the Combination Technique
for Laplace’s Equation

342/17/93 A Georg Stellner, Matthias Schumann, Stefan Lamberts, Thomas
Ludwig, Arndt Bode, Martin Kiehl und Rainer Mehlhorn: Deve-
loping Multicomputer Applications on Networks of Workstations
Using NXLib

342/18/93 A Max Fuchs, Ketil Stglen: Development of a Distributed Min/Max
Component

342/19/93 A Johann K. Obermaier: Recovery and Transaction Management in
Write-optimized Database Systems

342/20/93 A Sergej Gorlatch: Deriving Efficient Parallel Programs by Systema-
ting Coarsing Specification Parallelism

342/01/94 A Reiner Hiittl, Michael Schneider: Parallel Adaptive Numerical
Simulation

342/02/94 A Henning Spruth, Frank Johannes: Parallel Routing of VLSI Circuits
Based on Net Independency

342/03/94 A Henning Spruth, Frank Johannes, Kurt Antreich: PHIroute: A Par-
allel Hierarchical Sea-of-Gates Router

342/04/94 A Martin Kiehl, Rainer Mehlhorn, Matthias Schumann: Parallel Mul-
tiple Shooting for Optimal Control Problems Under NX/2

Reihe A

342/05/94 A Christian Suttner, Christoph Goller, Peter Krauss, Klaus-Jorn Lan-
ge, Ludwig Thomas, Thomas Schnekenburger: Heuristic Optimiza-
tion of Parallel Computations

342/06/94 A Andreas Listl: Using Subpages for Cache Coherency Control in Par-
allel Database Systems

342/07/94 A Manfred Broy, Ketil Stglen: Specification and Refinement of Finite
Dataflow Networks - a Relational Approach

342/08/94 A Katharina Spies: Funktionale Spezifikation eines Kommunika-
tionsprotokolls

342/09/94 A Peter A. Krauss: Applying a New Search Space Partitioning Me-
thod to Parallel Test Generation for Sequential Circuits

342/10/94 A Manfred Broy: A Functional Rephrasing of the Assumption/Com-
mitment Specification Style

342/11/94 A Eckhardt Holz, Ketil Stelen: An Attempt to Embed a Restricted
Version of SDL as a Target Language in Focus

342/12/94 A Christoph Pflaum: A Multi-Level-Algorithm for the Finite-
Element-Solution of General Second Order Elliptic Differential
Equations on Adaptive Sparse Grids

342/13/94 A Manfred Broy, Max Fuchs, Thomas F. Gritzner, Bernhard Schétz,
Katharina Spies, Ketil Stglen: Summary of Case Studies in FOCUS
- a Design Method for Distributed Systems

342/14/94 A Maximilian Fuchs: Technologieabhéngigkeit von Spezifikationen di-
gitaler Hardware

342/15/94 A M. Griebel, P. Oswald: Tensor Product Type Subspace Splittings
And Multilevel Iterative Methods For Anisotropic Problems

342/16/94 A Gheorghe Stefanescu: Algebra of Flownomials

342/17/94 A Ketil Stglen: A Refinement Relation Supporting the Transition
from Unbounded to Bounded Communication Buffers

342/18/94 A Michael Griebel, Tilman Neuhoeffer: A Domain-Oriented Multilevel
Algorithm-Implementation and Parallelization

342/19/94 A Michael Griebel, Walter Huber: Turbulence Simulation on Sparse
Grids Using the Combination Method

342/20/94 A Johann Schumann: Using the Theorem Prover SETHEO for verify-
ing the development of a Communication Protocol in FOCUS - A
Case Study -

342/01/95 A Hans-Joachim Bungartz: Higher Order Finite Elements on Sparse
Grids

342/02/95 A Tao Zhang, Seonglim Kang, Lester R. Lipsky: The Performance of
Parallel Computers: Order Statistics and Amdahl’s Law

342/03/95 A Lester R. Lipsky, Appie van de Liefvoort: Transformation of the
Kronecker Product of Identical Servers to a Reduced Product Space

342/04/95 A Pierre Fiorini, Lester R. Lipsky, Wen-Jung Hsin, Appie van de Lief-
voort: Auto-Correlation of Lag-k For Customers Departing From
Semi-Markov Processes

Reihe A

342/05/95 A Sascha Hilgenfeldt, Robert Balder, Christoph Zenger: Sparse Grids:
Applications to Multi-dimensional Schrédinger Problems

342/06/95 A Maximilian Fuchs: Formal Design of a Model-N Counter

342/07/95 A Hans-Joachim Bungartz, Stefan Schulte: Coupled Problems in Mi-
crosystem Technology

342/08/95 A Alexander Pfaffinger: Parallel Communication on Workstation Net-
works with Complex Topologies

342/09/95 A Ketil Stglen: Assumption/Commitment Rules for Data-flow Net-
works - with an Emphasis on Completeness

342/10/95 A Ketil Stglen, Max Fuchs: A Formal Method for Hardware/Software
Co-Design

342/11/95 A Thomas Schnekenburger: The ALDY Load Distribution System

342/12/95 A Javier Esparza, Stefan Romer, Walter Vogler: An Improvement of
McMillan’s Unfolding Algorithm

342/13/95 A Stephan Melzer, Javier Esparza: Checking System Properties via
Integer Programming

SFB 342 : Methoden und Werkzeuge fiir die Nutzung paralleler
Rechnerarchitekturen

Reihe B

342/1/90 B Wolfgang Reisig: Petri Nets and Algebraic Specifications

342/2/90 B Jorg Desel: On Abstraction of Nets

342/3/90 B Jorg Desel: Reduction and Design of Well-behaved Free-choice
Systems

342/4/90 B Franz Abstreiter, Michael Friedrich, Hans-Jiirgen Plewan: Das
Werkzeug runtime zur Beobachtung verteilter und paralleler
Programme

342/1/91 B Barbara Paechl: Concurrency as a Modality

342/2/91 B Birgit Kandler, Markus Pawlowski: SAM: Eine Sortier- Toolbox
-Anwenderbeschreibung

342/3/91 B Erwin Loibl, Hans Obermaier, Markus Pawlowski: 2. Workshop
iiber Parallelisierung von Datenbanksystemen

342/4/91 B Werner Pohlmann: A Limitation of Distributed Simulation
Methods

342/5/91 B Dominik Gomm, Ekkart Kindler: A Weakly Coherent Virtually
Shared Memory Scheme: Formal Specification and Analysis

342/6/91 B Dominik Gomm, Ekkart Kindler: Causality Based Specification and
Correctness Proof of a Virtually Shared Memory Scheme

342/7/91 B W. Reisig: Concurrent Temporal Logic

342/1/92 B Malte Grosse, Christian B. Suttner: A Parallel Algorithm for Set-
of-Support
Christian B. Suttner: Parallel Computation of Multiple Sets-of-
Support

342/2/92 B Arndt Bode, Hartmut Wedekind: Parallelrechner: Theorie, Hard-
ware, Software, Anwendungen

342/1/93 B Max Fuchs: Funktionale Spezifikation einer Geschwindigkeits-
regelung

342/2/93 B Ekkart Kindler: Sicherheits- und Lebendigkeitseigenschaften: Ein
Literaturiiberblick

342/1/94 B Andreas Listl; Thomas Schnekenburger; Michael Friedrich: Zum
Entwurf eines Prototypen fir MIDAS

This article was processed using the IAXTRX macro package with LLNCS style

