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Abstract. Recent work by Hermanns et al. and Kattenbelt et al. has
extended counterexample-guided abstraction refinement (CEGAR) to
probabilistic programs. In these approaches, programs are abstracted
into Markov Decision Processes (MDPs). Analysis of the MDPs allows
to compute lower and upper bounds for the probability of reaching an
error state. The bounds can be improved by refining the abstraction. The
approaches of Hermanns et al. and Kattenbelt et al. are limited to pred-
icate abstraction. We present a novel technique, based on the abstract
reachability tree recently introduced by Gulavani et al, that can use arbi-
trary abstract domains and widening operators (in the sense of abstract
interpretation). We show how suitable widening operators can deduce
loop invariants difficult to find for predicate abstraction, and propose
several refinement techniques.

1 Introduction

Abstraction techniques are crucial for the automatic verification of systems with
a finite but very large or infinite state space. The abstract interpretation frame-
work provides the mathematical basis of abstraction [5]. Abstract domains are
used to compute safe overapproximations of the program behaviour.

Recent work has extended abstraction techniques to probabilistic systems
[12, 8]. The key idea is to abstract the Markov chain defining the semantics of
the program into a Markov Decision Process (MDP) (or stochastic games). The
construction ensures that the probability of reaching a goal state in the Markov
chain lies between the probabilities of reaching it in the MDP using an optimal
resp. a pessimal strategy to resolve the nondeterminism.

The abstraction technique of [12, 8] relies on predicate abstraction: an ab-
stract state is an equivalence class of concrete states, where two concrete states
are equivalent if they satisfy the same subset of a given set of predicates. If the
upper and lower bounds obtained using a set of predicates are not close enough,
the abstraction can be refined by adding new predicates by means of interpo-
lation, analogously to the well-known CEGAR approach for non-probabilistic
systems.

While predicate abstraction has proved very successful, it is known to have a
number of shortcomings, like potentially expensive equality or inclusion checks
for abstract states, and “predicate explosion”. In the non-probabilistic case, the
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work of Gulavani et al. has extended the CEGAR approach to a broader range
of abstract domains [7]. Widening operations are combined with interpolation
methods, leading to more efficient abstraction algorithms.

In this paper we show that the ideas of Gulavani et al. can also be applied
in the probabilistic area, resulting in an extension of the approaches of [12, 8] to
arbitrary abstract domains. Given a probabilistic program, an abstract domain
and a widening for this domain, we show how to construct a MDP, and how
to refine the abstraction using standard techniques of abstract interpretation,
like delaying widenings [3]. We also show how this can be done incrementally
by “refining” special nodes in the MDP, which can be seen as an analogon to
the refinement techniques in probabilistic CEGAR. Finally, we explain how to
derive the predicate abstraction approach as a special case.

The rest of the paper is organized as follows. In the rest of the introduction
we informally present the key ideas of our approach by means of some examples.
Section 2 contains preliminaries. Section 3 formally introduces the abstraction
technique, and proves that the probabilities of the optimal resp. pessimal starte-
gies are an upper resp. a lower bound of the exact probability of reaching a state.
In section 3.4 we deal with the special case of predicate abstraction. Section 5
discusses the interest of the generalization with the help of some experiments.

Related work. Besides the work of [9] and [12], Monniaux [13, 14] has studied
how to abstract probability distributions over program states (instead of the
states themselves). Wachter et al. discuss in [17] an abstract-interpretation-based
framework for analyzing stochastic games, but still rely on predicate abstraction.

1.1 An example

Consider the C-like program of Fig. 1. The goal of the program is to receive
100 packages. When trying to receive a new package, with probability 0.01 the
network connection can be interrupted, i.e. receive package() will return false.
Then no packages can be received anymore. The probability of receiving no
package at all (equal to the probability of reaching location 6) is obviously 0.01
(only the first iteration of the loop is relevant). However, a brute force automatic
technique will construct and analyze the standard semantics of the program, a
Markov chain with over 400 states, part of which is shown in Fig. 1. We use this
simple example to informally introduce our abstraction technique, which also
“sees” that only the first iteration counts.

A (concrete) state of the program is a pair 〈`, v〉, where ` is the current
program point and v the current value of nrp. We use the abstract interpretation
framework [5], and choose the integer interval domain: an abstract state is a
pair 〈`, [a, b]〉, where [a, b] is an interval of values of npr. Starting with 〈1, [0, 0]〉
we compute successor abstract states in the usual way using depth-first search
(DFS): We compute all direct successors of an abstract state q using the standard
recipe of abstract interpretation. If one of the successors d has already been
generated before, we add a transition from q to d. Also, if the successors of q are
the outcome of a probabilistic choice (like at line 2), we label the transitions with
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int nrp = 0;

1: while (nrp <= 100)

2: if (receive_package()) then

3: nrp = nrp+1

4: else break

5: if (nrp < 1) then

6: fail

7: end.

L1, nrp=0

L2, nrp=0

L3, nrp=0

L1, nrp=1

L2, nrp=1

L3, nrp=1 L4, nrp=1

L5, nrp=1

L7, nrp=1

L1, nrp=2

L2, nrp=2

L4, nrp=0

L5, nrp=0

Fail (L6),nrp=0

. . . . . .

1

0.99 0.01

1

1

1

1

0.99 0.01

1

1

1

1

0.99 0.01

Fig. 1. Example program and corresponding transition system.

probabilities. To keep the number of explored abstract states small, we apply
a widening operator ∇: If we generate an abstract state 〈`, [a, b]〉 such that ` is
the head of a while loop (in our example the only head is ` = 1), and 〈`, [a, b]〉
has an ancestor 〈`, [a′, b′]〉 in the spanning tree generated by the DFS, then we
overapproximate 〈`, [a, b]〉 by 〈`, s〉, with s = [a′, b′]∇ [min(a, a′),max(b, b′)]. We
use the classical widening operator defined in [5] for this example. To get more
precision, the use of widenings can be delayed for the first k loop unfoldings. In
our example we use k = 1, i.e. we apply widening after the second unrolling of
the loop. Moreover, we have to take care of the fact that abstraction introduces
nondeterminism, since an abstract state can represent several concrete states.
In our case this happens at state 〈1, [1,∞)〉: The guard x <= 100 is satisfied by
[1, 100], but not satisfied by [101,∞). In this case we add two successor states,
labeled with ”?”.

The result of the construction is shown in Fig. 2. As in [12, 8], and because
of nondeterminism, the result is in general a Markov Decision Process. Given a
strategy to resolve the nondeterminism, we obtain a Markov chain, for which we
can compute the probability of reaching the fail location. The first theorem of
our paper is the counterpart of the result of [12, 8]: the probability of reaching
the fail location in the real program lies between the probabilities of reaching it
under the optimal and pessimal strategies for the MDP. Since these probabilities
can be computed using well-known algorithms, we obtain a lower and an upper
bound for the real probability. In our example we obtain a probability of failure of
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Fig. 2. Abstract transition system of the program in Fig. 1.

0.01, independently of the strategy at the only nondeterministic state 〈1, [1,∞]〉,
and so we compute the exact value.

Consider now the program on the left of Fig. 3, a variant of the program
above. Here choice(p) models a random number generator call, that returns 1
with probability p and 0 with probability 1− p.

It is easy to see that c ≤ 1 is a global invariant, and so the probability of
failure is exactly 0.5. However, when this program is analyzed with PASS [8, 9],
a leading tool on probabilistic abstraction refinement on the basis of predicate
abstraction, the while loop is (implicitly) unrolled 100 times because the tool
fails to “catch” the invariant, independently of the options chosen to refine the
abstraction. On the other hand, an analysis of the program with the standard
interval domain, the standard widening operator, and the standard technique of
delaying widenings [3], easily ‘catches” the invariant (see Section 5 for a detailed
analysis). The same happens for the program on the right of the figure, which
exhibits a more interesting probabilistic behaviour: we obtain good upper and
lower bounds for the probability of failure using the standard interval domain.
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int c = 0, i = 0;

1: if choice(0.5) then

2: while (i <= 100)

3: i = i+1;

4: c = c-i+2

5: if (c >= i) fail

int c = 0, i = 0;

1: while(i <= 100)

2: if choice(0.99) then i = (i+1);

3: c = c-i+2;

4: if (c >= i) then fail

Fig. 3. Example programs 2 and 3.

Notice that examples exhibiting the opposite behaviour (predicate abstrac-
tion succeeds where interval analysis fails) are not difficult to find. Our thesis is
only that the MDP-based abstraction approach of [12, 8] can be easily extended
to arbitrary abstract domains, making it more flexible and efficient.

2 Preliminaries

2.1 Probabilistic systems

This section introduces Markov Decision Processes and Markov chains, and lists
certain properties of those systems that we need later on. For a more thorough
introduction into the subject and proofs for the theorems see e.g. [16, 11].

Definition 1. A Markov Decision Process (MDP)M is a tuple (A,P, TA, TP , q0),
where

– A is a finite or countable set of action states,
– P is a finite or countable set of probabilistic choice states,
– q0 ∈ A ∪ P is the initial state,
– TA ⊆ A× (A ∪ P ) are the action transitions of M,
– TP ⊆ P × (0, 1]× (A ∪ P ) are the probabilistic transitions of M,
– for every state s ∈ A there exists at least one s′ ∈ (A∪P ) such that (s, s′) ∈
TA,

– for every state s ∈ P ,
∑

(s,p,s′)∈TP
p = 1, and

– for every s ∈ P and s′ ∈ A ∪ P , |{(s, p, s′) | p ∈ [0, 1]} ∩ TP | ≤ 1.

A MDPM = (A, TA, P, TP , q0) is a Markov chain (MC) if for every s ∈ A there
exists exactly one s′ ∈ A ∪ P such that (s, s′) ∈ TA.

Note 1. Our definition of Markov Decision Process and Markov chains differ
slightly from the usual ones used in the literature; especially we do not assign
any action names since we do not need them further.

For the rest of the section we fix a MDP M = (A,P, TA, TP , q0) and let
S = A ∪ P . We define the relation →⊆ S × S by setting s → s′ iff (s, s′) ∈ TA
or if there is a p ∈ (0, 1] such that (s, p, s′) ∈ TP . We define Succs(s) := {s′ ∈
S | s → s′} for every s ∈ S. A path r of M is a finite sequence s0, s1, . . . sn
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of states such that si → si+1 for every i ∈ {0, . . . , n − 1}. We also write r as
s0 → s1 → . . .→ sn. A path r is initial if s0 = q0.

The nondeterminism of action states is resolved with the help of strategies:

Definition 2. A strategy φ maps every initial path r = s0 → s1 → . . . → sn
with sn ∈ A to a distribution φ(r) : Succs(sn) → [0, 1]. A strategy φ is non-
randomized if for every r, there exists an s ∈ S such that φ(r)(s) = 1, and then
we write φ(r) = s as an abbreviation. A strategy φ is memoryless iff φ’s choice
only depends on the last state of the path, i.e., if for all initial paths x1, . . . , xk
and y1, . . . , yl with xk = yl and xk ∈ A, φ(x1 → . . . → xk) = φ(y1 → . . . → yl)
holds. A memoryless and non-randomized strategy can be seen as a map from S
to S ∪ A. A path r is realizable in M obeying strategy φ if r is an initial path
of M and for every prefix s0 → . . . → sn of r with sn−1 ∈ A, φ(s0 → . . . →
sn−1)(sn) > 0 holds. The weight wφ(r) of a realizable path obeying strategy φ
is the product of the probabilities of its edges. If M is a Markov chain, there is
only one possible strategy φ. In this case we just write w instead of wφ.

Definition 3. Let Cyl(M[φ], σ) denote the set of initial runs (or cylinders)
realizable in M obeying φ which end in σ and have not visited σ before. (If M
is a Markov chain, there is only one possible strategy and we write Cyl(M, σ)).
The probability of reaching a state σ in M using φ is given by

PM[φ](σ) =
∑

r∈Cyl(M[φ],σ)

wφ(r).

If M is a Markov chain, the probability is PM(σ) =
∑
r∈Cyl(M,σ) w(r).

We define

P+
M(σ) := sup

φ∈φM
PM[φ](σ) and P−M(σ) := inf

φ∈φM
PM[φ](σ)

The following theorem is well-known [11]:

Theorem 1. If M has only finitely many states, there exist memoryless, non-
randomized strategies φ−, φ+ ∈ SM such that

P−M(σ) = PM[φ−](σ) and P+
M(σ) = PM[φ+](σ). (1)

Moreover, φ− and φ+ are effectively computable (e.g. by value iteration).

3 Abstractions of probabilistic programs

3.1 Probabilistic Programs

We study imperative programs equipped with an operator ⊕ that realizes prob-
abilistic choice: The intended meaning of P1⊕p P2 is that with probability p, P1

will be executed, and with probability 1− p, P2 will be executed. Of course we
can generalize ⊕ to allow more than 2 outcomes. For the sake of simplicity, we
restrict ourselves to program variables with integer values, but this limitation is
not necessary for the method itself.
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Definition 4. Let V be a finite set of variables. By ΣV := V → Z we denote
the set of all configurations of V. By Trans(V) we denote the class of all maps
in 2ΣV → 2ΣV that are monotone with respect to ⊆.

We represent the programs we investigate as probabilistic control-flow graphs.
We use a notation similar to the one in [6] for non-probabilistic programs:

Definition 5. A probabilistic control flow graph C, PCFG for short, is a tuple
(LA,LP , l0, le,V, σ0, E , δ), where

– LA and LP (with L := LA ∪ LP ) are finite and disjunct sets of program
locations, l0 is the start location, le ∈ LA the error location, V is a finite
set of integer variables, σ0 ∈ ΣV is the start configuration of C, E ⊆ L × L
is the set of control flow edges, and δ : E → ((0, 1] ∪ Trans(V)) is the label
function,

satisfying the following properties:

1. δ(l, l′) ∈ Trans(V) for all (l, l′) ∈ (LA × L) ∩ E, and δ(l, l′) ∈ (0, 1] for all
(l, l′) ∈ (LP × L) ∩ E;

2.
∑

(l,l′)∈({l}×L)∩E δ(l, l
′) = 1 for all l ∈ LP ;

3. the graph (L, E) is connected and reducible (see e.g. [15]), and every node
has at most two incoming edges.

A PCFG is deterministic if for all locations l, l′ ∈ LA, and for every σ, σ1, σ2 ∈
ΣV the following holds: If δ(l, l′)(σ) = σ1 and δ(l, l′)(σ) = σ2, then σ1 = σ2.

For the following sections let C = (LA,LP , l0, le,V, σ0, E , δ) be a determinis-
tic PCFG. The semantics of C is a Markov chain:

Definition 6. Let qe 6∈ L × ΣV be a fresh state. The Markov chain MC =
(A,P,ΛA, ΛP , q0) associated to C is defined as follows:

– A = (LA ×ΣV) ∪ {qe} and P = LP ×ΣV
– ΛA = {(〈l, σ〉, 〈l′, σ′〉) | (l, l′) ∈ E ∧ l ∈ LA ∧ σ′ ∈ δ(l, l′)({σ})}

∪({le} ×ΣV)× {qe}
∪{(qe, qe)}
∪{(〈l, σ〉, 〈l, σ〉) | (l, l′) 6∈ E for all l′ ∈ E}

– ΛP = {〈l, σ〉, p, 〈l′, σ〉) | (l, l′) ∈ (E ∩ (LP × L)) ∧ p = δ(l, l′)}
– q0 = 〈l0, σ0〉

The reachability problem for the PCFG C is the problem of computing the
probability of reaching qe in MC .

3.2 Abstract Interpretation

We make use of the Abstract Interpretation framework (see [5]). For abstract-
ing subsets of ΣV we use abstract domains in form of complete lattices (A],v
,>,⊥,t,u). For every abstract domain we assume the existence of a monotone
abstraction map α : 2ΣV → A] and a monotone concretization map γ : A] →
2ΣV , satisfying α(γ(a)) v a for all a ∈ A]. We also use widenings:
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Definition 7. Let (A],v,>,⊥,t,u) be an abstract domain. A widen operator
∇ : A] ×A] → A] satisfies the following conditions:

1. For all a, b ∈ A], a∇b w a and a∇b w b holds,
2. For every strictly increasing sequence a0 < a1 < . . . in A] the sequence

(bi)
i∈N defined by b0 = a0 and bi+1 = bi∇ ai+1 is stationary.

3.3 Constructing MDPs using Abstract Interpretation

The size ofMC (which even might have infinitely many states in general) causes
us to investigate abstraction techniques for detecting meaningful properties of
the corresponding PCFG C. We are especially interested in reachability prob-
lems, i.e. the probability of reaching qe in C. The input to the problem is the
deterministic PCFG C, together with a distinguished set of back edges. These
are the back edges obtained by an arbitrary depth-first search traversal of the
graph (L, E) starting at l0 (recall that an edge (s, s′) of a graph is a back edge of
a depth-first traversal if s′ is an ancestor of s in the depth first search tree [4]).

We fix an abstract domain (A],v,>,⊥,t,u) and a widening ∇ : A]×A] →
A]. We abstract MC into a MDP A that shares certain properties with MC .
The method is heavily based on approaches like the ones in [2, 6] for constructing
abstract reachability trees. States ofA are tuples consisting of a program location
and an abstract element s ∈ A].

Algorithm 1 constructs the initial state 〈l0, α({s0})〉 and generates transitions
and successor states in a depth-first search fashion by calling the procedure dfs.

The procedure constructs the MDP guided by the semantics of C. Hereby it
replaces the maps δ(l, l′) : 2ΣV → 2ΣV from Trans(V) by abstract counterparts

δ(l, l′)] : A] → 2A
]

satisfying

δ(l, l′)(γ(a)) ⊆
⋃

b∈δ(l,l′)](a)

γ(b) for all a ∈ A]. (2)

Note that we allow for δ(l, l′)] to return more than one element from A]; this
can help increasing the accuracy of the constructed MDP. Hence we implicitly
make use of abstract powerset domains (see [6]).

Probabilistic choices in C are translated into nodes in ΘP , non-probabilistic
nodes are translated into nodes in ΘA. During the construction, we store for
every state q the state pred(q) whose call to dfs causes the construction of q.
Hence pred gives us the direct predecessor relation of a depth first traversal of
A, and hence a depth-first tree, with 〈l0, α({s0})〉 as its root. We will refer to
this tree as the dfs-tree of A from now on.

Note that we call dfs with two arguments: an abstract state and its predeces-
sor. We use the predecessor and the back edges of C to apply widenings: Suppose
we are exploring a state 〈l, s〉 and (l, l′) ∈ E is a back edge in the PCFG C. Let
us assume we compute a potential successor 〈l′, s′〉 of 〈l, s〉 with s′ ∈ δ(l, l′)](s)
and then call dfs(〈l′, s′〉, 〈l, s〉). We compute the element ŝ ∈ A] such that 〈l′, ŝ〉
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Algorithm 1: Computing A.

Input: PCFG C = (LA,LP , l0, le,V, σ0, E , δ), abstract domain
(A],v,>,⊥,t,u), widening ∇ : A] ×A] → A].

Output: MDP A = (A,ΘA, P,ΘP , 〈l0, s0〉).

A← {q]e};P ← ∅; s0 ← α({σ0})
ΘA ← {(q]e, q]e)};ΘP ← ∅
pred(〈l0, s0〉)← 〈l0, s0〉; d(〈l0, s0〉)← 0
dfs(〈l0, s0〉, 〈l0, s0〉)
return (A,ΘA, P,ΘP , 〈l0, s0〉)

Proc dfs(〈l, s〉,〈lp, sp〉)
x← s

1 if (lp, l) is a back edge then
Compute ŝ such that 〈l, ŝ〉 is the nearest predecessor of 〈lp, sp〉 with location
l in the dfs-tree.
x← ŝ∇ (s t ŝ)

2 if 〈l, x〉 ∈ A ∪ P then return 〈l, x〉
3 d(〈l, x〉)← 0

pred(〈l, x〉)← 〈lp, sp〉
if l ∈ LP then /* l denotes a probabilistic choice */

P ← P ∪ {〈l, x〉}
forall the l′ : (l, l′) ∈ E do ΘP ← ΘP ∪ {(〈l, x〉, p, dfs(〈l′, x〉, 〈l, x〉))}

else if l = le then ΘA ← ΘA ∪ {(〈l, x〉, q]e)}
else /* l is an action label */

A← A ∪ {〈l, x〉}
forall the l′ : (l, l′) ∈ E do

forall the s′ ∈ δ(l, l′)](x) do ΘA ← ΘA ∪ {(〈l, x〉,dfs(〈l′, s′〉, 〈l, x〉))}

return 〈l, x〉

is the nearest predecessor of 〈l, s〉 with location l′ in the dfs-tree and use it for
the widening operation in line 1 of the procedure dfs.

This is a rather simple strategy for ensuring termination. More sophisticated
widening strategies can be found in [6].

We ignore the use of the d(q)-values (line 3) for now; they are necessary for
refining the abstractions as described in section 4.

The following theorem is proved in the appendix.

Theorem 2.

1. Algorithm 1 terminates.
2. A = (A,ΘA, P,ΘP , 〈l0, α({σ0})〉) has the following properties:

(a) If 〈l, s〉 ∈ A and σ ∈ γ(s), (l, l′) ∈ E and σ′ ∈ δ(l, l′)({σ}), then there
exists at least one transition (〈l, s〉, 〈l′, s′〉) ∈ ΘA with σ′ ∈ γ(s′).

(b) If (l, s) ∈ P and (l, l′) ∈ E, p = δ(l, l′), then there exists exactly one
transition of the form (〈l, s〉, p, 〈l′, s′〉) ∈ ΘA, and s′ = s.
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We can show that the probabilities P−A (q]e) and P+
A (q]e) of reaching the ab-

stract state q]e in the abstract MDP A, are a lower and an upper bound for the
probability PMC

(qe) of reaching the error state qe in the Markov chain MC .

Theorem 3. PMC
(qe) ∈ [P−A (q]e), P

+
A (q]e)].

Using this theorem, and since A has only finitely many states, we can com-
pute lower and upper bounds for the reachability probability PMC

(qe) by com-
puting extremal strategies for A using e.g. value iteration (see Theorem 1).

3.4 Predicate abstraction as a special case

Predicate abstraction can be embedded in our setting. Let P = {P1, . . . , Pn}
be a set of predicates over V. We use the domain (A] = 2B ,⊆, B, ∅,∪,∩) with
B = {0, 1}n. For an element b ∈ B, we denote by bi the i-th component of b. For
b ∈ B and σ ∈ ΣV , we say that σ satisfies b if Pi(σ) = bi for all 1 ≤ i ≤ n. We
define γ : A] → 2ΣV by setting

γ(M) = {σ ∈ ΣV | ∃b ∈M : σ satisfies b}

for all M ∈ A] and α : 2ΣV → A] by setting

α(N) = {b ∈ B | ∃σ ∈ N : σ satisfies b}

for all N ⊆ ΣV . We construct A using this domain; hereby only elements M ∈ A]
with |M | = 1 are used for the abstract state space. For constructing transitions
in A, we define for l ∈ LA and a ∈ B:

δ(l, l′)]({a}) = {{b} | b ∈ B ∧ ∃σ ∈ ΣV : σ ∈ δ(l, l′)(γ({a})) ∧ σ satisfies b}

and for l ∈ LP we set δ(l, l′)]({b}) = p, if δ(l, l′) = p.
Since A] is a finite domain, we do not need a widening for ensuring termi-

nation of the algorithm in Fig. 1, hence we can skip the if-statement in line 1
of the dfs procedure. A is essentially the quotient automaton of the predicate
abstraction approaches (see e.g. [9]).

4 A Method for Refining A

In this section we present techniques that can help refine the results of our
method when the abstraction A is considered too coarse. We start with some
definitions:

Definition 8. We denote by φ−, φ+ for A two fixed memoryless strategies sat-
isfying

P−M(σ) = PM[φ−](σ) and P+
M(σ) = PM[φ+](σ).

Let q ∈ A ∪ P . We denote by val−(q) resp. val+(q) the probability of reaching
q]e starting at q and obeying strategy φ− resp. φ+. For q ∈ A we denote by
choice−(q) resp. choice+(q) the states φ−(q) and φ+(q).

Notice that φ−(q) and φ+(q) can be computed using e.g. value iteration.
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4.1 Refinement using selective delay of widening

As in [6, 7], we assume that for every (l, l′) ∈ E , δ(l, l′)] is exact, i.e.

δ(l, l′)(γ(a)) =
⋃

b∈δ(l,l′)](a)

γ(b) for all a ∈ A],

and that we are also able to compute exact preimages of δ(l, l′), i.e., we can

compute the value δ−1(l, l′)](a) ∈ 2A
]

with

δ(l, l′)−1(γ(a)) =
⋃

b∈δ−1(l,l′)](a)

γ(b) for all a ∈ A].

We extend δ−1(l, l′)](a) to be defined on subsets of A. We also assume that u is
exact. Hence the only source of imprecision is the use of widenings.

We already discussed a simple technique for delaying widenings: We avoid
widenings during the start of the construction of A. This can be done by skip-
ping line 1 of the dfs-procedure for an initial prefix of the dfs-tree. If the Markov
chain of the program is finite, by delaying widenings further and further we even-
tually reach the point in which no widening is applied at all. So this refinment
technique is complete, but not efficient. Another applicable technique is widen-
ing with threshold values (see [3]), which is also trivially complete, but suffers
from the same inefficiency problem. In the following we present a more sophisti-
cated technique involving a more ”selective” delaying of widenings. It is heavily
based on the work of Gulavani et al. in [6, 7]. We modify parts of the refinement
techniques presented there for the probabilistic case.

We prolong the use of widenings in the (re)construction of A for refining a
suitable state q in A. For this we modify the d(s)-values we assigned to each state
s. We make use of the dfs-tree structure induced by the construction of A, which
is represented by the pred-function. For states q, q′ with q is a predecessor of q′ in
the spanning tree, we define ∆(q, q′) as the number of edges 〈li, si〉 → 〈li+1, si+1〉
on the tree path from q to q′ for which (li, li+1) is a back edge in C.

4.2 Finding a candidate state for refining

Definition 9. An abstract state q = 〈l, s〉 is refinable if (val+(q)− val−(q)) > 0
and choice+(q) 6= choice−(q).

I.e., q is refinable if the probabilities of reaching the error state from q using the
optimal and pessimal strategies are different (otherwise we have already com-
puted the exact value), and moreover the strategies choose different successors
of q. In particular, if q is refinable then l ∈ LA holds. Given a refinable state
q, let choice+(q) = 〈l+, s+〉 and choice−(q) = 〈l−, s−〉, with s+ ∈ δ(l, l+)](s)
and s− ∈ δ(l, l−)](s). The choice at q is possible because there exist σ ∈ γ(s)
and σ′ ∈ γ(s) such that δ(l, l−)({σ}) 6= ∅ and δ(l, l+)({σ′}) 6= ∅. The procedure
ComputeRefineState() computes a refinable state q, and the state q′ in the
dfs-tree of A that causes σ and σ′ to be both contained in γ(s). We call q′ the
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Procedure ComputeRefineState

Output: Returns a refinable state and the start state of its refinement.
Choose q = 〈l, s〉 in A such that

(val+(q)− val−(q)) > 0 and choice+(q) 6= choice−(q).

〈l+, s+〉 ← choice+(q) ; 〈l−, s−〉 ← choice−(q)

pre+(0)← δ−1(l, l+)](s+) ; pre−(0)← δ−1(l, l−)](s−)
i← 0 ; 〈l′0, s′0〉 ← q
while pre+(i) u si 6= ⊥ ∧ pre−(i) u si 6= ⊥ do

i← i+ 1 ; 〈l′i, s′i〉 ← pred(〈l′i−1, s
′
i−1〉)

pre+(i)← δ−1(l′i, l
′
i−1)](pre+(i− 1))

pre−(i)← δ−1(l′i, l
′
i−1)](pre−(i− 1))

return (q, q′ = 〈li, si〉)

companion of q. Starting with pre+0 = s+ resp. pre−0 = s−, the algorithm com-
putes exact preimages following the path in the dfs-tree from 〈l0, s0〉 to q. This
is similar to checking a non-probabilistic reachability counterexample for spuri-
ousness. However, in our case eventually pre+(i) u si 6= ⊥ or pre−(i) u si 6= ⊥
for a 〈li, si〉 on the path to the root has to hold. Hence the cause of the different
strategy choices possible at q can be found in q′ = 〈li, si〉. Since widening is the
only source of imprecision, we conclude that li is the tail of a back edge.

When there are several refinable states, we use a speculative heuristic to
select one of them. The heuristic may cause the refinement process loop forever,
but is hopefully more efficient in practice. We choose a refinable state q such
that the product of (val+(q) − val−(q)) and the weight of the tree path from
q0 to q is maximal. The intuition is that the larger this product, the larger the
impact of the refinement in the values of the lower and upper bounds.

4.3 Refinement of A

The recursive procedure UpdateDelay() computes the refined successors after
computing a refinable state q and its companion q′. For every state q in A, a
value d(q), which we call the widen delay, is stored. If not set, then d(q) = ⊥.
During the initial construction of A, d(q) is set to 0 for all states in q. The
procedure call updateDelay(q, n) delays the application of widenings on all paths
starting at state q = 〈l, s〉: This implies that every path r in A starting from
q = 〈l, s〉 and passing at most n backedges is also ”realizable“, i.e., there exists
a concrete state σ ∈ γ(s) and a path in MC starting with 〈l, σ〉 having the
same location sequence as r. The function call bedge(〈l1 , s1 〉, 〈l2 , s2 〉) returns 1
if (l1, l2) is a back edge in C, 0 otherwise. For a complete refinement step, we
compute the refinable q and its companion q′ by ComputeRefineState(), then
we call UpdateDelay(q′, ∆(q, q′)).
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Procedure UpdateDelay(q,n)

Input: q, n ∈ N
if q = q]ε then return
if d(q) = ⊥ then

d(q)← n
if n = 0 then dfs(q,pred(q)) else

Create successor transitions of q and add them to ΘA resp. ΘP
forall the q′ ∈ Succs(q) do updateDelay(q′, n− bedge(q, q′))

else if n = 0 ∨ d(q) ≥ n then return
else if d(q) > 0 then

d(q)← n
forall the q′ ∈ Succs(q) do updateDelay(q′, n− bedge(q, q′))

else if d(q) = 0 then
d(q)← n
B ← Succs(q)
ΘA ← ΘA \ {q} × (A ∪ S);ΘP ← ΘP \ {q} × [0, 1]× (A ∪ P )
Create successor transitions of q and add them to ΘA resp. ΘP
For all q′ in B \ Succs(q) with pred(q′) = q, set pred(q′)← q̂ for a q̂ → q′. If
no such q̂ exists, delete q′ from A ∪ P .
forall the q′ ∈ Succs(q) do updateDelay(q′, n− bedge(q, q′))

5 Experiments

We have implemented a preliminary prototype of our approach in Ocaml. It
uses the Apron library [10], which provides numerical abstract domains like
intervals and polyhedra. We report on some small experiments where the interval
domain beats or can compete with predicate abstraction. Notice we do not claim
interval analysis to be superior to predicate abstraction in general: it is easy
to exhibit examples where predicate abstraction beats interval analysis. The
experiments only illustrate that intervals outperform predicate abstraction in
harmless-looking examples, and so it is important to develop approaches that
accomodate both, as well as other abstract domains.

5.1 Examples of Fig.3

We examine the programs from Fig.3. The probability of reaching the fail state
in Program 2 is 0.5: an invariant like c ≤ k for some k ≤ 100, together with
the postcondition i > 100 of the loop, negates the guard of the statement at
line 5, and so shows that after executing the loop the program cannot fail. How-
ever, PASS fails to generate predicates of this form (we tested all the available
refinement strategies). It mostly generates predicates c ≤ α · i + β for some
α > 0, β < 0. Manually adding a predicate (an option of PASS) like i > 3,
makes the tool compute the solution after only 3 refinements. Without manual
help the tool does not terminate after 10 minutes. If we change line 2 to while
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i <= n for n = 25, 50, 75, 100, we observe that the runtime of PASS seems to
increase with n (see Fig. 4). We applied our method without delaying widenings.
The implementation terminates with the correct answer in less than a second,
independently of the value of n (see again Fig. 4).

Prog n Interv. PASS
#R Time #R Time

P2 25 1 0.06 6 0.74

P2 50 1 0.06 7 19.72

P2 75 1 0.06 7 >600.00

P2 100 2 0.06 > 7 >600.00

P3 - 4 0.31 52 >600.00

Model Quest. del=10 del=15 PASS

game (1) 0.07 0.10 0.12

game (2) 0.06 0.06 >600

game (3) 0.06 0.06 41.18

∞-game (1) 65.33 21.46 25.00

∞-game (2) 64.39 21.51 >600.00

∞-game (3) 66.97 21.58 >600.00

zeroconf(4) (1) 0.24 0.42 0.51

zeroconf(4) (2) 0.23 0.43 0.48

zeroconf(6) (1) 0.34 0.67 0.65

zeroconf(6) (2) 0.52 0.68 0.60

zeroconf(8) (1) 0.43 0.99 0.78

zeroconf(8) (2) 0.42 0.98 0.66

Fig. 4. Left table: results for Programs 2 and 3. #R = number of refinements. Right
table: results for games and zeroconf on several questions; del = widening delay. All
times in seconds.

In Program 3 a probabilistic choice is situated inside a loop, and so the pro-
gram exhibits behaviour more specific to probabilistic programs. Both variants
of our approach compute an upper bound of 0.001 for the probabilty of fail in
under one second. PASS exhibits similar problems as in Program 2 (again, we
tested all refinement strategies and interpolation engines available), and is not
able to terminate within 10 minutes.

5.2 Further examples

We report on three further small experiments.

game: The program on the left of Fig. 5.2 repeatedly toss a coin, and depending
on the outcome increase the earnings of one of two players, l and r. The game
stops when the sum of the players’ earnings is greater than 100. The programs
are similar to protocol fragments, where e.g. packages are sent through different
channels following some stochastic policy. We compute answers to the follow-
ing questions with accuracy 0.01: (1) What is the probability that player one
has more money than player two at the end of the game (0.5, since the players
are symmetrical)? (2) What is the probability that player 1 has twice as much
money as player 2 at the end? (3) How probable is it that player one has 50
money units more than player two?

∞-game: The program on the right of Fig. 5.2 augments the game example with
an additional rule: With probability 0.25, we remove a money unit from player
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two and give it to player two (or vice versa). This causes the state space of ∞-
game to be infinite. We examine the same questions as in game.

zeroconf : This is a simple probabilistic model of the Zeroconf protocol, adapted
from [1, 12], where it was analyzed using PRISM and predicate abstraction. It is a
good example for the predicate abstraction technique. The example is parameter-
ized by K, the maximal number of probes sent by the protocol implementation.
We tested it for K = 4, 6, 8 and two different properties.

int l=1, r=1;

1: while (l+r <= 100)

2: if choice(0.5) then

3: l = 2*l+r+1

4: else r = 2*r+l+1;

5: if (*) then fail

int l=1, r=1;

1: while (l+r <= 100)

2: if choice(0.75) then

3: if choice(0.50) then

4: l = 2*l+r+1

5: else r = 2*r+l+1;

6: else

7: if choice(0.50) then

8: l = l-1; r = r+1;

9: if choice(0.50) then

10: l = l+1; r = r-1;

11: if (*) then fail

Fig. 5. Examples game and ∞-game. The three conditions tested at (*) were (l>r),
(l>2*r) and (l-r>50).

We use the delayed widening technique explained in the introduction, with val-
ues 10 and 15 (times are similar for both, indicating that for these examples the
technique is rather insensitive to the choice of delay). Since the tool described
in [12] is to the best of our knowledge not publicly available, we adapted all ex-
amples for PASS and again used it for comparisons. We tested both interpolation
engines PASS offers.

We point out several interesting aspects. In the game example the efficiency
of PASS depends highly on the question asked, whereas our approach exhibits
always the same behaviour. In∞-game the number of states of our MDPs is quite
large (e.g. 3222 states for the first question and a delayed widening of 10), partly
caused by multiple refinement steps necessary to improve the result. Again the
running time of PASS depends on the asked question. In the Zeroconf -protocol
PASS behaves very well and generates smaller MDPs than ours, but due to the
cheaper successor generation for the interval domain we can still compete.

6 Conclusions

We have shown that the approach of [9, 12] for abstraction of probabilistic sys-
tems can be extended to arbitrary domains. For this we have extended the con-
struction of abstract reachability trees presented in [6] to the probabilistic case.
The extension no longer yields a tree, but a Markov Decision process that over-
approximates the Markov chain semantics of the program.
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The new approach allows to refine abstractions using standard techniques like
delaying widenings and using widenings with thresholds. We have also presented
a more sophisticated technique that selectively delays widenings.

Our work allows probabilistic checkers to profit from well developed libraries
for abstract domains like intervals, octagons, and polyhedra [10]. Future work
will investigate how to integrate them in existing tools.

References

1. Obtained from http://www.prismmodelchecker.org/files/vmcai09/.
2. Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The

software model checker blast. STTT, 9(5-6):505–525, 2007.
3. Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
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7 Appendix

7.1 Proof of Theorem 2

Theorem 4.

1. Algorithm 1 terminates.
2. A = (A,ΘA, P,ΘP , 〈l0, α({σ0})〉) has the following properties:

(a) If 〈l, s〉 ∈ A and σ ∈ γ(s), (l, l′) ∈ E and σ′ ∈ δ(l, l′)({σ}), then there
exists at least one transition (〈l, s〉, 〈l′, s′〉) ∈ ΘA with σ′ ∈ γ(s′).

(b) If (l, s) ∈ P and (l, l′) ∈ E, p = δ(l, l′), then there exists exactly one
transition of the form (〈l, s〉, p, 〈l′, s′〉) ∈ ΘA, and s′ = s.

Proof. 1. Assume for the sake of contradiction that Alg. 1 does not terminate.
Then A has infinitely many states. Since every node in the dfs tree has
only finitely many sucessors, it must contain a branch with infinite depth,
corresponding to a call sequence dfs(〈l0, s0〉, 〈l0, s0〉),dfs(〈l1, s1〉, 〈l0, s0〉), . . ..
Let (βi)i∈N = 〈l0, s0〉, 〈l1, s1〉, . . . with βi 6= βj for i 6= j be the corresponding
sequence of generated states. Note that βi → βi+1 in A for all i ≤ 0. Due to
the definition of backedges, there has to be at least one back edge (l, l′) in C
such that there are infinitely many s, s′ ∈ A] with 〈l, s〉 → 〈l′, s′〉 occuring
in β. We fix the infinite subsequence β′ = 〈l′, s′0〉, 〈l′, s′1〉, . . . of β containing
only states with program locations l′. Then

s′i < s′i∇(s′i t xi) = s′i+1 for i ≤ 0 and elements xi ∈ A]

Hence we can conclude s′0 < s′1 t x1 < s′2 t x2 . . .. We define a0 := s′0 and
ai := s′i t xi for i > 0. Now with an inductive argument we see that

s′i+1 = s′i∇(s′i t xi) = s′i∇ai.

From this and Def. 7 we conclude that there has to be a k such that s′k =
s′k+1. But then two elements in β are equal, which is a contradiction.

2. Follows immediately from the definition of the algorithm.

7.2 Proof of Theorem 3

We start with a simple lemma.

Lemma 1.

1. An initial path 〈l0, σ0〉 → . . . → 〈lk, σk〉 → qe in MC is completely deter-
mined by its location sequence l0 . . . lk, i.e., there is no other initial path
〈l0, σ0〉 → 〈l1, σ′1〉 . . .→ 〈lk, σ′k〉 → qe in MC .

2. Let r = 〈l0, σ0〉 → . . . → 〈lk, σk〉 → qe be an initial path in MC and
r′ = 〈l0, s0〉 → . . . → 〈lk, sk〉 → q]e be an initial path in A obeying a non-
randomized strategy for A. Then w(r) = wφ(r′).

Proof.
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1. This follows immediately from the fact that C is deterministic.
2. Let 〈l, σ〉 → 〈l′, σ′〉 in MC and 〈l, s〉 → 〈l′, s′〉 in A. If 〈l, σ〉 ∈ ΛP , then
〈l, s〉 ∈ ΘP . Definition 6 implies that δ(l, l′) = p for a p ∈ [0, 1]. Theorem 2b
then gives us (〈l, s〉, p, 〈l′, s′〉) ∈ ΘP . If 〈l, σ〉 ∈ ΛA, then 〈l, s〉 ∈ ΘA, and
(〈l, σ〉, 〈l′, σ′〉) ∈ ΛA and (〈l, s〉, 〈l′, s′〉) ∈ ΘA. Since qe resp. q]e is the last
state of the path, lk = le. Hence |Succs(〈lk, σk〉)| = |Succs(〈lk, sk〉)| = 1 by
Def. 6 and inspecting Alg. 1. These observations together with the fact that
φ is non-randomized and the definition of w resp. wφ prove the proposition.

Now we show that there is a strategy for A that “simulates“ the behaviour
of MC .

Lemma 2. There exists a non-randomized strategy φ for A with the following
property:

PMC
(qe) = PAP [φ](q

]
e).

Proof. φ depends on the sequence of already visited labels. We describe φ′s
choices: Let 〈l0, s0〉 → . . . → 〈lk, sk〉 be an initial path of M]

P , with lk not
corresponding to a probabilistic choice in P .

If the location sequence l0, . . . , lk belongs to a valid initial path 〈l0, σ0〉 →
. . .→ 〈lk, σk〉 inMC , there cannot be another initial path with the same location
sequence l0, . . . , lk and different abstract elements due to Lemma 1. 〈lk, σk〉 then
has a unique successor state 〈l, σ〉.

By Theorem 2a we see that 〈lk, sk〉 has at least one successor 〈l, s〉 with
σ ∈ γ(s). Hence we set φ(〈l0, s0〉 → . . . → 〈lk, sk〉) = 〈l, s〉 (it does not matter
which possible successor 〈l, s〉 with this property one chooses).

If l0, . . . , lk does not belong to a valid initial path in MC , we can fix an
arbitrary successor 〈l, s〉 of 〈lk, sk〉 and set φ(〈l0, s0〉 → . . .→ 〈lk, sk〉) = 〈l, s〉.

For initial paths containing q]e the trivial choice for φ has to be q]e.
Now observe that for every initial path r = 〈l0, s0〉 → . . . → 〈lk, sk〉 →

q]e ∈ Cyl(A[φ], q]e) there cannot be another initial path with the same location
sequence. This can be shown by using the argumentation of Lemma 1 and the def-
inition of φ. Furthermore we can define a map f : Cyl(A[φ], q]e)→ Cyl(MC , qe)
that maps r to the initial path f(r′) = 〈l0, σ0〉 → . . . → 〈lk, σk〉 → qe ∈
Cyl(MC , qe), which is unique (see Lemma 1). It is easy to see that f is a
bijection. With Lemma 2 we see that wφ(r) = w(f(r)).

Now Theorem 3 follows as a simple corollary from the existence of an optimal
and a pessimal strategy.


