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Abstract. We show that rewrite systems can be used to give semantics to im-
perative programs with boolean variables, a class of programs used in software
model-checking as over- or underapproximations of real programs. We study the
classes of rewrite systems induced by programs with different features like pro-
cedures, concurrency, or dynamic thread creation, and survey a number of results
on their word problem and their symbolic reachability problem.

1 Introduction

Software Model Checking is an active research area whose goal is the application of
model-checking techniques to the analysis and verification of programs. It devotes a
lot of attention toboolean programs, which are imperative, possibly nondeterministic
programs acting on variables of boolean type. The reason is that boolean programs can
be used as over- or underapproximations of the real program one wishes to analyze. In
order to obtain underapproximations, one restricts the range of the variables to a small,
finite domain. Once this has been done, an instruction of the program can be simulated
by an instruction acting on a number of boolean variables, one for each bit needed to
represent the finite range (for instance, if we restrict the range of an integer variablev
to the interval[0..3] we can simulate an assignment tov by a simultaneous assignment
to two boolean variables). The executions of the underapproximation correspond to the
executions of the program in which the values of the variables stay within the specified
range.

Overapproximations are obtained bypredicate abstraction[22]. In this approach,
one defines a set of boolean predicates on the variables of the program (e.g.,x≤ y for
two integer variablesx andy) and defines an abstraction function that assigns to a val-
uation of the program variables the set of predicates that it satisfies. Using standard
abstract interpretation techniques [15], one can then construct a boolean program hav-
ing the same control structure as the original one, but now acting on a set of boolean
variables, one for each predicate. In Software Model Checking, these approximations
are progressively refined in an automatic way until the property is proved, refuted, or
until the tools run out of memory. This technique is calledcounterexample-guided ab-
straction refinement[14].

Boolean while programs have a finite state space, and can be analyzed using stan-
dard model-checking techniques. However, modern software goes far beyond while
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programs: Programs can exhibit recursion, parallelism, and thread creation. Each one
of these features leads to an infinite state space, and to questions about the decidability
and complexity of analysis problems. In order to attack these questions we need to find
semantic models linking boolean programs to formal models with a strong theory and
powerful analysis algorithms. This has been the subject of intensive research since the
late 90s.

This paper shows that semantic models for boolean programs can be elegantly for-
mulated as rewrite systems. In this approach, program states are formalized as terms,
and program instructions as rewrite rules. A step of the program is matched by a rewrite
step in its corresponding rewrite system. The nature of the program determines the class
of terms we use. In particular, we use string-rewriting and multiset-rewriting as special
cases of term rewriting.

Once we have a rewrite model, we wish to analyze it. From the model-checking or
program analysis point of view questions like termination and confluence play a minor
rôle. One is far more interested in the word problem, and actually on a generalization
of it: Given a rewriting system and two (possibly infinite!) sets of termsT andT ′, can
some element ofT be rewritten into an element ofT ′? The software model checking
community has attacked this question by studyingsymbolic reachabilitytechniques. In
this approach, one tries to find data structures providing finite representations of a suf-
ficiently interesting class of infinite sets of terms, and satisfying at least one of the two
following properties: (1) if a setT is representable, then the setpost∗(T) of terms reach-
able fromT by means of an arbitrary number of rewriting steps is also representable;
moreover, its representation can be effectively computed from the representation ofT,
and (2) same property with the setpre∗(T) of terms that can be rewritten into terms of
T instead ofpost∗(T).

We survey a number of results on symbolic reachability algorithms for different
classes of programs. We start with sequential programs, move to concurrent programs
without recursion and, finally, consider the difficult case of concurrent programs with
recursive procedures. For each class we give a small example of a program and its
semantics, and then present analysis results.

2 Sequential programs

Consider the program of Figure 1. It consists of two procedures,main() and p(), and
has no variables. The intended semantics ofif ? then c1 elsec2 fi is a nondeterministic
choice betweenc1 andc2. The program state is not determined by the current value
of the program counter only; we also need information about the procedure calls that
have not terminated yet. This suggests to represent a state of the program as astring
p0p1 . . . pn where p0 is the current value of the program counter andp1 . . . pn is the
stack of return addresses of the procedure calls whose execution has not terminated yet.
For instance, the initial state of the program of Figure 1 ism0, but the state reached after
the execution ofm1 : callp() is not p0, it is the stringp0m2.

We can capture the behaviour of the program by the set ofstring-rewriting rules
on the right of Figure 1. A procedure call is modelled by a rule of the formX → YZ,
whereX is the current program point,Y the initial program point of the callee, and



procedure p();
p0: if (?) then
p1: call main();
p2: if ? then call p() fi

else
p3: call p()

fi;
p4: return

proceduremain();
m0: if ? then return fi ;
m1: call p;
m2: return

p0 → p1
p0 → p3
p1 → m0 p2
p2 → p0 p4
p2 → p4
p3 → p0 p4
p4 → ε
m0 → ε
m0 → m1
m1 → p0m2
m2 → ε

Fig. 1.A sequential program and its semantics.

Y the return address of the caller. A return instruction is modelled by a ruleX → ε,
whereε denotes the empty string. However, with the ordinary rewriting policy of string-
rewriting systems

X → w

uX v
r−→uwv

where
r−→ denotes a rewrite step, we havem0 p2m2

r−→m0 p0 p4m2 (rule p2 → p0 p4),
which is not allowed by the intuitive semantics. We need to use theprefix-rewriting
policy

X → w

X v
r−→wv

instead. We also need to interpretε as the empty string. With these changes we have for
instance the rewriting chain

m0
r−→m1

r−→ p0m2
r−→ p1m2

r−→m0 p2m2
r−→ p2m2

r−→ p4m2
r−→m2

r−→ε

Notice that the string-rewriting system of Figure 1 ismonadic, i.e., the left-hand-
side of the rewrite rules consists of one single symbol.

2.1 Adding variables

Consider the program of Figure 2, whereb is a global variable andl is a local variable
of the functionfoo(). In the presence of variables, a state of a sequential program can
be modelled as a string over the alphabet containing

– a symbol for every valuation of the global variables; and
– a symbol〈v, p〉 for every program pointp and for every valuationv of the local

variables of the procedurep belongs to.



bool function foo(l);
f0: if l then
f1: return false

else
f2: return true

fi

proceduremain();
m0: while b do
m1: b := foo(b)

od
m2: return

b〈t, f0〉 → b〈t, f1〉
b〈 f , f0〉 → b〈 f , f2〉
b〈l , f1〉 → f
b〈l , f2〉 → t

t m0 → t m1
f m0 → ε
bm1 → b,〈b, f0〉m0
bm2 → ε

Fig. 2.A sequential program with global and local variables and its semantics.

States are modelled by strings of the formg〈v1, p1〉 . . . 〈vn, pn〉, whereg encodes the
current values of the global variables, and each pair〈vi , pi〉 corresponds to a procedure
call that has not terminated yet. The symbolvi encodes the values of the local variables
of the caller right before the call takes place, whilepi encodes the return address at
which execution must be resumed once the callee terminates. It is straightforward to
assign rewrite rules to the program instructions. For instance, the call tofoo(b) in main()
is modelled by the rules

t m1 → t 〈t, f0〉m0 and f m1 → f 〈 f , f0〉m0

indicating that control is transferred tof0, that the local variablel gets assigned the
current value of the global variableb, and that the return address ism0. The complete
set of rules is shown on the right of Figure 2. The symbolsb andl stand in the rules for
eithertrue or false.

Notice that, due to the presence of global variables, the rewrite system is no longer
monadic, although the left-hand-sides of the rules are strings of length at most 2.

String-rewriting systems using the prefix-rewriting policy are calledpushdown sys-
tems, due to their similarity with pushdown automata: Given a stringg〈v1, p1〉 . . . 〈vn, pn〉
modelling a program state, the valuationg of the global variables corresponds to the cur-
rent control state of the automaton, while the rest of the string corresponds to the current
stack content.

2.2 Analysis

String-rewriting systems with prefix-rewriting have an interesting story. They seem to
have been studied for the first time by Büchi [9], who called themcanonical systems
(see also Chapter 5 of his unfinished book [10]). Büchi proved the fundamental result
that given a regular setS of strings, the setspre∗(S) and post∗(S) are also regular.
The result was rediscovered by Caucal [12]. Book and Otto (who were also unaware
of Büchi’s work) proved thatpre∗(S) is regular formonadicstring-rewriting systems
with ordinary rewriting and presented a very simple algorithm that transform a finite



automaton acceptingS into another one acceptingpre∗(S). This algorithm was adapted
to pushdown systems in [2, 21]), and their performance was improved in [18].

Theorem 1. [2, 21, 18] Given a pushdown system R and a finite-state automaton A, the
sets post∗(L(A)) and pre∗(L(A)) are regular and effectively constructible. in polynomial
time in the sizes of R and A.

More precisely, let P be the set of control states of R, and let Q andδ be the sets of
states and transitions of the automaton A, respectively. Let n= max{|Q|, |P|}. The au-
tomaton representing post∗(L(A)) can be constructed in O(|P||R|(n+ |R|)+ |P||δ|) time
and space, and the automaton representing pre∗(L(A)) can be constructed in O(n2|R|)
time and O(n|R|+ |δ|) space.

The theory of pushdown systems and related models (canonical systems, monadic
string-rewriting systems, recursive state machines, context-free processes, Basic Pro-
cess Algebra, etc.) is very rich, and even a succinct summary would exceed the scope
of this paper. A good summary of the results up to the year 2000 can be found in [11].

The algorithms of Theorem 1 have found interesting applications. They constitute
the core of the Moped tool, Schwoon’s back-end for model-checking software, and of
its Java front-end jMoped [34]. They are also at the basis of the MOPS tool [13].

3 Concurrent programs without procedures

Programming languages deal with concurrency in many different ways. In scientific
computingcobegin-coendsections are a popular primitive, while object-oriented lan-
guages usually employthreads. We consider both variants. Languages also differ in
their synchronization and communication mechanisms: shared variables, rendezvous,
asynchronous message passing. This point is less relevant for this paper, and we only
consider the shared variables paradigm. In this section we consider programs without
procedures. the combination of concurrency and procedures is harder to analyze, and
we consider it in the next section.

3.1 Threads

The program on the left of Figure 3 spawns a new threadp() each time the while
loop of main() is executed. This thread runs concurrently withmain() and with the
other instances ofp() spawned earlier. Threads communicate with each other through
shared variables, in this case the global variableb. Sincep() nondeterministically de-
cides whetherb should be set totrue or false, main() can create an unbounded number
of instances ofp().

The state of the program can be modelled as amultisetcontaining the following
elements:

– the current value of the global variableb,
– the current value of the program counter for themain() thread, and
– the current value of the program counter for each threadp().



thread p();
p0: if ? then
p1: b := true;

else
p2: b := false

fi;
p3: end

thread main();
m0: while b do
m1: fork p()

od;
m2: end

b ‖ p0 → b ‖ p1
b ‖ p0 → b ‖ p2
b ‖ p1 → t ‖ p3
b ‖ p2 → f ‖ p3
b ‖ p3 → b ‖ ε
t ‖ m0 → t ‖ m1
f ‖ m0 → f ‖ m2
b ‖ m1 → b ‖ m0 ‖ p0
b ‖ m2 → b ‖ ε

Fig. 3.A program with dynamic thread generation and its semantics.

For instance, the multiset{0,m1, p1, p2, p2} is a possible (and in fact reachable) state of
the program with four threads. In order to model the program by means of rewrite rules
we introduce a parallel composition operator‖ and model the state as(0 ‖ m1 ‖ p1 ‖
p2 ‖ p2) . Intuitively, we consider a global variable as a process running in parallel with
the program and communicating with it. We rewrite modulo the equational theory of
‖, which states that‖ is associative, commutative, and has the empty multiset (denoted
again byε) as neutral element:

u ‖ (v ‖ w) = (u ‖ v) ‖ w u‖ v = v ‖ u u‖ ε = u.

Observe that, since we rewrite modulo the equational theory, it does not matter which
rewriting policy we use (ordinary or prefix-rewriting). The complete set of rewrite rules
for the program of Figure 3 is shown on the right of the figure. As in the non-concurrent
case, if the program has no global variables then the rewrite system is monadic. Observe
that without global variablesno communication between threads is possible.

Notice that instructions likep : wait(b); p′ : . . . forcing a thread to wait until the
global variableb becomes true can be modelled by the rulet ‖ p→ t ‖ p′.

Analysis. While the word problem for pushdown systems can be solved in polynomial
time (Theorem 1), it becomes harder for multiset rewriting.

Theorem 2. [24, 17] The word problem for monadic multiset-rewriting systems is NP-
complete.

NP-hardness can be proved by a straightforward reduction to SAT, while membership in
NP requires a little argument. We can also prove a result similar to Theorem 1. In order
to formulate the result, observe first that a multisetM over an alphabetA= {a1, . . . ,an}
can be represented by the vector〈x1, . . . ,xn〉 ∈ INn, wherexi , i ∈{1, . . . ,n}, is the number
of occurrences ofai in M. This encoding allows to represent sets of multisets by means
of arithmetical constraints on integer vectors. The sets of vectors definable by formulas
of Presburger arithmetic are calledsemi-linear sets. This name is due to the fact that



every semi-linear set is a finite union oflinear sets, defined as follows. A setV ⊆ INn

is linear if there is aroot vector v0 ∈ INn and a finite number ofperiods v1, . . . ,vk ∈ INn

such that
V = {v0 +n1v1 + . . . ,nkvk | n1, . . . ,nk ∈ IN} .

Semi-linear sets share many properties with regular sets. They are closed under
boolean operations. Moreover, if we associate to each wordw of a regular language
its Parikh image(the multiset containing as many copies of each symbola as there
are occurrences ofa in w) we get a semi-linear set of multisets3. Conversely, every
semi-linear set is the Parikh image of some regular language.

Intuitively, the following theorem states that semi-linear sets are to monadic multiset-
rewriting what regular sets are to prefix-rewriting (see Theorem 1).

Theorem 3. [17] Given a monadic multiset-rewriting system and a semi-linear set of
states S, the sets post∗(S) and pre∗(S) are semi-linear and effectively constructible.

Unfortunately, Theorem 3 does not hold for non-monadic multiset-rewriting sys-
tems. It is easy to see that these systems are equivalent to (place/transition) Petri nets.
In a nutshell, a rewrite rule

(X1 ‖ . . . ‖ Xn) → (Y1 ‖ . . . ‖Ym)

corresponds to a Petri net transition that takes a token from the placesX1, . . . ,Xn and
puts a token on the placesY1, . . . ,Ym. It is well-known that for Petri netspost∗(S) can be
a non semi-linear set of states even whenS is a singleton [23].

The word problem for multiset-rewriting systems is equivalent to the reachability
problem for Petri nets, and so, using well-known results of net theory we obtain:

Theorem 4. [29, 25, 26] The word-problem for multiset-rewriting systems is decidable
and EXPSPACE-hard.

The known algorithms for the reachability problem of Petri nets are too compli-
cated for practical use (not to speak of their complexity, which exceeds any primitive-
recursive function). However, many program analysis problems can be stated ascontrol
point reachabilityproblems in which we wish to know if a program point can be reached
by a thread, independently of which or how many other threads run in parallel with it. In
multiset-rewriting terms, the question is if the rewrite system associated to the program
can reach a state of the formX ‖ t for some multisett. This target set of states isupward-
closed: if some termt belongs to the set, thent ‖ t ′ also belongs to the set for every mul-
tisett ′. Moreover, multiset-rewriting systems have the following important property: if
t

r−→ t ′, thent ‖ t ′′
r−→ t ′ ‖ t ′′ for every multisett ′′. This makes themwell-structuredsys-

tems in the sense of [1, 20], and allows to apply a generic backward reachability algo-
rithm to the control-reachability problem. More precisely, one can show that (1) every
upward-closed set admits a finite representation (its set of minimal multisets), (2) ifU is
upward-closed thenU ∪pre(U) is upward-closed, wherepre(U) = {t | ∃u∈U : t

r−→u},
and (3) every sequenceU1 ⊆U2 ⊆U3 . . . of upward-closed sets reaches a fixpoint after

3 Parikh’s theorem states the same result for context-free languages.



finitely many steps. The generic backwards reachability algorithm iteratively computes
(the finite representations of)U,U ∪pre(U),U ∪pre(U)∪pre2(U) . . . until the fixpoint
is reached. So we have:

Theorem 5. Given a multiset-rewriting system and an upward-closed set of states S,
the set pre∗(S) is upward-closed and effectively constructible.

The approach we described above has been adopted for instance in [16] for the
verification of multithreaded Java programs.

3.2 Cobegin-coend sections

Another popular way of introducing concurrency is by means of cobegin-coend sec-
tions. Intuitively, in the program(cobeginc1 ‖ c2 coend) ;c3 the codec1 andc2 is exe-
cuted in parallel, and execution continues withc3 afterboth c1 andc2 have terminated.
The fundamental difference with threads is the existence of an implicit synchronization
point at the end of the execution ofc1 andc2.

Modelling the semantics requires to use term rewriting with two operators, one for
sequential and another for parallel composition, which we denote by· and‖, respec-
tively. For instance, ifp1, p2, p3 are the control locations associated toc1,c2,c3 in the
expression above, then we model the expression by the term(v ‖ p1 ‖ p2) · p3,
wherev is the current valuation of the global variables. Rewriting takes place modulo
the equational theory of the· and‖ operators:

u· (v·w) = (u·v) ·w u‖ (v ‖ w) = (u ‖ v) ‖ w
ε ·u = u ε ‖ u = u

u ‖ v = v ‖ u

We also have to make the rewriting policy precise. Intuitively, it says that we can only
rewrite the leftmost part of the syntax tree of a term. Formally,

X → w

X ·v r−→w ·v
and

X → w

X ‖ v
r−→w ‖ v

.

This model was introduced by Mayr [30, 31] under the name ofProcess Rewrite
Systems(PRS). Figure 4 shows a program and its rewriting semantics as PRS. Notice
the ruleb · m0 → b ‖ m0, which allows to make progress after the execution of the
instruction(b := ¬ b ‖ b := true).

PRSs can also model at least part of the interaction between procedures and concur-
rency, and therefore we delay their analysis until the next section.

4 Putting procedures and concurrency together

The analysis of programs containing both procedures and concurrency is notoriously
difficult. It is easy to show that a two-counter machine can be simulated by a boolean
program consisting of two recursive procedures running in parallel and accessing one



m0: while b do
m1: cobegin

m2: b := ¬b ‖ m3: b := true
coend

od

t ‖ m0 → t ‖ m1
f ‖ m0 → ε
b ‖ m1 → (b ‖ m2 ‖ m3) ·m0
b ‖ m2 → ¬b
b ‖ m3 → t
b·m0 → b ‖ m0

Fig. 4.A program with a cobegin-coend section and its semantics.

single global boolean variable. Intuitively, the two recursion stacks associated to the two
procedures are used to simulate the two counters; the depth of the stack corresponds to
the current value of the counter. Increments and decrements can be simulated by calls
and returns. The global variable is used as a semaphore indicating which counter has
to be accessed next. Since two-counter machines are Turing powerful, all interesting
analysis problems about these programs are bound to be undecidable.

In programs with procedures and concurrency the same code unit can be called
following different policies: procedural call (caller waits until callee terminates), thread
call (caller runs concurrently with callee), cobegin-coend call (caller waits, may call
several callees). We use the keywordprocessto denote such a unit.

4.1 Procedural programs with cobegin-coend sections

In a while program with cobegin-coend sections the maximum number of processes
that can be executed concurrently is syntactically bounded. This is no longer the case in
the presence of recursion. For instance, a process may contain a cobegin-coend section
one of whose branches calls the process itself. The program of Figure 5 is an example.
In the absence of global variables, we can model the program as a monadic PRS (the
rules are shown on the right of the figure).

processmain();
m0: if ? then

cobegin
m1: call main() ‖ m2: skip

coend
fi;

m3: return

m0 → (m1 ‖ m2) ·m3
m0 → m3
m1 → m0
m2 → ε
m3 → ε

Fig. 5.A procedural program with global variables and its semantics.

Unfortunately, the addition of global variables leads to complications. In order to
understand why, consider the program of Figure 6. It is very similar to the program of
Figure 5, but has a global variableb. The right side of the figure shows an attempt at



processmain();
m0: if ? then

cobegin
m1: call main() ‖ m2: b := true

coend
fi;

m3: return

b ‖ m0 → (b ‖ m1 ‖ m2) ·m3
b ‖ m0 → b ‖ m3
b ‖ m1 → b ‖ m0
b ‖ m2 → t ‖ ε
b ‖ m3 → b ‖ ε

Fig. 6.A program with global variables and an incorrect PRS semantics.

a semantics following the ideas we have used so far. However, the derivations of the
rewrite system do not match the intuitive semantics, in whichmain() should be able
to call itself, and then executeb = true immediately thereafter. No derivation of the
rewrite systems allows to do so. The only derivation having a chance would be

bm0
r−→(b ‖ m1 ‖ m2) ·m3

r−→(b ‖ m0 ‖ m2) ·m3
r−→(((b ‖ m1 ‖ m2) ·m3) ‖ m2) ·m3

but now the ruleb ‖ m2 → b ‖ ε can only be applied to theinnermost m2, which corre-
sponds to the incarnation ofmain() as callee, not to its incarnation as caller.

So we conclude that, while monadic PRS are a suitable formalism for modelling
programs without global variables, PRS do not match the interplay between recursion
and concurrency in conventional programming languages.

Analysis. Mayr has shown that the word problem for PRS is decidable [30, 31] but,
since PRS contain Petri nets as a subclass, the problem is EXPSPACE-hard. Fortu-
nately, in the case of monadic PRS (which, as we have seen, seems to be more useful
for modelling programs), there exist far more efficient approaches based on symbolic
reachability analysis.

The design of symbolic reachability analysis procedures for PRS (or even for its
monadic fragment) is not easy. First, we need to represent sets of PRS terms, and a
natural idea is to use finite-state tree automata for that. However, we have the problem
that the commutative closure of a regular set of terms is not regular. To see this, consider
the regular set of terms of the forma‖b‖a‖b‖ . . .‖a‖b. Its commutative closure is the set
of all parallel terms with the same number ofa’s andb’s, which is clearly not regular.
As a consequence, neither thepost∗ nor thepre∗ operation preserves regularity of a set
of terms. Moreover, since PRS subsume Petri nets, they do not preserve semi-linearity
either.

Nevertheless, in some classes of multiset-rewriting systems, including the monadic
class, thepost∗ operation does preserve semi-linearity, and there exists an algorithm
that computespost∗ image of any given semi-linear set (see Theorem 3). Let us call a
class of multiset-rewriting systems satisfying this property asemi-linear class. Given
a semi-linear classC , let PRS[C ] be the class of PRS whose sets of rules can be par-
titioned into two setsM andP, whereM is a multiset-rewriting system belonging to
the classC , and the rules ofP only contain occurrences of the sequential composi-
tion operator. Notice that the setsP andM may share constants. We can ask whether



the semi-linearity ofC can be exploited to define an algorithm for symbolic reachabil-
ity analysis of PRS[C ]. This question was addressed in [8] from an automata-theoretic
point of view. An important issue is the representation of sets of PRS terms which are
closed under the equational theories of· and‖. Since these operators are associative,
PRS terms can be seen as trees with unbounded width. Each node labelled with‖ (resp.
·) may have an arbitrary number of children labelled with simple symbols (process
constants) and an arbitrary number of children labelled with· (resp.‖). Therefore, a
natural idea is to useunranked tree automata(also calledhedge automata) as symbolic
representations for sets of PRS terms. Furthermore, since parallel composition is com-
mutative, we should usecommutative hedge automata (CHA). CHA are closed under
boolean operations and have a decidable emptiness problem (see also [27, 33]). Then,
we have the following generic result:

Theorem 6. [8] Let C be a semi-linear class of multiset rewrite systems. For every
system in PRS[C ] and for every CHA-definable set of terms T, the sets post∗(T) and
pre∗(T) are CHA-definable and effectively constructible.

By Theorem 3 we know that the class of monadic multiset rewrite systems is semi-
linear. Therefore, Theorem 6 gives a procedure for symbolic reachability analysis for
monadic PRS:

Theorem 7. [8] Given a monadic PRS, for every CHA-definable set of terms T, the
sets post∗(T) and pre∗(T) are CHA-definable and effectively constructible.

Actually, using the same approach, it is possible to extend Theorem 7 to a larger
subclass of PRS whose rules contain no occurrence of the parallel operator on the left-
hand-side (but possibly occurrences of·) [8]. This class is called PAD in the literature.

Another approach to the symbolic reachability problem for monadic PRS constructs
not the setspost∗(T) or pre∗(T) themselves, but a set ofrepresentativesw.r.t. the equa-
tional theories of sequential and parallel composition. This is sufficient to solve reacha-
bility problems where the origin and target sets of terms are closed modulo these equa-
tional theories. In particular, the approach is powerful enough to solve control point
reachability problems. The approach was first studied in [28] and later in [19]. We
rephrase here the result of [19]. Notice that, by essentially the same procedure used to
put a context-free grammar in Chomsky normal form, we can transform a monadic PRS
into a normal form in which the right-hand-side of all rules has the shapeX ·Y or X ‖Y.

Theorem 8. [28, 19] Let R be a monadic PRS in normal form, and let A be a bottom-
up tree automaton recognizing a set L(A) of PRS terms. One can construct in O(|R| ·
|A|) time two bottom-up tree automata recognizing for every term t∈ post∗(L(A)) (t ∈
pre∗(L(A))) a term t′ such that t= t ′ in the equational theory of the‖ and· operators.

This approach was extended to the case of PAD systems in [7].

4.2 Multithreaded procedural programs

Process Rewrite Systems are also inadequate for modelling the combination of multi-
threading and procedures, even in the absence of variables. Consider the program of



processp();
p0: if (?) then
p1: call p()

else
p2: skip

fi;
p3: return

processmain();
m0: if (?) then
m1: fork p()

else
m2: call main()

fi;
m3: return

#p0 → #p1
#p0 → #p2
#p1 → #p0 p3
#p2 → #p3
#p3 → #ε
#m0 → #m1
#m0 → #m2
#m1 → #p0#m3
#m2 → #m0m3
#m3 → #ε

##→ #

Fig. 7.A program with dynamic thread generation and its semantics.

Figure 7. If we model thefork operation by a rule likem1 → m3 ‖ p0, we get the
derivation

m0
r−→m2

r−→m0 ·m3
r−→m1 ·m3

r−→(m3 ‖ p0) ·m3
r−→ p0 ·m3

But this is not the intended semantics. The main thread (corresponding tom3 in the term
p0 ·m3) can only terminateafter the new thread (corresponding top0 has terminated.

A new approach has been proposed by the first author, Müller-Olm and Touili in [6].
The idea is to represent a state at whichn-threads are active by a string #wn#wn−1 . . .#w1.
Here,w1, . . .wn are the strings modelling the states of the threads, and they are ordered
according to the following criterion: for every 1≤ i < j ≤ n, the i-th thread (i.e., the
thread in statewi) must have been created no later than thej-th thread. The reason for
putting younger threadsto the leftof older ones will be clear in a moment.

We can now try to capture the semantics of the program by string-rewriting rules.
Notice however that we cannot use the prefix-rewriting policy. Loosely speaking, a
thread in the middle of the string should also be able to make a move, and this amounts
to rewriting “in the middle”, and not only “on the left”’. So we must go back to the
ordinary rewriting policy

X → w

uX v
r−→uwv

Instructions not involving thread creation are modelled as in the non-concurrent
case, with one difference: Since we can only rewrite on the left of awi substring, we
“anchor” the rewrite rules, and use for instance #p1 → #p0 p3 instead ofp1 → p0 p3.
The thread creation at program pointm1 is modelled by the rule #m1→ #p0#m3. Notice
that we would not be able to give a rule if we wanted to place the new thread to the right
of its creator, because the stack length of the creator at the point of creating the new



thread can be arbitrarily large. This class of string-rewriting systems is calleddynamic
networks of pushdown systems(DPN) in [6]. The complete set of rewrite rules for the
program of Figure 7 is shown on the right of the same figure.

Analysis. Notice that DPNs are neither prefix-rewriting nor monadic. However, we
still have good analizability results. First of all, it can be proved that thepre∗ operation
preserves regularity:

Theorem 9. [6] For every regular set S of states of a DPN, the set pre∗(S) is regular
and a finite-state automaton recognizing it can be effectively constructed in polynomial
time.

Thepost∗ operation, however, does not preserve regularity. To see this, consider a
program which repeatedly creates new threads and counts (using its stack) the number
of threads it has created. The set of reachable states is not regular, because in each of
them the number of spawned threads must be equal to the length of the stack. Never-
theless, thepost∗ operation preserves context-freeness.

Theorem 10. [6] For every context-free (pushdown automata definable) set S of states
of a DPN, the set post∗(S) is context-free and a pushdown automaton recognizing it can
be effectively constructed in polynomial time.

Since intersection of a regular language with a context-free language is always
context-free, and since the emptiness problem of context-free languages is decidable,
this result allows to solve the reachability problem between a context-free initial set of
configurations and a regular set of target configurations.

So far we have only considered the variable-free case. The results above can be
extended to the case in which processes have local variables, but global variables make
the model Turing powerful. In this case over/underapproximate analysis approaches can
be adopted, which are outside the scope of this paper (see, e.g., [4, 5, 32, 3]).

5 Summary

We have studied rewriting models for sequential and concurrent boolean programs
where concurrent processes communicate through shared variables.

Sequential boolean programs with procedure calls can be modelled by prefix-rewriting
systems (pushdown systems). The word problem and the symbolic reachability prob-
lem for regular sets of states can be solved in polynomial time. The algorithms have
been implemented in the Moped and MOPS tools and applied to the analysis of large
programs.

Concurrent programs with dynamic thread creation but without procedures can be
modelled by multiset-rewriting systems (Petri nets). The word problem is decidable, but
the algorithm is not useful in practice. The control reachability problem can be solved
by a simple algorithm based on the theory of well-structured systems. The symbolic
reachability problem can be solved for the monadic fragment and semi-linear sets. The



monadic fragment corresponds to programs without global variables, and so to absence
of communication between threads.

Process Rewrite Systems (PRS) combine prefix-rewriting and multiset-rewriting.
PRS have a decidable word problem, but do not match the interplay between proce-
dures and concurrency in conventional programming languages. Monadic PRS model
parallel programs with cobegin-coend sections and procedure calls, but without global
variables. The word problem is NP-complete. The control reachability problem can be
solved very efficiently using bottom-up tree automata. The symbolic reachability prob-
lem can be solved for sets of states recognizable by commutative hedge automata.

Concurrent programs with thread creation and procedures, but without communica-
tion between threads, can be model by dynamic networks of pushdown systems [6], a
class of string-rewriting systems. The word problem can be solved in polynomial time.
The pre∗ operation preserves regularity (and can be computed in polynomial time),
while thepost∗ operation preserves context-freeness.

Concurrent programs with procedures and one single global variable are already
Turing powerful, and so very difficult to analyze. Several approximate analysis have
been proposed based on the automata techniques presented in this paper (see e.g. [4,
5, 32, 3]). The constrained dynamic networks of [6] replace global variables by a more
restricted form of communication in which a process can wait for a condition on the
threads it created, or for a result computed by a procedure it called.
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