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Reduction and Synthesis of Live and Bounded
Free Choice Petri Nets*

JAVIER Esparzat

Institut fur Informatik, Universitat Hildesheim,
Samelsonplatz 1, D-31141 Hildesheim, Germany

This paper provides reduction rules that make it possible to reduce all and only
live and bounded Free Choice Petri nets to a circuit containing one place and one
transition. The reduction algorithm is shown to require polynomial time in the size
of the system. The reduction rules can be transformed into synthesis rules, which
can be used for the stepwise construction of large systems.  © 1994 Academic Press, Inc.

1. INTRODUCTION

Petri nets are one of the standard formal tools for the specification,
analysis and synthesis of concurrent systems [18, 19]. In this paper we
assume that the reader is familiar with a number of basic concepts of net
theory. An annex contains a summary of the ones used in the text.

Reduction is one of the most interesting verification techniques for Petri
nets. The verifier is given a kit of so called reduction rules. These rules
transform a net system (a net with an initial marking) while preserving
some properties of interest (i.e., the system obtained after the transforma-
tion has one of the properties if and only if the system before the trans-
formation had it). Two properties which are very often considered are
boundedness (absence of overflows in finite stores) and liveness (absence
of partial or global deadlocks). The reason is that, in many cases, it is
relatively easy to prove that the system is correct if it is live and bounded,
while the most difficult part of the verification lies precisely in proving that
these two properties hold.

The reduction rules are applied as long as possible. The properties are
after that verified by means of other techniques (typically reachability
analysis) on the reduced system, at a lower computational cost. Since the

* A preliminary version of this paper, coauthored by J. Esparza and M. Silva, appeared in
“Advances in Petri Nets *91” with the title “Top-down synthesis of live and bounded free choice
Petri nets” [11].
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algorithms for the application of the rules are usually very efficient, the
technique is very useful when the reduced system is much smaller than
the original one. ‘

Kits of rules which are known to reduce all and only the systems of a
certain class to very simple systems—called in this paper atomic systems—
are particularly interesting. The class is then said to be completely reducible.
Membership in a completely reducible class can be decided by checking if
the reduced system is atomic. In this paper, we give kits of rules that reduce
all and only live and bounded Free Choice systems to atomic systems
whose underlying net is isomorphic to

({5}, {t}: {(s, 1), (1, 5)}).

It follows that liveness and boundedness of a Free Choice system can be
decided by applying a reduction algorithm, which we show terminates in
polynomial time in the size of the system.

Our result provides not only a verification but also a synthesis tech-
nique: we can “reverse” the reduction rules to obtain synthesis rules. Given
a reduction rule that transforms a system X, into X, the corresponding
synthesis rule transforms X, into X,. The kits of reverse rules obtained
make it possible to generate all and only live and bounded Free Choice
systems starting from an atomic one by means of stepwise transformations.
Two of our synthesis rules are typical refinements of places and transitions.
The other two consist of the addition of certain new places and transitions,
respectively.

Sources and Related Work. Free Choice systems were introduced in
[13]. They make it possible to model both concurrency and nondeter-
minism, but constrain their interplay. They have been further studied in
several papers (see [4] for a survey and, more recently, [3]).

Reduction techniques have been extensively studied by Berthelot [1, 2].
The rules described in his work make it possible to reduce to a system
composed of just one transition two classes of net systems: the live and
bounded T-systems (see the Annex for a definition) and a behavioural
generalisation of them, namely the live, bounded, and persistent systems.
Since T-systems are a subclass of Free Choice systems, our work
generalises the first of these results.!

The paper by Genrich and Thiagarajan on Bipolar Schemes [12], as
well as recent papers by Desel [6] and Kovalyov [16], extend Berthelot’s
results in different ways. Since these extensions are closely related to the
results of this paper, we postpone a comparison to the conclusions.

! Not the second, because there exist persistent systems which are not Free Choice (and vice
versa).
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Other papers by Valette [23] and Suzuki and Murata [22] on reduction
techniques do not provide results on complete reducibility.

The paper is organised as follows. Section 2 introduces the basic results
on Free Choice systems used in the paper (more specific ones are
introduced when needed), and Section 3 basic definitions on reductions.
Section 4 describes the reduction rules, which are applied to an example in
Section 5. In Section 6 the complete reducibility of the class of live and
bounded Free Choice systems is proved. Section 7 shows that the reduction
process terminates in polynomial time in the size of the system. Finally,
Section 8 explains how to derive a synthesis procedure from the reduction
rules. Some of the proofs are written in the proof style of W. H. J. Feijen.

2. SoME RESULTS ON FREE CHOICE SYSTEMS

Basic definitions on Petri nets used in this and the following sections are
contained in the Annex. For the reader familiar with Petri nets, the only
points worth mentioning here are that, for technical reasons:

e neéts are assumed to be connected, and

+ in a net system (N, M) with N=(S, T, F), Sand T are assumed to
be nonempty

DeFINITION 2.1. A net N=(S, T, F) is Free Cho‘ice iff Vs eS,
Vees s ={t} v 't={s}.

We denote the class of all live and bounded Free Choice systems by
LBFC. WFFC (Well Formed Free Choice) denotes the class of nets under-
lying LBFC systems. More formally: Ne WFFC if and only if there exists
a marking M, such that (N, M,) e LBFC.

This paper makes extensive use of known results about Free Choice
systems. Those used throughout the whole paper are contained in this
section. We start however with a result that also holds for non-Free Choice
nets:

‘THEOREM 2.2 [17]. Let N be a structurally live and structurally bounded
net. Then N is conservative and consistent.

A net is said to be covered by S-components iff every node of it belongs
to some S-component. For WFFC nets we have the following result:

THeEOREM 2.3 [13, 3]. Decomposmon theorems

Let Ne WFFC. Then:

(@) N is covered by S-components
(b) N is covered by T-components.
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Remark 2.4. Since S-components and T-components are strongly con-
nected nets, and all nets are assumed to be connected, Theorem 2.3 implies
that the nets in WFFC are strongly connected. This result can be extended
to the underlying nets of arbitrary live and bounded systems (see, for
instance, [3]).

Using Theorem 2.3, the following characterisation of the class WFFC is
easy to derive.

"THEOREM 2.5. [10].  Characterisation of the class WFFC.
NeWFFC iff' N is Free Choice, structurally live, and structurally bounded.

Proof. (<) Follows from the definitions.

(=) N is Free Choice and structurally live by definition. We show
that N is structurally bounded. Let M, be an arbitrary marking and s and
arbitrary place of N. By Theorem 2.3, there exists an S-component
N;=(S,, Ty, F,) of N such that se §,. Since N, is an S-graph, we have

VMe[My): M(s)< Y My(s)).

s1€ 8}

Since this holds for an arbitrary place s, (N, M,) is bounded. Since this
holds for an arbitrary marking M,, N is structutally bounded. J

The net of Fig. 1 is in WFFC (the marking shown in the figure makes
the net live and bounded). This net is covered by the two S-components
shown in Fig. 2, and by the two T-components shown in Fig,. 3.

Fic. 1. A live and bounded Free Choice system.
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Fic. 2. The net of Fig. 1 is covered by S-components.

Let N=(S,T,F) be a net. The net N¥=(T, P, F~!) is the reverse
dual of N. Loosely speaking, N™ is obtained by interchanging places and
transitions and reversing the arcs in N.

THEOREM 2.6 [13,3]. Duality theorem.
Ne WFFC iff N9e WFFC. ’

The reverse dual of the net of Fig. 1 is in WFFC (in fact, the two nets
happen to be isomorphic).

THeoreM 2.7 [10]. C_haracterisdtion of LBFC in terms of WFFC.
(N, M,) € LBFC iff the following two conditions hold:

FiG. 3. The net of Fig. 1 is covered by 7-components.
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(i) NeWFFC

(ii) Every nonempty siphon of N is marked at M, (i.e., at least one of
its places contains a token at M,). :

The reader can check that all nonempty siphons of the net system shown
in Fig. 1 are marked.

THeEOREM 2.8 [14]. Connection between liveness and deadlock-freeness.
Let (N, M) be a bounded and strongly: connected Free Choice system.
Then (N, M,)e LBFC iff (N, M) is deadlock free.

3. REDUCTION RULES: BASIC DEFINITIONS

A transformation rule T is a binary relation on the class of all net systems.
Given (X, £)e T, X is called the source system and &' the target system.
(£, £)e T is read: the rule T can transform X into £. The transformation
rule T i$ applicable to Z iff there exists a system £ such that (2, £)eT.
A finite set {T, .., T} of transformation rules is called a kiz. A system X
can be transformed into £” by a kit {T, .., T} of transformation rules iff
(Z,2)e(Ui- T)* '

A reduction ruz’e transforms a source system into a simpler target system,
according to some criterion (in our case, the target system will have fewer
nodes). Let o be a class of particularly simple systems, called atomic
systems. We say that a system X' can be completely reduced, or just reduced
by a kit {Ry, .., R,} iff there exists X’ € o such that X is reduced to X’ by
the kit. The class of systems reduced by the kit is denoted by Z(R,, .., R,).

Our goal is to give reduction rules that preserve certain properties. We
identify a property of systems (e.g. liveness) with the class of systems that
satisfy it (e.g., the class of all live systems). We can now formalise the idea
that a rule preserves a property:

Let € be a class of net systems. A reduction rule R is sound with respect
to % iff

(£, £)eRAZe¥)=>Zc®.
R is strongly sound with respect to € iff

(2, 5)eR=>(Zecb<=Sc%).

PROPOSITION 3.1. Let € be a class of systems such that o/ <€. If

{Ry, .., R,} is a kit of reduction rules strongly sound with respect to €, then
R(R,,..,R,)CSE.
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Proof. Let X be an arbitrary system of #(Rj, ..., R,). There exists by
definition a sequence (X, 2, ..., 2,) with =2 and X, € & such that

Vi,0<i<(n—1):(Z, Zy)e U R

j=1

Since o/ =¥, we have X, € %. Since the rules Ry, .., R, are strongly sound,
if X,,,€% then X, ¥. Therefore, every element of the sequence is con-
tained in %, in particular =. |

The intended use of reduction rules is as verification tools: given a
system, we reduce it to a simpler one which enjoys some properties if and
only if the original system enjoyed them. Since we cannot assume that the
original system satisfies the properties, a reduction rule should be strongly
sound.

A kit {R,, .., R,} of reduction rules is complete with respect to a class €
of systems iff € <4%(S,,.., S,). By Proposition3.1, if {R,,..,R,} is
strongly sound and complete with respect to €, then € = 2(S,, ..., S,)-

The last concept we introduce is that of a structural rule. A structural
rule is a binary relation on the class of all nets A". Every rule T has an
underlying structural rule ST, obtained projecting the binary relation T on
the class . All definitions above can be easily extended to structural rules.

4. Tue REDUCTION RULES

Our reduction rules are introduced in this section. The format for their
description is similar to that used in [12], and corresponds to our inter-
pretation that (2, £) e R is read “R can transform X into 5. First, we give
the conditions of application of the rule, which specify to which systems 2
is R applicable, or, in other words, which systems have some image under
the rule. Then, we specify the target systems £ corresponding to a source
system. :

Note that not every pair composed by a net and a marking is a net
system; this is the case only if the net is connected and contains some place
and some transition. Therefore, every rule has to be shown to be well
defined; that is, we have to show that given a source system X, Fisa
system as well.

4.1. Abstraction Rules

The two rules we introduce here merge two places (R, ), respectively two
transitions (R,). R, is a particular case of the post-fusion rule of [2]. R,
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2

FiG. 4. The rule R;.

is a similar pre-fusion rule for places. We can consider them as typical
abstractions: in the case of R,, two events are considered no longer
distinguishable, and in the case of R, two local states are merged into one.

R, is informally described in Fig. 4. For its textual description, we need
a preliminary definition. If F is the flow relation of a net N, then F(x « y)
denotes the relation obtained by replacing all appearances of the node
x in the pairs of F by the node y. F| x denotes the relation obtained by
removing from F all the pairs containing the node x (this notation is
extended to a set of nodes X in the obvious way).

Rule 1. Let 2'=(N, M,) be a system. (2, }f)eRl, where £ = (1'\7, MO),
iff: o - R

Conditions on X. There exists te T such that:
L. If=|r|=1"t#r
2. (n#J
3.ty ={t}.
Changes in X to produce £. Let {s,}="t and {s,}=r".

L. S=(S\{s;,s5,})u {5} (where §¢ S)
2. T=1\{1}
3. F=F(s;, <5 5,35t

M(s) if s
M(s,)+ M(s,) if s

[ N
Y

4. VseS: M(s)={
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FiG. 5. The rule R,.

The rule is well defined. First, N contains at least two places and two
transitions by conditions 1 and 2, and therefore N has at least one place
and one transition. Second, N is connected because N is connected.

The second reduction rule is graphically described in Fig. 5. Its textual
description is as follows.

Rule 2. Let X =(N, M,) be a system. (2, £)e R,, where £ = (N, M,),
iff: . .

Conditions on X. There exists se.S such that:

1. |sj=1s"|=1,"s#s"
2. (s)y#Q
3. *(s7)={s}.
Changes in X to produce £. Let {t,}="sand {1,}=5".
§=5\{s}

2. T=(T\{t;,t;})u{i} (wherei¢T)

N d
1
Il

Ft, <L t,«Dls

. M(s) if s'¢t;
4 Vel Mis)= {M(s’)+M(s) if s'et;.
The rule can be shown to be well defined by a similar argument to that
used for the first rule. ’ ‘
We have the following result:
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THEOREM 4.1. R,, R, are strongly sound with respect to LBFC.

Proof. A stronger result follows easily from the definitions: R,, R, are
strongly sound with respect to the classes of Free Choice systems, live
systems, and k-bounded systems independently. |}

We denote by SR, and SR2 the two structural rules corresponding to R,
and R,. There exists a strong connection between SR, and SRZ, which will
be useful later.

PROPOSITION 4.2. (N, N)eSR, iff (N, N*)e SR,.

Proof. Immediate from the definitions. In particular, Fig. 5 (ignoring
the marking) is obtained from Fig. 4 by interchanging places and ‘transi-
tions and reversing the arcs. ||

4.2. Linear Dependency Rules

The third and fourth reduction rules consist of the removal of certain
nodes. We deal with the removal of places first. The réle of places in nets
is to impose conditions on the occurrences of transitions. The fundamental
property concerning a system 2 and the smaller system X’ obtained after
removing a place is that every occurrence sequence of X is also an
occurrence sequence of X’. Moreover, it follows easily from the occurrence
rule that the markings we obtain after letting the sequence occur in both
2 and 2’ coincide on the remaining places. To formalise these ideas some
notations are necessary.

Let N=(S,T,F) be a net with |S]>1. We define the net N~*=
(S\{s}, T, F| s). The incidence matrices of N and N~* are called C and
C %, respectively. The row of C corresponding to a place s is denoted by

r(s). We then have
Cc—s
c=(70)

Given a marking M of N, M~ denotes the marking of N~* obtained by
projecting M on S\{s}.
The fundamental property described above can now be expressed as

M[o) M,=M*[c) M;*

where the left part refers to N and the right part to N~°. In particular, this
property implies that the language of the bigger net is included in the
language of the smaller net; formally, L(N, M,) < L(N~*%, M ). .

We are interested in places whose removal preserves some of the proper-
ties of the system.
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t3

FiG. 6. s, is a linearly dependentkplaoe.

DEerFINITION 4.3. Let C be the incidence matrix of a net N=(S, T, F). A
place s€ S is linearly dependent iff |S] > 1 and r(s) is a linear combination
of the rows of C*; i.e. iff there exists a vector 4 such that r(s)=A"-C~*
(we require |S| > 1 because otherwise C~* is not defined). The plaoe s'is
nonnegative linearly dependent iff A>0.

In Fig. 6, place s, is (nonnegative) llnearly dependent, because r(s;)=
r(s;) +r(sq).

Remark 4.4. A self-loop is a place s such that “s=s". For a self-loop s,
r(s) is the null vector. According to the definition above, a self-loop of a
net with at least two places is (nonnegative) linearly dependent with 4 =0.
However, if the self-loop is the only place of the net, then it is not a linearly
dependent place.

The fundamental property of a linearly dependent place is that, at any
reachable marking, the number of tokens it contains is a linear function of
the number of tokens in the rest of the places:

PROPOSITION 4.5. Let (N, M,) be a system and s a linearly dependent
place of N such that r(s)= A" -C~*. Then

VMe[My): M(s)=My(s)+ A" - (M~°—My*).
Proof. ' |
M(s)=My(s)+r(s)- ¢ (where‘Mo[o> M) {state equation of (N, My)}
=Mfs)+47-C~-a {rs)=4"-C~*} '
=Mys)+AT-(M~*—M;*) {state equation of (N5, M5°)}. |
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This simple result has the following interesting consequence: if the initial
number of tokens in a nonnegative linearly dependent place is large
enough, then the place does not constrain the language of the net (places
with this property are called implicit in [5]). This result can be found in
[5]. However, for the sake of completeness, we include-here a proof of our
own.

PROPOSITION 4.6 [5]. Let N=(S, T, F) be a net, s€ S a nonnegative
linearly dependent place, and M, a markmg of N7°. Then there exists a
marking M, of N such that:

(1) Mi=M,
(2) L(N; M)=L(N~*, M,). |
Before proving this proposition, let us illustrate it by means of the
example of Fig. 6. Consider the system obtained by removing place s¢ in
Fig. 6. If the place s¢ is now added without tokens, the language of the new
system is only a proper subset of the former language: the sequence ¢,

cannot occur anymore. However, if s¢ is added with one token then the
languages of the two systems are equal, as the reader can easily check.

Proof. - Since s is nonnegative hnearly dependent there exists 4 > 0 such
that r(s)=A"-C~* Choose a marking M, of N given by

o M;*=M, (hence M, satisfies (1))
e My(s)=AT -My+1.

We show that L(N,MJ:L(N",M;’). Since M[*=M,, we get
L(N™, MT*)=L(N*, M,).

(i) L(N, M) S L(N~* M[®).
Follows from the fundamental property of linearly dependent places
(Proposition 4.5).
V(i) LN, M,")C:L(N'Ml)
By induction on the length & of the occurrence sequences of L(N M ‘5)

Base. k=0. Obvious.

Step. Assume that every occurrence sequence of L(N %, M [*) of length
k belongs to L(N, M,). Let ot be an arbitrary sequence of L(N~*, M[*) of
length k + 1. Since ¢ has length k, we have o € L(N, M,) by the induction
hypothesis. Let M, be the marking reached by letting ¢ occur from M,,
i€, M,[c) M,. Then:
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My(s)=M,(s)+ AT - (M5 —M*) {Proposition'4.5}
=AT-M;*+1 {M(s)=AT-M*+1}
>0 {430}

By the fundamental property, M *[¢) M;*. Since ate L(N~% M[®), t is
enabled at M;°. Since M,(s)>0, ¢ is enabled at M,. Therefore
ote L(N, M,). 1

Using Propositions 4.5 and 4.6, we can study the consequences of the
removal of a nonnegative linearly dependent place on the liveness and
boundedness of a net. The following proposition will help us to show that
these consequences are particularly interesting for Free Choice systems.

PROPOSITION 4.7 [8]. Liveness monotonicity.
If (N, M,)e LBFC and My > M, then (N, My)e LBFC.

THEOREM 4.8. Let N=(S, T, F) be a net and s € S a nonnegative linearly
dependent place such that N—° is connected and contains some place and
some transition. We have:

(@) N is structurally bounded iff N—* is structurally bounded

(b) If N~ is structurally live, then N is structurally live

(c) If N is Free Choice, then N~° is structurally live iff N is struc-
turally live.

Proof. (a<=): Let M, be an arbitrary marking of N. We show that
(N, M,) is bounded. ‘

Let My[o)> M. By the fundamental property, My *[6)> M ~°. Since N~°
is structurally bounded, (N~°, My °) is k-bounded for some k. We then
have

Vs'e S\{s}: M(s')=M*(s')<k.

That is, all places of N in S\{s} are k-bounded. It remains to show that
s is also bounded:

M(s)=My(s)+ AT - (M~ —M;*)  {Proposition 4.5}

SMo(s)+ 47 (K—Mg*) {(N=°, M5?)
(where K= (k, k, ..., k)) is k bounded and 4 >0}
< My(s)+AT-K {4>0}.

So M(s) is bounded by My(s)+ A" -K.
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(a=): Let M, be an arbitrary marking of N~°. By Proposition 4.6,
there exists a marking M, of N such that M[*=M, and L(N, M )=
L(N~°, M,). We have:

* (N, M,) is bounded, because N is structurally bounded

o Me[M,>iff M~ e[My), because of the language equlvalence
and the fundamental property.

Hence, (N—*, M,) is also bounded. Since M, was chosen arbitrarily, N=*
isstructurally bounded. '

(b) By the definition of structural liveness, there exists a marking M,
of N™° such that (N~°, M,) is live. By Proposition 4.5, there exists a
marking M, of N such that L(N~°, M,)=L(N, M,). Hence, (N, M,) is live
and N is structurally live.

(c=) Particular case of.(b).

(c<=) Since N is structurally live, there exists a marking M of N such
that (N, M) is live. We show that (N—°, M ~*)is live.
By Proposition 4.6 applied to (N, M ~*), there exists a marking M, of
N such that M{*=M"" and L(N, M,)=L(N~°, M~*). Consider two
cases:

“Case 1. 'My< M. Then we have:
L(N~*% M~*%)=L(N, M,) {Proposition 4.6}
< L(N, M) {M,< M)
S LN, M) {fundamental property of
linearly dependent places }.
So L(N—*, M—*)=L(N, M) and, since (N, M) is live, (N™%, M~*) is live. ‘

Case 2. M,>M. Since N is Free Choice, Proposition4.7 can be
applied to conclude that (N, M,) is also live. Since L(N,M)=
L(N—°, M~*), the system (N~°, M%) is live. ||

Theorem 48 leads to the followmg reduction rule:

Rule 3. Let £= (N, M,) be a system (z, Z‘)eR;, where £ = (N, M,),
iff:

Conditions on X.

1. N is Free Choice
2. Every nonempty siphon of N is marked at M,
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3. N contains a nonnegative linearly dependent place s
4. N~ is connected and contains some place and some transition.

Changes in X to produce £.
1. (N, M,)=(N—*, My*).

/

The rule is well defined because of Condition 4 (this is the reason for the
inclusion of this condition).
THEOREM 4.9. Rj; is strongly sound with respect to the class LBFC.
Proof. Let (N, M), (N~°, M7*))€ R;. We show the following:
(a) NeWFFC iff N~*e WFFC

Ne WFFC < N is Free Choice, structurally {Theorem 2.5}
live and structurally bounded
<> N~ *is Free Choice, structurally {Theorem 4.8,
live and structurally bounded parts (a) and (c)}
< N *e WFFC {Theorem 2.5}.

(b) Every nonempty siphon of N is marked at M| iff every nonempty
siphon of N~ is marked at M, °.

(=) By the definition of siphon, every siphon of N~° is also a
siphon of N.

(<) By Condition 2 of application of the rule.

By (a), (b), and Theorem 2.7, we have that (N, M,)eLBFC iff
(N~°, M5°)e LBFC. So R; is strongly sound with respect to LBFC. |1

Two limitations of R; should be pointed out:

1. A rule is local if, in order to decide if its conditions of application
hold, only the neighbourhood of the intended point of application has to
be examined, and the changes affect only this part of the system. Local
rules are clearly preferable to non-local ones. R; and R, are examples of
local rules. R;, however, is non-local, because in order to find the linear
combination showing that s can be removed it can be necessary to examine
the whole net N.

2. R, is not sound with respect to the class of live and k-bounded
Free Choice systems. Let (N, M,) be the system of Fig. 7. It is easy to see
that ((N M,), (N5, M;*)) € R;, and that (N, M,) is 2- bounded However,
(N~*, My °) is 1-bounded.
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FiG. R; does not preserve k-boundedness.

We now consider the removal of nonnegative linearly dependent trans-
itions. A transition ¢ is nonnegative linearly dependent iff the net has at
least two transitions and the column corresponding to ¢ in the incidence
matrix (denoted by c(¢)) is a linear combination of other columns with
nonnegative coefficients.

We -define the following rule, where, given N=(S, T, F) with |T|>1,
N~* denotes the net (S, T\{t}, F| ).

Rule 4. Let X=(N, M;) be a system. (X, £)e R,, where £ = (N, M,),
iff: TR '
Conditions on.Z.
.. 1. Nis-a Free Choice net ,

2. N contains a nonnegative linearly dependent transition ¢

.3.. N~'is connected and contains some place-and some transition. _

Changes on X to obtain £. N

L. (N’ M{)):(N_ta MO)

The rule- is well defined because of Condition 3. In order to prove the
strong soundness of this rule with respect to the class LBFC, we use the
following relationship between the structural rules SR; and SR,:

PrOPOSITION 4.10. (N, N)e SR, iff (N™, N*)e SR,.

Proof. 1t is easy to see that, if C and C™ are the incidence matrices of
N and N™, respectively, then C™ = C7 (the transpose of C). This implies
that the vector r(s) is a linearly dependent row of C iff r(s)" is a linearly
dependent column of C™. Hence, s is a (nonnegative) linearly dependent
place of N iff it is a (nonnegative) linearly dependent transition of N*. |

THEOREM 4.11. R, is strongly sound with respect to LBFC.
Proof. Let ((N, M), (N~*, My))e R,. We show the following:
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() NeWFFC iff N~'e WFFC

FIRVIER HSPARZK <0 1

((N, Mo), (N™', Mg"))e Ry= (N, N~")e SR,

{definition of structural rule }

= (N™, (N~"))e SR,
{Proposition 4.10}

= N e WFFC < (N~ ‘) e WFFC
{strong soundness of R;

with respect to LBFC}

= Ne WFFC < N ‘e WFFC

{Theorem 2.6 }.

(o) If (N, M) LBFC, then (N~', Mo) € LBFC.

Since Ne WFFC, we have N~ ‘e WFFC. By Remark 2.4, N~* is strongly
connected. Moreover, it is structurally bounded by Theorem 2.5. By
Theorem 2.8, it suffices to show that (N, M,) is deadlock-free.

Since both N ad N~' are strongly connected nets, there exists a trans-
ition ¢ of N, t' #t, such that "t "t # ¢, where the dot notation refers to
N. Since N is Free Choice, we have "t = "¢'; it follows that ¢ is enabled at
a marking iff #' is also enabled at it.

Let now M be an arbitrary reachable marking of (N~‘, M,). Clearly, M
is a reachable marking of (N, M,) as well. Since (N, M,) is live, some
transition of N is enabled at M. Moreover, since ¢ is enabled at M iff ¢
is enabled at M, the marking M enables in particular some transition
different from ¢ So M enables this transition in N~* too. Since M was
arbitrarily chosen, (N~*, M,) is deadlock-free.

(c) If (N, My)e LBFC, then (N, M,)e LBFC.
By (a) and Theorem 2.7, it suﬁices to prove that every nonempty siphon
of N is marked at M.
Let R be a nonempty siphon of N. By the definition of a s1phon Risa
nonempty siphon of N~*. Since (N~* Mo) € LBFC, R is marked at M, by
Theorem 2.7.

(a), (b) and (c) imply that (N, M,) satisfies conditions (i) and (i) of
Theorem 2.7 iff (N7%, My*) satisfies them. Hence, (N, M,)eLBFC iff
(N~', My")e LBFC, which proves the strong soundness of R,. |
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5. THE KiTs {R,, R3, R;} AND {R,, R3, R}

In the next two sections we study the kits {R,, R3, R,} and
{R;, R;, R,} acting on the following class of atomic systems.

DEFINITION 5.1.  Atomic systems.
A net isomorphic to ({s}, {t};. {(s; 1), (#, 5)}) is called an atomic net.
A system (N, M,) is atomic iff N is atomhic and M,>0.

There exist therefore infinitely many atomic systems, which differ in the
number of tokens put in the only place of the—up to isomorphism—
unique atomic net. Since, according to our convention, net systems must
have at least one place and one transition, the atomic systems are the live
and bounded systems with a minimal number of nodes. It is also easy to
see that none of our rules is applicable to an atomic system: atomic systems
do not satisfy Condition1 of R; and R,, and do not contain linearly
dependent places nor transitions—according to our definition, the net must
have for that at least two places or two transitions, respectively.

Once the class of atomic systems has been fixed, the classes
R(R,, R;, R,) and %#(R,, R;, R,) are well defined. Our goal is to prove
that - ,

.@(R’l, RQ, R4) =LBFC = «Q(Rz,?R:;, R4)

Since all atomic systems are in LBFC and all the rules are strongly sound,
we have #(R,, Ry, R,) € LBFC and %(R,, R;, R,) < LBFC by Proposi-
tion 3.1. In the next section we will prove the converse of these two inclu-
sions.

Before that, we present a reduction sequence of a system in
R(R,, R;, R,). We have chosen the system that is used as the main
example in Hack’s master thesis [13], one of the first works in which Free
Choice systems were studied. It has been slightly simplified in order to
reduce the number of reduction steps. The system is shown in Fig. 8(a).

1. Apply R, to remove s,;:
r(sy)=r(s7)+r(s)
2. Apply R, to remove ¢5:
c(ts)=c(t)) +c(ty) + c(ts) + c(t7) + c(tg) + c(to) + c(10).

3. Apply R, to fuse 5,4 and s, into 3§, (Fig. 8(b)).
4. Apply R, to remove ¢; and ¢,:

c(t3)=c(t0)=0.
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Fig. 8. Reduction of an LBFC system.

5. Apply R, twice to fuse s;, 54, and sg into §,.
6. Apply R, to fuse 5, and s, into §, (Fig. 8(c)).
7. Apply R, twice to remove §, and §, (Fig. 8(d)):

r(8;)=r(sq4) +r(s7) +7(so)
r(8,) =r(so) +r(sy) +r(sy)

8. Apply R, three times to fuse s,, 54, 57, and s, into §; (Fig. 8(¢)).

Since we claim that #(R,, R;, R,)=2(R,, R;, R,), there should be a
reduction sequence of this system using {R,, Rs, R,}. This is in fact the
case. The two first steps are as before. After them, we may go on as follows:
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FiG. 9. An alternative reduction of the system of Fig. 8.

3. Apply R, to remove t3 (Fig. 9(c ))
c(t3)=c(t,)+ C(tz) +c(ty) +clte) + C(t7) +c(ts) + C'(t9)
" "Apply R, twice to fuse t,, t,, and ¢, into tQ.
5. Apply R; to remove sg: B
r(sg) =r(s4) +r(s7) +r(so). ,
6. Apply R, twicektvo fuse tg, ty, and 7, into 7, (Fig. 9(d").
7. Apply R; to remove s4: '
r(s4) = r(s10) +r(s2) +7(ss).

8. Apply R, three times to fuse t,, tg, f,, and ¢, into one transition.

6. COMPLETENESS OF THE KiTs

We give in this section a direct proof of the completeness of
{Rz, R, R,} with respect to the class LBFC. Let us first show that, once
this is achieved, the completeness of {R,, R;, R,} follows.

ProrosiTioN 6.1. If {R,, R, R4} is complete far LBFC 'then 50 is
{Rla RS: R4} .
" Proof: Let: X =(N, MO)ELBFC We have to show that there exists

2’ € of such that Z can be reduced to Z’ using {R;, R;, R,}. We first show
that ‘N can be reduced to an atomic net using {SR;, SR;, SR4}.
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Ne WFEC- ,

<« N9e WFFC {Theorem 2.6}

< (N™, Ng)e (SR,u SR, U SR,)* {completeness,of {R,, R3, R4}, and
.for some atomic net N, definition of structural rule }

< (N, Ni¥)e(SR,USR,USR;)*  {Propositions 4.2 and 4.10}.

Since N, is atomic iff N3 is atomic, the result follows.

Let (SR, .., SR;) be the sequence of structural rules reducing N to an
atomic net. We show that the sequence (R, .., R, ) reduces X' to an atomic
system. We only have to prove that this sequence is applicable to N.

Assume this is not the case. Then, there exists an index i;, 1 <j<n, such
that (R,, .., R;_,) is applicable to N, but not (R,l, «» Ry). Let (N, M;) be
the system obtained after the application of (R;, .., R;_,). "We have that SR;
is applicable to N, but R, is not applicable to (N;, M)). A simple mspectlon
of the conditions of application shows that i;= 3, and M; does not mark all
the nonempty siphons of N,. But then, by Theorem 2.7, (N;, M}) is not live,
which contradicts the strong soundness of R,, .., R;. |}

Our task is to show that for every X e LBFC there exists X' € &/ such
that X can be reduced to 2’ using {R,, R;, R,}. A first important observa-
tion is that, in order to prove this, it suffices to show that the following
statement (A) holds:

(A) ¥ X is a non-atomic LBFC system, then some rule in
{R,, Ry, R4} can be applied to it.

LEMMA 6.2. Let XeLBFC. If (A) holds, then X~ can be completely
reduced using {R,, Rs, R,}.

Proof. Assume that (A) holds. Consider the function f: LBFC — N?
given by

SU(S, T, F, My,))= (IS, |T1)
and the partial order < on N? given by
| (e, X)X (X3, xa)  iff x, <o and x3 < x|

Due to our definition of a net system (which requires the existence of
at least one place and one transition), the range of f is bounded from
below by (1,1). Moreover, this minimum is reached by all and only
atomic systems. Finally, f is monotonically decreasing with respect to
(R, U R; U R,), because for all the rules the target system has always less
places and/or transitions than the source system.
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Therefore, any maximal sequence of reductions starting with- £ ter-
minates in an atomic system. ||

Furthermore we can easily prove (A) for LBFC systems w1th exactly
one transition. Assume X is non-atomic and has exactly one transition.
Then, due to our definition of a net system, it has more than one place. The
rows corresponding to these places in the incidence matrix are identical
(null vectors). Any of them is then a normegative linear combination of the
others, and hence R, is applicable. ' -

It remains to prove (A) for LBFC systems with more than one transition
(and hence non-atomic). Let (A’) be the restriction of (A) to these systems.

The concept of shower subnet is central to the proof of (A’). We define
it next.

Given a subnet N'=(S, T, F')of N, te T’ is a way-in transition to N
iff there exists se "\ S".

DEFINITION 6.3. Let N=(S, T, F) be a net and N=(S, T, )N a
T-graph with |T| > 1. N is a shower subnet of N iff:

(i) *SuS =T (where the dot notation refers to the net N),
(i) N has exactly one way-in transition, and
(iii) for every xe Su T, there exists a path in N from the way-in
transition of N to x.

Figure 10 shows a shower subnet with a certain marking, and explains
the reason for the name. In showers, water gets in through one single pipe
and gets out concurrently through many small holes. The behaviour of
shower subnets is similar: tokens “get into” the subnet through one single
way-in transition (¢, in the figure), and “leave it concurrently through
possibly many way-out transitions (¢!, 2,,, £, in the figure).

FiG. 10. A shower subnet.
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The proof of (A’) has a hierarchical structure. (A’)-is implied by the ¢on-
junction of the two following statements, which will also be derived from
the conjunction of others.

Let (N, M,) be an LBFC system, where N= (S, T, F) and |T| > 1:

(A.1) If (N, M,) contains a shower submet, then R, or R, is
applicable.

(A.2) If (N, M,) contains no shower subnets, then R,, is apphcable
6.1. LBFC Systems with Shower Subnets

PROPOSITION 6.4. Statement (A.1).
Let (N, M,) e LBFC, where N= (S, T, F) and |T|>1, and N a shower
subnet of N. Then R, or R, is applicable to (N, M).

Proof. The proof is by induction on |7, the set of transitions of N.

Base. 1T| 2. Then T= {tin, t}, where t;, is the unique way-in trans-
ition of N. By Condition (111) of the definition of a shower subnet, there
exists a path (z,,, s, ) in N.

If "t = {s} (the dot notation always refers to N), then it is easy to see that
the place s satisfies all the conditions of application of the rule R,: Condi-
tion 1 holds because N is a T-graph and ¢ # 1,,; Condition 2 holds because
N is strongly connected (Remark 2.4); Condition 3 holds because “t = {s}.

If “t# {s}, then there exists a place s'e“t, s’ #s. Since N is a T-graph,
s’ has exactly one input transition, which is either ¢,, or . In the first case,
we have r(s)=r(s’); in the second, r(s')=0. In both cases, s’ is a non-
negative linearly dependent place of N, and it is easy to see that the rule
R, is applicable.

Step. |T|>2. By the definition of a shower subnet, there exist a trans-
ition # of N, t#1,, and a path (t, s, t). If ‘t={s}, then the rule R, is
apphcable as shown in the base case. If "t # {s}, then there exists a place
s'€"t, s’ #s. Since N is a shower subnet, some path of N leads from tin tO
s’. Consider two cases:

« Some path of N leading from ¢, to s’ does not contain s. Then, r(s)
is the sum of the rows of the incidence matrix corresponding to the places
contained in this path. Moreover, N~—° is connected. Since M, marks all
nonempty siphons of N because (N, M,) belongs to LBFC (Theorem 2.7),
R, is applicable to (N, M,).

o Every path of N leading from z;, to s’ contains s (and therefore 7).
Let N'=(S’, T’, F’) be the subnet of N generated by all the nodes con-
tained in the elementary paths of N leading from ¢ to s'. In particular, ¢,,
is not a transition of N’, because every path from ¢ to s’ containing ¢;, must
contain ¢ twice.



LIVE AND BOUNDED FREE CHOICE PETRI NETS 73

We prove that N’ s a shower subnet of N.

— *§'US"=T". Follows easily from *Su$" =T and the defini-
tion of N'.

— N’ has exactly one way-in transition. ¢ is a way-in transition of
N'. We show that it is the only one. Let ¢ € T’ be a way-in transition of
N'. We prove t'=t.

t' is a transition of N, and moreover't’ s t,,, because ¢;, is not a trans-
ition of N'. Since N is a shower subnet, all the input places of ¢’ are con-
tained in N. Since ¢ is a way-in transition of N’, some input place r of ¢’
is furthermore not contained in N’.

There exists a path from ¢;, to  in N because N is a shower subnet. This
path can be extended to a path from ¢, to ¢’ because r is an input place
of #'. It can moreover be extended to a path = from ¢, to 5" by the defini-
tion of N'. Since every path from ¢, to s’ contains ¢, @ contains ¢. So every
element of 7, with the exception of #,, and s, belongs to N'. Since r is not
a place of N’, we have r=s. This implies ¢’ =1¢.

— For every xeS uT’, there exists a path (7,..,x) in N’
Obvious from the definition of N'. :

Since N’ does not contain the transition t;,, we have |T’| <|T]. By the
induction hypothesis, R, or R; is applicablevtc_) (N, M,). 1§

" Using this p:oposition, the: following result ‘¢an be easily proved.

PROPOSITION 6.5. Let (N, M,) be a live and bounded T-system. (N, M)
can be completely reduced using {R,, R;}.

Proof. Let N=(S, T, F). By an analogous argument to the one used to
prove Lemma 6.2, we conclude that it suffices to prove that some rule is
applicable to (N, M,). Moreover, we only need consider the case |T'| > 1 (if
{T|=1, then R; can be used to remove all but one place, yielding an
atomic system).

Choose te T. By Remark 2.4, N is strongly connected. Consider the net
obtained by removing from N all the input places of z, together with their
input and output arcs. It is easy to see that this net is a shower subnet
of N, with ¢t as way-in trans1t10n By Proposmon 6.4, R, or R, is
applicable. ||

6.2. LBFC Systems without Shower Subnets

We prove statement (A.2): if an LBFC system having more than one
transition contains no shower subnets, then R, is applicable. This state-
ment is implied by the conjunction of the following two statements. Let
(N, M,) be a LBFC system, where N=(S, T, F) and |T|>1:
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(A.2.1) If (N, M,) has no shower subnets, then there exists e -T such
that N’ is strongly connected.

(A.2.2) If there exists € T such that N~ " is strongly connected, then
((N, M,), (N7%, My))e R, (ie., R, is applicable to (N] My)).

We deal with (A.2.2) first. The proof is based on the next propositidn.
PROPOSITION 6.6. Let N= (S, T, F) be a net with |T|>1 and let teT.

If N-and N~* are structurally live and structurally bounded nets, then t is a
nonnegative linearly dependent transition.

Proof. Let C and C~* be the incidence matrices of N and N~* respec-
tively. By Theorem 2.2, N and N~‘ are consistent. Hence, there exist
vectors X, >0 and X, >0 (where the dimension of X, is 1 more than the
dimension of X,) such that

C-X,=0 (1)
C " X,=0 (2

Assume w.Lo.g. that ¢(z) is the last column of C. Then, X, can be written
in the form [X7}|X,(z)], where X| and X, have the same dimension, and
(1) can be written as

C - X+ X,(t)e(t)=0 3)
Take

X= Xl(t) (kX,— X1),

where k is positive and large enough to make X >0. We then have:

C ' X=— Cc ' X {definition of X, Eq. (2)}

X,(2)
=c(1) {Eq. (3)}-
So, since X >0, the transition ¢ is nonnegative linearly dependent. [}
THEOREM 6.7. Statement (A.2.2).

Let (N, My)e LBFC, where N=(S,T,F) and |T|>1. Let teT. If N~*
is strongly connected, then ((N, M,), (N~*, My))e R,.

Proof. By Theorem 2.7, every nonempty siphon of N is marked at M,.
Therefore, it suffices to show that ¢ is a nonnegative linearly dependent
transition. By Proposition 6.6, it suffices to prove that N and N~*
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structurally live and structurally bounded nets. Since (N, M,) e LBFC, we
have Ne WFFC. By Theorem 2.5, N is structurally live and. structurally
bounded.

We now prove that (N™* Mo)eLBFC We collect some preliminary

| PP

(a). L(N~Y, My)< L(N, M,). Follows from the definition of the
occurrence rule.

(b) (N™Y Mg)is bounded Follows easﬂy from (a) and the bounded-
ness of (N, Mo)

(c) There exists 'e T, t' #1, such that ¢ is enabled iff ¢ is enabled.
By the strong connectedness of N~ there exists '€ T, ¢'#¢ such that
‘t'n°t# . Since N is Free Choice, ‘t'="t. Hence, ¢’ is enabled iff ¢ is
enabled.

(d) (N~ M,) is deadlock-free. Assume there exists an occurrence
sequence ¢ in (N~*, M,) such that M,[o) M and no transition of T\ {z}
is enabled at M. By (a), this sequence can also occur in (N, M,), leading
to the same marking. By (c), ¢ is not enabled at M as well. Hence, no trans-
ition in T is enabled at M, and (N, M,) is not deadlock-free. This
contradicts the liveness of (N, M,).

(N™% M,) is bounded by (b), strongly connected by hypothesis, and
deadlock-free by (c). By Theorem 2.8, (N ¢, M) is live. So (N !, M,) e LBFC,
which implies N € WFFC. By Theorem 2.5, N is structurally hve and struc—
turally bounded. §

We now prove (A.2.1): If (N, M,) has no shower subnets, then there
exists a transition ¢ such that N~* is strongly connected.

This part is based on the notion of private subnet, which is introduced
now.

A set I of T-components of a net N is a cover iff every node of N is con-
tained in some element of J. J is minimal iff no proper subset of I
itself a cover. Every T-component of a minimal cover 4 has at least one
own node: a node that does not belong to any other T-component of the
cover. To prove it, just notice that a T-component without own nodes can
be removed from 4, and the remaining 7-components are still a cover,
against the minimality of . Private subnets are certain subnets of a
T-component containing only own nodes.

DeFNITION 6.8. Let J a minimal cover of a net N, and N, =
(S:, Ty, Fy) an element of . N'=(S', T', F')S N, is a private subnet of
N, 1ff the followmg condmons hold

(i) N'is nonempty and connected
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t1 t2
$3 s4

s2 s5

t4 t5
t3 t6

A A

Ny N,

F1G. 11. Private subnets of the net of Fig. 1.

(i) S'a(S\S)=T"n(T\T)=Q
(iii) There exists no net N” satisfying N'< N” € N, (i), and (ii).

The T-components N, N, of the minimal cover shown in Fig. 3 have
one single private subnet each, namely the subnets N, and N, shown in
Fig. 11.

Given N=(S,T,F)cN=(S,T,F), we denote N\N=(S\S, T\T,
FI(SuT)).

Let (N, M,) be an LBFC system with at least two transitions and con-
taining no shower subnet. The conjunction of the followmg statements
(A2.1.1) and (A.2.1.2) implies (A.2.1): ,

(A2.1.1) There exists a T-component of N containing a private
subnet N such that N\N is strongly connected.

(A2.12) Nis composed by one isolated transition.

PROPOSITION 6.9. Statement (A.2.1.1).

Let (N, M,) be an LBFC system with at least two transitions and con-
taining no shower subnet. There exists a T-component N, of N such that
for every private subnet N of N 1» N\N is strongly connected.

Proof. By Theorem 2.3, there is a cover 7 of N. If |7 | =1, then N is
a T-graph and, as shown in the proof of Proposition 6.5, N contains a
shower subnet, against our hypothesis. Hence, || > 2. We construct the
(non-directed) graph G = (V, A) as follows:

v=¢
(N,N)ed iff N.AN#.

Because T-components are strongly connected, it is immediate to see
that G is connected iff the net N is strongly connected.
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In our particular case N is strongly connected by Remark 2.4. So G is
connected. There exists a node of G such that, when we remove it, the
remaining graph G’ is still connected, and non-empty. This graph G’
corresponds to the net N’ covered by 7 \{N,} for some T-component N,
of 7. Since G’ is connected, N’ is strongly connected. .

Let N be an arbitrary private subnet of N;. We show that N\N is
strongly connected. ’

Let x, y be two arbitrary nodes of N\N. Since N is strongly connected,
there is a path t=u, --- 4, of N such that x =u, and y =u,. We find a path
of N\N also leading from x to y.

Let u,,, and u;_, be the first and last elements of n that belong to N
(they may be the same node). By the maximality property of private
subnets (Definition 6.8(iii)), u;, u;e N'.

Since N’ is strongly connected, there i§ a path u;v,---vu; of N’ leading
from u; to u;. Since N’ is a subnet of N\, this path is also a path of N\N.
Hence, the path

is a path of N\N. 1|

PROPOSITION 6.10. Statement (A.2.1.2). - :

Let 2 = (N, M,) be an LBFC system with at least two transitions and con-
taining no shower subnet. Let N, be a T-component of N and N= (S, T, F)
a private subnet of N, such that N\N is strongly connected. Then |T|=1
and S= .

Proof. Assume that N has more than one way-in transition. Using
that N is a connected T-graph, it is not difficult to see that there exist two
way-in transitions ¢,, ¢, with the following property. There exist two elemen-
tary paths 7, =(t,, .., t) and mn,=(f,, .., ) in N such that the only node
contained in both paths is . Moreover, due to the strong connectedness
of N, there exists an elementary path n, = (s,, .., §,) in N of minimal length
with s, € °t;, s, € °t,. This setting is graphically described in Fig. 12.

Let S, T’ be the set of places and transitions contained in these paths,
respectively. Consider the mapping J: S’ — Z described in Fig. 13.2

Let, for a marking M:

J(M)= > J(s) M(s).

ses’

2 Roughly speaking, we move clockwise along the triangle, and assign consecutive integers to
the places. When moving in the opposite direction to the arcs of F, these integers are given a
minus sign. :
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n3
sl ) cee s2

. Nodes of Ii\J

nl 2 Nodes of N

Fig. 12. The setting of the proof of Proposition 6.10.

We now show that for every M e [M,) there is a marking M’ € [M) such
that J(M) <J(M'). Note that, if we are able to prove this, we are done,
because this fact contradicts the boundedness of N.

Consider two cases:

(i) There is a transition ¢ €5’ enabled at M, where s’ S'. Since N
is Free Choice, all transitions in s'" are enabled. Select a transition ¢ s’
as follows: :
o If s'=35,, s’ #s5,, then let ¢ be the successor of s’ in n5.
o If s’ =s5,, then let ¢ be ¢,.

o If 5, #5"#5,, then let #' be the successor of s’ in its respective
path.

0 1 n- n
sty > -—-H:)l—DD—HD $2

t1

-(n+m+l)

e

-(n+m+1)

t

F1G. 13. Mapping considered in the proof of Proposition 6.10.
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We show that M[¢')> M’ implies J(M)<J(M’). Due to our choice of J,
and since ¢, is never selected, it suffices to show that:

(a) No'place in ;- has more than one input transition in T’\{tl}
(b) No place of n; or m; has more than one output transition in

T\{t:}.

(a) and the part of (b) concerning 7; hold because N is a T-graph. It
remains to show (b) for x;.

Let 5" be a place of 75 and let ¢’ be its selected transition. Assume there
exists fes”" N (T/'\{#,}), I#1. We show that this leads to a contradiction.
There are three possible cases:

‘Case 1. T=t,. We have s’ #s5,, ‘because otherwise =1t Then ¢, has
more than one place of #; in its preset, contradicting the minimality of .

Case 2. {is a transition of n, or =, different from ¢,. Then 7 is the only
output transition of its predecessor in the path because N is a T-graph;
however, s’ has more than one output transition. This contradicts the Free
Choice property.

Case 3. 1 is-a transition of m;. If m3=(s,,.., 8, ¢, .., , .., §,), then
(815 s 8T, ..., 5,) is a shorter path, contradicting the minimality of 7.

If m3=(sys e b5y 8, ', ..., S5) then, since N is Free Choice, there is an
arc from the predecessor § of 7 to ¢, and the path (s,,..,5, 7, ..,5,)
contradicts the minimality of 7.

Since in all cases we reach a contradiction, we have 7=1".

(ii) - Notransition of S’* is enabled at M. Due to the liveness of
(N, M;), there is an occurrence sequence ¢ of minimal length with
M[o)> M" such that a transition ' € S’" is enabled at M".
Let now M[o)> M"[¢') M’. Since n; and =, are paths of a T-graph no
transition occurrlng in o changes the marking of the’ places of 7, and 7,.
Sincé no transition in $’" occurs in o, we have

o Vsemy, my: M."(.‘s')=M(s)
o Vsemy: M"(s)> M(s).

Due to our choice of J, we have J(M) > J(M") and J(M") < J(M’). Hence
J(M) < J(M'), which completes the proof,

So N has one single transition 7. There exists a place s’e‘t of N \N Since
N\N is strongly connected, s’ has some output transition in N \N. Since N
is Free Choice, *t= {s}. Therefore, ¢ has no input place in N. Since every
place of N must have some output transition in N, the net N contains no
places. |
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7. THE COMPLEXITY OF DECIDING MEMBERSHIP IN THE CLASS LBFC

A sound and complete kit of reduction rules for LBFC provides an algo-
rithm for testing membership: a system is in LBFC iff it can be completely
reduced by the kit. We show in this section that this algorithm is polyno-
mial on the size of a reasonable encoding of the system, which compares
favorably with the NP-completeness of deciding if a Free Choice system is
not live [15]. .

PROPOSITION 7.1. Let (N, M,) be a Free Choice system. The following
problems can be solved in polynomial time in the size of (a reasonable
encoding of ) (N, M,):

(a)  For i=1, .., 4: applicability of R; to (N, M)

(b) Membership of (N, M,) in LBFC.

Proof... Let N=(S, T, F).

(a) The conditions of application of R, and R, can be easily checked
in polynomial time. R, is applicable when N contains a nonnegative
linearty dependent transition, ie., when for a transition ¢ the system
C~'- X'=c(t) of linear inequalities has a nonnegative solution X. We have
to solve |T| systems in the worst case to check this condition. Solving one
of these systems is a polynomial problem on the size of the net (see, for
instance, [9]). R, is applicable iff:

(i) Every nonempty siphon of N is marked at M,
(i) N contains a nonnegative linearly dependent place s, and
(iii) N~° is connected and contains some place and some trans-
ition.
Condition (i) can be checked in polynomial time using the following (poly-
nomial) greedy algorithm, a slight modification of an algorithm of [21].
The algorithm returns the maximal siphon of N unmarked at M,. If the

algorithm yields the empty set, then every nonempty siphon of N is marked
at Mo.'

begin
R:={5e S| My(s)=0};
while Ise R: "sZ R* do
R :=R\{s}
endwhile

end
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Checking condition (ii) reduces to the problem of deciding if N contains a
place s such that for some 4 >0, AT-C~*=r(s). Finally, condition (iii) can
be checked in polynomial time using standard algorithms.

(b) A reduction step consists of finding an applicable rule and then
performing the corresponding transformation. By (a), a reduction step can
be carried out in polynomial time because, once it is known that a certain
rule is applicable, the corresponding transformation can be performed in
polynomial time as well, as the reader can check by simple inspection.

Since the application of any of the rules reduces at least by 1 the number
of nodes of the net, (N, M) e LBFC iff it has been reduced to an atomic
system after at most |S| — 1+ |7T'| — 1 reduction steps. Hence, the member-
ship problem is polynomial. |

Checking if the net contains a non-negative linearly dependent place or
transition is the most expensive computation required to decide the
applicability of a rule. Therefore, the actual degree of the polynomial that
bounds the time complexity of the reduction algorithm depends on the
algorithm used to solve equations in the nonnegative orthant. Note also
that the simplex algorithm, although of exponential complexity, behaves in
practice better than the polynomial linear programming algorithms.

We finish the section by describing informally some possible improve-
ments in the algorithm.

1. It is easy to see that, for i=1,..,4, and for all ((N, M,),
(N, M,)) e R, if every nonempty siphon of N is marked at My, then every
nonempty siphon of N is marked at M, (independently of whether
(N, M,) e LBFC or not). Hence, it is not necessary to check this condition
every time we try to apply R,, but only the first time.

2. Whenever N contains a shower subnet (and all nonempty siphons
of N are marked), this shower subnet can be reduced to a transition by
means of a sequence of applications of R, and R,. It is possible to intro-
duce a “macro” that performs this reduction in one single step—this
“macro” can be seen as a -dual version of the macroplace reduction tech-
nique of [20]. Since shower subnets can be easily identified using graph
algorithms (see [20]), the introduction of the “macro” improves the
performance of the reduction procedure. The details are left to the reader.

8. SyNTHESIS RULES

Reduction rules can be used “backwards” as synthesis rules, in order to
generate a complex system starting from an atomic one. If R is a reduction
rule, then S=R~! is a synthesis rule.
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A system is synthesised by -a kit {Sy, .., S,} of synthesis rules iff it is
reduced by {S7!, .., S;"'}. We denote by #(S;, ..., S,) the class of systems
synthesised by the kit, defined as £(S;, ..., S,) = R(S7 ", .., S; !). The con-
cepts of (strongly) sound and complete kit are defined as for reduction
rules.

The formulation of the inverses of the reduction rules is quite
straightforward. There is, however, an interesting point. When- dealing with
synthesis rules it is possible to exploit the fact that the atomic systems are
known to be in LBFC. While a reduction rule can only be useful if it is
strongly sound with respect to a certain class of systems, a synthesis rule
need only be sound: by applying sound rules, since the initial seed is in
LBFC, we stay within LBFC.

The kit formed by the inverses of a strongly sound and complete kit of
reduction rules is also strongly sound and complete. Since a sound and
complete kit suffices;, we can try to weaken some rules, which can have the
advantage that the conditions of application are easier to check. This can
in fact be done with R; and R,. We consider here the case of R, only, that
of R, is analogous.

Checking the conditions of application of R, requires to solve a system
of linear inequalities in the nonnegative orthant. Although, due to the poly-
nomiality of linear programming, this is a polynomial problem, it is still
time consuming. The following proposition allows us to do better. -

Given a net N, N** denotes a net contalmng a transition ¢ such that
( N+t) '=N. .

PROPOSITION 8.1. Let N be a structurally live and structurally bounded
net, and t a linearly dependent transition of a net N*'. Then t is also.a non-
negative linearly dependent transition.

Proof. Let C be the incidence matrix of N. Since ¢ is linearly dependent,
there exists a vector A such that C-A=c(t). By Theorem22, N is
consistent. Therefore, there exists X >0 such that C-X=0. Take k such
that A'=4 +kX>0 We have

C-A'=c(t)+kC-X=c(t).

Hence, ¢ is a non-negative linearly dependent transition. ||

We can now define the following synthes1s rule. Note that we no longer
have conditions on X but on £

Rule 5. Let X=(N, M;) be a system. (Z, £)e S,, where £ = (IV, 1170),
iff:
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Changes in X to producef.-
L (N, M,)=(N*', Mo).
Conditions on £': A
1. N is Free Choice ‘
2. tis a linearly dependent transition of N**.

In order to check if ¢ is a linearly dependent transition, it suffices to solve
an ordinary system of linear equations (using, for instance, Gauss elimina-
tion). This is easier than solving a system in the nonnegative orthant. We
now show that S, is the inverse of R, within LBFC.

PROPOSITION 82, Let X e LBFC. Then (Z, £)e S, iff (£, Z)eR,.

Proof. (=). Since 2eLBFC and ¢ is linearly dependent, ¢ is non-
negative linearly dependent by Proposition8.1. It is easy to see that
N = N+ satisfies the condition of application of R,, and that the result of
applying it is Z. .

(<=): Follows easily from the definitions. 1}

'Using this. property, we can replace in the kit of inverses the inverse of
R, by the rule S,. The new kit is still sound and complete, and the condi-
tions -of application easier. to check. It is left to the interested reader to
show that the inverse of R; can be weakened in a similar way.

9. CONCLUSIONS

We have introduced two complete kits of reduction rules for the class
LBFC, taking as atomic systems those whose underlying net contains one
place and one transition. We have also shown that the reduction algorithm
runs in polynomial time on the size of the system. The algorithm can be
reversed to yield a synthesis algorithm.

Three papers [12, 6, 16] contain results closely related to ours:

In [12], Genrich and Thiagarajan study Bipolar Schemes, a model very
similar to Petri nets. They provide a complete kit of eight synthesis rules
for the class of “well behaved” Bipolar Schemes, with atomic systems very
similar to ours. Every well behaved Bipolar Scheme can be translated into
an equivalent (in a strong sense) live and 1-bounded Free Choice system,
but the converse does not hold. The kit contains non-local rules.

Thiagarajan has conjectured that well behaved Bipolar Schemes are equiv-
alent to live and 1-bounded Free Choice systems without frozen tokens.
Absence of frozen tokens can be interpreted as a particular kind of fairness.
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Desel [6] provides a. complete kit of four-rules for. this class of Free. Choice
systems, with all live and l-bounded S- and T-systems as atomic systems.
All the rules are local.

Kovalyov studies in [16] LBFC systems. m which all S-components con-
tain a certain transition of the net. He provides a complete reduction kit of
three local rules, with the empty system as atomic system.

Five parameters can be considered in order to relate these results to each
other: :

1. The structural conditions imposed on the systems—the weaker the
better: the Free Choice property in [12, 6] and this paper, the Free Choice
property plus an extra condition in [16].

2. The atomic systems—the simpler the better: very simple ones in
[12, 16] and this paper, more complicated in [6].

3. The simplicity of the rules, their number and local character: simple
local rules in [6, 16] while [12] and this paper contain non-local rules.

4.  The complexity of the reduction procedure: this point is not con-
sidered in [12] nor in [16]. The procedure is polynomial in [6]3 and in
this paper. :

5. The behavioural properties preserved by the rules it is difficult to
compare different results, because the properties of interest depend on the
application. In favour of this paper we can say that liveness and bounded-
ness are two of the most studied properties in net theory [19, 18]. However,
it is sometimes more interesting to preserve liveness and 1-boundedness.

There exists so far no (strongly) sound and complete kit of rules for
the class of live and 1-bounded Free Choice systems. Our kit is sound
and complete for a larger class, namely LBFC, while the kits of [6, 12, 16]
are sound and complete for smaller classes. Obtaining such a kit is a very
interesting topic for further research.

ANNEX

A net is a triple (S, T, F) such that SN T= @ and FS(SxT)u(TxS).
Since a net can be viewed as a directed graph, terminology can be trans-
ferred (for instance, strong or weak connectedness) We assume that nets
are connected.

The pre-set “*x of xe (SU T)is deﬁned astheset {ye(SuT)| (y,x eF},
and the post-set x* of x e (Su T) is defined as {ye (Su T)| (x, y)eF} The
notation is extended to sets X < (Su T) by "X = U, x "%, and similarly for X".

Anet Nisan S-graphiff Ve T:|"t|=|t’| =1. Nisa T-graphiff Vse S: |'s| =
Is'|=1. N is a Free Choice net iff Vse S, Vies": s"= {1} v "t={s}.

3 This result is not contained in [67; it was privately communicated by the author.
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A net N'=(S', T, F') is a subnet of N= (S, T, F) (denoted by N’ < N) iff
S'cS, T'eT, and FI=Fn((SxT)u(TxS)). N =N is a T-component
of N iff it is a strongly connected T-graph and "T'=S8"=T7". N’ is an
S-component of N iff it is a strongly connected S-graph and *S'=T'=S"".

A path of N is a sequence (x, ..., x,) of elements of SuU T such that Vi,
1<i<(r—1): (x;, x;,,)€ F. A path is: elementary iff the elements of the
sequence are distinct. ‘

A siphon of N is a subset of places R< 'S such that "RS R".

Let N=(S, T, F) be a net with S= {s,, .., s,} and T={¢,, .., 1,,}. The
matrix C= |lc;|| (1<i<n, 1<j< M) such that

-1 if (s, t)eF\F!
cy={+1 if (4, s)eF\F'
0 otherwise

is called the incidence matrix of N.

N is conservative iff there exists a vector ¥ >0 (i.e., every component of
Y is positive) such that Y7.C=0. Analogously, N is consistent iff there
exists a vector X > 0 such that C-X=0.

A marking of N is a function M: S — N. A marked net or system is a pair
(N, M,), where N=(S, T, F) is a net such that S and T are non-empty,
and M, is an (initial) marking of N.

A marking M enables a transition te T iff Vse “t: M(s)> 1. An enabled
transition can occur, yielding a new marking M’, denoted by M[t> M'. M’
is defined by the following rule: M'(s)=M(s)—1 for se A\t', M'(s)=
M(s)+1 for set’\"t, and M’'(s)= M(s) otherwise.

An occurrence sequence is a sequence

o=M,[t,> M\[t,>M,---M,.

We say that o starts with M, and leads to M, Sometimes we omit the
intervening markings since they are determined by M, and the sequence of
transitions. We also say that M enables ¢ iff there are intermediate
markings such that ¢ is an occurrence sequence starting with M. The set
of all occurrence sequences enabled by M, (without the intervening
markings) is the language of N, denoted by L(N, M,). The set (M > is
defined as the set of all markings M’ such that some occurrence sequence
leads from M to M’

The Parikh vector of an occurrence sequence o, denoted by o, is the
vector having |T'| components, and whose ith component is the number of
appearances of ¢; in o.

Let (N, M,) be a system and C the incidence matrix of N. The equation

M=M0+C'X
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is called the state equation of (N, M,). This equation has the following
property: if My[o> M, then X = ¢ satisfies the equation.

Let (N, M,) be a system with N=(S, T, F). A transition te T is live iff
for every M e [M,), there exists M’ e [M ) such that M’ enables ¢. A place
se S is k-bounded iff all markings M e [M,) satisfy M(s)<k. A place is
bounded iff it is k-bounded for some number k.

(N, M,) is live iff all its transitions are live. (N, Mo) is bounded iff all its
places are bounded.

A net N is structurally bounded iff it is bounded for every markmg N is
structurally live iff there exists a marking that makes it live.
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