
Net Reductions for LTL Model-Checking?

Javier Esparza and Claus Schröter

Institut für Informatik, Technische Universität München,
email: {esparza,schroete}@in.tum.de

Abstract. We present a set of reduction rules for LTL model-checking
of 1-safe Petri nets. Our reduction techniques are of two kinds: (1) Linear
programming techniques which are based on well-known Petri net tech-
niques like invariants and implicit places, and (2) local net reductions. We
show that the conditions for the application of some local net reductions
can be weakened if one is interested in LTL model-checking using the
approach of [EH00,EH01]. Finally, we present a number of experimen-
tal results and show that the model-checking time of a net system can
be significantly decreased if it has been preprocessed with our reduction
techniques.

1 Introduction

In two recent papers [EH00,EH01], Esparza and Heljanko have developed an un-
folding technique to the problem of model-checking LTL for concurrent systems.
Using the automata-theoretic approach, the model-checking problem is reduced
to two simpler problems concerning the infinite executions of a combined system
obtained from the original system and from a Büchi automaton for the negation
of the property to be checked. Loosely speaking, the unfolding technique exploits
the concurrency present in the system to obtain a compact representation of the
state space.

Esparza and Heljanko’s approach is part of the Model Checking Kit, a col-
lection of programs which allow to model a finite-state system using a variety of
modelling languages, and verify it using a variety of checkers, including deadlock-
checkers, reachability-checkers, and model-checkers for the temporal logics CTL
and LTL. The most interesting feature of the Kit is that, independently of the
description language chosen by the user, different checkers can be applied to the
same model. The Kit is held together by a program called the Glue. Given a sys-
tem and a property modelled in one of the description languages supported by
the Kit, the Glue (1) translates them into a 1-safe Petri net and a property of the
net, described both in a common internal representation language;1(2) translates

? This work was partially supported by the project “Advanced Validation Techniques
for Telecommunication Protocols” of the Information Societies Technology Pro-
gramme of the European Union.

1 1-safe Petri nets are chosen because they are unstructured and have a simple no-
tion of independent actions, which makes them a suitable “assembler language” for
concurrent systems.

the net and the property into input for the target model checker, and (3) col-
lects the output of the checker and translates it back into the original description
language.

Since step (1) is automatic, it may introduce many redundancies, leading to
large 1-safe Petri nets. In this paper we introduce some techniques that allow to
remove a good number of these redundancies. For that, we exploit well-known
Petri net techniques: (sub)invariants [DE95,Rei85], implicit places [CS90], and
local net reductions [Ber85,PPP00]. Invariants and implicit places are used to
remove places and transitions which do not affect the behaviour of the Petri net.
Local net reductions are used to reduce the Petri net while guaranteeing that
the result of the analysis on the reduced net will be the same as the result in
the original net. Notice that, since we work at the level of the common internal
representation language, redundancies can be eliminated independently of the
language in which the system was described.

The paper contains two main contributions. First, we show that if we are
interested in LTL model-checking using the approach of [EH00,EH01], the con-
ditions for the applications of some net reductions can be weakened; therefore,
the rules can be applied more often, leading to larger reductions. The second
contribution is a number of experimental results on a set of examples modelled
using several of the Kit’s system description languages.

The paper is organised as follows. Section 2 contains basic definitions about 1-
safe Petri nets. Section 3 gives some information on the approach of [EH00,EH01].
Section 4 introduces the reduction rules. (Sub)invariants and implicit places are
just taken from the literature, while some local net reductions are improved.
Section 5 describes the routine for the application of the rules, and discusses
implementation issues. Section 6 presents experimental results on systems mod-
elled using B(PN)2, a high-level programming language integrated in the Kit,
and communicating automata.

2 1-safe Petri Nets

A triple (P, T, F) is a net if P and T are disjoint sets and F is a subset of
(P × T) ∪ (T × P). The elements of P are called places and the elements of
T transitions. Places and transitions are generally called nodes. We identify F

with its characteristic function on the set (P × T) ∪ (T × P). The preset •x of
a node x is the set {y ∈ P ∪ T | F (y, x) = 1}. The postset x• of a node x is the
set {y ∈ P ∪ T | F (x, y) = 1}. A marking M of a net (P, T, F) is a mapping
M : P 7→ IN.

A four-tuple Σ = (P, T, F, M0) is a net system if (P, T, F) is a net and M0 is
a marking of (P, T, F). M0 is called the initial marking of the net system Σ. A
marking M enables a transition t if ∀p ∈ P : F (p, t) ≤ M(p) holds. If t is enabled
at M , then t can occur, and its occurrence leads to a new marking M ′ (denoted
M −t→ M ′), defined by M ′(p) = M(p) − F (p, t) + F (t, p) for every place p. A
sequence of transitions σ = t1t2 . . . tn is an occurrence sequence if there exist
markings M1, M2, . . . , Mn such that M0 −t1−→ M1 −t2−→ . . . Mn−1 −tn−→ Mn. Mn is

the marking reached by the occurrence of σ, also denoted by M0 −σ→ Mn. M is a
reachable marking if there exists an occurrence sequence σ such that M0 −σ→ M .

A marking M of a net is 1-safe if M(p) ≤ 1 for every place p. A net system
Σ is 1-safe if all its reachable markings are 1-safe.

We identify a marking M of a 1-safe net with the set P ′ ⊆ P such that
∀p ∈ P : p ∈ P ′ ⇔ M(p) = 1 holds.

3 An Unfolding Approach to LTL Model-Checking

The unfolding technique, originally introduced by McMillan [McM92], has been
very successfully applied to several verification tasks, e.g. deadlock detection,
reachability analysis and LTL model-checking. The 1-safe Petri net is unfolded
into an acyclic net until a finite complete prefix is generated. This is a finite
acyclic net having exactly the same reachable markings as the original one.
Esparza and Heljanko have introduced an unfolding approach to LTL model-
checking in [EH00]. This approach makes use of the automata-theoretic approach
to model-checking [Var96]. A synchronized net system is constructed as the prod-
uct of the original net system and a Büchi automaton accepting the negation of
the property to be checked. Then the model-checking problem is reduced to the
problem of detecting illegal ω-traces and illegal livelocks in the synchronized net
system. Both problems are solved by constructing finite prefixes of the unfold-
ing of the synchronized net system. The main advantage of this approach with
respect to Wallner’s approach [Wal98] is its simplicity. Wallner first calculates a
complete prefix and then he constructs a graph, but the definition of the graph
is non-trivial, and the graph can be exponential in the size of the prefix. The
approach of [EH00] avoids the construction of the graph, but unfortunately con-
structs a larger prefix.
Now, we briefly review the main definitions and results of [EH00]. Given an
LTL property ϕ and a net system Σ = (N, M0) the transitions of the net
N = (P, T, F) are divided into two sets V and T \ V of visible and invisible
transitions. Let AP (ϕ) ⊆ P be a set of places corresponding to the atomic
propositions of ϕ. Then it holds that ∀t ∈ T : t ∈ V ⇔ t ∈ (•p ∪ p•) for a
p ∈ AP (ϕ). Then a Büchi automaton A¬ϕ is constructed accepting the negation
of the property ϕ. The Büchi automaton is a tuple A = (Γ, Q, q0, F, ρ) where Γ

is an alphabet, Q is a finite non-empty set of states, q0 ∈ Q is an initial state,
F ⊆ Q is the set of accepting states, and ρ ⊆ Q×Γ ×Q is the transition relation.
A accepts an infinite word w ∈ Γ ω if some run of A on w visits some state in F

infinitely often.
In a next step a synchronized net system Σ¬ϕ is constructed as the product

of the original net system Σ and the Büchi automaton A¬ϕ. The system Σ and
the Büchi automaton are synchronized only by the visible transitions of Σ. For
more details we refer the reader to [EH00]. In the following we call the places
and transitions of Σ¬ϕ corresponding to the Büchi automaton Büchi places and
Büchi transitions. Büchi transitions and visible transitions have a characteristic
feature as described in the following Lemma 1.

Lemma 1. Property of Büchi transitions and visible transitions

Let Σ¬ϕ be a synchronized net system. Then for all Büchi transitions and
visible transitions t it holds that •t ≥ 2 and t• ≥ 2.

Proof: Clear from the construction of the synchronized system Σ¬ϕ (see [EH00]).

Once Σ¬ϕ is constructed, two subsets of Büchi transitions, called infinite trace
monitors and livelock monitors, are defined as follows.

Definition 1. Infinite Trace Monitors and Livelock Monitors

– The set I of infinite trace monitors contains the transitions t such that
there exists in t• a final state q of A¬ϕ. Loosely speaking, these are the
transitions which put a token into a final state of the Büchi automaton.

– The set L of livelock monitors contains the transitions t such that there
exists in t• a state q of A¬ϕ satisfying the following condition: with
q as initial state, the automaton A¬ϕ accepts an infinite sequence of
transitions.

1

With this knowledge we can define a notion of illegal ω-traces and illegal
livelocks.

Definition 2. Illegal ω-Traces and Illegal Livelocks

Let Σ be a net system where T is divided into two sets of V and T \ V of
visible and invisible transitions, and T contains the two subsets I and L of
transitions as mentioned above.
– An illegal ω-trace of Σ is an infinite sequence M0 −σ→ such that σ con-

tains infinitely many I-transitions.
– An illegal livelock of Σ is an infinite sequence M0 −σt−→ M −σ1−→ such that

t ∈ L and σ1 contains only invisible transitions.
2

The main result of [EH00] is Theorem 1.

Theorem 1. LTL Model-Checking

Let Σ be a labelled net system and ϕ an LTL formula. Σ satisfies ϕ if and
only if Σ¬ϕ has no illegal ω-traces and no illegal livelocks.

4 Reduction Rules for LTL Model-Checking

The LTL model-checking approach described in the previous section uses un-
folding techniques for detecting illegal ω-traces and illegal livelocks. Since the
unfolding grows exponentially in the size of the net system, our aim is to reduce
the synchronized net system before unfolding it without changing the conditions
of Theorem 2 for the LTL model-checking task.

Theorem 2. Conditions for LTL Model-Checking

Let Σ be a labelled net system and ϕ an LTL formula. Σ violates ϕ if and
only if at least one of the following conditions hold for Σ¬ϕ:
(i) there exists an infinite sequence M0 −σ→ containing infinitely many I-

transitions, or
(ii) there exists a sequence M0 −σ→ M such that

(a) there exists an infinite sequence M |A¬ϕ −σ1−→ which goes infinitely
often through a final state, and

(b) there exists an infinite sequence M |Σ −σ2−→ containing only invisible
transitions

Now, with respect to the LTL model-checking approach of [EH00] we only
have to guarantee that the two conditions of Theorem 2 hold for a net system
if and only if they hold for the reduced net system obtained by applying our
reduction rules. Additionally, we restrict ourselves to the fact that we will never
remove atomic propositions, Büchi places and Büchi transitions from the net. In
the following sections we present some reduction rules which are practicable for
the LTL model-checking approach of [EH00].

4.1 Linear Programming Rules

In this section we present two reduction rules which are based on linear program-
ming techniques. First, we briefly introduce some basic notions. When applying
linear programming techniques for verification tasks of Petri nets, one of the
basic concepts is the so-called marking equation that can be used as an alge-
braic representation of the set of reachable markings of an acyclic net. Given a
marking M reachable from the initial marking M0 and a place p, the number of
tokens of p in M can be calculated as the number of tokens p carries in M0 plus
the difference of tokens added by the input places and removed by the output
places. This leads to the following equation: M(p) = M0(p)+Σt∈•p#t−Σt∈p•#t

where #t denotes the number of occurrences of t in an occurrence sequence
σ = t1 . . . tm. Usually this equation is written in the form M = M0 + N · ~σ,
where ~σ = (#t1, . . . , #tn)t is called the Parikh vector of σ and N denotes the
incidence matrix of a net N , a P ×T matrix given by N(p, t) = F (t, p)−F (p, t).
Let lp be the incidence vector of a place p. Then we have M(p) = M0(p)+ lp ·~σ.

Dead Transition Rule In many cases systems that should be checked for
LTL properties are specified in a high level programming language, for instance
B(PN)2 which is well-known from the PEP-tool and also an input language of the
Kit. The systems have been translated automatically into 1-safe Place/Transition
nets. During these translations many redundancies might have been introduced,
for instance places which never carry a token. It is clear that also their output
transitions never fire. The aim of the dead transition rule is to detect such
places and transitions and to remove them from the net system. Applying this
rule does not affect the size of the unfolded net prefix which will be calculated

during the model checking process of [EH00,EH01] but it surely decreases the
prefix construction time. A solution vector Y ≥ 0 and Y 6= 0 for both equations
Y T · M0 = 0 and Y T · N ≤ 0 yields a set of places which never carry tokens.
Since the solution is not unique this solution might not give us all such places.
Therefore we repeat the application of the dead transition rule. However, a
solution of Y T ·M0 = 0 determines a set of places which are not initially marked,
and a solution of Y T · N ≤ 0 yields a subinvariant of places for which firing a
transition does not increase the number of tokens in these places.

Definition 3. Dead Transition Rule

Let N = (P, T, F) be a net. A set Pd ⊆ P of places and a set Td ⊆ T of
transitions satisfy the dead transition rule if and only if

– the following equation system has a solution for Y :
Variables: Y

Y T · N ≤ 0
Y T · M0 = 0
Y ≥ 0

– ∀p ∈ P : p ∈ Pd ⇔ Yp > 0

– ∀t ∈ T : t ∈ Td ⇔ ∃p ∈ Pd: t ∈ p•

The reduced net Nred = (Pred, Tred, Fred) obtained by applying the dead
transition rule on N is defined by

– Pred = P \ Pd

– Tred = T \ Td

– Fred = F ∩ ((Pred × Tred) ∪ (Tred × Pred))

– Mred
0

= M0|Pred

3

Implicit Place Rule A place is called implicit if it never restricts the firing
of its output transitions. Loosely speaking, an implicit place is never the only
reason that a transition of its postset cannot fire. Colom and Silva have pub-
lished a method for detecting implicit places of bounded Place/Transition nets
with linear programming techniques [CS90]. Our rule is based on this approach.
Figure 1 shows an example for the implicit place rule. Place p can be seen as a
linear combination of the places p1 and p2 since M(p) = M(p1) + M(p2) holds.
It is clear that p never restricts the firing of transition t and therefore place p

can be removed without changing the firing sequences of the net.

t

p2p1

p

t

p2p1

Fig. 1. Implicit Place Rule

Definition 4. Implicit Place Rule

Let N = (P, T, F) be a net. A place p ∈ P satisfies the implicit place rule if
and only if the following linear program has a solution for Y and µ:

Variables: Y, µ

Minimize Y T · M0 + µ such that
Y T · N ≤ lp
Y T · pre(ti) + µ ≥ 1, ∀ti ∈ p•

Y T · M0 + µ ≤ M0(p)
Y ≥ 0
where the vector pre(t) is defined as follows:
∀ 1 ≤ j ≤ |P |: prej(t) = 1, if pj ∈ •t, and 0 otherwise.

The reduced net Nred = (Pred, Tred, Fred) obtained by applying the implicit
place rule on N is defined by
– Pred = P \ {p}
– Tred = T
– Fred = F ∩ ((Pred × Tred) ∪ (Tred × Pred))
– Mred

0
= M0|Pred

4

Theorem 3. Linear Programming Rules preserve LTL conditions

Let Σ¬ϕ be a synchronized net system and Σred
¬ϕ be the net system obtained

by applying the dead transition rule and the implicit place rule. Conditions
(i) and (ii) of Theorem 2 hold for Σ¬ϕ if and only if they hold for Σred

¬ϕ .

Proof: Applying the dead transition rule preserves the firing sequences of the net
system. In [CS90] it has been proven that removing implicit places from
the net system also preserves the firing sequences. Therefore the rules do
not affect the conditions (i) and (ii) of Theorem 2.

4.2 Local Rules

In this section we present some local reduction rules. They differ from the linear
programming rules in the sense that the linear programming rules globally in-
vestigate the whole net whereas the local rules only inspect small sub-nets. The
local rules are taken from the literature, but we have improved some of them by
weakening their conditions. This allows us to apply the rules more often and to
obtain larger reductions.

t

p

u u′

Fig. 2. Abstraction Rule

Abstraction Rule In this section we introduce a new abstraction rule that
to the best of our knowledge has not been mentioned before in the literature.
The abstraction rule is graphically described in Figure 2. The main idea of the
abstraction rule is that any occurrence sequence of the net can be reordered into
an occurrence sequence where an occurrence of t has to be immediately preceded
by an occurrence of an input transition of p. The reduction hides the occurrence
of t by merging t with the input transitions of p. But we have to ensure that the
input transitions of p are enabled in the reduced net if and only if the transition
t is enabled in the original net. Therefore the presets of the input transitions of
p are extended by the input places of t. Our rule differs from the abstraction
rule in [DE95] in such way that in our rule the transition t may have more than
one place in its preset. So our rule describes a generalization of [DE95].

Definition 5. Abstraction Rule

Let N = (P, T, F) be a net. A place p ∈ P and a transition t ∈ T satisfy
the abstraction rule if and only if
– •p 6= ∅, p• = {t}
– ∀u ∈ •p: u• = {p}
– t• 6= ∅
– M0(p) = 0

The reduced net Nred = (Pred, Tred, Fred) obtained by applying the abstrac-
tion rule on N is defined by:
– Pred = P \ {p}
– Tred = T \ ({t} ∪ {u ∈ •p | •u ∩ •t 6= ∅})
– Fred = (F ∩ ((Pred × Tred) ∪ (Tred × Pred))) ∪ ((•p ∩ Tred) × t•) ∪

((•t ∩ Pred) × (•p ∩ Tred))
– Mred

0
= M0|Pred

5

Theorem 4. Abstraction Rule preserves LTL conditions

Let Σ¬ϕ be a synchronized net system and Σred
¬ϕ be the net system obtained

by applying the abstraction rule. Conditions (i) and (ii) of Theorem 2 hold
for Σ¬ϕ if and only if they hold for Σred

¬ϕ .

u

p

t

u′

Fig. 3. Pre-Agglomeration Rule

Pre-Agglomeration Rule The pre-agglomeration rule is graphically described
in Figure 3. The main idea of this rule is that any occurrence sequence of a net
can be reordered into an occurrence sequence where the occurrence of transi-
tion t is immediately followed by an occurrence of an output transition of p. The
reduction hides the occurrence of t by merging t with the output transitions of
p. This structural condition implies that one can delay the firing of the tran-
sition t. The pre-agglomeration rule has been introduced by Berthelot [Ber85]
and has been used also in [PPP00] but our rule differs from their rule in the
following way: In [Ber85,PPP00] the restriction holds that ∀q ∈ •t: q• = {t}.
This restriction is not neccessary in our approach.

Definition 6. Pre-Agglomeration Rule

Let N = (P, T, F) be a net. A place p ∈ P and a transition t ∈ T satisfy
the pre-agglomeration rule if and only if

– •p = {t}, p• 6= ∅
– •t 6= ∅, t• = {p}
– M0(p) = 0

The reduced net Nred = (Pred, Tred, Fred) obtained by applying the pre-
agglomeration rule on N is defined by:

– Pred = P \ {p}
– Tred = T \ ({t} ∪ {u ∈ p• | •u ∩ •t 6= ∅})
– Fred = (F ∩ ((Pred × Tred) ∪ (Tred × Pred))) ∪ (•t × (p• ∩ Tred))
– Mred

0
= M0|Pred

6

Theorem 5. Pre-Agglomeration Rule preserves LTL conditions

Let Σ¬ϕ be a synchronized net system and Σred
¬ϕ be the net system obtained

by applying the pre-agglomeration rule. Conditions (i) and (ii) of Theorem 2
hold for Σ¬ϕ if and only if they hold for Σred

¬ϕ .

u v

p

h i

hu hv iu iv

Fig. 4. Post-Agglomeration Rule

Post-Agglomeration Rule The post-agglomeration rule is graphically de-
scribed in Figure 4. Let us consider the sets •p and p• of transitions. The main
idea of the post-agglomeration rule is that any occurrence sequence of the net
containing a transition h ∈ •p and a transition u ∈ p• can be reordered into an
occurrence sequence such that the occurrence of h is immediately followed by
the occurrence of u. This structural condition implies that one can anticipate
the firing of u. The post-agglomeration rule has been introduced in [Ber85] and
has been used also in [PPP00].

Definition 7. Post-Agglomeration Rule

Let N = (P, T, F) be a net. A place p ∈ P satisfies the post-agglomeration
rule if and only if
– •p 6= ∅, p• 6= ∅
– ∀t ∈ p•: •t = {p}
– M0(p) = 0

The reduced net Nred = (Pred, Tred, Fred) obtained by applying the post-
agglomeration rule on N is defined by:
– Pred = P \ {p}
– Tred = (T \ (•p ∪ p•)) ∪ (•p × p•)
– ∀q ∈ Pred, ∀u ∈ Tred \ (•p × p•):

Fred(q, u) = F (q, u), Fred(u, q) = F (u, q)
– ∀q ∈ Pred, ∀t1t2 ∈ (•p × p•):

Fred(q, t1t2) = F (q, t1), Fred(t1t2, q) = F (t1, q) + F (t2, q)
– Mred

0
= M0|Pred

7

Theorem 6. Post-Agglomeration Rule preserves LTL conditions

Let Σ¬ϕ be a synchronized net system and Σred
¬ϕ be the net system obtained by

applying the post-agglomeration rule. Conditions (i) and (ii) of Theorem 2
hold for Σ¬ϕ if and only if they hold for Σred

¬ϕ .

5 Implementation Issues

Special care has been taken to speed-up the net reductions. Therefore we mention
some facets of our implementation in this section. First of all, we apply the dead
transition rule because it investigates globally the whole net and yields sets of
places and transitions which can be removed from the net. As mentioned in
chapter 4.1 the dead transition rule detects places which never carry tokens.
The solution is not unique, and therefore this solution might not give us all such
places. We have to repeat the application of the dead transition rule to detect
maybe more such places. Y = 0 is always a solution of the equation system.
Therefore we use the objective function Maximize Y T · 1, 0 ≤ Y ≤ 1, to get
other possible solutions.

The following rules are part of a loop which will be repeated until no changes
can be made. First, we detect redundant places and remove them from the net.
A place p is called redundant if and only if there exists a place q such that p

and q have the same initial markings and equal sets of input/output transitions.
Redundant places would also be detected by applying the implicit place rule
but it takes more time to solve a linear equation system than to pass through
a list of places and to compare their pre- and postsets. We use efficient data
structures for storing nets which allow fast comparisons of pre- and postsets of
places and transitions. This universal data structure provides fast access to single
nodes [Röm00]. Places, transitions and arcs are represented by nodes of doubly
linked adjacent lists. Then we apply the abstraction, pre-agglomeration and post-
agglomeration rules. These rules are based on simple operations conducted on
our efficient data structures. They yield fast transformations compared to the
linear programming techniques. We apply the implicit place rule at last for the
following two reasons: The number and size of the equation systems to be solved
depend on the number of places and transitions of the nets. Therefore it is
reasonable to make them as small as possible before applying the implicit place
rule. The creation of the equation system for each place can be done without
significant loss of time because the objective function Minimize Y T ·M0 +µ and
the part Y T ·N are equal for all places. We have to build them only once and can
reuse them for all equation systems. We only have to make minor modifications
on the right side, and have to add few rows for each place.

6 Experimental Results

In this section we will present our experimental results. Our aim is to show
that we obtain good reduction ratios in practice and that the reduction times
are very small compared with the verification times for the LTL model-checking
task. The systems we have used are as follows:

– buf(100): Buffer with capacity 100 generated by Römer.
– fifo(20): 1-bit-FIFO with depth 20 [Mar86,RCP95].
– plate(5): Production cell which handles 5 plates [LL95,HD95].
– dph(7): Variant of the dining philosophers with a butler [Cor94].

Σ¬ϕ Unf(Σ¬ϕ) Σ
red
¬ϕ Unf(Σred

¬ϕ)
|S| |T | |B| |E| tLTL |S| |T | tred |B| |E| tLTL

buf(100) 205 107 10111 5054 1274.9 7 8 41.6 13 5 < 0.1
fifo(20) 171 132 64167 42107 47229.8 39 31 3.9 736 364 2.5

plate(5) 239 214 1803 810 35.8 117 128 2.9 998 416 8.4

dph(7) 71 127 72472 35021 11280.9 31 101 1.0 2971 1406 4.5
furnace(3) 58 105 33363 19322 1541.7 36 92 0.6 12819 7640 132.4
key(4) 169 180 138052 68585 49516.4 121 153 2.8 95416 57062 31196.4

rw(3r1w) 111 276 29717 15862 3828.5 80 202 0.9 25882 12078 1796.2
rw(1r2w) 214 1488 19874 9770 2384.8 159 981 8.2 17644 7550 1395.4

slotring(8) 85 86 24734 17195 5379.5 54 55 0.5 15283 7956 930.4
slotring(10) 105 106 67266 48145 44407.4 67 68 0.7 44562 23901 8842.9

Fig. 5. Experimental results

– furnace(3): Manages the temperature data for 3 furnaces [Cor94].
– key(4): Manages keyboard/screen interaction in a window manager for 4

customer tasks [Cor94].
– rw(3r1w), rw(1r2w): Address a scalable and bottleneck-free readers/writers

synchronization algorithm for shared memory parallel machines [Hel93].
– slotring(n): Slotted ring protocol with n nodes [PRCB94].

The LTL properties we checked have the form:

– ¬F (P1 ∧ P2) (F =̂ eventually)
– G((P1 ∧ ¬P2 ∧ ¬P3) ∨ (¬P1 ∧ P2 ∧ ¬P3) ∨ (¬P1 ∧ ¬P2 ∧ P3)) (G =̂ always)

We have applied the first property on all systems except the production cell,
and have checked the invariant (second property) for the production cell.

All experiments were performed on a SUN Ultra 60 with 1.5 GByte of RAM
and a 295 MHz UltraSPARC-II CPU. The rules which are based on linear pro-
gramming techniques use CPLEXTM (version 6.5.1) as its underlying LP-solver.
The LTL model-checker of [EH00] (unfsmodels 0.9) is implemented by Heljanko
[Hel01].

Figure 5 shows the results. The columns |S| (|B|) and |T | (|E|) denote the
numbers of places (conditions) and transitions (events) of the net (unfolding).
The columns tLTL and tred denote the times for the LTL model-checking (unfs-
models) and for our reduction procedure. The times are measured in seconds.

The results show that we obtain very considerable reduction ratios for the
systems buf(100), fifo(20), plate(5), dph(7), and also for the slotted ring protocols
slotring(n). For these systems the unfoldings of the reduced nets are much smaller
than the unfoldings of the original nets. This strongly affects the model-checking
algorithm of [EH00] because it uses unfolding-based verification techniques. In
fact, our practical results confirm this assumption. The LTL model-checking
times for the reduced nets are much smaller than the verification times for the
original systems. For instance, the model-checking time for the fifo(20) system

Weakened Rules Original Rules from literature

Σ
red
¬ϕ Unf(Σred

¬ϕ) Σ
red
¬ϕ Unf(Σred

¬ϕ)
|S| |T | |B| |E| tLTL |S| |T | |B| |E| tLTL

dph(7) 31 101 2971 1406 4.5 50 114 27922 13281 709.5
slotring(10) 67 68 44562 23901 8842.9 67 77 125351 62067 31674.9

Fig. 6. Experimental results with original rules

can be decreased from 13 hours to only 3 seconds. Also the verification time for
the slotring(10) protocol may be reduced from 12 hours to only 2 and a half by
applying our reduction algorithm before the LTL verification. As one can see
our optimized reduction algorithm takes only a few seconds, a negligible time
compared to the actual verification times.

As mentioned in chapter 4.2 we have improved some of the local reduction
rules compared to the rules known in the literature by weakening their condi-
tions. This allows us to apply the rules more often and to obtain larger reduc-
tions. To confirm this assumption we have implemented the original rules just
as taken from the literature and have conducted some experiments.

The results which are shown in Figure 6 meet our expectations. Applying the
original rules without weakening their conditions yields much larger unfolding
sizes and LTL verification times. For instance, the dining philosophers system
(dph(7)) can only be reduced to 50 places and 114 transitions (in contrast to
31 places and 101 transitions by applying our weakened rules). This leads to
an unfolding which is ten times larger, and also the verification time for the
LTL property grows from 5 seconds to 12 minutes. Applying the original and
our weakened rules on the slotted ring protocol the reduced nets differ from 9
transitions. On the first look, this seems to be a negligible difference but indeed it
has an considerable effect with respect to the unfolding size and the verification
time. Preprocessing the net with our weakened rules causes that the unfolding
is three times smaller, and that the verification time can be decreased from 9
hours to only 2 and a half. The unfolding of the reduced slotring(10) net obtained
by applying the original rules is even larger than the unfolding of the original
net. This is caused by the post-agglomeration rule which use can lead to larger
unfoldings in some cases.

The reduction ratio for a system depends on the LTL property to be checked.
All places corresponding to atomic propositions of the formula and all their input
and output transitions remain untouched by our reduction rules. This entails that
the number of places and transitions that must not be removed from the system
depends on the number of places corresponding to the atomic propositions in
the LTL property.

Altogether, our results have shown that our reduction algorithm yields a very
efficient and suitable preprocessing technique for LTL model-checking.

7 Conclusions

We have presented techniques that allow to remove redundancies from systems
modelled as 1-safe Petri nets. These techniques are of two kinds: (1) Linear
programming techniques for detecting subinvariants and implicit places, and
(2) local net reductions. We have shown that the conditions for some local net
reductions known from the literature can be weakened if one is interested in
model-checking LTL using the approach of Esparza and Heljanko [EH00,EH01].
Moreover, we have presented a number of experimental results. These results
have confirmed that many redundancies may be detected and removed with
our reduction techniques. Furthermore the results have shown that our reduc-
tion algorithm runs very fast, and that it has an considerable effect on the
model-checking algorithm of [EH00,EH01]. Altogether, our reductions seem to
be a good preprocessing technique for model-checking LTL with the approach
of [EH00,EH01].

Acknowledgements We would like to thank Keijo Heljanko for valuable com-
ments and sending us an implementation of the LTL model-checker.

References

[Ber85] G. Berthelot. Checking properties of nets using transformations. In Advances

in Petri Nets, LNCS 222, pages 19 – 40. Springer-Verlag, 1985.

[Cor94] J. C. Corbett. Evaluating Deadlock Detection Methods, 1994.

[CS90] J. M. Colom and M. Silva. Improving the Linearly Based Characterization of
P/T Nets. In Advances in Petri Nets, LNCS 483, pages 113 – 145. Springer-
Verlag, 1990.

[DE95] J. Desel and J. Esparza. Free Choice Petri Nets. Cambridge University
Press, 1995.

[EH00] J. Esparza and K. Heljanko. A new Unfolding Approach to LTL Model
Checking. In ICALP’00, LNCS 1853, pages 475 – 486. Springer-Verlag,
2000.

[EH01] J. Esparza and K. Heljanko. Implementing LTL Model Checking with Net
Unfoldings. Accepted paper for SPIN’01, 2001.

[HD95] M. Heiner and P. Deusen. Petri net based qualitative analysis - A case study.
Technical report I-08/1995. Brandenburg Technische Universität Cottbus,
1995, 1995.

[Hel93] H. Hellwagner. Scalable Readers/Writers Synchronization on Shared-
Memory Machines. Esprit P5404 (GP MIMD), Working Paper, 1993.

[Hel01] K. Heljanko. Unfsmodels 0.9. Available at
http://www.tcs.hut.fi/~kepa/experiments/spin2001/, 2001.

[LL95] C. Lewerentz and T. Lindner. Formal Development of Reactive Systems:
Case Study Production Cell. LNCS 891. Springer-Verlag, 1995.

[Mar86] A. J. Martin. Self-timed FIFO: An exercise in compiling programs into VLSI
circuits. In From HDL Descriptions to Guruanteed Correct Circuit Designs,
pages 133 – 153. Elsevier Science Publishers, 1986.

[McM92] K. L. McMillan. Using Unfoldings to Avoid the State Explosion Problem
in the Verification of Asynchronous Circuits. In CAV’92, LNCS 663, pages
164 – 174. Springer-Verlag, 1992.

[PPP00] D. Poitrenaud and J. F. Pradat-Peyre. Pre- and Post-agglomerations for
LTL Model Checking. In ICATPN’00, LNCS 1825, pages 387 – 408.
Springer-Verlag, 2000.

[PRCB94] E. Pastor, O. Roig, J. Cortadella, and R. M. Badia. Petri Net Analysis
Using Boolean Manipulation. In ATPN’94, LNCS 815, pages 416 – 435.
Springer-Verlag, 1994.

[RCP95] O. Roig, J. Cortadella, and E. Pastor. Verification of Asynchronous Circuits
by BDD-based Model Checking of Petri Nets. In ATPN’95, LNCS 935, pages
374 – 391. Springer-Verlag, 1995.

[Rei85] W. Reisig. Petri Nets. Volume 4 of the EATCS Monographs on Theoretical
Computer Science. Springer-Verlag, 1985.

[Röm00] S. Römer. Theorie und Praxis der Netzentfaltungen als Grundlage für die

Verifikation nebenläufiger Systeme. PhD thesis, Tech. Univ. München, 2000.
[Var96] M. Y. Vardi. An automata theoretic approach to linear temporal logic. In

Logics for Concurrency: Structure versus Automata, LNCS 1043, pages 238
– 265. Springer-Verlag, 1996.

[Wal98] F. Wallner. Model checking LTL using net unfoldings. In CAV’98, LNCS
1427, pages 207 – 218. Springer-Verlag, 1998.

A Proofs of Theorems

A.1 Theorem 2

Proof: By the result of Theorem 1 it is sufficient to prove two conditions:
– Σ¬ϕ has an illegal ω-trace ⇔ (i) of Theorem 2 holds for Σ¬ϕ

(⇒) Suppose that Σ¬ϕ has an illegal ω-trace. From Definition 2 it
follows that there exists an infinite sequence M0 −σ→ such that σ

contains infinitely many I-transitions. This corresponds to con-
dition (i) of Theorem 2.

(⇐) Analogous
– Σ¬ϕ has an illegal livelock ⇔ (ii) of Theorem 2 holds for Σ¬ϕ

(⇒) Suppose that Σ¬ϕ has an illegal livelock. From Definition 2 it
follows that there exists an infinite sequence M0 −σt−→ M −σ1−→ such
that t ∈ L and σ1 contains only invisible transitions. From t ∈ L

and the definition of livelock monitors (Definition 1) it follows
that there exists in t• a state q of A¬ϕ such that the automaton
A¬ϕ, starting in q, accepts an infinite sequence of transitions.

Then there exists an infinite sequence M |A¬ϕ −σ
′

−→ which goes
infinitely often through a final state (iia). The infinite sequence
σ1 of invisible transitions includes neither Büchi transitions nor
synchronized transitions because these are visible. Then there

exists an infinite sequence M |Σ −σ
′′

−→ containing only invisible
transitions (iib).

(⇐) Analogous

A.2 Theorem 4

Proof: Let p be a place and t be a transition satisfying the abstraction rule. From
∀u ∈ •p: u• = {p} and Lemma 1 it follows that all transitions u ∈ •p are
invisible. It follows that p is neither an atomic proposition nor a Büchi
place. Then t is not a Büchi transition and it follows that t 6∈ I , t 6∈ L.
(i) (⇒) Suppose that in Σ¬ϕ there exists an infinite sequence M0 −σ1utσ2−−−−→

(where u ∈ •p) containing infinitely many I-transitions. In Σred
¬ϕ let

u′ denote the corresponding transition of u. By (({u′} × t•) ∪ ((•t ∩
Pred)×{u′})) ⊆ Fred we have •u′ = •u∪(•t\{p}) and u′• = t•. From
this and Mred

0
= M0 it follows that in Σred

¬ϕ there exists the infinite

sequence M red
0 −σ1u′σ2−−−−→ containing infinitely many I-transitions.

(⇐) Suppose that there exists an infinite sequence M red
0 −σ1u′σ2−−−−→ in

Σred
¬ϕ containing infinitely many I-transitions, and that u′ has been

touched by the abstraction rule. In Σ¬ϕ let u denote the correspond-
ing transition of u′. Then in Σ¬ϕ there exist a place p and a transition
t such that p• = {t} and •t = {p}∪ (•u′ \ •u). We have •u = •u′ \ •t,
u• = {p}, •u∩•t = ∅, and finally t• = u′•. From this and M red

0
= M0

it follows that in Σ¬ϕ there exists the infinite sequence M0 −σ1utσ2−−−−→
containing infinitely many I-transitions.

(ii) (⇒) Suppose that in Σ¬ϕ there exists a sequence M0 −σw−→ M such
that (a) there exists an infinite sequence M |A¬ϕ −σ1−→ which goes in-
finitely often through a final state and (b) there exists an infinite
sequence M |Σ −σ2−→ containing only invisible transitions.
(a) Let σ1 = t1t2... be the infinite sequence of Büchi transitions. Since
t is not a Büchi transition it follows that t 6= ti for all i ≥ 1. From
the proof of Theorem 2 we have w ∈ L and therefore t 6= w. But the
abstraction rule can affect the occurrence sequence σ in M0 −σw−→ M .
Let σ be the transition sequence σ = σ′utσ′′. By (i ⇒) we have

Mred
0 −σ

′u′σ′′w−−−−−→ M in Σred
¬ϕ .

(b) Let σ2 = σ′

2
utσ′′

2
be the infinite sequence of invisible transitions.

By (i ⇒) we have M |Σred −
σ′

2
u′σ′′

2−−−−→ in Σred
¬ϕ .

(⇐) Suppose that in Σred
¬ϕ there exists a sequence M red

0 −σw−→ M such
that (a) there exists an infinite sequence M |A¬ϕ −σ1−→ which goes in-
finitely often through a final state and (b) there exists an infinite
sequence M |Σred −σ2−→ containing only invisible transitions. By (ii ⇒)
we have that only transitions of M red

0 −σw−→ M and M |Σred −σ2−→ might
have been touched by the rule. In both cases by (i ⇐) we have that
in Σ¬ϕ there exist corresponding sequences.

A.3 Theorem 5

Proof: Let p be a place and t be a transition satisfying the pre-agglomeration
rule. It is clear from Lemma 1 and condition t• = {p} that t is invisible
and therefore t 6∈ I , t 6∈ L and that p is neither an atomic proposition

of the property ϕ nor a Büchi place. Further we have that all output
transitions of p are not Büchi transitions.
(i) (⇒) Suppose that in Σ¬ϕ there exists an infinite sequence M0 −σ1tuσ2−−−−→

(u ∈ p•) containing infinitely many I-transitions. In Σred
¬ϕ let u′ de-

note the corresponding transition of u. By (•t×{u′}) ⊆ Fred we have
u′• = u• and •u′ = (•u \ {p}) ∪ •t. From this and M red

0
= M0 it

follows that in Σred
¬ϕ there exists the infinite sequence M red

0 −σ1u′σ2−−−−→
containing infinitely many I-transitions.

(⇐) Suppose that there exists an infinite sequence M red
0 −σ1u′σ2−−−−→

in Σred
¬ϕ containing infinitely many I-transitions, and that u′ has

been touched by the abstraction rule. In Σ¬ϕ let u denote the cor-
responding transition of u′. Then in Σ¬ϕ there exist a place p and
a transition t such that •p = {t} and t• = {p}. We have u• = u′•,
•u = {p} ∪ (•u′ \ •t), •u ∩ •t = ∅ and •t = •u′ \ •u. From this and
Mred

0
= M0 it follows that in Σ¬ϕ there exists the infinite sequence

M0 −σ1tuσ2−−−−→ containing infinitely many I-transitions.
(ii) Analogous to the proof of Theorem 4

A.4 Theorem 6

Proof: Let p be a place satisfying the post-agglomeration rule. From ∀t ∈ p•: •t =
{p} and Lemma 1 it follows that all output transitions of p are invisible.
Therefore p itself is neither a Büchi transition nor an atomic proposition.
From this it follows that no input transition of p is a Büchi transition
because Büchi transitions are only connected to Büchi places and atomic
propositions. It holds that ∀t ∈ (•p ∪ p•): t 6∈ I and t 6∈ L.

(i) (⇒) Suppose that in Σ¬ϕ there exists an infinite sequence M0 −σ1huσ2−−−−→
containing infinitely many I-transitions. By h ∈ •p, u ∈ p• we have
that in Tred there exists a transition hu such that •hu = •h and
h•

u = (h• \ {p}) ∪ u•. From Mred
0

= M0 it follows that in Σred
¬ϕ there

exists the infinite sequence M red
0 −σ1huσ2−−−−→ containing infinitely many

I-transitions.
(⇐) Suppose that there exists the infinite sequence M red

0 −σ1huσ2−−−−→ in
Σred

¬ϕ containing infinitely many I-transitions. Further assume that
hu has been generated by the post-agglomeration rule. Then hu is
not a Büchi transition because the post-agglomeration rule cannot
generate Büchi transitions. It follows that in Σ¬ϕ there exists a place
p, a transition u ∈ p• with •u = {p} and a transition h ∈ •p. For
these transitions we have •h = •hu, and h• = {p} ∪ (h•

u \ u•), and
u• = h•

u \ h•. From Mred
0

= M0 it follows that in Σ¬ϕ there ex-

ists the infinite sequence M0 −σ1huσ2−−−−→ containing infinitely many I-
transitions.

(ii) Analogous to the proof of Theorem 4

