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Abstract

We give a structural characterisation of reachable states for a subclass of marked Free Choice
Petri Nets. The nets of this subclass are those enjoying three properties (liveness, boundedness,
reversibility) which are frequently part of the specification of reactive systems. We show that
the reachability problem for this subclass can be solved in polynomial time in the size of the
net.

1 Introduction: the reachability problem

The reachability problem for Petri nets is stated as follows: given a marked Petri net (N, M)
and another marking M of N, is M reachable from M,?

In systems with a finite number of states, this problem is clearly decidable (Mayr [10] and
Kosaraju [9] showed that it is decidable in general, but we will not be interested in the infinite
case). Once we have a procedure to check whether a state is reachable, we can decide any
property of a system expressible as “the system will not engage in certain states” or “the
system will eventually engage in certain states”. However, it is well known that the number of
states of a system can grow exponentially with its size (the so called state explosion problem),
what limits the applicability of this method.

Due to these difficulties, we follow another approach here, namely the characterisation of sub-
classes of systems for which the reachability problem is feasible. It is trivial to show that
reachability in state machines (marked S-graphs) is a polynomial problem in the size of the
net. The same result was proved for marked graphs (i.e. marked T-graphs) in [3,6]. The pur-
pose of this paper is to go a step further, and show that the reachability problem is polynomial
for reversible live and bounded Free Choice systems. Free Choice systems (introduced in [7))
are those in which choices are taken locally, without influence of the environment. Liveness,
boundedness and reversibility are three properties of good behaviour. Loosely speaking, live-
ness corresponds to the absence of global or partial deadlocks, boundedness to the absence of
overflows in stores, and reversibility to the possibility of reaching from any state of the system
the initial state again. The three of them are part of the specification of many reactive systems,
A nice feature is that there exists a polynomial algorithm to decide if a certain Free Choice
system enjoys these three properties.

A way of getting information about the characteristics of the state space of a system is the
search of invariants that all the reachable states have to satisfy. In Petri nets there is a class of
invariants that can be mechanically obtained from the underlying net of the system. They are
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called S-invariants. The main result of the paper is that, for the considered class, S-invariants
‘provide not only necessary but also sufficient conditions for reachability (together with other
simple structural properties). Finally it is shown that, instead of checking all S-invariants, it
‘suffices to find a rational solution for a single equation system (called state equatnon) which
leads to a polynomial decision algorithm.

‘General definitions

A net is an ordered triple N = (S,T,F) with SNT =@ and F C ((SxT) U (T x S)).
S is the set of places (graphically denoted by cycles), T is the set of transitions (squares) and
F is the interconnecting relation between them (arcs). We shall only consider finite (SU T is
finite) nonempty (SUT # 0) connected ((SUT) x (SUT) equals the symmetric and transitive
closure of F) nets.

For X C SUT, X generates a subnet N' = (S, T', F') of N as follows S'=5NX,T"=TnX
and F' = FN (X x X). We shall not distinguish the set X and the subnet generated by X.
Consequently, we denote the set SUT by N. The context should avoid confusion.

‘For z € N, *z = {y| (y,z) € F} (preset of z) and z* = {y| (z,y) € F} (postset of z). For
X CN,*°X = Uzex °z and X* = pex 2°. .

N is an S-graph (T-graph) ffVt € T : |*t] = [t*] =1 (Vs € S : |'s] = |s°]| = 1, respectively).
N is an elementary path iff N = {z1,23,...,2.}, |[N| = n and F = {(21,23),- .-, (Zaw1,2n)}.
‘A marking M of N is a mapping M:S — N (denoted by dots in the places). A marked net
L= (S,T, F, My) is also called system with initial marking M.

The dynamic behaviour of a system is given by the occurrence rule: a transition ¢ can occur at
‘a marking M (denoted by M(t)) iff Vs € *¢ : M(s) > 0. The occurrence of ¢ yields the follower
‘marking M’ (denoted by M[t)M’) where M'(s) = M(s) — 1 iff s € *t\ t*, M'(s) = M(s) +1
dff s € t*\ *t and M'(s) = M(s) otherwise.

“The successive occurrences of transitions lead to the notion of occurrence sequences:

E:M[tl ta...t.) M, iff M{t,)My[ts)...[tn)M,. For n = 0 define M[A)M where X is the empty
quence.

= {M'| M[o)M' for a finite sequence of transitions o'} is the set of markings reachable
ifrom M.

The language of X, denoted by L(Z), is the set of all sequences o with My{o) M

‘A system (S, T, F, M) is

live iff VM € [Mo) Ve € T IM' € [M) : M'[t),

deadlock free Mff VM € [M,) 3t € T : M[t),

bounded iff Vs € S Ik € NVM € [Mo) : M(s) < k.

E
E\ A necessary condition for reachability
lo

ng this section, let £ = (S, T, F, M,) be an arbitrary system and define N = (S, T, F),
; {s1- 050} and T'= {81, tn}.

efinition 2.1
-1 (spt;) € F\F?
The matrix C = ||e;;|la<icnicicm) With ¢; =< +1 (8;,8) € F\ F!
0 otherwise
is called incidence matriz of N.

A vector I € Q!¥l is an S-invariant of N iff I-C = 0.
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Figure 1: A system in which M ~ M’ does not imply M’ € [ M)

We shall also use the vector notation for markings and the mapping notation for S—invariants.

The context should avoid confusion.

The reader can easily check that I; = (1,0,0,1,1) and I, = (0,1,1,0,0) are S-invariants of
the net of figure 1.

It is clear from the definition that the set of S-invariants of a net forms a vector space. The

set {I1,I,} is a base of the S-invariants of the net of figure 1.

The name “S-invariant” is due to the fact that the scalar product of an S—invariant and the
current marking of the system remains constant while the system evolves. In other words;
each S-invariant gives a token conservation law valid for each reachable state.: Let us formalise
this property by introducing the relation “agree on”, which is one of the main concepts of the
paper.

Definition 2.2
Let M, L be two markings and I an S-invariant of N. M and L agree on T iff I-M = I L
M ~ L denotes that M and L agree on all S-invariants.

The following proposition contains the basic properties of the relation ~.

Proposition 2.3
(a) ~ is an equivalence relation
(b) M ~ L iff M and L agree on all elements of a base of S-invariants of N.
(c) Let L€ [M). Then M ~ L.

Proof: (a) and (b) are obvious from the deﬁmtlons (c) follows easily from the definitions of
occurrence rule and S-invariant. u23

The relevance of ~ for the analysis of systems is contained in property (c): the relation ~
provides a necessary condition for a marking to be reachable from another one. For example,
property (c) can be used to show that the marking M = (1,1,0,1,0)7 of the net of figure
1 cannot be reached from the initial marking My, = (1,1,0,0,0)7. Using the S—invariant
5L =(1,0,0,1,1) we have I; - M = 2 and I, - Mo = 1. Therefore My and M do not agree on
L. This same example can be used to show that the converse of proposition 2.3(c) is false.
The two markings M, = (1,1,0,0,0)T and M = (0,1,0,1,0)T agree on I; and I,, and hence
Mo ~ M. Nevertheless, M ¢ [ M) (the reader can check it by playing the token game).

We can now ask whether there exist subclasses of nets for which the converse of proposition
2.3(c) holds. This turns out to be the case for live and bounded S- and T—graphs. In the case
of S—graphs, the proof is almost obvious [4]. For T-graphs the property was proved in [3] and

[6].
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Theorem 2.4 [3,6]
For each live and bounded marked T-graph ¥ = (N, Mo) holds: M € [Mo) iff Mg~ M.
w24

Since the relation ~ is an equivalence relation, the relation “reachable from” is also an equiv-
alence relation for live and bounded marked S—- and T-graphs, and hence M is reachable from
L iff L is reachable from M. In particular, each marking reachable from M, is reachable from
‘any reachable marking. The property that the system can always return to its initial state is
one of the requirements of the specification of many reactive systems. The initial state often
represents the start of the interaction with the user: the system then should be able to return
to the initial state after the interaction, and wait for the next user.

This motivates the introduction of the following notions.

Definition 2.5
My € [ M) is a home state of (N, My) it VM € [ My): My € [ Mo).

3218 reversible i My 1s a home state.

Since the relation ~ is symmetric, and in live and bounded S- and T-graphs the relation
~ implies mutual reachability, we have that live and bounded marked S~ and T-graphs are
reversible.

3 The relation ~ in LBFC systems

Definition 3.1 {7
A net (S,T, F) is called Free Choice net iff V(s,t) € (FN(SxT)): s* = {t}V*t={s}.
A system X = (S, T, F, M) is Free Choice iff (S,T, I") is a Free Choice net.
An LBFC system is a live and bounded Free Choice system.

The following lemma holds for arbitrary live and bounded systems. However, we shall use it
for LBFC systems only.

Lemma 3.2 2]
Let © = (S, T, F, My) be an LBFC system.
Then X is strongly connected, i.e. (SUT) x (SUT)) = F*,
where F'* denotes the transitive and reflexive closure of F'. =32

Consider the Free Choice net N of figure 2 and the two markings M = (0,1,0,0,1,0,0)7 (black
tokens) and L = (0,0,1,1,0,0,0)” (white tokens). Both systems (N, M) and (N, L) are live
and bounded. The S-invariants I; = (1,1,0,1,0,1,0) and I, = (1,0,1,0,1,0,1) constitute
‘a base of the space of S-invariants. Since M and L agree on I and I,, we have M ~ L.
Nevertheless, neither I is reachable from M, nor is M reachable from L. Hence, in LBFC
systems, ~ no longer characterises the reachability relation.

"The aim of this paper is to show that, in spite of this negative result, the relation ~ provides
Hor LBFC systems more information about the reachability relation than just the offered by
?proposition 2.3(c). More precisely, our aim in this section is to prove that, in an LBFC system:

M~L=[MyN[L)#9.



Figure 2: An LBFC system

In other words, two markings that agree on all S-invariants have at least one common succesor;
A common succesor of the markings M and L of figure 2 is the marking M’ = (0,0,0,0,0,1,1)T “
The proof of this result is constructive, i.e. we construct explicitely two occurrence sequences
leading from M and L toa common succesor. The idea of the proof is to let only transitions of
a part of the net occur for both M and L, in such a way that the two markings we obtain are
equal in this part of the net. Then we “freeze” these transitions, i.e. we forbid them to occiir:
again, and preserve this way these local equal markings. Then we perform the same operation
in another part of the net, and iterate the procedure until we get two markings which coincide
everywhere and are therefore the same. This marking is one common succesor of M and L.
Let us now refine this idea into a more detailed proof outline.

Outline of the proof ,
We choose a certain subnet N = (S T, F) of the original net N. Let N N\N. Define M

to be the projection of a marking M on the places of N and, likewise, M as the projection of
M on the places of N. We shall prove the following:

(a) It is possible to find maximal occurrence sequences (starting with M and L and leading
to markings M’ and L’) which contain only transitions that remove tokens from places.

of N (i.e. transitions of § *). Loosely speakmg, these sequences “empty” the places of N
as much as possible.

(b) M’ =T. That i is, both M’ and L' coincide on N.
(c) (N, M) and (N, T’) are LBFC systems.
(d) M7 and T agree on the S-invariants of N.

Once (a) and (b) are proved, we know how to equalise the markings in N. Now we “freeze” the
transitions of T, after what the active systems are (N, M7) and (N, I7). Once (c) and (d) are
proved, we know that (N, M") and (N, I’) enjoy the same properties than (N, M) and (N, L).
The procedure can then be iterated: We select a subnet of N and equalise the markings on it..
We w1ll show that this new equalisation can be performed without spoiling the previous one:
on N. This way we obtain markings which coincide in progressively larger parts of the original
net. Finally, we show that in the end the part of the system which has not been frozen yet is

a live and bounded marked T-graph. Using then theorem 2.4, we equalise the markings on it,
and we are done. :
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Figure 3: The proceduré applied to the system of figure 2

Let us see how this works in our example of figure 2. We select the subnet N of N shown in
i‘ﬁgurt‘: 3.a. We now let transitions #3 for M and t4 fo for L occur to obtain M’ and L' as shown
in figure 3.b. Notice that M’ and L’ coincide on N (they are both the zero marking there).
‘Moreover, both (N, M) and (N, I') are live and bounded marked graphs. Then, for instance,
.we have M'[ tstrtste) M", with M" = (0,0,0,1,0,0,1)", after what M7 =T (figure 3.c). Since
‘no transitions of N have occurred we get M" = L'. Hence, M" is a common succesor of M
and L.

4 How to choose the subnet

It is not difficult to guess that the procedure sketched above can be carried out only if the
subnet N is carefully chosen. In order to state the criterion for the choice we need to introduce
some definitions and results.

Definition 4.1 :
A strongly connected T-graph Ny = (Si1,Ti, Fy) is called T-component of N iff $; C S,
T, €T and Vi € Ty: *tUt* C Sy (where the dot-notation is taken w.r.t. N).
- N is covered by T-components iff there exists a set C = {Ny,... N;} of T-components of
"N such that N = (J[_, N;. We call C a cover by T-components or just a cover. A cover C
is called minimal iff none of its proper subsets is itself a cover. .

Loosely speaking, T-components are the maximal strongly connected T-graphs embedded in
N. The net of figure 2 is covered by T-components. A minimal cover of it is shown in figure
4. This fact is not a coincidence, as the following result shows.

Theorem 4.2 [7]
Let © = (N, My) be an LBFC system. Then N is covered by T-components.

Proof: For a short proof see [2]. m4.2

Every T-component of a minimal cover C has at least one “own node”: a node that does not
belong to any other T—component of the cover. To prove it, just notice that a T-component
without own nodes can be removed from C, and the remaining T—components are still a cover,
against the minimality of C. This simple fact leads to the following definition.
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Figure 4: A cover of the net of figure 2

Definition 4.3 Let C be a minimal cover of N and N; € C.
A subnet N of N, is a private subnet of N iff the following conditions hold:

(i) NV is connected,
(i) NON; =0 for all N; € C\ {N,},
(iii) there exists no subnet N’ of N satisfying (i) and (ii) such that N ¢ N’ C N,

The T-component N, of the minimal cover shown in figure 4 has one single private subnet,
namely the subnet N shown in figure 3.a. The subnets we are going to select in order to carry
out our procedure will be private subnets of the T-components. They are connected to the
remaining net via transitions only, what immediately leads to the following lemma: ‘

Lemma 4.4 Let Ny be a T-component of N, N a private subnet of Ny and N = N \17
Then L(N, M) C L(N, M). ;

Proof: In order to restrict the language of N, N should contain places in the preset of some
transition of N, which is not the case. m4d

Notice that the token distribution in N is only changed by occurrences of transitions of N.

Not every private subnet is suitable for our purposes. Figure 5.a shows an LBFC system (in
fact an S-graph), and figure 5.b a minimal cover of it. The subnet N = (0,21,0) is a private
subnet of the T-component N,. Unfortunately, N = N \ N is not live for any marking. Hence,
requirement (c) of our procedure outline (N, 37) and (W, T’) must be LBFC systems) can not
become fulfilled. This problem is caused by the fact that IV is not strongly connected (compare
lemma. 3.2). Hence we add one more condition for the choice of the subnet:

We choose a private subnet N such that N = N\ Nis strongly connected. g

In the sei;uel, the symbol N is reserved for a subnet satisfying these requirements, and t
symbol N for N\ N. It is not hard to prove that such a private subnet exists.
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Figure 5: Not all private subnets are adequate

Proposition 4.5 [4]
Let C = {Ny,..., N, } be a minimal cover of a net N. There exist N; € C such that for
every private subnet N of N;, N is strongly connected. m4.5

In the net of figure 5, the private subnets (0,1,,0) of N; and (8,5,0) of N3 can be removed
preserving strong connectedness. We would choose any of the two for our procedure.

The proof of the requirements (a), (b) and (c) of our procedure relies heavily on a structural
property of the private subnets that preserve strong connectedness. The dual of this property
is proved in [5), in [4] we give an independent direct proof.

We say that ¢ € T is a way—in transition to N iff *tNS # 0. That is, ¢ is a transition through
which tokens can “enter” from NV into N. Way-out transitions are defined analogously.

‘Pyx"oposition 4.6 [5,4]
(a) N has ezactly one way-in transition f.

(b) T has ezactly one input place.
For each transition t € T there is an elementary path in N from?T to t. m4.6

We call these T—graphs with one single way-in transition shower subnets. In showers, water
gets in through one single pipe and gets out concurrently through many small holes. The
‘behaviour of shower subnets is similar: tokens get into the subnet through one single way-in
“transition, and leave it concurrently through possibly many way-out transitions.

Proposition 4.6 can now be rephrased:

N
Private subnets whose removal preserves strong connectedness are shower subnets.

5 The proof

In this section we prove parts (a), (b), (¢) and (d) of the proof outline. The first subsection
proves the existence of maximal occurrence sequences over S*(= T\ {}). An important prop-
erty of these maximal sequences is that they empty the shower subnet as much as possible.
Notice that after such a sequence the set of places of the shower subnet is not necessarily un-
marked but the only transition of the shower subnet which can get enabled first is the way-in
transition.
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The equalisation of the markings

Proposition 5.1 There exists an occurrence sequence & € (8°)*, with M[3)M, such
that no transition of S* is enabled by M.

Proof: Let t € T and let IT be an elementary path from t (the unique way-in transition of
N ) totin N (which exists by proposition 4.6(c)). Since Nisa T-graph, every place
in I has one single input transition, which is precisely its predecessor along the path.
Letting transitions of §* occur, the number of tokens of this path does not increase and
decreases when t occurs. Hence,  can occur only a finite number of times. Since ¢ was
arbitrarily selected, it follows that the lenght of the occurrence sequences in (§ °)* is
bounded, and therefore maximal sequences exist. m5.1

We consider now two different live and bounded markings M and L of N with M ~ L.

As proved in the previous proposition, there are two maximal sequences Gy, G in (S )* which
can occur from M and L respectively. These sequences lead to markings M’ and L' at whu:h
no transition of §* is enabled.

Our next task is to show that M ' = L’ i.e. M’ and L' coincide in the shower subnet. We ma.ke
use of the following proposition.

Proposition 5.2 . For each transition t € T, there ezists an elementary path from the
unique way—in tmnsztzon T tot inside N which is unmarked under M’.

Proof: This path is constructed backwards by choosing for each place its unique input transi-
tion, and for each transition one of its unmarked input places (which exist, becauvse no
transition in 5* i is enabled at M'). The procedure does not run into circuits, because
then (N, M") would contain an unmarked circuit in which all places have exactly one
input and one output transition. Such a circuit remains unmarked for every marking
reachable from M’, and therefore no transition in the circuit can occur any more. This
contradicts the hveness of (N, M'). Moreover, the construction must end at a way-in
transition, that is at 7. m52

Notice that the proposition holds also replacing M’ by L', since both markings enjoy the same
properties.

Proposition 5.3 M=T

Proof: M ~ L by the hypothesis. With proposition 2.3 (2),(c) we get M’ ~ L.
Let z € 5. We show (indirectly) that M'(z) = L'(z).
Assume w.lo.g. that M'(z) > L'(z) (in particular M'(z) > 0). We find an S—mvana.nﬁ
Isuchthat I-M'#1.1' (contradlctlng M~ L.

Let t be the unique output transition of z, and #' its unique input transition. By
proposition 5.2, there exists an elementary path II from f to ¢, unmarked under M ‘. In
particular, since M'(z) > 0, z ¢ II. There also exists an elementary path II' from £ to
t', unmarked under L. The path II” = II'zt leads from 7 to ¢.



393

® Tokens of M
O Tokens of L'

Figure 6: Illustration of the proof of proposition 5.3

Define now the mapping I: S — Z as follows (see figure 6):

1 ifsel”\II
I(s)={ -1 ifsel\II"

0 otherwise

The reader can check that I is an S-invariant of N (the proof consists of a trivial
exhaustive examination of cases).

Since the places of I \ TI” are unmarked at M’, and the places of II" \ II are unmarked
at L', we have

I-M=M@)+ Y, M(s) and I-L'=L'(z)— 3. L'(s).
sell"\Il senm\n”

As M'(z) > L'(z), it follows I - M’ > I - L' contradicting M’ ~ L'. = 5.3

%Z?reservation of liveness and boundedness .
é&‘he third point of our proof censists of showing that, after emptying the shower subnet N and
reezing its transitions, the remaining system is live and bounded. We shall need the following
relationship between liveness and deadlock freeness in Free Choice systems.

‘Lemma 5.4 [8
A bounded and strongly connected Free Choice system is live iff it is deadlock free. m54

o

&

o 3

%@roposxtlon 5.5 Let M[3)M’ such that no transition of 5 is enabled at M.
& Then (N, M') is an LBFC system.

%‘f

Proof (a) (N, M") is obviously a Free Choice system.

(b) (N, M) is bounded. Follows easily from the fact that (N, M’) is bounded, and the
language of (N, M") is a subset of the language of (N, M) (lemma 4.4).

(c) (N, M") is live. Assume (N, M) is not live. Since N is strongly connected and
(N, M) is bounded by (b), we can apply lemma 5.4 to conclude that (N, ) is not
: deadlock free. Hence, there exists a marking D € [M7) such that no transition of T is
i enabled at D. By lemma 4.4, the occurrence sequence o with M’[o)D can also occur
¢ from M, leading to the marking D with:

e
b
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~ o
(i) D = M, because no transition of ' occurs in o,

(ii) D is the projection of D on the pla.ces of N (in accordance with our conventlon*
for the overline notation).

By (i), no transition of 7'\ {} is enabled at D. By (ii), no transition of T is enabled atg
D. By the Free Choice property, and since the unique place in *f is forward branched, £
is not enabled at D. Since T = T UT, this contradicts the liveness of (N,M). =55

M' and T7 agree on the S—invariants of N

We face now the last step of our procedure, namely to show that, after freezing the transitions'
of the shower subnet N, the projections of the markings M’ a,nd L’ on the remaining net N
agree on the S—invariants of N (i.e. the ~ relation is “inherited”).

Proposition 5.6 M ~T.

Proof: Let I be an S-invariant of N. We show that M’ and I/ agree on I.
Claim: It suffices to find an S-invariant J of N such that Vs € 5 : I(s) = J(s).
Proof of the claim:

I. M = Zz(s) M(s) = ZJ(s) M(s) by the hypothesis
= §J(3)M’(8) EJ(S)M’(S)
S JI(s) L'(s) - ZJ(s) M'(s) since M’ and L’ agree on J
= aeZs.f(s) L’(s)—sefJ I since M =T
= ‘efJ(s) T'(s) = 21(3 =1.T.
€8 s€8

The rest of the proof is devoted to the construction of such an S-invariant J.
Let #,1,,...,t, be the way-out transitions of N, and my,ms,...,7, be corresponding
elementary paths such that m; leads from the way—in transition f to #;.

s¢m

Define for 1 < i < r the vector J; € Q'¥l as follows: J;(s) = { 3 I(s') sem
: sens

By construction, for all transitions ¢ of T but ¥ and ¢; holds 3 Ji(s) = 3 Ji(s)
s€*t sEt®

Now define J € Q¥l: J(s) = {ZJ (s) sel

I(s) sesS
It is not difficult to observe that »_ J(s) = Y J(s) (%)
sE*t S€EL*

for all transitions of T but possibly f and also for all transitions of T since I is an
S-invariant of N. Assume now that the equation (*) does not hold for 7. Then, if
Ml[f)Mz, we have either J - M; < J- M, or J- M; > J - M,. This contradicts the
boundedness of (N, M) since, by liveness, £ can occur arbitrarily many times. Hence
(*) holds for all transitions and J is an S—invariant of N. . = 5.6
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Figure 7: Illustration of the proof of proposition 5.6

The main result

Theorem 5.7 Let (N, M) and (N, L) be two LBFC systems such that M ~ L.
- Then [M)N[L)#0.

Proof: We proceed by induction on the size of N. -

Base: The induction procedure stops at a live a.nd bounded T—gra.ph The result
follows from theorem 2.4,

Step: Assume N is not a T—graph

Select a private subnet N such that after removing it the remaining net N is strongly
connected. N exists by lemma 4.5.

Obtain two markings M’, L’ from M, L L through the occurrences of two sequences o,
o1, € (8°)* such that no tra.nsmon of §* is enabled at t M’ or L'. Such occurrence se-
quences exist by proposition 5.1. By proposition 5.3, M’ = L.

By proposition 5.5, (N, M") and (N, I’) are LBFC systems. By the induction hypoth-
esis, there exist opr, 0 € T leading from M7 and I7 to the same marking K. By
lemma 4.4, the same sequences can occur from M’ and L', leading to markings M”
‘ and I”. Now M" = K = I7 and M" = L", because M’ = L’ and no transition of T
. occurs in o or op.. Hence M” = L”. Finally, since M’ € [M) and L' € [L), we get
b [M)n[L)#0. ’ u5.7

EEA A L P R

Consequences

The relation ~ characterises the full reachability set

A first consequence of theorem 5.7 is that in LBFC systems the relation ~ characterises, not
the reachability set, but the full reachability set.

Definition 6.1
Let (N, Mo) be a system. A marking M belongs to the full reachability set of (N, M)
(denoted [ Mp]) iff there is a sequence MM, ... M,, = M such that
Vi, 0<:<n-1: (M € [Mi+1> VM, € [M,))
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Theorem 6.2 Let (N, M,) be an LBFC system. Then M € [ Mo] iff M ~ M.

Proof: (=) Follows from proposition 2.3(c) and the transitivity of ~.
(<) By theqreng 5.7, there is M’ € [ Mo) N[ M). Hence, M € [ My).

Theorems 5.7 andﬁzxmply ;thatr the reachability relation in LBFC systems enjoys the Chtirchvé
Rosser Property. e L o
Corollary 6.3 L JYLE? (N, M) be an LBFC sysztem.' M, L € [My) implies [M) N [L) #0.
o R S R , "3

N %

Reachability in reversible LBFC systems , :
This subsection contains the main consequence of our result, which we have chosen as the title
of the paper: we give a structural characterisation of the reachability set in reversible LBFC!
systems. : R ‘ ‘ e
First we introduce a structural characterisation of the home states of an LBFC system, given in
(1], in terms of structural objects called traps. None of the two markings of the net of figure 2
is a home state. Consider the marking corresponding to the black tokens. The net has (wir

this marking) an unmarked trap {sy,ss, sq, 36, 87}, that is, a set of places with the property
that every output transition of the set is also an input transition of the set.

Definition 6.4

A nonempty set of places Q C S is called a trap iff Q* C *Q. '

A trap @ C S is called unmarked (or marked) under a marking M iff Y@ M(s)
- (respectively, T=,eq M(s) > 0). AR R ‘ .
The salient property of a trap is that if it is marked once (under a marking M) then it remains.
marked (under all M’ € [ M}). This follows immediately from the definition. If there is an.
unmarked trap at M € [Mo), the liveness of (N, Mo) guarantees that this trap will become’
eventually marked. - But then, in order to return to M we would have to unmark this trap,’
which is impossible. [1} presents a proof that the non-existence of an unmarked trap actually,
characterises the home state property.~ S o

Theorem 6.5 1] - o | :
Let (N, My) be an LBFC system. M € [ My) is a home state of (N, My) iff every trap of
N is marked at M. 6.5

Putting together theorems 5.7 and 6.5, we get the characterisation of reachable markiﬁgs. -

Theorem 6.6 Let (N, M) be o fei}'ersible“LBFC" system, Theﬁ Me[M) iff M ~ Mof
and every trap of N is marked at M. i R o

Proof: (=) M ~ M, by proposition 2.3(c). Since Mo is a home state every trap is marked at.
. Mo (theorem 6.5). Since a marked trap remains marked, every trap is marked at M Gt

(+=) By theorem 5.7 thete exists a marking M € [ M) N [M). Moreover, since M.

marks all traps of N, M is by theorem 6.5 a home state of (N, M). This means that

M € [M'). Since M' € [ My) this implies M € [ My). IGGQ‘



397

“ The state equation

 Using theorem 6.6 it can be shown that the reachability problem in reversible LBFC systems
is polynomial in the size of the net. For this purpose we introduce the so called state equation:
"M = M, + C - X where C is the incidence matrix of N and M is a given marking. Standard
linear algebraic reasoning shows the following property:

Lemma 6.7 M~M, iff 3IXeQPl:M=M+C-X. = 6.7

Hence, given a marking M, we can deduce M ~ M, just by solving an ordinary system of
linear equations and therefore in polynomial time. Since there is a polynomial algorithm which
decides if a marking M marks all traps of N [11,1] we have the following corollary:

Corollary 6.8 Let (N, My) be an LBFC system and M a marking of N. It can be decided
in polynomial time if M € [M,). m6.8
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