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Abstract

Desel, J. and J. Esparza, Reachability in cyclic extended free-choice systems, Theoretical Computer
Science 114 (1993) 93-118.

The reachability problem for Petri nets can be stated as follows: Given a Petri net (N, M,) and
a marking M of N, does M belong to the state space of (N, M,)? We give a structural characterisa-
tion of reachable states for a subclass of extended free-choice Petri nets. The nets of this subclass are
those enjoying three properties of good behaviour: liveness, boundedness and cyclicity.

We show that the reachability relation can be computed from the information provided by the
S-invariants and the traps of the net. This leads to a polynomial algorithm to decide if a marking is
reachable.

1. Introduction: the reachability problem

The reachability problem for Petri nets is stated as follows: Given a Petri net
(N, My)—also called here a system — and another marking M of N, is M reachable
from My? , ‘

In systems with a finite number of states, this problem is clearly decidable (Mayr
[10] and Kosaraju [9] showed that it is decidable in general, but we will not be
interested in the infinite case). Once we have a procedure to check whether a state is
reachable, we can decide any property of a system expressible as “the system will not
engage in certain states” or “the system will possibly engage in certain states”.
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However, it is well known that the number of states of a system can grow exponenti-
ally with its size (the so-called state explosion problem), which limits the applicability
of this method.

Due to these difficulties, we follow another approach here, namely, the characterisa-
tion of subclasses of systems for which the reachability problem can be solved using
efficiently computable structural information. One way of getting information about
the characteristics of the state space of a system is the search of invariants that all the
reachable states have to satisfy. In Petri nets there is a class of invariants that can be
obtained as solutions of a system of linear equations derived from the underlying net
of the system, called S-invariants. It is known that the reachability relation in
S-systems (also called state machines or marked S-graphs) and T-systems (marked
graphs or marked T-graphs) can be obtained from the S-invariants (see [4, 6, 11]) and
simple graph conditions. In particular, the reachability problem for these systems is
solvable in polynomial time.

The purpose of the present paper is to go a step further and show that similar results
can be obtained for cyclic live and bounded extended free-choice systems. Extended
free-choice systems, as the name indicates, are a generalisation of free-choice systems,
introduced in [7]. In these systems choices are taken locally, without influence of the
environment. Liveness, boundedness and cyclicity are three properties of good beha-
viour. Loosely speaking, liveness corresponds to the absence of global or partial
deadlocks, boundedness to the absence of overflows in stores, and cyclicity to the
possibility of reaching from any state of the system the initial state again. An
important point is that there exists a polynomial algorithm to decide if a certain
extended free-choice system enjoys the conjunction of these three properties [2].

The main result of the paper is that, for this class, S-invariants and traps character-
ise the reachability relation. Traps are structural objects which lead to stable
assertions: assertions that, if true in one state, are true in all its successors. We
show that the information needed from the S-invariants can be condensed into
a system of linear equations and computed in polynomial time in the size.of the
system. This is also the case for the information provided by traps, as was shown in
[2]. With these results, we obtain a polynomial algorithm for the reachability
problem.

1.1. Organisation of the paper

Section 2 will provide a necessary condition for reachability, which turns out to be
sufficient for live and bounded S- and T-systems.

In Section 3 it is shown that this characterisation cannot be generalised to live and
bounded extended free-choice systems. Instead, the same condition characterises the
pairs of markings having a common successor. The proof of this result is contained in
Sections 4 and-5. .

Some consequences are presented in Section 6. In particular, we characterise the
reachability relation in cyclic live and bounded extended free-choice systems -using
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S-invariants and traps. By means of the state equation, the polynomial decision
algorithm for the class mentioned above is obtained.
The paper ends with conclusions (Section 7) and references.

1.2. General definitions

A net is an ordered triple N=(S, T, F), where S,T are disjoint sets and
F<=((Sx T)u(T x8)). S is the set of places (graphically denoted by circles), T'is the set
of transitions (boxes) and F is the interconnecting relation between them (arcs).

F * denotes the reflexive and transitive closure of F, and F ~! the inverse of F. N is
called connected iff (SUT)x(SuT)=(FUF ~')* N is called strongly connected iff
SuT)x(SuT)=F*

We shall consider only finite (Su T is finite) nets.

For X = SuT, X generates a subnet N'=(S', T', F') of N as follows: §'=SnX,
T'=TnX and F'=F (X x X). We shall not distinguish the set X and the subnet
generated by X. That is, the set N'=S'0 T’ génerates the net N'.

A subnet N’ is transition-bordered iff for every (x, y)e FUF ~!: x¢ N’ and yeN’
implies ye T’ (i.e. N’ is connected to the rest of N only through transitions).

For xeN, *x={y|(y, x)eF} (preset of x) and x*={y|(x, y)eF } (postset of x). For
XeN,*X=J,x"x and X*={, 4 x*

N is an S-graph iff VteT: |°t|=|t*|=1. N is a T-graph iff VseS: |*s}=]s*|=1.

A nonempty sequence x; X, ... x, of elements of SU T is an elementary path of N iff
Vie{l,...,n—1}: (x; x;+)€F and all the elements of the sequence are distinct.

A marking of N is a mapping M : S—N (denoted by dots in the places). A marked net
(N, M) is called a system with initial marking M, iff N is connected and satisfies
S#Q#T. If N is an S-graph (T-graph) then (N, M,) is called an S-system (T-system).

We transfer notions from nets to systems, e.g. we call a system strongly connected iff
its underlying net has this property.

The dynamic behaviour of a system is given by the following occurrence rule:
A transition t is enabled at a marking M (denoted by M[t)) iff Vse®t: M(s)>0. The
occurrence of ¢ yields the (immediate) successor marking M’ (denoted by M[tOM),
where M'(s)= M (s)— 1iff se*t\t*, M'(s)=M(s)+ 1 iff sez*\ *t and M’(s)=M (s) other-
wise.

The successive occurrences of transitions lead to the notion of occurrence sequences:
M[tity ... t,O M, iff M[t; XM [t,)...[t,) M,. For n=0, we define M[A) M.

[My={M’'|3oeT*: M[o)M'} is the set of markings reachable from M.

The language of (N, M,), denoted by £ (N, M,), is the set of all sequences ¢ such
that there exists a marking M satisfying Mo[o) M.

A system ((S, T, F), M,) is called ‘

— live if VMe[My>VteTIM ' e[M>: M'[t),
— deadlock-free iff YMe[My)teT: M[t),
— bounded iff VseS JkeN YMe[My): M(s)<k.
If S is finite, as in our case, ((S, T, F ), M) is bounded iff [M,) is finite.
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2. A necessary condition for reachability

Throughout this section, let (N, M,) be an arbitrary system, where N=(S, T, F),
S={Sl, caey Sn} and T:{tl, cees tm}

Definition 2.1. A vector IeR'S! is an S-invariant of N iff

VeeT: Y I(s)=), I(s).

se*t set*
The matrix C=||¢;|| (1<i<n, 1<j<m), with

if (s, 2)eF\F 1,
cij= ‘+'1 if (tj, s,')EF\F—l,
0. : otherwise,

is called incidence matrix of N.

We shall also use the vector notation for markings and the mapping notation for
S-invariants. Every vector whose entries are all 0 is denoted by 0 as well. The context
should avoid confusion. With these definitions, we have the following characterisation
of S-invariants.

Proposition 2.2. I is an S-invariant of N iff I- C=0, where C is the incidence matrix
of N. '

Proof. Follows easily from the definitions. [

The reader can easily check that I,=(1,0,0,1,1) and I,=(0,1,1,0,0) are S-
invariants of the net of Fig. 1. ,

In the literature, the name S-invariant is often reserved for the nonnegative vectors
satisfying the condition above. For our purposes, this is not necessary. With our
definition, the set of S-invariants of a net forms a vector space. {I,, I,} is a base of the
S-invariants of the net of Fig. 1.

S5

Fig. 1. A system in which M ~ M, does not imply Me[M,>.
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The name “S-invariant” arises from the fact that the scalar product of an S-
invariant and the current marking of the system remains constant while the system
evolves. In other words, each S-invariant gives a token conservation law valid for each
reachable marking. Let us formalise this property by introducing the relation “agree
on”, which is one of the main concepts of the paper.

Definition 2.3. Let K, L be two markings and I an S-invariant of N. K and L agree on
Iiff I-K=1-L. K~ L denotes that K and L agree on all S-invariants of N.

The following proposition contains the basic properties of the relation ~.

Proposition 2.4.
(@) ~ is an equivalence relation. o
(b) K~L iff K and L agree on all elements of a base of S-invariants of N.
(c) Let Le[K). Then K~ L.

Proof. (a) and (b) are obvious from the definitions. (c) follows easily from the
definitions of occurrence rule and S-invariant. [

The relevance of the relation ~ for the analysis of systems is contained in property
(c): the relation ~ provides a necessary condition for a marking to be reachable from
another one.

For example, property (c) can be used to show that the marking M=(1, 1, 0, 1, 0)T
of the net of Fig. 1 cannot be reached from the initial marking My=(l, 1,0, 0, O)".
Using the S-invariant I, =(1,0,0, 1, 1), we have I,- M =2 and I, M,=1. Therefore,
M, and M do not agree on I,. The same example can be used to show that the
converse of Proposition 2.4(c) is false. The two markings Mo=(1, 1,0, 0, 0)T and
M=(0,1,0,1,0)T agree on I and I, and, hence, M, ~ M. Nevertheless, M¢[M, ) (the
reader can check it by playing ‘the token game).

We can now ask whether there exist subclasses of nets for which the converse of
Proposition 2.4(c) holds. This turns out to be the case for live and bounded S- and
T-systems. In the case of S-systems, the proof is almost obvious. For T-systems the
property was proved in [4, 6].

Theorem 2.5. Let (N, M,) be a live S-system. A marking M. is reachable from M, iff
M 0~M .

Proof. Let N=(S, T, F).

@) Mo~M iff ¥, s Mo(s)=Y,.s M(s).

Let I be an S-invariant of N, and let te T. We have *t={s,} and t*= {sz} for some
places s, and s, because N is an S- graph. Then, as I is an S-invariant, I(s,)=I(s;).
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Since N is connected, we get I(s)=I(s') for every s,s'eS. Therefore, the vector
I=(1,1,..., 1) constitutes a base of the space of S-invariants. Hence, My~ M iff

I'Mo=Y My(s)=Y M(s)=1-M.
seS seS

(i) T,c5 Mols)=Y s M(s) iff M is reachable from M,.

Since (N, M,) is live, N is strongly connected and M, marks at least one place (if
N is not strongly connected, then it has one strongly connected component such that,
when tokens leave it, they can never return again). Strong connectedness implies that
we can move the tokens around from any place to any other place; only the total
number must remain constant. Therefore, the reachable markings are Just those

satisfying ¥, s Mo(5) =Y s M(s). O

Theorem 2.6. Let (N, M) be a live and bounded T-system. A marking M is reachable
from My iff Mg~ M. '

Proof. See [4,6]. O

Since the relation ~ is an equivalence relation, the relation “reachable from” is also
an equivalence relation for live and bounded S- and T-systems. Therefore, for every
marking M, Me[M,) implies M,e[M ).

Definition 2.7. Mye[M,) is a home state of a system (N, M,) iff VM e[Mo)
My€e[M). (N, My) is cyclic iff M, is a home state.

The initial state of a reactive system frequently represents the start of the interaction
with a user (think of vending machines). These systems are usually cyclic because, after
the interaction, the system has to return to its initial state to wait for the next user.

Theorems 2.5 and 2.6 imply the following corollary.

Corollary 2.8. Live and bounded S- and.T-systems are cyclic.

3. The relation ~ in live and bounded extended free-choice systems

Definition 3.1. A net N=(S, T, F) is a free-choice net iff
Vs, t)eFN(Sx T): s*={t} V°t={s}.
N is an extended free-choice net iff

' Y(s,t)eFN(SxT): *txs*<F.
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A system (N, M) is called extended free-choice system (or EFC system, for short) iff
N is an extended free-choice net.
An LBEFC system is a live and bounded extended free-choice system.

Every free-choice net is also an extended free-choice net. The net of Fig. 2(a) is
a free-choice net and that of Fig. 2(b) is an extended free-choice net but not a free-
choice net; the net of Fig. 2(c) is not an extended free-choice net.

A salient property of EFC systems — easy to prove from the definition — is that,
whenever a transition tes® is enabled, all transitions in s* are enabled.

The following lemma holds for arbitrary live and bounded systems. However, we
shall use it for LBEFC systems only.

Lemma 3.2 (Best and Desel [1]). LBEFC systems are strongly connected.

Consider the free-choice net N of Fig. 3 and the two markings
K=(0,1,0,0,1,0,0)" (black tokens),

L=(0,0,1,1,0,0,0T (white tokens).

b &%

a ©

Fig. 2. lustration of the definition of free-choice nets and extended free-choice nets.

® Tokensof K
O Tokensof L

Fig. 3. (N, K) and (N, L) are LBEFC systems.
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Both systems (N, K) and (N, L) are live and bounded. The S-invariants
11=(1a I,YO, 19 09 1’ 0)9 : I2=(1$ 09,11 05 ls 09 1)

constitute a base of the space of S-invariants. Since K and L agree on I; and I,, we
have K ~ L. Nevertheless, neither L is reachable from K, nor is K reachable from L.
Hence, in LBEFC systems, ~ no longer characterises the reachability relation.

The aim of this paper is to show that, in spite of this negative result, the relation
~ provides for LBEFC systems more information about the reachability relation
than just the one offered by Proposition 2.4(c). More precisely, our aim is to prove
that, for LBEFC systems (N, K) and (N, L):

K~L = [K)m[L>#¢

In other words, two markings that agree on all S-1nvar1ants have at least one common
successor. A common successor of the markings K and L of Fig. 3 is the marking
0,0,0,0,0,1, .

The proof of this result is constructive, i.e. we construct explicitly two occurrence
sequences leading from K and L to a common successor. The idea of the proofis to let
only transitions of a part of the net occur for both K and L, in such a way that the two
markings we obtain are equal in this part of the net. Then we “freeze” these transitions,
i.e. we forbid them to occur again, and preserve this way these locally equal markings.
Then we perform the same operation in another part of the net and iterate the
procedure until we get two markings which coincide everywhere and are, therefore,
the same. This marking is one common successor of K and L.

Let us now refine this idea into a more detailed proof outline.

3.1. Outline of the proof

If the original net N is a T-graph, then we are done using Theorem 2.6. So, assume
that this is not the case.

We choose a certain subnet N of N. N will be a transition-bordered T-graph. Let
N=N\N (ie. according to our convention, N is the subnet generated by the set
N\N). Define M to be the projection of a marking M onto the places of N and,
likewise, M as the projection of M onto the places of N. We shall prove the following:

(a) It is possible to find maximal occurrence sequences (starting with K and L and
leading to markings K’ and L’) which contain only transitions that remove tokens
from places of N (i.e. transitions of S*, where § is the set of places of N). Loosely
speaking, these sequences “empty” the places of N as much as possible.

(b) K'=L'" ie. K’ and L’ coincide on N.

(¢) (N, K’) and (N, L’) are LBEFC systems.

(d) K’ and L’ agree on the S-invariants of N.

Once (a) and (b) are proved we know how to equahse the markings in N. Now we
“freeze” the transitions of T; after that, the active systems are (N, K’') and (N, L').
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Fig. 4. The procedure applied to the system of Fig.:3.

Once (¢) and (d) are proved, we know that (N, K’) and (N, L') enjoy the same
properties as (N, K) and (N, L). The procedure can then be iterated. We select a subnet
of N and equalise the markings on it. We will show that this new equalisation can be
performed without spoiling the previous one on N. This way we obtain markings
which coincide in progressively larger parts of the original net. Eventually, we reach
a point at which the part of the system which has not been frozen yet is a live and
bounded T-system. Using then Theorem 2.6, we equalise the markings on it, and we
are done. ‘ ‘

Let us see how this works in our example of Fig. 3. We select the subnet N of
N shown in Fig. 4(a) (a transition-bordered T-graph). We now let transitions ¢, for
K and t4 for L occur, to obtain K’ and L’ as shown in Fig. 4(b). Notice that
K’ and L' coincide on N (they are both the zero marking there). Moreover, both
(N,K’) and (N, L’) are live and bounded T-systems. Then, for instance, we have
K'[tetqtate> K", with K”=(0,0,0, 1,0, 0, 1)T, satisfying K” =L’ (Fig. 4(c)). Since no
transitions of N have occurred, we get K”=L'. Hence, K” is a common successor of
K and L.

The following two sections are devoted to the development of this outline.

4. How to choose thg?”sqbnet

The procedure sketched above can be carried olit osily if the subnet N is carefully
chosen. In order to state ‘the criterion for the choice, we need to introduce some
definitions and results.
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Definition 4.1. A strongly connected T-graph N, =(S;, Ty, F) is called T-component
ofanet N=(S, T, F)if # T, < T and VteT,: *tut® = S, (where the dot notation is
taken w.r.t, N). .

Aset #={N,,..., N,} of T-components of N is called a cover by T-components or
just cover of Niff N=Ny U --- UN,. N is called covered by T-components iff there exists
a cover of N. :

A cover is called minimal iff none of its proper subsets is itself a cover.

Loosely speaking, T-components are the maximal strongly connected T-graphs
embedded in N. The net of Fig. 3 is covered by T-components (a minimal cover of it is
shown in Fig. 5). This fact is not a coincidence, as the following result shows.

Theorem 4.2 (Haék [7]). Let (N, M) be an LBEF C-system. Then N is covered by
T-components.

Proof. For a short proof, see [1]. O

By definition of T-component, a net N is covered by one T-component iff it is
a strongly connected T-graph. Otherwise, every minimal cover contains more than
one element. Moreover, every T-component of a minimal cover ¥ has at least one
“own node™: a node that does not belong to any other T-component of the cover. To
prove it, just note that a T-component without “own nodes” can be removed from %,
and the remaining T-components are still a cover, against the minimality of €. This
simple fact leads to the following definition.

Definition 4.3. Let ¥ be a minimal cover of a net N satisfying |¢|>1 and let N,€%.
A subnet N of N, is a private subnet of N, iff the following conditions hold:
(i) N is nonempty and connected.

Fig. 5. A cover of the net of Fig. 3.
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(i) NAN;=90 for all N;e#\{N,}.
(1)) There exists no subnet N’ of N, satisfying (i) and (ii) such that NcN cN,.

The T-component N, of the minimal cover shown in Fig. 5 has one single private
subnet, namely, the subnet N shown in Fig. 4(a). The subnets we are going to select in
order to carry out our procedure will be private subnets of the T-components. They
have the following properties.

Proposition 4.4. Let € be a minimal cover of a net N satisfying |‘€|>1 and let N €%.
Let M be a marking of N, N be-a private subnet of N, and N=N \N Then:

1) N is a transition-bordered. T “graph.

(2) L(N,M)< Z(N, M).

Proof. (1) Let N=(S, T, F). Let (x, y)e FUF ~!, with x¢ N and yeN.

Assume that y is a place. Then x is a transition. By definition of T-component, every
T-component of € containing x also contains y. By condition (ii) of the definition of
a private subnet, y is contained only in N,. Hence, the same holds for x.

Consider the net Nu{x}. It satisfies conditions (i) and (i) of the definition of
a private subnet. It follows that N does not satisfy condition (iii), against our
assumption. So, y is a transition and N is, thus, transition-bordered.

That N is a T-graph follows easily from the fact that N, is a T-graph and N is
transition-bordered.

(2) In order to restrict the language of (N, M), N should contain places in the preset
of some transition of N, which, by (1), is not the case. [

Let N bea pnvate subnet of some T: -qamponent of a rmmmal cover of anet N..We
say that a transition teNisa way-in transition of N iff *¢ is not included in N, that s,
t is a transition through which tokens can “enter” into N. Way-out transitions are
defined analogously.

Not every private subnet is suitable for our purposes, as the following example
shows. Figure 6(a) shows an LBEFC system (in fact an S-system), and Fig. 6(b)
a minimal cover of it. The subnet N=(@,{t;},0) is a private subnet of the T-
component N,. However, N=N \N is not live for any marking. Hence, requirement
(c) of our procedure outline is not fulfilled. This problem is caused by the fact that N is
not strongly connected. So, we add one more condition for the choice of the subnet:

We choose a private subnet N such that N=N \N is strongly connected.

Proposition 4.5. Let #={N,,..., N,},r>1, be a minimal cover of a connected net N.
There exists N;€€ such that, for every private subnet N of N;, N=N\N is strongly
connected.

Proof. N is strongly connected since it is connected and covered by T-components,
which are, by definition, strongly connected.
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(a)

(b)

Fig. 6. Not all private subnets are adequate.

We construct the (nondirected) graph G=(V, E) as follows:

(W) V=¢,

(i) (Ni, N)EE < N;nN;#0.
G is connected because ¥ is a cover of N. There exists a vertex N;e% such that, when
we remove it and its adjacent edges, the remaining graph G’ is  nonempty (since r>1)
and still connected (take any leaf of a spanning tree of G). Let N be a private subnet of
N;and let N= N\N

Let x, yeN. We have to show that there is a path of N lcadmg from x to ¥.

Since N is strongly connected, there is a path of N leading from x to y. Choose
a path = such that the number of elements of N in = is minimal, i.c. no path leading
from x to y contains less elements of N than . We show that this number is 0; this
implies that = is a path of N.

Assume that there are elements of N in = and define

7'C=x...ujuj+1 e U —qUg ... Y

such that x,...,u;eN, uj4 1, ..., u— €N and ueN.
The vertices of G’ are a cover of the net

N,=N1U”' UN;_luNH.IU "'UN,-.

N’ is strongly connected since it is covered by strongly connected T-components and
because G’ is connected. By the maximality property of private subnets (Definition
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4.3(iii)), u;, uxeN'. Hence, there is a path n’ of N’ leading from u; to u;. N’ is a subnet of
N;; hence, 7’ is also a path of N. Define

a'=x... u,--ln’y,‘;l‘,,.ﬁy;

" is a path of N’ leading from x to y which contains less elements of N than z. This
contradicts the choice of 7. O

In the net of Fig. 6, the private subnets (@, {¢,}, §) of N, and (@, {¢5}, ) of N5 can be
removed, preserving strong connectedness. We would choose any of the two for our
procedure.

The proof of the requirements (a)—(c) of our procedure relies heavily on a structural
property of the private subnets whose removal preserve strong connectedness.

Proposition 4.6. Let (N, M) be an LBEFC system having a minimal cover €, with
|€|>1. Let N be a private subnet of some T-component of € such that N=N \N is
strongly connected. Then:
(1) For each xeN, there is an elementary path of N from a way-in transition of N to x.
(2) N has exactly one way-in transition.

Proof. (1) Let yeN and xeN. Since N is strongly connected, there exists an elemen-
tary path x leading from y to x. Divide n=n'n" such that n’ ends with an element of
N and n” contains only elements of N. Since N is transition-bordered, 7" begins with
a transition . t is a way-in transition since *¢t \ N contains at least the last element of
7. 7 is an elementary path of N leading from ¢ to x.

(2) Assume that N has more than one way-in transition.

Since N is a connected T-graph and (1) holds, there exist two way-in transitions
ti,t; of N with the property that there are two elementary paths n, =t ...t3 and
Ty=t,...t; in N such that the only node contained in both paths is ;. Moreover, due
to the strong connectedness of N, there exists an elementary path of minimal length
T3=5; ... 5, in N satisfying s, €°t, and s,€°t,. This setting is graphically described in
Fig. 7.

Let R be the set of places appearing in 3 and define r=|R|. Let S be the set of places
of N. We define a mapping J:S—Z by

(n—1) if s is the nth place in =3,
r if s appears in 7,

- —r if s appears in m,,
0 otherwise.

J(s)=

The mapping J is also graphically described in Fig. 7.

We show now that, for every Me[M,), there exists an M’'e[M) such that
J-M<J-M'. Note that, if we are able to prove this, we are done because this fact
contradicts the boundedness of (N, M,).

Consider two cases:

(i) For some place seR, there is a transition in s® enabled at M.



106 J. Desel; J.- Esparza

Fig. 7. The setting of the proof of Proposition 4.6.

By the EFC property, all transitions in s® are enabled. Let t be the successor of s in
the path m3t,. We show that M[t> M’ implies J-M <J- M.

The places of 7; and 7, are not branched since N is a T-graph. Hence, ¢ is neither in
the preset of a place of =, nor in the postset of a place of 7,. By definition of J, there is
a place s'et® satisfying J(s)<J(s'). It remains to show that *# "R contains only s.

Assume that *tn R contains two distinct places s and s} and let

3l =81 ...51ty...85t5 ... t5

(where s; =3} and t), =t, are possible).
By the EFC property, s*=s7% since tes{® nsy. Hence, the sequence

’7'5,3t'2=51 ...Slltlz e

obtained from n3¢, by removing the subpath from ¢ to s} is also a path leading from
sy to t,. It is shorter than mst,. Hence, n is shorter than 7, contradicting the
minimality of n5.

(ii) No transition of R® is enabled at M.

Due to the liveness of (N, M), there is an occurrence sequence ¢ of minimal length,
with M[o)M” such that a transition teR® is enabled at M". We show that
J-M<J-M".

Since N is a T-graph, the marking of a place appearing in 7, is changed only by the
respective predecessor or successor in n; and the same holds for places appearing in
n;. Hence, by the choice of J, its product with the current marking can be decreased
only by occurrences of transitions in R®, But, by the minimality of ¢, no transition of
R* occurs in o.

Let M"[tDM'. By (i), J- M" <J - M’ and, hence, J- M <J - M', which completes the
proof. O : Gt
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Fig. 8. A shower subnet.

We call these transition-bordered T-graphs with:one single way-in  transition
shower subnets. In showers, water gets in through-one single pipe and gets out
concurrently through many small holes. The behaviour of shower subnets is similar:
tokens get into the subnet through one single way-in transition and leave it concur-
rently through possibly many way-out transitions (see Fig. 8).

Proposition 4.6 can now be rephrased as follows:

Private subnets whose removal preserves strong connectedness are shower subne‘t'si

5. The proof

In this section we prove parts (a)—(d) of the proof outline. Throughout the section
(except Theorem 5.7) we fix the following notations:
® (N, K)and (N, L)are LBEFC systems such that € is a minimal cover of N satlsfylng
|(€ |>1and K~ L.
e Nisa private subnet of a T-component of 4 such that N=N \N is strongly
connected.
e i is the unique way-in transition of N.
=(S,T,F), N=(§, T, 7) and N=(§, T, F).
e For every marking M of N, M denotes the projection of M on § and M denotes the
projection of M on §.

The first subsection proves the existence of maximal occurrence sequences from
K, L over $*(=T\{f}). An important property of these maximal sequences is
that they empty the shower subnet as much as possible. Note that, after such a
sequence, the set of places of the shower subnet is not necessarily unmarked but the
only transition of the shower subnet which can get enabled first is the way-in
transition.
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5.1. The equalisation of the markings

Proposition 5.1. There exists an occurrence sequence K [ox>K', with oxe(S*)*, such
that no transition of S* is enabled by K'. '

Proof. Let teT and let 7 be an elementary path from £ to t in N (which exists by
Proposition 4.6(1)). Since N is a T-graph, every place in = has one single input
transition, which is precisely its predecessor along the path. Letting transitions of $*
occur, the number of tokens of this path does not increase and decreases when
t occurs. Hence, ¢ can occur only a finite number of times. Since ¢ was arbitrarily
selected, it follows that the length of the occurrence sequences in ($*)* is bounded,
which implies the result. O

“The same property holds for L, since both. markings enjoy the same properties.
We add the following to our set of notations fixed throughout the section:

® ok, oy in (S§°)* are occurrence sequences from K and L, respectively, leadmg to
markings K’ and L' at which no transition of $* is enabled.

Our next task is to show that K’ = I:’, ie. K’ and L’ coincide in N. We make use of
the following proposition.

Proposmon 5.2, For each transition teT, there exists an elementary path from fto
t inside N, which is unmarked under K'.

Proof. This path is constructed backwards by choosing, for each place, its unique
input transition, and, for each transition, one of its unmarked input places (which exist
because no transition in $* is enabled at K’). The procedure does not run into circuits
because, otherwise, (N, K') would contain an unmarked circuit in which all places
have exactly one input and one output transition. Such a circuit remains unmarked
for every marking reachable from K’ and, therefore, no transition in the circuit can
ever occur. This contradicts the liveness of (N, K). Moreover, the construction must
end at a way-in transition, that is, at £ O

The proposition holds also replacing K’ by L, since both markings enjoy the same
properties.

Propositidh 53. K'=I'

Proof. K~ L by our assumption. Using Proposition 2.4(a) and (c), we get K'~L'.

Let xeS. We show (indirectly) that K'(x)=L'(x).

Assume, without loss of generality, that K’'(x)> L'(x) (in particular, K'(x)>0). We
will find an S-invariant I such that I-K'#I- L’ (contradicting K’'~L).

Let ¢ be the unique output transition of x, and ¢’ its unique input transition. By
Proposition 5.2, there exists an elementary path = of N from f to ¢, unmarked under
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Fig. 9. Hlustration of the proof of Proposition $.3.

K’. In particular, since K'(x)>0, x¢n. There also exists an elementary path 7’ from
£ to ¢/, unmarked under L. The path 2" =n'xt leads from { to t.

Let R be the set of places of = and let R’ be the set of places of 7'. Define the mapping
I:8-7 as follows (see Fig. 9):

1 if se(R"U{x})\R,
I(s)={ —1 if seR\R,
0 otherwise.
I is an S-invariant of N because no place contained in the paths is branched.

Since the places of 7 are unmarked at K’ and the places of n’ are unmarked at L', we
have

I'K'=K'(x)+ Y K'()=>K'(x),

seR’

I'L'=L'(x)-Y L(s)<L ().

seR

As K'(x)>L'(x), it follows that I-K’'>1I- L', contradicting K'~L’. []

5.2. Preservation of liveness and boundedness

The third point of our proof consists in showing that, after emptying the shower
subnet N and freezing its transitions, the remaining system is live and bounded.

We shall need the following relationship between liveness and deadlock-freeness in
EFC systems.

Lemma 5.4. A4 bounded and strongly connected EFC system is live iff it is deadlock-free.

Proof. The result is proved in [8] for bounded and strongly connected free-choice
systems. The generalisation to extended free-choice systems is straightforward. [
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Proposition 5.5. (N, K’) is an LBEFC system.

Proof. (i) (N, K’) is obviously an EFC system.

(ii) (N, K') is bounded. This follows easily from the fact that (N, K’) is bounded,
and Z(N, K') is a subset of Z(N, K’) (Proposition 4.4(2)).

(i) (N, K')is live. Assume that (N, K') is not live. Since N is strongly connected and
(N, K’) is bounded by (ii), we can apply Lemma 5.4 to conclude that (N, K’) is not
deadlock-free. Hence, there exists a marking De[K’) such that no transition of T is
enabled at D.

By Proposition 4.4(2), the occurrence sequence ¢ with K’[¢ ) D can also occur from
K’, leading to the marking D, with

(a) D=K’, because no transition of T occurs in o,

(b) D is the projection of D onto the places of N (in accordance with our convention
for the overline notation).

By (a), no transition of f\ {t} is enabled at D. By (b), no transition of T'is enabled at D.
We show now that { is not enabled at D.

Since N is nonempty and strongly connected, the places in *f which belong to N
must have some output transition in N. By the EFC property, { is enabled iff all these
output transitions are enabled. Since no transition of T is enabled at D, neither is 7.

Since T=TuT, no transition is enabled at D. This contradicts the liveness of
(N,K). O

53. K and [ agree on the S-invariants of N

We face now the last step of our procedure, namely, to show that, after freezing the
transitions of the shower subnet N, the projections of the markings K’ and L’ on the
remaining net N agree on the S-invariants of N (i.e. the ~ relation is “inherited”).

Proposition 5.6. K'~L'.
Proof. Let I be an S-invariant of N. We show that K’ and L' agree on I.

Claim. If there exists an S-invariant J of N such that
VseS: I(s)=J(s), then K’ and L’ agree on I.
Proof of the claim.
I'K'=Y I(K'(s)
SES_

=Y J(K'(s) (by the hypothesis)
seS§
=Y JOK' (=Y JHK'(5) (since S=5\5)

seS seS



Reachability in cyclic extended free-choice systems 111

=Y J()L'(s)— ZA J(s)K'(s) (K’ and L’ agree on J)

=§J®D®—2J@E@ (since K'=1L")
—EZS J(L (S)
=Zs I()L'(s)
=I1-L': 0O

Proof of Proposition 5.6 (coneluswn) The rest of the proof is devoted to the construc-
tion of such an S-invariant J. Let ti, t3,...,t, be the way- out transitions of N, and
Ty, T3, ..., W, bE corresponding elementary paths such that =; leads from the way-in
transition f to t;. Define, for 1<i<r, the vector J,eR'S! asfollows:

Jis)= Zs'gt:nﬁ I(s') if s appears in 7,
! 0 otherwise

(Fig. 10 (left) shows J, for a particular shower subnet and a particular invariant I,
whose components corresponding to the output places of the way-out transitions
ti, s, t5 are as shown in the figure).

By construction, for all transitions ¢ of 7 but f and ¢, it holds that

Z Ji(s)= Z Ji(s)

se®t set®
and, for ¢, we gef

2 Ji= 23 1)

se®t; set?n§

Now define JeR!Sk:

J() Z Ji(s) if se.i,
I(s) if SEVS’

(Fig. 10 (rlght) shows J for the same example as above)
We have _ ) » V
Yie=Y Js (*)
se®t set® : : .
for all transitions e T, except possibly £, and also for all transitions of t€ T since I isan
S-invariant of N. ~ ~
Assume now that equation (%) does not hold for t=7. Then, if M[{)>M’, we have
either J - M <J- M"or J- M >J - M". This contradicts the boundedness of (N, K) since,
by liveness, f can occur arbitrarily many times. Hence, (*) holds for all transitions-and
J is an S-invariant of N. O
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A
Nodes of N

Fig. 10. Hlustration of the proof of Proposition 5.6.

5.4. The main result

Theorem 5.7. Let (N,K) and (N,L) be LBEFC systems such that K~L. Then
[K>N[L)#0.

Proof. By induction on the number ¢ of T-components of N (the total number of
T-components, not just the ones contained in a cover).

Base: c=1. In this case, N is a T-graph. The result follows from Theorem 2.6.

Step: ¢>1. Then N is not a T-graph.

Let ¥ be a minimal cover of N. Select a private subnet 1\7=(§, T F ) of a T-
component N; of € such that after removing it the remaining net N is strongly
connected. N exists by Proposition 4.5.

Obtain two markings K’, L’ from K, L through the occurrences of two sequences
ok, 6,€(S*)* such that no transition of $* is enabled at K’ or L'. Such occurrence
sequences exist by Proposition 5.1.

Define N=N\N, N=(§, T, F). Let M denote the projection of a marking M on
S and let M denote the projection of M on §.

By Proposition 5.3, K'=L'. By Proposition 5.5, (N, K') and (N, L’) are LBEFC
systems. Since N is transition-bordered, every T-component of N is a T-component of
N. Moreover, N, is a T-component of N but not of N,. Therefore, N contains less
T-components than N,
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By the induction hypothesis, there exist -, 6, T* leading from K’ and L' to the
same marking M. By Proposition 4.4(2), the same sequences can occur from K’ and
L', leading to markings K” and L”. Now
- K'=M=L",

— K"=L", because K'=I’ and no transition of T occurs in ox or oy
So, K"=L". Finally, since K"e[K) and L"e[L), we get [K>N[L)>#0. O

6. Consequences

6.1. The relation ~ characterises the full reachability set

We showed in Section 2 that the relation ~ characterises the reachability set of live
and bounded marked S- and T-graphs. Hence, in these classes, Me[M,) iff My~ M.
A first consequence of Theorem 5.7 is that in LBEFC systems the relation ~ charac-
terises not the reachability set but the full reachability set.

Definition 6.1. A marking M belongs to the full reachability set (denoted by [M]) of
a system (N, M) iff there is a sequence of markings MoM, ... M, =M such that

Vie{0,...,n—1}: (M;e[M;+1)> V M;i1€[MD).
Theorem 6.2. Let (N, M,) be an LBEFC system. Then Me[M,] iff M~ M,.

Proof. (=) Let M, ... M, be the sequence required by Definition 6.1. By Proposition
2.4(c), we have, for all 0<i<n—1: M;~M,,,. Use then the transitivity of ~.
(<«=) By Theorem 5.7, there is a marking M'e[Mq) n[M). Hence, Me[M,]. O

Theorems 5.7 and 6.2 imply that the reachability relation in LBEFC systems enjoys
the following confluence property.

Corollary -6.3. Let (N, My) be an LBEFC system. Then M, M'e[M,] implies that
[M>A[M'>#0.

6.2. LBEFC systems have home states

Another corollary of Theorem 5.7 is the existence of home states in LBEFC systems.
This result was proved in [3, 12] f_or live and bounded free-choice systems.

Lemma 6.4. Let (N, M,) be a bounded system with VM, M'e[My>: [M>N[M') #0.
Then (N, M) has a home state.
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Proof. We show by induction that, for all subsets § # X = [ My); there exjsts:a mark-
ing Mye()yex [M).

Base: | X|=1. Obvious.

Step: | X|=n+1.

Let M'eX and Y=X\{M’'}. By the induction hypothesis, there exists
My€(\yey [M). By our assumption, there exists also Mye[My)>n[M’'), which
clearly satisfies the requirement.

Taking X =[M,), it follows that My is a home state. [

Theorem 6.5. Let (N, M) be an LBEFC system. Then (N, M) has a home state.

Proof. Let M, M'e[M,). By Proposition 2.4(c), M ~ M, and My~ M'. By the transi-
tivity of ~, M~M’. By Theorem 5.7, [M)>n[M') #0. By Lemma 6.4, (N, M) has
a home state. [

6.3. Reachability in cyclic LBEFC systems

This section contains the main consequence of our result, which we have chosen as
the title of the paper: we give a structural characterisation of the reachability sets of
cyclic LBEFC systems.

First we introduce a structural characterisation of the home states of an LBEFC
system, given in [2] for live and bounded free-choice systems, in terms of structural
objects called traps.

None of the two markings of the net of Fig. 3 is a home state. Consider the marking
corresponding to the black tokens. The net has (w.r.t. this marking) an unmarked trap
{s1, 53, 84, S6, $7}, that is, a set of places with the property that every output transition
of the set is also an input transition of the set.

Definition 6.6. A nonempty set of places Q = S is called a trap iff Q° =°Q.
A trap Q<8 is called unmarked at a marking M iff M(s)=0 for every seQ.
Otherwise, Q is called marked at M.

The salient property of a trap is that if it is marked once (at a marking M) then it
remains marked (at all M'e[M)). This follows immediately from the definition. If
there is an unmarked trap at a reachable marking M of a live system, the liveness
guarantees that this trap can become marked. But then, in order to return to M, we
would have to unmark this trap, which is impossible. Reference [2] presents a proof
that the nonexistence of an unmarked trap actually characterises the home state
property:

Theorem 6.7. Let (N, M o)' be an LBEFC system. Me[M ) is a home state of (N, M o) iff
every trap of N is marked at M.

Proof. Straightforward generaliéation of the proof of {2}, O -
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Putting together Theorems 5.7 and 6.7, the characterisation of the set of reachable
markings follows. ;

Theorem 6.8. Let (N, My) be a cyclic LBEFC system. Me[M,) iff
(i) M~M09
(ii) every trap of N is marked at M.

Proof. (==) M~ M,, by Proposition 2.4(c). Since M, is a home state, every trap is
marked at M, (Theorem 6.7). Since a marked trap remains marked, every trap is
marked at M.

(=) By Theorem 5.7 and-(i), there exists a marking M'e[M,) n[M). Mereover,
since M marks all traps of N, M is; by Theorem 6.7, a home state of (N, M). Hence,
Me[M’). Since M'e[M,), this implies Me[M,). O

6.4. The state equatlon

Using Theorem 6.8 it can be shown that the reachablhty problem in cyclic LBEFC
systems is polynomial. For this purpose, we introduce the so-called state equation:

M=M,+C-X,

where C is the incidence matrix of N and M is a given marklng This equation enjoys
the following two properties.

Lemma 6.9. Let (N, M) be a system and M a marking of N. Then
(i) Me[My) = 3XeN'T: M=My+C-X,
(i) M~M, < IXeRT: M=My+C- X.

Proof. (i) Observe that  M'[tDM implies M'+C-X,=M, where X,t)=1 and
X,(t'y=0 for all ¢"#t. The result follows then by induction on the:length of the
sequence o satisfying My[o)> M.

(i) («<=) Let I be an arbitrary S-invariant of C. Then

I'M=I-Mo+1:-C-X=1I'M,.

Hence, M and M, agree on 1.

(=) By M~My, M and M, agree on the elements of a base {I,,...,1,} of S-
invariants of N. For all I; of this base, the equation I;- (M — M)=0 holds. Since the
columns of C include a base of the space of solutions of the homogeneous system

I X=0 (1<Ki<r),

we get that (M — M,) is a linear combination in R of these columns, ie. IXeR!T!:
C-X=(M—-My. O
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Property (i) provides a necessary condition for a marking to be reachable. This is
the traditional use of the state equation.

However, as happens in the case of the relation ~, this condition is not sufficient.
Consider the markings K =(0, 1,0, 0, 1, 0, 0)T (black tokens) and L=(0, 0, 1, 1, 0, 0, 0)T
(white tokens) in Fig. 3. We have K+C-(1, 1,2,0,0, 2, 2)"=L, but L is not reachable
from K.

Property (ii) shows that, given M, we can deduce that M ~ M, just by solving an
ordinary system of linear equations and, therefore, in polynomial time. We have then
the following theorem.

Theorem 6.10. The following problem can be solved in polynomial time: Given a cyclic
LBEFC system (N, My) and a marking M of N, decide if Me[My).

Proof. Let N=(S, T, F), and define k=max{M(s), M(s)| seS}.

We encode N by listing the pairs of F (since we exclude nodes x with *x U x* =, this
characterises N). This encoding has size O(|S|-|T|-(log; |S|+1og,|T|)).

M, (M) is encoded by listing the pairs (s, Mo(s)) ((s, M(s))) for every seS. This
encoding has size O(|S|- (log;|S|+1log; k)).

By Theorem 6.8, it suffices to decide if M ~ M, and if every trap of N is marked at
M. By Lemma 6.9(ii), M ~ M, can be decided by solving the system M =M+ C"- X.
The size of this system is O(|S|-|T|-1log, k) (recall that C is an |S|x|T| matrix),
polynomial in the size of the input. Since systems of linear equations can be solved in
polynomial time, M ~ M, can also be decided in polynomial time. In [2], an algo-
rithm was given to decide if all traps of a net are marked (Algorithm 5.6). The time
bound of the algorithm is O(|S || T'|?), also polynomial in the size of the input. O

Note that the existence of a (real) solution of the state equation is, in general, much
weaker than the existence of a positive integer solution. Figure 11 gives a (non-
Extended free-choice) example of two markings M, (black tokens) and M (white
tokens) with the property that M =M+ C- X has the general solution

(19 0’ 19 %9 %)+v'(19 13 2, 13 1) . B ¢ AR "

o Tokens of My
© Tokens of M

Fig. 11. A non-free-choice example.
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and, hence, has no integer solution. So, although M ~ M, the state equation proves
that M¢[M,>. ‘ ' :

7. Conclusions

We have given in this paper a structural characterisation of the reachable states of
cyclic live and bounded extended free-choice nets. The characterisation shows that the
reachability relation can be extracted from the information provided by the S-
invariants and the traps of the net. A consequence of this fact is the existence of a fast
polynomial algorithm to decide the reachability problem in this subclass. Since it was
shown in [2] that it is also possible to determine polynomially the membership in the
subclass, the whole picture turns out to be very satisfactory.

These results have been derived from a more general one: in LBEFC systems, the
information given by the S-invariants characterises the full reachability set (the set of
markings that can be obtained through forward and backward occurrences of
transitions). Moreover, we have shown that the reachability relation of LBEFC
systems is confluent: every two markings of the full reachability set have a common
successor.

The natural extension of this work will be the structural characterisation of
reachable markings in all LBEFC systems. This is a long-standing problem for which
not even a conjecture exists at the moment.
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