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Abstract
Pattern-based verification checks the correctness of the program ex-
ecutions that follow a given pattern, a regular expression over the
alphabet of program transitions of the form w∗1 . . . w

∗
n. For multi-

threaded programs, the alphabet of the pattern is given by the syn-
chronization operations between threads. We study the complexity
of pattern-based verification for abstracted multithreaded programs
in which, as usual in program analysis, conditions have been re-
placed by nondeterminism (the technique works also for boolean
programs). While unrestricted verification is undecidable for ab-
stracted multithreaded programs with recursive procedures and
PSPACE-complete for abstracted multithreaded while-programs,
we show that pattern-based verification is NP-complete for both
classes. We then conduct a multiparameter analysis in which we
study the complexity in the number of threads, the number of pro-
cedures per thread, the size of the procedures, and the size of the
pattern. We first show that no algorithm for pattern-based verifica-
tion can be polynomial in the number of threads, procedures per
thread, or the size of the pattern (unless P=NP). Then, using recent
results about Parikh images of regular languages and semilinear
sets, we present an algorithm exponential in the number of threads,
procedures per thread, and size of the pattern, but polynomial in
the size of the procedures.
Categories and Subject Descriptors: D.2.4 [Software Engineer-
ing]: Software/Program Verification.
General Terms: Verification, Languages, Algorithms, Reliability.
Keywords: concurrent programming, safety, context-free lan-
guages.

1. Introduction
The analysis and verification of multithreaded programs is one of
the most active research areas in software model checking. This is
due, on the one hand, to the increasing relevance of multicore archi-
tectures, and, on the other hand, to the difficulty of conceiving, rea-
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soning about, and debugging concurrent software. Automated anal-
ysis tools must cope with the very untractable nature of the analysis
problems. Multithreaded programs with possibly recursive proce-
dures communicating through global variables are Turing powerful
even for programs having only two threads and three variables, all
of them boolean. If communication takes place through message
passing, the programs are Turing powerful even after applying the
usual program analysis abstraction that replaces all conditions in
alternative constructs and loops by nondeterminism.

Context-bounding, proposed by Qadeer and Rehof in [25], is
the most successful proposal to date for overcoming untractability.
It restricts the problem further by exploring only those computation
with a bounded, fixed number of contexts. A context is a segment of
the computation during which only one thread accesses the global
variables; a context switch takes place when the identity of this
thread changes. Reachability of a program point by a computation
with at most k context switches (the context-bounded reachability
problem) is NP-complete when k is given in unary, and can be
checked by means of an algorithm polynomial in the size of the
program and exponential in k [20, 21, 25] . Context-bounding has
been implemented in several model checkers, like CHESS, SPIN,
SLAM, jMoped, and others [1, 5, 20, 28, 30], and experiments with
these tools have provided evidence that many concurrency errors
manifest themselves in computations with few context switches.

While context bounding has been very successful, it also has
important limitations. In particular, it restricts the number of com-
munications between threads. While a thread can perform arbitrar-
ily many reads and writes to the global variables during a context,
these writes are not observed by the other threads, and so only
the value of the variable immediately before the context switch
amounts to a communication. So in a computation with k con-
text switches threads communicate at most k times. In this paper
we study a more flexible technique, introduced by Kahlon in [15],
that applies the theory of bounded languages developed in the mid-
sixties by Ginsburg and Spanier [11] to the verification problem.
Kahlon uses the theory to prove decidability of safety analysis for
multithreaded programs whose executions conform to a pattern,
a regular expression of the form w∗1 . . . w

∗
n over the alphabet of

program instructions. Observe that the executions of such a pro-
gram can be arbitrarily long. An equivalent, but in our opinion
more fruitful point to view is to consider a pattern as a class of
executions specified by the verifier. The executions of the program
may conform to the pattern or not, but we can automatically ver-
ify whether those executions conforming to the pattern satisfy the
property. In other words, the programmer specifies by means of a
pattern those executions she/he is interested in. We call this point
of view pattern-based verification.

The claim of [15] is that pattern-based verification provides a
good compromise between expressivity and complexity. The ex-



pressivity point has been considered in some detail in [9], where it
is shown there that the pattern-based approach is strictly more ex-
pressive than context-bounding.1 In this paper we study the compu-
tational complexity of pattern-based verification, thus completing
the theoretical analysis. In a nutshell, we show that pattern-based
verification, like context-bounding, is NP-complete, and we iden-
tify an interesting (and in a certain sense unique) polynomial case.

For the complexity analysis we reduce the reachability problem
for multithreaded programs to a language theory problem called
non-Disjointness Modulo a Pattern, or nDMP for short: checking
non-emptiness of the intersection of a given set of context-free
grammars and a given pattern. By putting together classical results
by Ginsburg and Spanier [11] and more recent results by Verma,
Seidl, and Schwentick [31] we first show that, like context-bounded
reachability, nDMP is NP-complete. Interestingly, the algorithm we
derive from the easiness proof relies on satisfiability checking of a
Presburger formula, which contrasts with the fixed point evaluation
used in context-bounding. In the second and main part of the paper,
we conduct a multiparameter analysis of nDMP. The size of an
instance of nDMP is a function of four parameters: the number of
threads, the maximal number of procedures per thread, the maximal
size of a procedure, and the size of the pattern. For every subset
of parameters we determine the complexity of nDMP when the
parameters in the subset (and no others) have a fixed value. While
this gives 16 possible cases, the results can be easily summarized:
apart from some trivial cases, in which the problem can be solved
in constant time (for instance, when all four parameters have fixed
values), the problem remains NP-complete for all subsets except
one: the case in which the number of threads, procedures per thread
and the size of the pattern are fixed, but the size of the procedures
is not. We prove that this case is polynomial. The proof uses
several recent results about Parikh images of regular languages and
complexity of semilinear sets [19, 29].

The paper is organized as follows. Section 2 contains prelimi-
naries. Section 3 presents our program and formal models, an anal-
ysis of the context-bounding technique, and the reduction of the
pattern-based verification problem to nDMP. Section 4 shows that
nDMP is NP-complete. Section 5 contains our multiparameter anal-
ysis of nDMP. The NP-hard cases are covered by means of reduc-
tions from different NP-complete problems. Our main result, the
polynomial case mentioned above, is contained in Section 5.3. Fi-
nally, Section 6 contains conclusions and discusses related work.

2. Preliminaries
An alphabet Σ is a finite non-empty set of symbols. We assume
the reader is familiar with the basics of language theory, including
regular and context-free languages (see e.g. [13]).

Context-free Languages. A context-free grammar is a tuple
G = (X ,Σ,P, S) where X is a finite non-empty set of variables,
Σ is an alphabet, P ⊆ X × (Σ ∪ X )∗ is a finite set of productions
(the production (X,w) may also be noted X → w) and S ∈ X
is the axiom. Given two strings u, v ∈ (Σ ∪ X )∗ we write u ⇒ v
if there exists a production (X,w) ∈ P and some words y, z ∈
(Σ∪X )∗ such that u = yXz and v = ywz. We use⇒∗ to denote
the reflexive transitive closure of ⇒. The language of a grammar
is the set L(G) = {w ∈ Σ∗ | S ⇒∗ w}. A language L is context-
free ifL = L(G) for some context-free grammarG. A context-free
grammar is regular if each production is in X × Σ∗(X ∪ {ε}). A
language L is regular if L = L(G) for some regular grammar G.

1 This is achieved by exhibiting a family of two-thread programs, param-
eterized by a number n, such that reachability analysis for a fixed pattern
proves reachability of a program point for all n, but such that the number of
context switches needed to reach the program point goes to infinity when n
grows.

We sometimes use LX(G) with X ∈ X to denote the language
{w ∈ Σ∗ | X ⇒∗ w}.

Multisets. A multiset m : Σ 7→ N maps each symbol of Σ to
a natural number. M[Σ] denotes the set of all multisets over Σ.
We sometimes use the following notation: Jq1, q1, q3K denotes the
multiset m such that m(q1) = 2, m(q3) = 1 and m(x) = 0
for all x ∈ Σ \ {q1, q3}. The empty multiset is denoted ∅. The
size of a multiset m is |m| =

P
σ∈Σ m(σ). Given two multisets

m,m′ ∈ M[Σ] and we define m ⊕m′ ∈ M[Σ] as the multiset
satisfying (m⊕m′)(a) = m(a) + m′(a) for every a ∈ Σ. Given
m ∈ M[Σ] and c ∈ N, we define c ·m as the multiset satisfying
(c ·m)(a) = c ·m(a) for every a ∈ Σ. By fixing a linear order on
Σ, every multiset m can be seen as a vector of Nk where k = |Σ|,
and vice versa.

3. Model and decision problem
3.1 Program model
We model a sequential program by a system of flowgraphs, a tuple
of flowgraphs containing one flowgraph for each procedure. Nodes
of a flowgraph correspond to control points of the program, and
edges to sequential statements. A sequential statement is either
a condition (a boolean combination of expressions x ≤ e), an
assignment x := e, or a procedure call. Each flowgraph has a
unique node without incoming edges, the initial node, and a unique
node without outgoing edges, the final node, different from the
initial node. All nodes are reachable from the initial node and co-
reachable from the final node.

A multithreaded program is modeled by a tuple of systems of
flowgraphs, one for each program thread. Each system of flow-
graphs uses a set of channels to send or receive messages; abus-
ing language, we call a system of flowgraphs together with the set
of channels it uses a thread. We denote by Chi the set of chan-
nels used by the i-th thread, and the set of all channels by Ch . The
edges of the flowgraphs are labeled by sequential statements, by
send statements a!x, indicating that the thread is willing to send
the value of x through channel a ∈ Ch, or by receive statements
a?y, indicating that the thread is willing to receive a value through
channel a and assign it to variable y. We assume that each channel
is owned by a thread: the owner of channel a can only contain send
statements a!x, and all other threads can only contain receive state-
ments a?y. Channels work as in CSP: they have capacity 0, i.e.,
a message is exchanged through channel a only if its owner exe-
cutes a send statement, and all other threads having a in their sets
of channels simultaneously execute a matching receive statement.
So we allow multiparty synchronization. Figure 1 shows a model
of a program with three threads. Each of the threads, contains only
one flowgraph, with channels {a, b, c}, {a, b}, and {b, c}, respec-
tively. The first thread owns channels a and c, the second thread
owns channel b and the third owns no channel.

a!x

n0

n1 n2

n3

Proc P1

m2

m0

Proc P2

m3

call P2

m1

a?y

call P1

c!x

x := 0

b?x b!y

y := y + 1

l0

l2

Proc P3

l1

b?z

c?z

Figure 1. A model of a program with three threads.

During a program execution threads exchange values through
channels. A trace of the program is the sequence of channels used



along some full execution. For instance, aacb is a trace of the
program of Figure 1 corresponding to (among others) the execution
(a!x, a?y) callP1 callP2 (a!x, a?y) (c!x, c?z) callP2

y := y + 1 (b?x, b!y, b?z).
Using standard techniques, verification of safety properties can

be reduced to the reachability of some program point, which can be
reduced to nonemptiness of the set of traces of a modified program
(notice that the set of traces is nonempty iff the program can ter-
minate, i.e, all threads can simultaneously reach their final node).
Since this problem is undecidable even for single-thread while-
programs, further restrictions are unavoidable. The classical pro-
gram analysis abstraction consists of replacing all condition state-
ments by non deterministic choice, which amounts to ignoring data,
since data do not longer influence control-flow. We call the result
an abstracted program. Unfortunately, trace emptiness is still unde-
cidable for abstracted multithreaded programs [26], and PSPACE-
complete for multithreaded while-programs. For this reason we re-
strict the problem further. However, before doing so we define a
formal model for abstracted multithreaded programs.

Remark. Context-bounding is formulated in [24, 25] for boolean
programs, programs in which all variables are boolean. In boolean
programs data influences control, and so one could think that there
is a deep conceptual difference with the program analysis abstrac-
tion. However, this is not the case. Since the number of valuations
of the variables of a boolean program is finite, the program can be
easily transformed into a dataless program whose program points
are pairs consisting of a program point of the boolean program
and a valuation of the variables. This is in fact how the context-
bounding technique proceeds, since it models a boolean program
as a pushdown system, a dataless formal model. In our presenta-
tion we stick to the program analysis abstraction for convenience
and clarity, but the technique can be equally well applied to predi-
cate abstractions and boolean programs.

3.2 Formal model
LetP be an abstracted multithreaded program with threads t1, . . . , tn
communicating over a set Ch of channels. We assign to P a tuple
G1, . . . , Gn of context-free grammars over the alphabet Ch , such
that w is a trace of P iff w belongs to

Tn
i=1 L(Gi). We proceed

in two steps. First we assign to P grammars G′1, . . . , G′n with al-
phabets Ch1, . . . ,Chn such that w is a trace of P iff for every
1 ≤ i ≤ n the projection of w onto Chi belongs to L(G′i). In a
second step we transform these grammars into the final grammars
G1, . . . , Gn.

The grammar G′i over the alphabet Chi generates the interpro-
cedurally valid traces of ti. These are the traces that ti can generate
in an environment always ready to match its send and receive state-
ments. G′i has a variable for each node of ti, a production for each
edge, and a further production for the final node of ti. The produc-
tion corresponding to an edge leading from node X to node Y and
labelled by ` is defined as follows:

• if ` is a condition or an assignment, the production is X → Y ;
• if ` = call P , the production is X → P0Y , where P0 is the

initial node of procedure P ;
• if ` = a!x or ` = a?y, the production is X → aY ;
• the production for the final node Z of t is Z → ε.

The three grammars for the program of Figure 1 have variables
{n0, . . . , n3}, {m0, . . . ,m3}, {l0, l1, l2}, terminals {a, b, c},

{a, b}, {b, c}, and productions:

n0 → an1 | n2 m0 → am1 | m2 l0 → cl1

n1 → cn3 | n0n2 m1 → m0m3 l1 → bl2

n2 → bn3 m2 → bm3 l2 → ε

n3 → ε m3 → ε

Observe that the number of “proper” procedures (procedures that
can be called, unlike P3 in our example) is equal to the number of
variables Z for which there is a production of the formX → ZY .
We call them procedure variables. In our example, those variables
are n0,m0. It is easy to see that the traces of P under the program
analysis abstraction are the words w ∈ Ch∗ satisfying the follow-
ing property: for every thread ti, the projection of w onto Chi is a
word of L(G′i). This completes the first step.

For the second step, we slightly modify each G′i: we set its
alphabet to Ch , and add new productions. For each variable X of
G′i and for each channel a that does not appear in G′i, we add a
new production X → aX . The grammar so obtained is denoted by
Gi. In our example, we add productions mj → cmj to the second
grammar for j ∈ {0, . . . , 3}, and productions lj → alj to the third
grammar for j ∈ {0, . . . , 2}. Observe that a grammar Gi is in a
particular program normal form: all productions are of the form
X → aα or X → βγ, where α is a variable and β, γ is either a
variable or ε. All grammars now have Ch as alphabet. Since every
channel is owned by some thread, it is easy to see that the set of
traces of an abstracted program with threads t1, . . . , tn is equal toTn
i=1 L(Gi).
Since reachability of a program point can be easily reduced

to checking nonemptiness of the set of traces of a modified pro-
gram, our formal model reduces the reachability problem for ab-
stracted programs to the nonemptiness problem for the intersection
of context-free languages. Since this problem is undecidable, this
does not immediately provide any algorithmic advantage. For this
reason we restrict the problem and introduce pattern-based verifi-
cation.

3.3 Pattern-based verification
Kahlon [15] has recently proposed to only explore the traces of
a multithreaded program having a certain shape. Inspired by the
work of Ginsburg and Spanier [11], he suggests to only explore
traces conforming to what we call in this paper communication
patterns (or just patterns for short). Patterns are regular expressions
of the form w∗1w

∗
2 . . . w

∗
n, where wi ∈ Ch∗ \ {ε}2. We study the

problem of deciding, given an abstract multithreaded program P
and a pattern p, whether some word of L(p) is a trace of P . Given
the formal model given above, this verification problem reduces to
the following language-theoretic problem:

DEFINITION 1. Non Disjointness Modulo a Pattern (nDMP)
Instance: Context-free grammars G1, . . . , Gg in program normal
form over an alphabet Σ, and a pattern p over Σ.
Question: Is

Tg
i=1 L(Gi) ∩ L(p) 6= ∅ ?

3.4 Context bounding as pattern-based verification
Recall that in context bounding, instead of asking whether a given
multithreaded program has a trace, we ask if it has a trace with
at most k context switches. Before studying the complexity of
nDMP, we sketch an argument showing that context bounding can
be seen as a special case of pattern-based verification. We do not
formalize the reduction, which would be very technical and tedious,
but describe it in enough detail in order to (we hope) convince the
reader.

2 The languages of patterns are called bounded languages in the literature.



Consider a multithreaded boolean program P communicating
through shared variables. Without loss of generality (see [24, 25]
for details) we assume that P has one single shared variable g
which can take v different values. We first show how to simulate
P by a multithreaded program P ′ whose threads communicate
through message passing. Let t1, . . . , tn be the threads of P . The
program P ′ has threads t′1, . . . , t′n. Each thread t′i has a variable
gi that acts as a local “copy” of g.3 At any given moment in time,
every thread of P ′ is either active or passive. Loosely speaking,
when t′i is active it simulates the thread ti; when it goes passive, it
suspends the simulation, until its next active phase. More precisely,
from its passive state a thread t′i can either send a signal to all
other threads through a channel ai, by which it becomes active, or
receive a signal through a channel aj for some j 6= i, by which
it remains passive. After one of the two happens, t′i behaves as
follows: (1) If t′i has become active, then it resumes its simulation
of ti. Thread t′i simulates ti using the most recent value of g which
is available from gi. At any point t′i may nondeterministically
decide to suspend the simulation. In this case, t′i communicates to
all other processes the current value of g (available through gi), say
u, by sending a signal through a channel bi,u. After sending this
signal, t′i becomes passive. (2) If t′i has remained passive, then it
waits for a signal through some channel bj,u, where j 6= i, and
when the signal arrives it updates the value of gi to u.

Observe that a context of P is simulated by an “activity cycle”
of P ′, i.e., a segment of the computation of P ′ starting at the
moment a thread becomes active, and ending when it switches to
the passive state. Since the trace of an activity cycle has length 2
(during a cycle the active thread sends exactly two signals), the
traces of P ′ simulating computations of P with at most k contexts
have length at most 2k.

The problem of deciding if P has a full computation with at
most k context switches can now be reduced to an instance of
nDMP. The grammars of the instance are the result of applying
the translation of Section 3.2 to P ′. For the pattern, let W =
{w1, . . . , wnv} be the set of all sequences of length 2 of the
form aibi,u (there are nv of them), and let p = (w∗1 . . . w

∗
nv)k.

Clearly, L(p) contains (among others) all sequences obtained by
concatenating at most k words of W . So all full computations of P
with at most k contexts are simulated by computations of P ′ whose
traces belong to L(p). Therefore, if P has a full computation with
at most k contexts, then the intersection of the languages of the
grammars obtained from P ′ and p is nonempty. (The converse does
not hold, but this only shows that the instance of nDMP explores
more computations of P that context bounding with k context
switches.)

4. NP-completeness of nDMP
The decidability of nDMP was proved in [11]. We show it is NP-
complete. But we first define the size of an instance of nDMP, since
this requires some care. The size |w| of a word w is its length |w|.
The size of a pattern p = w∗1 . . . w

∗
n is |p| =

Pn
i=1 |wi|. Defining

the size of a grammar requires a bit of care. The seemingly natural
choice would be to define the size of a grammarG = (X ,Σ,P, S)
as |X | + |P|. However, recall that the grammar Gt for a thread
t is constructed in two steps: in a first step, a grammar G′t is
constructed that matches the behaviour of the thread is defined; in a
second step, loop productions of the form X → aX are added for
every variable X and every channel a that does not appear in t. In
pathological cases the number of these productions could be much
larger than the number of “true” productions, artificially increasing

3 Since our multithreaded programs are dataless, the local variable gi is
actually encoded into the nodes of the program as explained in a previous
remark.

the size of the grammar. For this reason, when a grammar has
productions X → aX for every variable X and some terminal a,
we define that all those productions count as one single production
for determining the size. We denote the size of a grammar G, so
defined, by |G|.

4.1 nDMP is NP-hard
We show4 that nDMP is NP-hard even for regular grammars and
fixed pattern p = a∗. From a programming point of view, this
means that the verification problem is already NP-hard for multi-
threaded procedureless programs, and the simplest pattern.

THEOREM 1. The following problem is NP-hard:
Instance: Regular grammarsG1, . . . , Gg in program normal form.
Question: Is

Tg
i=1 L(Gi) ∩ L(p) 6= ∅ for the pattern p = a∗ ?

PROOF: The proof is by reduction from 3-CNF-SAT. Let Ψ be a
propositional formula with n variables and m clauses c1, . . . , cm.
We define for each clause ci a regular grammar Gi over the alpha-
bet {a} such that

Tm
i=1 L(Gi) 6= ∅ iff Ψ is satisfiable.

We need some preliminaries. Assign to each variable v a prime
number nv , and assign to each clause c the number nc obtained by
multiplying the primes of the three variables occurring in c. (This
requires to construct n primes in time p(n) for some polynomial
p. It is well-known that the i-th prime number pi satisfies pi <
i ln i + i ln ln i, and so one can compute n primes by applying a
primality test to each number from 1 to n lnn + n ln lnn. Notice
that the primality test can take exponential time, because the size of
the number k isO(ln k).) Given a clause c and a variable v, we say
that a number 0 ≤ k is a (c, v)-witness if v appears positively in
c and k ≡ 0 mod nv , or v appears negatively in c and k 6≡ 0
mod nv . Further, k is a c-witness if it is a (c, x)-witness, or a
(c, y)-witness, or a (c, z)-witness where x, y and z are the three
variables occurring in c. For instance, if c = x ∨ ¬y ∨ z and
nx = 2, ny = 3, nz = 5, then k is a c-witness if k ≡ 0 mod 2,
or k 6≡ 0 mod 3, or k ≡ 0 mod 5, i.e., if k 6= 3, 9, 21, 27. Given
an assignment φ to the variables of Ψ, let nφ be the product of the
numbers of the variables set to true by φ. It is easy to see that φ
satisfies c iff nφ is a c-witness.

Now, for each clause cwe define a grammarGc in program nor-
mal form over the alphabet {a}. The grammar Gc has the numbers
0, 1, 2, . . . , nc − 1 as grammar variables, 0 as axiom, productions
k → a (k ⊕c 1) for every 0 ≤ k ≤ nc − 1, where ⊕c is addi-
tion modulo nc, and a further production k → ε for each c-witness
k ≤ nc − 1. We have L(Gc) = {ak | k is a c-witness}, and so an
assignment φ satisfies c iff anφ ∈ L(Gc). So

Tm
i=1 L(Gci) 6= ∅

iff Ψ is satisfiable, and so
Tm
i=1 L(Gci) ∩ L(p) 6= ∅ holds for

p = a∗ iff Ψ is satisfiable. �

4.2 nDMP is in NP
We show that nDMP is in NP. The direct approach would be to
show that if

Tg
i=1 L(Gi) ∩ L(p) 6= ∅, then there is a witness

w ∈
Tg
i=1 L(Gi)∩L(p) of polynomial length. However, it is easy

to construct instances of size k for which the shortest witness is
the word a2k (see also Lemma 2). So we proceed differently, in
two steps: first we polynomially reduce nDMP to a problem about
Parikh images of context-free grammars, and then we show that
this problem is in NP.

The Parikh image of a wordw ∈ Σ∗ is the multiset Π(w) : Σ 7→
N that assigns to each a ∈ Σ the number of occurrences of a in w.
The Parikh image of a language L, denoted by Π(L), is the set of
Parikh images of its words. We consider the following problem:

DEFINITION 2. Non Disjointness of Parikh Images (nDPK)

4 The proof is due to Mikołaj Bojańczyk.



Instance: Context-free grammars G1, . . . , Gg in program normal
form.
Question: Is

Tg
i=1 Π(L(Gi)) 6= ∅ ?

The reduction from nDMP to nDPK relies on a classical re-
sult by Ginsburg and Spanier [11]: Given context-free languages
L1, . . . , Lg and a pattern p = w∗1 . . . w

∗
n over an alphabet Σ, there

exist context-free languages L′1, . . . , L′g such thatTg
i=1Li ∩ L(p) 6= ∅ iff

Tg
i=1Π(L′i) 6= ∅ (1)

The proof can be easily sketched: take a new alphabet eΣ =
{a1, . . . , an}, and consider the homomorphism h : eΣ → Σ∗

given by h(ai) = wi for every 1 ≤ i ≤ n. Since context-
free languages are closed under intersection with regular lan-
guages and under inverse homomorphism, the language L′i =
h−1

`
Li ∩L(p)

´
∩L(a∗1 . . . a

∗
n) is context-free and satisfies prop-

erty (1). Moreover, using the constructions underlying these clo-
sure properties we can easily construct from a grammar Gi for Li
a grammar G′i for L′i in polynomial time.

However, for the complexity analysis in Sect. 5.3 we also need
to establish a relation between the number of procedure variables of
Gi andG′i. For this reason we provide our own direct construction.

4.2.1 A polynomial time reduction from nDMP to nDPK
The following lemma contains the main properties of our construc-
tion.

LEMMA 1. Given p = w∗1 . . . w
∗
n over Σ, an alphabet eΣ =

{a1, . . . , an}, a homomorphism h : eΣ → Σ∗, and a grammar G
in program normal form, we can compute in polynomial time a
grammar Gf over eΣ in program normal such that:

• L(Gf ) = h−1(L(G) ∩ L(p)) ∩ L(a∗1 . . . a
∗
n);

• If pr is the number of procedure variables in G, then Gf has
O(pa2 · pr) procedure variables where pa is the size of p.

PROOF: (Sketch.) Let Gp be a regular grammar with O(pa) vari-
ables such that L(Gp) = L(p) (this grammar clearly exists). The
variables ofGf are triples [q1Xq2], whereX is a variable ofG and
q1, q2 are variables of Gp such that q2 is reachable from q1. The
productions are chosen to satisfy that [q1Xq2] ⇒∗ w holds in Gf

iff there exists u ∈ Σ∗ such that (1) w ∈ h−1(u) ∩ L(a∗1 . . . a
∗
n),

(2) X ⇒∗ u holds in G, and (3) q1 ⇒∗ u · q2 in Gp. This is
achieved in two steps. First, a grammar G./ is constructed that
satisfies [q1Xq2] ⇒∗ u iff conditions (2) and (3) above hold.
The construction is similar to the triple construction used to trans-
form a pushdown automaton into an equivalent context-free gram-
mar. In the second step we adjust the terminals in the productions
of G./: the productions used to generate the letters of the words
w1, . . . , wn are modified so that they generate no terminal at all,
with the exception of those productions generating the last letter of
one the words w1, . . . , wn, say, the word wi: these that are modi-
fied so that they generate the letter ai = h−1(wi) instead. For the
number of process variables, notice that by the above construction
each procedure variable in G yieldsO(pa2) procedure variables in
Gf , hence if pr is the number of procedure variables in G we find
that the number of procedure variables in Gf is O(pa2 · pr).

A detailed proof of this lemma is given in an appendix. �

4.2.2 nDPK is in NP
The proof relies on results of [11, 23, 31], showing that Parikh im-
ages of context-free languages are semilinear sets, that semilinear
sets are exactly the sets definable by (existential) Presburger for-
mulas, and that satisfiability of existential Presburger formulas is
NP-complete. We briefly recall these notions.

Given k ≥ 1, c ∈ Nk, and P = {p1, . . . , pm} ⊆ Nk, we
denote by L(c;P ) the subset of Nk defined as follows

L(c;P ) = {m ∈ Nk | ∃λ1, . . . , λm ∈ N :

m = c⊕ (λ1 · p1)⊕ · · · ⊕ (λm · pm)} .

A set S ⊆ Nk is linear if S = L(c;P ) for some c ∈ Nk and some
finite P ⊆ Nk. A semilinear set is a finite union of linear sets.

Existential Presburger formulas φ are defined by the following
grammar and interpreted over natural numbers:

t ::= 0 | 1 | x | t1 + t2

φ ::= t1 = t2 | t1 > t2 | φ1 ∧ φ2 | φ1 ∨ φ2 | ∃x · φ1 .

Given an existential Presburger formula φ, we denote by JφK the set
of valuations of the free variables of φ that make φ true; φ is sat-
isfiable if JφK is nonempty. Satisfiability of existential Presburger
formulas is an NP-complete problem (see e.g. [31, Lemma 5]).

A set S ⊆ Nk is (existential) Presburger definable if S = JφK
for some existential Presburger formula φ. It is well known that a
set is Presburger definable iff it is existential Presburger definable
iff it is semilinear.

We use the following result of [31, Th. 4]: given a context-free
grammar G over Σ, one can compute in linear time an existential
Presburger formula φG such that JφGK = Π(L(G)). We briefly
sketch the proof for future reference. Let G = (X ,Σ,P, S).
A result of [7] characterizes Π(L(G)) as the set of all multisets
m ∈ M[P] that are solution of a certain system of linear equations,
and for which a certain derived graph is connected. Then, [31,
Th. 4] shows that this set of multisets is Presburger definable by
explicitly constructing an existential Presburger formula in linear
time in the size of G.

THEOREM 2. nDMP is in NP.

PROOF: By Lemma 1 it suffices to show that nDPK is in NP. Let
G1, . . . , Gg be an instance of nDPK, and let φGi be the exis-
tential Presburger formula of [31, Th. 4] defining Π(L(Gi)). Let
Ψ = φG1 ∧ . . . ∧ φGg . We have JΨK =

Tg
i=1 Π(L(Gi)), and

so Ψ is satisfiable iff
Tg
i=1 Π(L(Gi)) 6= ∅. Since existential for-

mulas are closed under conjunction, Ψ is an existential Presburger
formula. Since satisfiability of existential Presburger formulas is
NP-complete (see e.g. [31]), the result follows. �

5. Multiparameter analysis
From a verification point of view, it is important to analyze whether
nDMP remains NP-complete or becomes polynomial for programs
in which one or more of the following parameters is fixed: the
number of threads, the maximal size of a procedure, the maximum
number of procedures per thread, and the size of the pattern. In
the formal model, these parameters correspond to the number of
grammars g, the maximal size of a grammar sg , the maximal
number of procedure variables in each grammar pr , and the size of
the pattern pa . Since each parameter can be fixed or not, there are
in principle 16 possible cases. We use bp to denote that a parameter
p is fixed, and p to denote that it is not fixed. So, for instance, the
case in which g and pr are fixed but sg and pa are not, is denoted
by nDMP(bg, sg ,cpr , pa). Section 5.1 consider the cases in which
the size of a grammar sg is fixed. Sections 5.2 and 5.3 deal with the
more involved cases in which sg is not fixed, i.e., threads can have
arbitrary size.

5.1 Fixed-sized grammars
In this section we assume that sg is fixed. Recall that the size
of a grammar in program normal form is equal to the number



of variables plus the number of productions, but when for some
terminal a the grammar contains a production X → aX for every
variable X , then all those productions count together as one.

Observe that fixing the size sg of a grammar immediately fixes
pr (the number of procedure variables of a grammar cannot be
larger than its size). This leaves four cases, corresponding to the
four combinations for fixed/nonfixed g and pa .

We first observe that if on top of sg and pr we fix at least
another parameter (viz. g or pa), then each instance of nDMP can
be reduced to one out of a constant number of nDPK instances, and
so the problem can be trivially solved in polynomial time. So the
only non-trivial case is nDMP(g, bsg ,cpr , pa), which corresponds to
small but arbitrarily many threads, and an arbitrary pattern. This
case remains NP-complete.

THEOREM 3. The following problem is NP-hard:
Instance: Regular grammars G1, . . . , Gg in program normal form
of fixed size, and a pattern p.
Question: Is

Tg
i=1 L(Gi) ∩ L(p) 6= ∅ ?

PROOF: (Sketch.) By reduction from 3-CNF-SAT. Let Ψ be a
propositional formula with n variables x1, . . . , xn and m clauses
c1, . . . , cm. We define for each clause ci a regular grammar Gi
such that

Tm
i=1 L(Gi) ∩ L(p) 6= ∅ iff Ψ is satisfiable. Let ci =

`i1 ∨ `i2 ∨ `i3 where 1 ≤ i1 < i2 < i3 ≤ n and `i ∈
{xi, xi}. We define Gi as a regular grammar for the language
Σ∗`i1Σ∗`i2Σ∗`i3Σ∗, where Σ = {xk, xk | k /∈ {i1, i2, i3}}.
Observe that we can easily give a regular grammar Gi with four
variables and four productions, plus productions of the form X →
aX , which are not counted in the size of the grammar. It is now
easy to see that

Tm
i=1 L(Gi) is the set of words `1 . . . `n that

correspond to a satisfying assignment of Ψ, and so by taking p =
x∗1(x1)∗ . . . x∗n(xn)∗ we are done. �

5.2 Grammars of arbitrary size: NP-hard cases
Since sg is not fixed, there are three parameters, namely g, pr , and
pa , that can still be fixed or not. We show that if at least one of these
three parameters is not fixed, then nDMP remains NP-complete. In
Section 5.3 we complete the analysis by proving that if all three
parameters are fixed, then nDMP becomes polynomial.

We have already dealt with one case: Theorem 1 shows that
nDMP(g, sg ,cpr ,cpa) is NP-complete (in the theorem the gram-
mars are regular, and so pr = 0, and the pattern is always a∗,
and so pa = 1). This leaves two cases: nDMP(bg, sg , pr ,cpa),
and nDMP(bg, sg ,cpr , pa). For nDMP(bg, sg , pr ,cpa) we show that
nDMP remains NP-complete for two grammars and fixed pattern
a∗ by a reduction from the 0-1 Knapsack problem.

DEFINITION 3 (0–1 Knapsack Problem).
Instance: (1) A set of objects {o1, . . . , om} and their associated
weights {w1, . . . , wm}, which are positive integer given in binary.
(2) A positive integer W given in binary.
Question: Is there a subset S ⊆ {o1, . . . , om} such that the total
weight of S is equal to W ?

THEOREM 4. The following problem is NP-hard:
Instance: Two context-free grammars G1, G2 in program normal
form over the alphabet {a}.
Question: Is L(G1) ∩ L(G2) ∩ L(p) 6= ∅ for pattern p = a∗ ?

PROOF: The proof is by reduction from the 0-1 Knapsack problem:
Let {o1, . . . , om}, {w1, . . . , wm},W be an instance of the 0-1
Knapsack problem, and let n be the maximum number of bits
needed to encode any of the integers {w1, . . . , wm,W}. Define G
to be the grammar over unary alphabet {a} with productions given
by the union of the sets (2) through (7) shown below. Intuitively,
a derivation of G nondeterministically selects a subset of objects

as follows. The object oi is selected by applying the production
Si → S

(n)
i (2), and omitted by applying Si → Si+1 (3). If

oi has been selected, then the derivation outputs awi through the
variable S(n)

i using the productions in (4) and (5), and then comes
back to Si+1 using production (6). Formally, we have S(n)

i ⇒∗
awi · Si+1. Indeed, observe that wi =

Pn
j=0 jth bit of wi × 2j ,

and the productions of (4)-(5) follow the binary encoding of wi: if
the j-th bit is 0 then the derivation moves to the next bit, and if it is
1, then the grammar outputs a2j throughAj . The productions of (7)
make use of a well-known encoding to ensure LAk (G) =

n
a2k
o

for every 0 ≤ k ≤ n. Finally, the axiom of G is S1.n
Si → S

(n)
i : 1 ≤ i ≤ m

o
(2)

{Si → Si+1 : 1 ≤ i ≤ m− 1} ∪ {Sm → ε} (3)8<:S(k)
i → Ak · S(k−1)

i :
1 ≤ i ≤ m
1 ≤ k ≤ n

bit k of wi is 1

9=; (4)

8<:S(k)
i → S

(k−1)
i :

1 ≤ i ≤ m
1 ≤ k ≤ n

bit k of wi is 0

9=; (5)

n
S

(0)
i → Si+1 : 1 ≤ i ≤ m− 1

o
∪
n
S(0)
m → ε

o
(6)

{Ak → Ak−1Ak−1 : 1 ≤ k ≤ n}∪{A0 → aZ}∪{Z → ε} (7)

We now turn to W , and define the grammar GW by:
W (k) → Ak ·W (k−1) :

1 ≤ k ≤ n
bit k of W is 1

ff
(8)

W (k) →W (k−1) :
1 ≤ k ≤ n

bit k of W is 0

ff
∪
n
W (0) → ε

o
(9)

where W (n) is the axiom. From the reasoning above we find that
L(G) =

˘
aW
¯

.
Clearly, G and GW can be computed in polynomial time, and

are in program normal form. Moreover, it is easily seen thatL(G)∩
L(GW ) ∩ L(p) 6= ∅ iff there is a subset S ⊆ {o1, . . . , om} such
that the total weight of S is W . �

For nDMP(bg, sg ,cpr , pa), we show that nDMP remains NP-
complete for three grammars, each of them with at most one pro-
cedure variable. The proof is by reduction from the bounded Post
Correspondence Problem [10].

DEFINITION 4 (Bounded Post Correspondence Problem).
Instance. Two sequences a = (a1, . . . , an) and b = (b1, . . . , bn)
of words over an alphabet Σ, and a positive integer K ≤ n.
Question: Is there a non-empty sequence i1, . . . , ik of k ≤ K (not
necessarily distinct) positive integers, each between 1 and n, such
that ai1ai2 . . . aik = bi1bi2 . . . bik .

THEOREM 5. The following problem is NP-hard:
Instance: Two context-free grammars G1, G2 in program normal
form, each of them with 1 procedure variable, a regular grammar
R in program normal form, and a pattern p.
Question: Is L(G1) ∩ L(G2) ∩ L(R) ∩ L(p) 6= ∅ ?

PROOF:(Sketch.) Let a, b,K be an instance of the bounded Post
Correspondence Problem. Define Γ = {1, . . . , n} and assume it is
disjoint from Σ. We construct the context-free grammars
G1 = ({X},Σ ∪ Γ,P1, X), where

P1 = {X → ai ·X · i | i ∈ Γ} ∪ {X → ε} ,
G2 = ({Y },Σ ∪ Γ,P2, Y ), where

P2 = {Y → bi · Y · i | i ∈ Γ} ∪ {Y → ε} ,



the regular grammar R such that L(R) = Σ∗ ·
SK
i=1 Γi, and

the pattern p = (a∗1 . . . a
∗
n)K(1∗ . . . n∗)K . Observe that, since

K ≤ n, the size of p is polynomial in the size of the instance.
Notice that G1 and G2 can be easily put in program normal form:
replace a production X → ai · X · i by productions X →
ai · X ′i, X ′i → X · X ′′i , X ′′i → i · Z,Z → ε , where X ′i ,
X ′′i and Z are fresh variables. Finally, observe that X is the only
procedure variable. It follows easily from the construction that
L(G1)∩L(G2)∩L(R)∩L(p) 6= ∅ iff the bounded PCP instance
is positive. �

Notice that in this reduction, neither the number of words in
p nor their length is fixed. By mean of a more involved reduction
it is possible to show NP-hardness with a single word only (but
arbitrarily long). This reduction is presented next.

5.2.1 A finer analysis
We have defined the size of a pattern p = w∗1 . . . w

∗
n as

Pn
i=1 |wi|.

We can now zoom in and consider the size as a function of two
parameters, the number n of words in the pattern, and the maximal
length of a pattern. Since the reduction of Theorem 5 requires a
pattern with a large number of words (2n in the worst case), we
study whether nDMP stays NP-complete if on top of the number
of grammars g and the number pr of procedures also the number
of words n in the pattern p = w∗1 . . . w

∗
n is fixed, but not their

length. We show that nDMP remains NP-hard by reduction to the
0-1 Knapsack problem of Def. 3.

Consider the reduction from 0-1 Knapsack shown in Th. 4.
It does not yield a grammar with a fixed number of procedure
variables because of the sets (7), (4), and (8) of productions.

To solve this problem we first construct a grammar G] with a
fixed number of procedure variables that can still be used to encode
big numbers, albeit by means of a more complicated encoding.
Fix a number n ≥ 1 and an alphabet Σ = {a0, a1, . . . , an} ∪
{b1, . . . , bn}, and letw = anbn · · · a1b1a0. We encode the number
k ≤ 2n by the word wk. The grammar G] = (X ],Σ,P], X) has
variables X ] = {X} ∪ {A1, . . . , An} (X is the only procedure
variable), and productions P] given by the union of the sets (10) to
(14):

{X → An} (10)
{X → bkAk−1 | 1 ≤ k ≤ n} (11)
{Ak → akXAk−1 | 1 ≤ k ≤ n} (12)
{Ak → ajbjAk | n ≥ j, k ≥ 0 ∧ j > k} (13)
{A0 → a0} (14)

G] can also be obtained as follows. We first apply the construc-
tion of Sect. 3.2 to the program shown in Figure 2. This returns a
context-free grammar in program normal form. Second, some pro-
ductions are merged for better readability.

Consider the pattern p = w∗. Our first lemma shows that the
language LAk (G]) ∩ L(p) consists of a unique word given by 2k

repetitions of w.

LEMMA 2. LAk (G]) ∩ L(p) =
n
w2k

o
for every 0 ≤ k ≤ n.

PROOF: The proof is by induction on k.
k = 0. The only word which can be derived fromA0 and follows p
is given by A0(⇒(13))∗anbn . . . a1b1A0 ⇒(14) anbn . . . a1b1a0 =

w20
.

An

X

an

ajn
call X

An−1

an−1

call X

An−2

an−2

...

A0

a0

bn

bn−1

b1

bjn

ajn−1

bjn−1

aj1

bj1

Figure 2. The abstracted program defining G[. For every i ∈
{1, . . . , n} we have ji ∈ {i, . . . , n} as in (13).

k > 0. We distinguish two cases: k < n and k = n. For k < n,
consider the following partial leftmost derivation:

Ak (⇒(13))∗ anbn . . . ak+1bk+1Ak
⇒(12) anbn . . . ak+1bk+1akXAk−1

⇒(11) anbn . . . ak+1bk+1akbkAk−1Ak−1

(⇒(12)⇒(11))∗ anbn · · · a1b1A0A0A1 . . . Ak−1

⇒(14) anbn · · · a1b1a0A0A1 . . . Ak−1

= w ·A0A1 . . . Ak−1

For the case k = n, consider

An (⇒(12)⇒(11))∗ anbn . . . a1b1A0A0A1 . . . An−1

⇒(14) w ·A0A1 . . . An−1 .

We only need these two partial derivations, because every left-
most derivation that does not start like one of the two does not
generates a word of L(p) either. To conclude, we apply the induc-
tion hypothesis on A0A1 . . . Ak−1 to show that Ak ⇒∗ w · w20

·
w21
· · ·w2k−1

, hence that Ak ⇒∗ w2k since 1 +
Pk−1
i=0 2i = 2k.

�
Using this lemma we can already obtain a first reduction from

the 0-1 Knapsack problem to nDMP in polynomial time. If in the
reduction of Th. 4 the set (7) is replaced by the set P], we get
L(G) ∩ L(GW ) ∩ L(p) 6= ∅ iff there exists S ⊆ {o1, . . . , om}
such that S’s weight is W . However, this reduction is not yet ade-
quate because the variables {A1, . . . , An} are procedures variables
(see the sets (4) and (8) of productions). To fix this problem, we
need a second lemma:

LEMMA 3. (1) L(G]) ∩ L(p) =
n
w2n

o
.

(2)
`
{anbn . . . ak+1} ·L(G])

´
∩L(p) =

n
w2k

o
for all 1 ≤ k ≤

n− 1.

PROOF: (1) Any derivation of G] that generates a word of L(p)
must use the production (10) first, so that X ⇒(10) An. Applying
Lem. 2 we get L(G]) ∩ L(p) = LAn(G) ∩ L(p) =

n
w2n

o
.

(2) Any derivation ofG] generating a word u such that anbn . . . ak+1u
belongs to L(p) must start with X ⇒(11) bk+1 · Ak. As shown in
the proof of Lem. 2, the derivation must continue with X ⇒(11)

bk+1 ·Ak ⇒∗ w ·A0A1 · · ·Ak−1, and so finally lead to w2k . �
We the help of this lemma we can now proceed as follows.

Recall that we have already replaced set (7) in the reduction of



Th. 4 by P]. Now we replace the set (4) by8<:S(k)
i → anbn · · · ak+1 ·X · S(k−1)

i :
1 ≤ i ≤ m
1 ≤ k ≤ n

bit k of W is 1

9=;
and the set (8) by

W (k) → anbn · · · ak+1 ·X ·W (k−1) :
1 ≤ k ≤ n

bit k of W is 1

ff
This gives two grammars G./1 and G./2 with S1 and W (n) as
axioms, respectively. We have:

THEOREM 6. The following problem is NP-hard:
Instance: Two context-free grammars G1, G2 in program normal
form over alphabet Σ, each of them with 1 procedure variable, and
a pattern p = w∗ consisting of a single word w ∈ Σ∗.
Question: Is L(G1) ∩ L(G2) ∩ L(p) 6= ∅ ?

PROOF: The proof is by reduction to 0-1 Knapsack. We construct
G./1 ,G./2 and p as above. The proof of correctness for the reduction
essentially follows the one of Th. 4 where the result of Lem. 3 is
used when needed. We thus obtain that L(G./1 )∩L(G./2 )∩L(p) 6=
∅ iff a subset of {o1, . . . , om} has weight W .

It is routine to check the following: given a 0-1 Knapsack
instance (1) G./i is computable in polynomial time, (2) X is the
only procedure of G./i where i ∈ {1, 2} and (3) p = w∗ is
computable in polynomial time. Note that G./i are not in program
normal form, but can easily be brought into it by adding new
variables and productions. The transformation does not add any
procedure variable. �

5.3 Grammars of arbitrary size: a polynomial case
We present the most involved result of the paper, a polynomial
algorithm for nDMP(bg, sg ,cpr ,cpa). Notice that the reduction of
nDMP to satisfiability of existential Presburger formulas of Th. 2
does not help, because it yields formulas of arbitrary size that, to the
best of our knowledge, do not fall immediately into any polynomial
class described in the literature (see e.g. [12, 22, 27]). However,
using some recent results of [19, 29] we show how to compute
in polynomial time an equisatisfiable formula that belongs to the
polynomial class of [27].

As a first step we observe that, because of the reduction from
nDMP to nDPK shown in Section 4.2, it suffices to provide a
polynomial algorithm for nDPK, and in fact only for the instances
of nDPK with a fixed number g of grammars over an alphabet of
fixed size al , and a fixed number of procedure variables pr ′, i.e.,
a polynomial procedure for nDPK(bg, sg , bal , cpr ′). Indeed, Lem. 1
shows that (1) al , the size of the alphabet in the reduced nDPK
instance, is fixed, because pa is fixed in nDMP, and (2) that pr ′,
the number of procedure variables in the reduced nDPK instance,
is fixed since pa and pr are fixed.

Let G1, . . . , Gg be an instance of nDPK(bg, sg , bal ,cpr ). The
polynomial algorithm proceeds in two steps: first, for each i ∈
{1, . . . , g} the algorithm computes a regular grammar (or non-
deterministic automaton) Ai such that Π(L(Ai)) = Π(L(Gi));
then, the algorithm checks if

Tg
i=1 Π(L(Ai)) = ∅. The diffi-

culty consists of showing that both steps can be carried out in
polynomial time. For this we prove two facts. First, if Gi =
(X ,Σ,P, S), then the algorithm constructs Ai in O(|Gi|f(pr))
time and space for some function f . Second, given automata
A1, . . . , Ag over an alphabet of size al , the algorithm performs
the check

Tg
i=1 Π(L(Ai)) = ∅ in O

`
(|A1|+ · · ·+ |Ag|)h(g,al)

´
time for some function h. Since g, pr , and al have fixed values, so
do f(pr) and h(g, al).

Step 1. We show that given a context-free grammarG in program
normal form with pr variables, we can construct a regular grammar
AG satisfying Π(L(AG)) = Π(L(G)) in O(|Gi|f(pr)) time and
space (for some function f ). For this we strengthen a recent result
of [8], which shows that such a grammar can be constructed in
O(|G|f(v)) time and space, where v is the total number of variables
of G. We start by defining the grammar AG.

DEFINITION 5. Let G = (X ,Σ,P, S) be a context-free grammar
in program normal form, and let pr be the number of procedure
variables of G. We define the regular grammar AG = (Q,Σ, δ, q)
as follows:

• Q is the set of all multisets m ∈ M[X ] of at most (pr + 2)
elements, and q, the axiom, is given by JSK;

• δ = {∅ → ε}∪δ′, where δ′ contains a production m→ α ·m′
iff P contains a production X → αβ, such that α ∈ Σ∗,
β ∈ X ∗, and m′ ⊕ JXK = m⊕Π(β).

Observe that |Q| = O(|X |pr+2) and |δ| ≤ |Q|2 · al . We set out
to prove the following result (see Theorem 7 in the next page) by
means of several lemmas:

Let G = (X ,Σ,P, S) be a context-free grammar in pro-
gram normal form. The regular grammar AG of Def. 5 sat-
isfies Π(L(G)) = Π(L(AG)).

We first introduce some new notation. Given L1, L2 ⊆ Σ∗, we
write L1 =Π L2, respectively L1 ⊆Π L2, to denote that the Parikh
image of L1 is equal to, respectively included in, the Parikh image
of L2. Also, given w,w′ ∈ Σ∗, we abbreviate {w} =Π {w′}
to w =π w′. Using this notation we can rewrite our proof goal
Π(L(G)) = Π(L(AG)) as L(AG) =Π L(G).

The proof is a modification of the one given in [8]. The in-
clusion L(AG) ⊆Π L(G) is proved in [8, Prop 2.1]. Establish-
ing L(G) ⊆Π L(AG) is done through the chain of inclusions
L(G) ⊆Π L(pr+2)(G) ⊆Π L(AG), where L(i)(G) is the index-i
approximation of L(G), defined as follows.

DEFINITION 6. A derivation S = α0 ⇒ · · · ⇒ αm of G =
(X ,Σ,P, S) has index k if for every i ∈ {0, . . . ,m} at most k
symbols of αi are variables. The set of words derivable through
derivations of index k is denoted by L(k)(G).

The inclusionL(pr+2)(G) ⊆Π L(AG) is proved in [8, Lem. 2.4].
To prove L(G) ⊆Π L(pr+2)(G) we need a few preliminaries.

DEFINITION 7. Let G = (X ,Σ,P, S) be a context-free grammar
in program normal form. We inductively define the set Tr of finite
labelled trees as follows:

• if (X, ε) ∈ P then the tree t labelled by production (X, ε) and
consisting of one single node is a tree of Tr, and its yield ∆(t)
is equal to ε;

• if (X, a · Y ) ∈ P , then the tree t labelled by (X, a · Y )
and having as only child a tree t′ ∈ Tr labelled by some
(Y, α) ∈ P is a tree of Tr, and ∆(t) = a ·∆(t′);

• if (X,Y ) ∈ P , then the tree t labelled by (X,Y ) and having
as only child a tree t′ ∈ Tr labelled by some (Y, α) ∈ P is a
tree of Tr, and ∆(t) = ∆(t′);

• if (X,Z · Y ) ∈ P , then the tree t labelled by (X,Z · Y ) and
having two children labelled by some (Z,α1) (left) and (Y, α2)
(right) is also a tree of Tr, and ∆(t) = ∆(t1) ·∆(t2).

A tree t ∈ Tr is a derivation tree if it is labelled by a production
(S, α) ∈ P for some α. The set of all derivation trees of G is
denoted by TG. The yield ∆(T ) of a countable set T ⊆ Tr of
trees is defined by ∆(T ) =

S
t∈T ∆(t). In the following, we mean

derivation tree whenever we say tree.



LEMMA 4 (Easy). Let G = (X ,Σ,P, S) be a context-free gram-
mar in program normal form. Then L(G) = ∆(TG).

By Lem. 4, proving L(G) ⊆Π L(pr+2)(G) reduces to proving
∆(TG) ⊆Π L(pr+2)(G). We now introduce the notion of dimen-
sion of a tree.

DEFINITION 8. The dimension d(t) of a tree t is inductively de-
fined as follows:

1. If t has no children, then d(t) = 0;
2. If t has exactly one child t1, then d(t) = d(t1);
3. If t has exactly two children t1 and t2, then

d(t) =

(
d(t1) + 1 if d(t1) = d(t2)

max(d(t1), d(t2)) if d(t1) 6= d(t2).

The set of all derivation trees of dimension k for grammar G is
denoted by T kG.

The next lemma goes along the lines of [8, Lem. 2.1], but with
many small changes.

LEMMA 5. Let G = (X ,Σ,P, S) be a context-free grammar in
program normal form with pr procedure variables. Then ∆(TG) ⊆ΠSpr+1
i=0 ∆(T iG).

PROOF: In this proof we write t = t1 · t2 to denote that t1 is
a derivation tree except that exactly one leaf ` is labelled by a
production of the form (A,α) with α 6= ε; t2 is a derivation tree
labelled (A,α′) for some α′; and the tree t is obtained from t1 and
t2 by replacing the leaf ` = (A,α) of t1 by t2.

We want to prove that for every tree t ∈ TG, there exists a tree
t′ such that ∆(t) =Π ∆(t′) and d(t′) ≤ pr + 1. Let a tree t
be compact if d(t) ≤ L(t), where L(t) = 1 + L′(t) and L′(t)
is the number of distinct procedure variables in t. We find that
L′(t) ≤ pr for every t ∈ TG, hence L(t) ≤ pr + 1. To establish
the above result, it suffices to show that for every tree t, there exists
a compact tree t′ such that ∆(t) =Π ∆(t′).

The proof is by induction on the number of nodes of t. In the
base case, t has just one node labelled (S, ε), so d(t) = 0 < 1 ≤
L(t), hence t is compact, and we are done. In the following, assume
that t has more than one node and d(t) > L(t) holds. If t has
exactly one child t1 then d(t) = d(t1) > L(t). Since t1 has one
node less than t, induction hypothesis shows that t1 can be made
compact, i.e. d(t1) ≤ L(t1). Next we conclude from the definition
ofL and the structure of t thatL(t1) ≤ L(t), also that d(t) = d(t1)
and finally that d(t) ≤ L(t) and we are done. Let us turn to the
case where t has two children t1 and t2. We assume w.l.o.g. that
d(t) ≥ d(t1) ≥ d(t2). Finally, by the induction hypothesis, we can
further assume that t1 and t2 are compact, i.e. d(ti) ≤ L(ti) for
i = 1, 2.

From the definition of dimension and L, t1 is a subtree of t,
and d(t) > L(t) we find that: L(t) + 1 ≤ d(t) ≤ d(t1) + 1 ≤
L(t1) + 1 ≤ L(t) + 1. We conclude from above that d(t1) = L(t)
and d(t) = d(t1) + 1, hence that d(t1) = d(t2) by definition of
dimension and finally that d(t1) = d(t2) = L(t) = L(t1) =
L(t2) since t1, t2 are compact subtrees of t. We now prove the
following claim: there is a path in t2 from the root to a leaf such
that two nodes are labelled by (Z,α) and (Z,α′) where Z is a
procedure variable.

Our proof is by contradiction. Observe that for derivation tree
t with child t′ such that d(t) > d(t′), the definition of dimension
and program normal form shows that t is labelled by (X,Z ·Y ) for
some variables X,Z and Y . If d(t) = k then the rooted path that
goes down through the left child whenever possible has at least
k nodes with label of the form (Z,α) where Z is a procedure
variable. Finally since d(t2) = L(t2) = L′(t2) + 1 where L′(t2)

is the number of distinct procedure variables in t2, we find that
two nodes are labelled (Z,α) and (Z,α′) where Z is a procedure
variable, hence a contradiction.

So t2 can be factored into ta2 · (tb2 · tc2) such that tb2 and tc2
have their root labelled (Z,α) and (Z,α′) where Z is a procedure
variable.

As L(t) = L(t1) = L(t2), we also find a node of t1 labelled
(Z,α) where Z is a procedure variable which allows us to write
t1 = ta1 · tb1 where tb1 has its root labelled (Z,α) where Z is a
procedure variable.

Now we cut out the middle part tb2 of t2, and insert it between
the two parts ta1 and tb1 of t1, so that we get t′1 = ta1 · (tb2 · tb1) and
t′2 = ta2 · tc2. We then have L(t′1) = L(t1) = L(t2) ≥ L(t′2). By
induction, t′1 and t′2 can be made compact, so d(t′1) ≤ L(t′1) =
d(t1) = d(t2) ≥ L(t′2) ≥ d(t′2). Consider the tree t′ obtained
from t by replacing t1 by t′1 and t2 by t′2. Clearly, ∆(t) =Π ∆(t′).
If d(t′1) < d(t1) or d(t′2) < d(t2), then d(t′) ≤ d(t)−1 = L(t) =
L(t′) by definition of dimension, and we are done because t′ is
compact. Otherwise, we have d(t′1) = d(t′2) = L(t′) = L(t′1) =
L(t′2). So we can iterate the above procedure and insert a part of
t′2 into t′1. This procedure terminates, because the transfer of nodes
from the second child to the first cannot proceed forever. �

By this lemma, proving ∆(TG) ⊆Π L(pr+2)(G) reduces to
showing ∆(TG) ⊆Π

Spr+1
i=0 ∆(T iG) ⊆Π L(pr+2)(G). To conclude

the proof we show
Spr+1
i=0 ∆(T iG) ⊆ L(pr+2)(G).

LEMMA 6. For every k ≥ 0: ∆(T kG) ⊆ L(k+1)(G).

PROOF: Let t be a derivation tree of dimension k. The proof is by
induction on the structure of t.

Base. t consists of a node labelled (S, ε), hence k = 0 and
S ⇒ ε is of index 1.

Step. W.l.o.g. t has two children t1 and t2 such that d(t) ≥
d(t1) ≥ d(t2). By the definition of dimension we have d(t2) ≤
k − 1. Let A, A1 and A2 be the roots of t, t1 and t2, respectively.
Then A → A1A2 is a production of the grammar. By induction
hypothesis, there are derivations A1 ⇒∗ w1 of index k + 1 and
A2 ⇒∗ w2 of index k. So there is a derivation A ⇒ A1A2 ⇒∗
A1w2 ⇒∗ w1w2 of index k + 1. �

Collecting the results above, we get:

THEOREM 7. For every context-free grammar G in program nor-
mal form with pr procedure variables, Π(L(AG)) = Π(L(G)).

PROOF: In [8, Prop 2.1], L(A) ⊆Π L(G) has been proved. For the
reverse inclusion:

L(G) = ∆(TG) Lem. 4

⊆Π

Spr+1
i=0 ∆(T iG) Lem. 5

⊆ L(pr+2)(G) Lem. 6
⊆Π L(AG) [8, Lem. 2.4]

�

COROLLARY 1. Given a context-free grammar G with pr proce-
dure variables, we can construct in O(|G|(pr+2)) time a regular
grammar AG such that Π(L(G)) = Π(L(AG)).

PROOF: Follows immediately from the fact that the number of vari-
ables of the regular grammar AG of Def.5 for a context-free gram-
mar G with n variables and pr procedure variables is O(npr+2).
�

Step 2. Given regular grammars A1, . . . , Ag over an alphabet of
size al , we show that

Tg
i=1 Π(L(Ai)) = ∅ can be checked in time

O((|A1|+ · · ·+ |Ag|)h(g,al)) for a function h.



It is well known that for every regular grammar A, the set
Π(L(A)) is semilinear. It has been recently proved that Π(L(A))
is “small”.

THEOREM 8. [29, Th. 4.1] Let A be a regular grammar with n
variables over alphabet Σ of size al . There exists a representation
of Π(L(A)) ⊆ Nal as a union of linear sets

Sm
j=1 L(cj ;Pj), where

m is polynomial in n and exponential in al , the maximum entry
of each cj is polynomial in n and exponential in al , the number
of periods in each Pj is at most al , and the maximum entry of
each period is at most n. Furthermore, this is computable in time
polynomial in n and exponential in al .

This theorem suggests the following procedure to checkTg
i=1 Π(L(Ai)) = ∅ for fixed g. First, compute for each Ai a

representation of Π(L(Ai)) as given above. This is done in polyno-
mial time in the number of variables of Ai since Σ is of fixed size.
Then, for each tuple 〈L(c1;P1), . . . , L(cg;Pg)〉, where L(ci;Pi)
is a linear set of Π(L(Ai)), check if ∩gi=1L(ci;Pi) = ∅. Since
g and al are fixed, the number of tuples is polynomial, and so in
order to obtain a polynomial procedure we just need to prove that
∩gi=1L(ci;Pi) = ∅ can be checked in polynomial time. For this
we first reduce the problem to solving a system of linear equations
over the natural numbers.

DEFINITION 9. Let t = 〈L(c1;P1), . . . , L(cg;Pg)〉 be a tuple of
linear sets of dimension al , where Pi =

n
p

(1)
i , . . . , p

(ji)
i

o
. The

existential Presburger formula Φt is given by

∃x(1)
1 , . . . , x

(j1)
1 , . . . , x(1)

g , . . . , x
(jg)
g :

^
1≤id≤g−1
1≤`≤al

φ(id , id + 1, `)

where φ(id , id ′, `) denotes the formula

cid(a`) +

jidX
i=1

x
(i)
id ∗ p

(i)
id (a`) = cid′(a`) +

jid′X
i=1

x
(i)

id′ ∗ p
(i)

id′(a`) .

In the above definition, the subformula φ(id , id ′, `) has the fol-
lowing interpretation: φ(id , id ′, `) is satisfiable iff there exist
v ∈ L(cid ;Pid) and v′ ∈ L(cid′ ;Pid′) such that v(`) =
v′(`). Therefore

V
1≤`≤al φ(id , id ′, `) is satisfiable iff L(cid ;Pid)

and L(cid′ ;Pid′) have a common vector, i.e., iff L(cid ;Pid) ∩
L(cid′ ;Pid′) 6= ∅. So

V
1≤id≤g−1

V
1≤`≤al φ(id , id + 1, `) is

satisfiable iff ∩gi=1L(ci;Pi) 6= ∅. Hence the following result.

LEMMA 7. Let t = 〈L(c1;P1), . . . , L(cg;Pg)〉 be a tuple of lin-
ear sets. We have ∩gi=1L(ci;Pi) 6= ∅ iff Φt is satisfiable.

Assume now that the maximum entries and number of periods
of the linear sets in the tuple t of Def. 9 are as given in Th. 8.
An inspection of the formula Φt in Def. 9 shows that in this case
the number of variables of Φt is at most g ∗ al , and so that Φt is
an existential Presburger formula with g ∗al quantifiers and no free
variables. Since g and al are fixed parameters, g∗al is also fixed. It
follows that the satisfiability of Φt can be determined in polynomial
time by means of the Lenstra-Scarpellini’s algorithm [22, 27] (see
also [12]).

This concludes the proof that given regular grammarsA1, . . . , Ag
over an alphabet of size al , whether

Tg
i=1 Π(L(Ai)) 6= ∅ holds or

not can be determined in polynomial time.

6. Conclusions
We have studied the complexity of pattern-based verification, an
approach to the verification of multithreaded programs essentially
introduced by Kahlon in [15]. The approach asks the programmer

to supply a pattern, a regular expression of the formw∗1 . . . w
∗
n over

the alphabet of channels (and possibly other program instructions).
The verification tool then analyzes whether the program has some
execution that uses the channels conforming to the pattern.

The expressivity of pattern-based verification was first investi-
gated in [9], where it was shown that context bounding, the tech-
nique introduced by Qadeer and Rehof in [25] and implemented in
CHESS, SPIN, SLAM, jMoped, and other tools [1, 5, 20, 28, 30], is
a special case of pattern-based verification. In this paper we provide
a further analysis and give a explicit reduction.

We have reduced the pattern-based verification problem to
nDMP, the problem of deciding whether the intersection of a given
set of context-free grammars and a pattern is nonempty. Putting
together classical results by Ginsburg and Spanier [11] about
bounded context-free languages; the characterization of the Parikh
images of context-free languages given in [7]; the encoding of this
characterization into existential Presburger arithmetic presented in
[31]; and the fact that existential Presburger arithmetic reduces to
solving a system of linear Diophantine equations (well-known to
be in NP [32]) we have shown that nDMP is NP-complete. Since
context bounding is also NP-complete, the additional expressivity
of pattern-based verification does not come at an extra cost in terms
of asymptotic complexity.

We have conducted a multiparameter analysis of nDMP on
the number of threads, the maximum number of procedures per
thread, the maximal size of a procedure, and the size of the pattern.
By requiring the value of a parameter to be fixed or not, we get
16 cases. We have shown that all except one are either trivially
polynomial or still NP-complete. The analysis of the remaining
case (all parameters fixed except the maximal size of a procedure)
is the main technical contribution of the paper. Using a novel
constructive proof of Parikh’s theorem and recent results about
the Parikh images of nondeterministic automata [19, 29], we have
shown that this case is polynomial. Given the high complexity
of automatic verification of multithreaded procedural programs
(unless strong constraints like absence of communication between
threads or restriction to local properties of a thread are imposed)
we think that this is a remarkable result.

Two comments about our model are in order. First, while we
have only considered abstracted programs (i.e., we assume that all
program paths with (1) correct nesting of procedure calls and re-
turns, and (2) correct synchronization over channels, are feasible),
our approach can also be applied to boolean programs at the price
of an increase in the size of the procedures and the number of pro-
cedures per thread. Notice that context bounding and other tech-
niques face the same problem. Second, we have opted for a com-
munication model based on rendez-vous à la CSP. The reason is
convenience: the connection between the verification problem and
the emptiness problem for the intersection of context-free gram-
mars is easier to describe in this model. Our approach can also be
applied to other communication mechanisms by suitably choosing
the alphabet of the patterns.

Related work. The automatic verification of safety properties for
multithreaded programs with possibly recursive procedures has
been intensively studied in the last years. The program is usually
modeled as a set of pushdown systems communicating by some
means. Several special cases with restricted communication have
been proved decidable, including communication through locks
satisfying certain conditions, linearly ordered multi-pushdown sys-
tems, and systems with acyclic communication structure (also satis-
fying some additional conditions) [2, 3, 14–17]. Several recent pa-
pers study the automatic verification of parametric programs with
an arbitrary number of procedures [18] and with dynamic creation
of procedures [4, 6], two features that we have not considered in
this paper. From a complexity point of view, pattern-based ver-



ification lies together with context-bounding and communication
through locks at the lower end of the spectrum. Other approaches
require exponential time, but do not belong to NP (or this is not
known), or are superexponential. The only other case we know of a
problem with polynomial complexity in the size of the program is
the verification of single-index properties (close to local reachabil-
ity) in systems communicating through locks [17].
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A. Reduction of nDMP to nDPK
A.1 Construction of the grammar Gf

Let p = w∗1 . . . w
∗
n, and let wi = b

(i)
1 . . . b

(i)
ji

for every 1 ≤ i ≤ n.
Let Gp = (Xp,Σ, δp, q

(1)
1 ) be the regular grammar where

Xp =
n
q

(s)
r | 1 ≤ s ≤ n ∧ 1 ≤ r ≤ js

o
δp =

n
q

(s)
i → b

(s)
i q

(s)
i+1 | 1 ≤ s ≤ n ∧ 1 ≤ i < js

o
∪n

q
(s)
js
→ b

(s)
js
q

(s′)
1 | 1 ≤ s ≤ s′ ≤ n

o
∪n

q
(s)
1 → ε | 1 ≤ s ≤ n

o
.

It is routine to check that
Sn
i=1 Lq(i)1

(Gp) = L(w∗1 . . . w
∗
n).

http://research.microsoft.com/en-us/projects/CHESS/


GivenGp and a grammarG = (X ,Σ,P, S) in program normal
form our goal is to define a grammar for the language

h−1(L(G) ∩ L(p)) ∩ L(a∗1 . . . a
∗
n) .

We first define G./ = (X ./,Σ,P./, X0) which, as we prove later,
satisfies L(G./) = L(G) ∩ L(p):

• X ./ = {X0}∪
n

[q
(s)
r Xq

(x)
y ] | X ∈ X , q(s)

r , q
(x)
y ∈ Xp, s ≤ x

o
• P./ is the set containing for every 1 ≤ s ≤ x ≤ n a production
X0 → [q

(s)
1 Sq

(x)
1 ] and:

for every production X → ε ∈ P of G and for every
1 ≤ s ≤ n, 1 ≤ r ≤ js a production

[q(s)
r Xq(s)

r ]→ ε ; (15)

for every production X → Y ∈ P of G and for every
1 ≤ s ≤ u ≤ n, 1 ≤ r ≤ js, 1 ≤ v ≤ ju a production

[q(s)
r Xq(u)

v ]→ [q(s)
r Y q(u)

v ] ; (16)

for every production X → γ · Y ∈ P of G with γ ∈ Σ
and for every 1 ≤ s ≤ u ≤ n, 1 ≤ r ≤ js, 1 ≤ v ≤ ju
productions

[q(s)
r Xq(u)

v ]→ γ · [q(s)
r+1Y q

(u)
v ]

if r < js and γ = b(s)r ; and (17)

[q
(s)
js
Xq(u)

v ]→ γ · [q(s′)
1 Y q(u)

v ] ∈ P./

if γ = b
(s)
js

and s ≤ s′ ≤ u (18)

for every production X → ZY ∈ P of G and for every
1 ≤ s ≤ u ≤ x ≤ n, 1 ≤ r ≤ js, 1 ≤ v ≤ ju, 1 ≤ y ≤ jx
a production

[q(s)
r Xq(x)

y ]→ [q(s)
r Zq(u)

v ][q(u)
v Y q(x)

y ] . (19)

In what follows, we use X ⇒
G
α to indicate that the derivation

is carried out using the productions of the grammar G.

LEMMA 8. Let w ∈ Σ∗. We have [q
(s)
r Xq

(u)
v ] ⇒

G./

∗ w iff q(s)
r ⇒

Gp

∗

w · q(u)
v and X ⇒

G

∗ w.

PROOF: The proof for the only if direction is by induction on the
length of the derivation of [q

(s)
r Xq

(u)
v ]⇒∗ w.

i = 1. Then [q
(s)
r Xq

(s)
r ]⇒ ε. The definition of G./ shows that

X → ε ∈ P , and so X ⇒ ε.
i > 1. We do a case analysis according to the definition of G./.

• [q
(s)
r Xq

(u)
v ] ⇒ [q

(s)
r Y q

(u)
v ] ⇒∗ w. It is trivially solved using

the induction hypothesis.

• [q
(s)
r Xq

(u)
v ] ⇒ γ · [q(s)

r+1Y q
(u)
v ] ⇒∗ γw′. The definition of

G./ shows that γ = b
(s)
r for some r < js. The production

q
(s)
r → b

(s)
r · q(s)

r+1 ∈ δp and induction hypothesis show that
q

(s)
r ⇒ b

(s)
r · q(s)

r+1 ⇒∗ b
(s)
r w′ · q(u)

v . Also the production
X → γ · Y ∈ P and induction hypothesis show that X ⇒
γ · Y ⇒∗ γ · w′ and we are done since γ = b

(s)
r .

• [q
(s)
js
Xq

(u)
v ]⇒ b

(s)
js
· [q(s′)

1 Y q
(u)
v ]⇒∗ b(s)js ·w

′. The production

q
(s)
js
→ b

(s)
js
· q(s′)

1 ∈ δp and induction hypothesis show that

q
(s)
js
⇒ b

(s)
js
· q(s′)

1 ⇒∗ b
(s)
js
w′ · q(u)

v . Also the production
X → γ · Y ∈ P where γ = b

(s)
js

and the induction hypothesis
show that X ⇒ γ · Y ⇒∗ γ · w′ and we are done.

• [q
(s)
r Xq

(x)
y ]⇒ [q

(s)
r Zq

(u)
v ][q

(u)
v Y q

(x)
y ]⇒∗ w1·[q(u)

v Y q
(x)
y ]⇒∗

w1w2 = w. By induction hypothesis, we have q
(s)
r ⇒∗

w1 ·q(u)
v and Z ⇒∗ w1. Also q(u)

v ⇒∗ w2 ·q(x)
y and Y ⇒∗ w2.

Hence we find that q(s)
r ⇒∗ w1w2 ·q(x)

y andX ⇒∗ w1w2 since
X → Z · Y ∈ P which concludes this case since w = w1w2.

Using a similar induction on the length of X ⇒∗ w, the “if”
direction is easily proved. �

We now obtain a grammar Gf by slightly modifying G./. We
change the productions of (17) and (18) respectively to

[q(s)
r Xq(u)

v ] → [q
(s)
r+1Y q

(u)
v ] and [q

(s)
js
Xq(u)

v ] → as·[q(s′)
1 Y q(u)

v ]

where as ∈ eΣ. Because of this change, Gf has alphabet eΣ. Also, it
is routine to check that this change amounts to applying the inverse
homomorphism h−1 and taking the intersection with L(a∗1 . . . a

∗
n).

A.2 Proof of Lemma. 1
Given p = w∗1 . . . w

∗
n and a grammar G in program normal form,

we have that Gf satisfies each of the following properties:

• L(Gf ) ⊆ eΣ∗ where eΣ = {a1, . . . , an};
• L(Gf ) = h−1(L(G) ∩ L(p)) ∩ L(a∗1 . . . a

∗
n);

• Gf is in program normal form;
• Gf is computable in polynomial time;
• If pr is the number of procedure variables in G, then Gf has
O(pa2 · pr) procedure variables where pa is the size of p.

PROOF: The first item is obvious from the definition of Gf . Let
Gf = (X f , eΣ,Pf , X0). If follows directly from Lem. 8 that for
everyw ∈ Σ∗,X0 ⇒

G./

∗ w iff q(s)
1 ⇒

Gp

∗ w·q(x)
1 where 1 ≤ s ≤ x ≤

n and S ⇒
G

∗ w. The productions
n
q

(s)
1 → ε | 1 ≤ s ≤ n

o
⊆ δp

of Gp shows that the equivalence can be rewritten as follows:
X0 ⇒

G./

∗ w iff q(s)
1 ⇒

Gp

∗ w where 1 ≤ s ≤ n and S ⇒
G

∗ w. We

conclude from the definition of Gp that L(p) =
Sn
i=1 Lq(i)1

(Gp),

hence that L(G./) = L(G) ∩ L(p), and finally that L(Gf ) =
h−1(L(G./)) ∩ L(a∗1 . . . a

∗
n).

The second item is immediate from the definition of Gf and
that G is in program normal form. The third item is clear from the
definition of G./ and Gf . For the fourth item, we have that since
pa is the size of p, pa is also the size of Xp by definition of Gp.
Also (19) shows that each procedure variable in G yields O(pa2)
procedure variables in G, hence if pr is the number of procedure
variables in G we find that the number of procedure variables in
G./, hence Gf is O(pa2 · pr). �
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